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Abstract: We consider models of accelerated cosmological expansion described by
the Einstein equations coupled to a nonlinear scalar field with a suitable exponential
potential. We show that homogeneous and isotropic solutions are stable under small
nonlinear perturbations without any symmetry assumptions. Our proof is based on results
on the nonlinear stability of de Sitter spacetime and Kaluza-Klein reduction techniques.

1. Introduction

At present the subject of accelerated cosmological expansion is of great astrophysical
interest. Many candidates have been suggested for the cause of the acceleration, known
under the name of dark energy. The greater part of the literature on this concerns homoge-
neous (and even isotropic) models or their linearized perturbations. This is often enough
to make contact with observations. Nevertheless, since many of the phenomena of inter-
est are linked to inhomogeneities, it is desirable to develop an understanding of the
full nonlinear dynamics for initial data which are as general as possible. One approach,
which is pursued in this paper, is to try to prove general mathematical theorems. A recent
review of this approach is [12].

A well-known feature of models for accelerated cosmological expansion is that they
exhibit attractor solutions which are homogeneous and isotropic. The simplest model is
a positive cosmological constant in which case the attractor is the de Sitter solution. In
that case a theorem on stability of this solution under small nonlinear perturbations has
been proved [5]. It concerns the vacuum equations with positive cosmological constant.
No symmetry assumption is required. Generalizations where matter such as a perfect
fluid or kinetic theory is added are not available. Under the restriction of plane sym-
metry an analogous result with collisionless matter was proved in [14]. There are also
no generalizations of the result of [5] in the literature to other models of accelerated
expansion such as nonlinear scalar fields. This paper proves a generalization of this type
for a nonlinear scalar field with exponential potential. Because it was originally applied
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in models of the early universe this is associated with the name power-law inflation. The
method of proof restricts the exponents allowed to a discrete set.

The result of [5] makes essential use of the conformal properties of the Einstein equa-
tions in four dimensions. Anderson [1] has extended this analysis to any even spacetime
dimension. Here we combine the results of [1] with a Kaluza-Klein reduction which
relates power-law inflation in four dimensions with a suitable exponent in the potential
to vacuum spacetimes with cosmological constant in higher dimensions. It is proved that
certain homogeneous and isotropic solutions are nonlinearly stable.

Consider a spacetime (M, g̃, ϕ) that satisfies the Einstein equations

R̃μν − 1
2 R̃g̃μν = κ2Tμν (1)

with nonlinear scalar field matter

Tμν = ∇μϕ∇νϕ −
[

1

2
∇δϕ∇δϕ + V (ϕ)

]
g̃μν, (2)

where V (ϕ) is the potential of the scalar field. Using that the spacetime is four-dimen-
sional, Eq. (1) and (2) can be condensed into

R̃μν = κ2 (∇μϕ∇νϕ + V (ϕ)g̃μν

)
. (3a)

The Bianchi identity implies the equation of motion for the scalar field

�ϕ = V ′(ϕ). (3b)

Power-law inflation refers to the case

V (ϕ) = V0 exp [−κλ ϕ] (4)

with constants V0 and λ, where λ <
√

2. Models with a potential of this type are the
subject of the following.

The most elementary power-law inflation models are the homogeneous and isotropic
models [7], of which the simplest is

g̃ = −dt̃2 +

(
d H

2

)2+ 4
d

t̃2+ 4
d δi j d x̃ i d x̃ j , (5)

where d is related to the exponent λ in the potential via λ2 = 2d(2 + d)−1. The main
theorem of this paper establishes nonlinear stability of this model.

Theorem 1.1. Consider the exponential potential

V (ϕ) = V0 exp

(
−κ

√
2

√
d

d + 2
ϕ

)
with d ∈ N, d even. (6)

On T 3 consider smooth Cauchy initial data for the Einstein scalar field equations (3)
with potential (6). Let the initial data be close in the C∞-topology to the homoge-
neous and isotropic initial data of the model (5). Then the initial data evolves into a
power-law inflation model (M, g̃, ϕ) which is geodesically complete to the future, and
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there exists a coordinate system (t̃, x̃ i ) that is global to the future, such that g̃ takes the
form g̃ = −α2dt̃2 + g̃i j d x̃ i d x̃ j , where g̃i j and ϕ admit the asymptotic expansions

g̃i j = t̃2+4/d
∑
m≥0

g̃(m)

i j t̃−2m/d , ϕ = κ−1
√

2

√
d + 2

d
log t̃ +

∑
m≥0

ϕ(m) t̃−2m/d , (7)

and α = ∑
m≥0 α(m) t̃−2m/d . Thus, the homogeneous and isotropic power-law inflation

model (5) is nonlinearly stable.

A slightly different formulation of the theorem uses the concept of asymptotic sim-
plicity. We call the spacetime (M, g̃, ϕ) asymptotically simple (in the future), when g̃
is conformal to a metric ǵ = �2+d g̃, and ϕ́ = ϕ + dκ−1λ−1 log �, where ǵ, ϕ́, and
the positive function � can be smoothly extended through the hypersurface � = 0,
which we denote as I +, the conformal boundary of M . The formula for the conformal
transformation of the curvature scalar implies ǵμν∇μ�∇ν� = −2κ−2V0(2 + d)−1(3 +
d)−1 exp(−κλϕ́) on I +, hence I + is spacelike. Note in this context that our definition
for asymptotic simplicity differs from the standard definition which applies for the vac-
uum case and for the case when matter can be neglected in an appropriate sense in the
neighborhood of the conformal boundary.

Theorem 1.1 states that initial data close to homogeneous and isotropic data evolves
into an asymptotically simple solution. We also have

Theorem 1.2. The initial value problem for the Einstein equations with scalar field
matter and potential (6), where initial data is prescribed at conformal infinity I +, is
well-posed. The resulting spacetime (M, g̃, ϕ) is asymptotically simple with conformal
boundary I + and the metric and the scalar field admit the asymptotic expansions (7),
where the coefficients are uniquely determined by the initial data.

The proof of the theorems is based on the fact that power-law inflation models
(M, g̃, ϕ) with potential (6) are in one-to-one correspondence with a certain type of
d-dimensional vacuum solutions (M̂, ĝ) of the Einstein equations with positive cos-
mological constant. This is proved in Sect. 2. In Sect. 3 we give a brief overview of
the asymptotic behavior of solutions (M̂, ĝ); in particular we recapitulate existence and
nonlinear stability of asymptotically simple solutions. On the basis of these results, the
theorems are proved in Sect. 4.

Theorem 1.1 formulates the asymptotic behavior in a certain coordinate system that
is not Gaussian in general. In Appendix A we briefly discuss asymptotic expansions
in Gaussian coordinates; in particular we show that this choice of coordinates intro-
duces logarithmic terms into the expansions. In Appendix B we investigate asymptotic
expansions for general exponential potentials on the level of formal power series. We
demonstrate that logarithmic terms that appear in the series can often be removed by
a suitable choice of (non-Gaussian) coordinates; this complements previous studies of
formal expansions of this type [9].

2. Reduction

In this section we employ the Kaluza-Klein reduction method to find a one-to-one rela-
tionship between solutions of the Einstein equations with positive cosmological constant
	 and certain power-law inflation models. The formulation of Kaluza-Klein theory used
and the notation is primarily based on [3].
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Consider a principal fiber bundle G → M̂
π→ M , where the base space M is a

4-dimensional differentiable manifold, and G a d-dimensional Lie group (which we
will eventually assume to be abelian). On M̂ , let ĝ be a Lorentzian metric such that ĝ is
invariant under the right action of G and vertical vectors are not null w.r.t. ĝ. The metric
ĝ induces a Lorentzian metric g on M , a metric ξ on each fiber, where ξ is invariant
under the action of G, and a connection on M̂ (in the form of a horizontal bundle).
In the so-called polarized case the horizontal distribution is assumed to be involutive
and in an adapted local trivialization over a chart neighborhood of M with coordinates
{xμ | μ = 0 . . . 3} the metric ĝ can be written as

ĝ = ĝAB eAeB = gμν dxμdxν + ξmn θmθn, (8)

where the θm constitute a basis of right-invariant 1-forms on G, and gμν , ξmn depend
only on the coordinates {xδ}. Greek indices run from 0 to 3, latin indices m, n, etc.
assume values 1, 2, . . . , d. Capital letters A, B, etc. run over the combined range: the
components TAB of a tensor thus comprise Tμν , Tμn , Tmν , Tmn .

We set

eφ := √
det ξ so that ξmn = e2φ/d ζmn, (9)

where det ζ = 1. Like ξmn , in the given trivialization, the field φ can be regarded as a
scalar field on M .

To compute the Ricci tensor R̂AB of the metric ĝ we recall the general Kaluza-Klein
formulas from [3] and use ∇μφ = 1

2ξmn∇μξmn , where ξmn is the inverse of ξmn . We
obtain

R̂μν = Rμν − ∇μ∇νφ + 1
4∇μξmn∇νξ

mn, (10a)

R̂mn = Rmn + 1
2ξ pq∇αξmp∇αξnq − 1

2

(∇α∇α + ∇αφ ∇α

)
ξmn, (10b)

where Rμν is the Ricci tensor of gμν and Rmn the Ricci curvature of the fibers. Both Rmn

and the components R̂μn of the Ricci tensor R̂AB vanish if the Lie group G is abelian.
On M we introduce the conformally rescaled metric

g̃μν := eφ gμν (11)

and denote the Ricci curvature of g̃μν by R̃μν . Employing ∇α∇α +∇αφ ∇α = eφ ∇̃α∇̃α ,
where ∇̃α = g̃αβ∇̃β , Eq. (10) becomes

R̂μν = R̃μν +
1

2

(
∇̃δ∇̃δφ

)
g̃μν −

(
1

2
+

1

d

)
∇̃μφ∇̃νφ +

1

4
∇̃μζmn∇̃νζ

mn, (12a)

R̂mn = Rmn − 1

2
eφ

[
2

d
(∇̃α∇̃αφ)ξmn + e2φ/d

(
∇̃α∇̃αζmn − ζ pq ∇̃αζmp∇̃αζnq

)]
.

(12b)

Contracting (12b) with ξmn leads to

ξmn R̂mn = ξmn Rmn − eφ ∇̃α∇̃αφ, (13)

where again ξmn Rmn = 0 in the case of an abelian Lie group G. Equation (12) simplifies
when ζmn is independent of xδ , i.e., when ∇μζmn = 0.



Power-law Inflation without Symmetry 5

Assume that (M̂, ĝ) satisfies the Einstein vacuum equations with cosmological con-
stant 	, i.e.,

R̂AB = 2

d + 2
	 ĝAB . (14)

Suppose further that the Lie group G is abelian and that ∇μζmn = 0. From (13) we
obtain

∇̃α∇̃αφ = − 2d

d + 2
	 e−φ. (15)

Equation (12a) then leads to

R̃μν = 	e−φ g̃μν +

(
1

2
+

1

d

)
∇̃μφ∇̃νφ. (16)

Define

ϕ = κ−1

√
1

2
+

1

d
φ, (17)

then (15) and (16) become

∇̃α∇̃αϕ = V ′(ϕ) and R̃μν = κ2V (ϕ) gμν + κ2 ∇̃μϕ∇̃νϕ, (18)

where

V (ϕ) := 	κ−2 exp

[
−κ

√
2

√
d

d + 2
ϕ

]
. (19)

By comparing (18) with (3a) and (3b) we conclude that (M, g̃, ϕ) is a solution of the
Einstein equations with nonlinear scalar field, where the potential is an exponential func-
tion, i.e., (M, g̃, ϕ) is a power-law inflation model. The exponent in the potential (19)
is

λ = λd := √
2

√
d

d + 2
<

√
2, (20)

cf. (4).
Conversely, given a solution (M, g̃, ϕ) representing power-law inflation with

exponent λ = λd = (2d)1/2(d + 2)−1/2 for some d ∈ N, we are able to construct
a (4 + d)-dimensional solution (M̂, ĝ) of the Einstein vacuum equations with positive
cosmological constant. We take for G an abelian Lie group, which ensures R̂μn = 0, and
we set ∂μζmn = 0; e.g., we use M̂ = M×G, where G = R

d is endowed with ζmn = δmn .
The relations (18) together with the form of the potential imply R̂AB = 2/(d + 2)	 ĝAB
with 	 = κ2V0.
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We conclude by giving a schematic overview of the one-to-one correspondence of
solutions, which has been established:

(M̂ = M × R
d , ĝ), (M, g̃, ϕ),

R̂AB − 1
2 R̂ĝAB + 	ĝAB = 0,

R̃μν − 1
2 R̃g̃μν = κ2Tμν[V (ϕ)],
�̃ϕ = V ′(ϕ),

V (ϕ) = 	κ−2 exp

[
−κ

√
2
√

d
d+2 ϕ

]
,

ĝ = gμν dxμdxν + e2φ/dδmn dymdyn, g̃μν = eφ gμν, ϕ = κ−1
√

d+2
2d φ.

(21)

For the de Sitter solution in (4 + d) dimensions we can write

ĝ = −(dx0)2 + e2H x0
[
(dx1)2 + (dx2)2 + (dx3)2 + (dy1)2 + · · · + (dyd)2

]
, (22)

where H−2 = (d + 2)(d + 3)/(2	). From (21) we infer that φ = d H x0, and g̃ becomes

g̃μνdxμdxν = ed H x0
(
−(dx0)2 + e2H x0

[
(dx1)2 + (dx2)2 + (dx3)2

])
. (23)

By introducing new coordinates x̃μ through dx̃0 = exp(d H x0/2) dx0 and x̃ i = xi we
obtain

g̃μνdx̃μdx̃ν = −(dx̃0)2 +

(
d H

2

)2+ 4
d (

x̃0
)2+ 4

d
δi j d x̃ i d x̃ j , (24)

i.e., a flat Robertson-Walker model for power-law inflation as in (5).

3. Asymptotic Series

Consider the Einstein vacuum equations with cosmological constant 	 in n + 1 dimen-
sions, n ≥ 3, n odd. The n + 1 decomposition of the equations consists of the constraint
equations and the evolution equations

∂t ĝab = −2ĝack̂c
b , ∂t k̂a

b = R̂a
b + (trk̂)k̂a

b − 2	

n − 1
δa

b , (25)

where we have used a vanishing shift vector and a lapse function set equal to one.
In [11] it was proved that the equations admit power series of the following type as
formal solutions:

ĝab = e2Ht
(

ĝ(0)

ab + e−2Ht ĝ(2)

ab + e−3Ht ĝ(3)

ab + · · ·
)

, (26a)

k̂a
b = −Hδa

b +
∑
m≥2

k̂a
b(m)

e−m Ht , (26b)
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where H = √
2	/[n(n − 1)]. The coefficients k̂a

b(m)
= σ̂ a

b(m)
+ n−1trk̂(m)δ

a
b are obtained

recursively through the relations

[n − m]H σ̂ a
b(m)

=
m−2∑
p=2

σ̂ a
b(p)

trk̂(m-p) + tfR̂a
b (m)

, (27a)

[2n − m]H trk̂(m) =
m−2∑
p=2

trk̂(p)trk̂(m-p) + R̂(m), (27b)

for m ≥ 2, m 	= n, m 	= 2n, which follows from (25), and through

2(n − 1)H trk̂(m) = R̂(m) +
m−2∑
p=2

[
−k̂a

b(p)
k̂b

a(m-p) + trk̂(p)trk̂(m-p)

]
, (27c)

for m = 2n, which follows from the Hamiltonian constraint. Here k̂a
b(m)

vanishes for all

odd m < n. The evolution equation ∂t ĝab = −2ĝack̂c
b implies that the coefficients ĝ(m)

ab

are determined by the coefficients k̂a
b(l)

, l = 0 . . . m, recursively; in particular ĝ(m)

ab = 0
for all odd m < n. The remaining unspecified coefficients ĝ(0)

ab and ĝ(n)

ab encode the free
data,

ĝ(0)

ab = Âab , ĝ(n)

ab = B̂ab, (28)

where Âab is a Riemannian metric, B̂ab a symmetric tensor that satisfies Âab B̂ab = 0
and ∇̂a B̂ab = 0, where Âab is the inverse of Âab and ∇̂a refers to Âab.

Consider now a spacetime (M̂, ĝ) that is asymptotically simple and de Sitter (in the
future), see, e.g., [5]. By definition, ĝ is then conformal to a metric ǧ = �2 ĝ, where ǧ
and the positive function � can be smoothly extended through the hypersurface � = 0,
which is often denoted as the conformal boundary Î + of M̂ . Since ǧμν∇μ�∇ν� =
−2	n−1(n − 1)−1 = −H2 on Î +, which follows from the conformal transformation
of the curvature scalar, the metric ǧ takes the form

ǧ = −H−2α2d�2 + ǧabdžad žb, (29)

when � is used as the time coordinate and the ža are spatial coordinates that are con-
stant along the curves orthogonal to slices � = const. The function α depends on �

and ža ; α = 1 on Î +. Letting t̂ = exp(−H�) the physical metric becomes ĝ =
−α2dt̂2 + ĝabdžad žb with ĝab = exp(2Ht̂)ǧab. In [11, Sect. 4], in dimension n = 3,
it is shown that this relation together with an analogous set of fall-off conditions for
α and k̂a

b implies that Gauss coordinates can be introduced in which the metric ĝab

and the extrinsic curvature k̂a
b exhibit an asymptotic expansion of the form (26). It is

straightforward to apply the proof in [11] to all odd dimensions.
The initial value problem for the Einstein equations with positive cosmological con-

stant, where initial data is prescribed at conformal infinity Î +, is well-posed; this has
been shown in [5] in the case n = 3. In particular, given an arbitrary Riemannian
metric Âab on a (compact) manifold Î + and a symmetric tensor B̂ab that is tracefree
and divergence-free, then there exists a unique future asymptotically simple solution
of Einstein’s equations whose conformal boundary is Î +. Global non-linear stability
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of asymptotic simplicity has been proved in [6]. Hence, the evolution of initial data
sufficiently close to de Sitter data yields a spacetime that is globally close to de Sitter
and in particular asymptotically simple in the past and in the future. For our purposes
it is most relevant that these statements have been generalized recently to arbitrary odd
(spatial) dimensions n, in particular, even-dimensional de Sitter spacetime is (globally)
non-linearly stable, see [1].

We conclude that any initial data close to de Sitter evolves into an asymptotically sim-
ple solution having an asymptotic expansion of the form given in (26) together with (28),
where Âab and B̂ab correspond to the conformal initial data set.

4. Reduction of Asymptotic Series

Consider the (4 + d)-dimensional manifold M̂ = M × R
d ; let d be even. On M̂ con-

sider solutions of the Einstein vacuum equations with cosmological constant 	 of the
type (21),

ĝ = −dt2 + gi j dxi dx j + e2φ/dδmndymdyn︸ ︷︷ ︸
ĝab dzadzb

. (30)

If (M̂, ĝ) is asymptotically simple, as is guaranteed for solutions sufficiently close to de
Sitter, ĝab exhibits the asymptotics (26). It follows that

gi j = e2Ht

⎛
⎝g(0)

i j +
∑
m≥2

g(m)

i j e−m Ht

⎞
⎠ , φ = d Ht + φ(0) +

∑
m≥2

φ(m) e−m Ht . (31)

From the 3 + d split of k̂a
b ,

k̂a
b

∂

∂za
⊗ dzb = ki

j
∂

∂xi
⊗ dx j + κδm

n
∂

∂ym
⊗ dyn, (32)

we obtain in an analogous manner

ki
j = −Hδi

j +
∑
m≥2

ki
j (m)

e−m Ht , κ = −H +
∑
m≥2

κ(m) e−m Ht . (33)

The evolution equation ∂t ĝab = −2ĝack̂c
b, cf. (25), reduces to

∂t gik = −2gi j k
j
k , ∂t φ = −dκ, (34)

hence g(m)

i j (m ≥ 2) is determined recursively from g(0)

i j and ki
j (l)

, l = 2 . . . m, and

κ(m) = m Hd−1φ(m). Reduction of the recursive algebraic system (27) yields

[3 + d − m]Hσ i
j (m)

= tfPi
j (m)

+
m−2∑
p=2

σ i
j (p)

[trk(m-p) + dκ(m-p)], (35a)

[(6 + d) − m]H trk(m) + 3Hdκ(m) = P(m) +
m−2∑
p=2

[trk(p) + dκ(p)] trk(m-p), (35b)

d H trk(m) + [(3 + 2d) − m]Hdκ(m) = ρ(m) +
m−2∑
p=2

[trk(p) + dκ(p)] dκ(m-p), (35c)
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where

Pi
j = Ri

j − 1

d
∇ iφ∇ jφ − ∇ i∇ jφ =

∑
m≥2

Pi
j (m)

e−m Ht (36)

and ρ = −∇ i∇iφ−∇ iφ∇iφ with an analogous expansion. (For the reduction it is useful
to employ the warped product structure of the metric, see, e.g., [4].) The m th coefficient
Pi

j (m)
is determined by the coefficients g(l)

i j and φ(l), with l = 0 . . . (m − 2); ρ(m) by φ(l),
l = 0 . . . (m − 2). The determinant of the coefficient matrix of the l.h.s. of (35b,35c) is
(m −[d +3])(m −2[d +3]). The system (35) thus determines σ i

j (m)
, trk(m), κ(m) recursively

except for m = d + 3, m = 2(d + 3). In the case m = 2(d + 3) the system (35b,35c) is
complemented by the equation

2H(2 + d)
(
trk(m) + dκ(m)

) = −
m−2∑
p=2

σ i
j (p)

σ
j
i (m-p)

+
2

3

m−2∑
p=2

trk(p)trk(m-p)

+
d − 1

d

m−2∑
p=2

dκ(p)dκ(m-p) + 2
m−2∑
p=2

dκ(p)trk(m-p) + P(m) + ρ(m),

(35d)

which is the reduced version of the constraint equation (27c).
The 0th and the (3 + d)th coefficients are undetermined by the algebraic system; they

represent the free data. When we decompose Âab, B̂ab, cf. (28), according to

Âabdzadzb = Ai j dxi dx j + e2Aδmndymdyn, (37a)

B̂abdzadzb = Bi j dxi dx j + Bδmndymdyn, (37b)

we obtain

g(0)

i j = Ai j , φ(0) = d A , g(3+d)

i j = Bi j , (e2φ/d)(3+d) = B. (38)

Hereby the data must satisfy the following conditions:

Ai j Bi j + d Be−2A = 0 , ∇ i Bi j − d Be−2A∇ j A + d Bi j Aik∇k A = 0, (39)

where Ai j is the inverse of Ai j and ∇i refers to Ai j .
We now make use of the relation (21) to prove Theorems 1.1 & 1.2:
An asymptotically simple solution (M̂, ĝ) of the type (30) uniquely corresponds to

an asymptotically simple solution (M, g̃, ϕ) representing power-law inflation,

g̃ = eφ
(
−dt2 + gi j dxi dx j

)
, ϕ = κ−1

√
d + 2

2d
φ. (40)

Thus, the asymptotic behavior of g̃μν and ϕ is uniquely determined by studying the
(reduction of the) asymptotic expansions of ĝ. From the above analysis we obtain that
the asymptotic behavior of g̃μν and ϕ is given by the asymptotic series (31) of gi j and
φ. The coefficients in these series are determined via (34) through the coefficients ki

j (l)

and κ(l), which are in turn determined recursively by (35). The remaining free data is
specified as in (38).
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Introducing a new time coordinate t̃ through dt̃ = exp(d Ht/2) dt and setting x̃ i =
xi , the metric (40) becomes

g̃ = −e(φ−d Ht)︸ ︷︷ ︸
−α2

dt̃2 + e(φ−d Ht)
(

d H

2

)2+ 4
d

t̃2+ 4
d hi j

︸ ︷︷ ︸
g̃i j

d x̃ i d x̃ j , (41)

where

α2 = exp

⎡
⎣d A +

∑
m≥2

φ(m)

(
d H

2

)−2m/d

t̃−2m/d

⎤
⎦ , (42a)

hi j = Ai j +
∑
m≥2

g(m)

i j

(
d H

2

)−2m/d

t̃−2m/d . (42b)

To show Theorem 1.2 consider on the three-dimensional manifold I + a Riemannian
metric Ai j , a symmetric tensor Bi j , and fields A, B, that satisfy the condition (39).
Defining Âab, B̂ab according to (37) results in Cauchy data at conformal infinity Î + =
I + × R

d for the Einstein vacuum equations with positive cosmological constant in
(4 + d) dimensions. The well-posedness of the corresponding Cauchy problem has been
established in [1]. Reduction of this result yields Theorem 1.2.

It is straightforward to show from (35) that (41) together with (42) coincides with the
homogeneous and isotropic solution (5) when A = 1, Ai j = δi j , and (e2φ/d)(3+d) = B =
0, g(3+d)

i j = Bi j = 0. Since the solution (5) uniquely corresponds to the (4 + d)-dimensional
de Sitter solution, nonlinear stability of the latter reduces to nonlinear stability of the
former, which shows Theorem 1.1. Equivalently, Theorem 1.2 can be applied directly
to obtain the result. Hence, the evolution of initial data sufficiently close to data char-
acterizing the power-law inflation Robertson-Walker model yields a spacetime that is
globally close to that model and the spacetime possesses a metric g̃ and a scalar field
ϕ of the form (40), which exhibit the asymptotic expansion (31) in a future end of the
spacetime.

5. Conclusions

In this paper it has been shown that in certain models of accelerated cosmological
expansion homogeneous and isotropic solutions are stable under small nonlinear pertur-
bations without any symmetry assumptions. These results concern the Einstein equations
coupled to a nonlinear scalar field with a suitable exponential potential. They show that
some known results for spacetimes with positive cosmological constant generalize to
a situation where the acceleration of a cosmological model is due to the effect of a
nonlinear scalar field.

For cosmological applications it would be desirable to incorporate a description of
ordinary matter (galaxies and dark matter) into the models. It is expected that the source
of the cosmological acceleration (dark energy, the cosmological constant or the scalar
field) will dominate the dynamics at late times, but this should be proved rather than
assumed. In this paper we were not able to include ordinary matter but note that this
has not yet even been done for a perfect fluid or collisionless matter in the case of a
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cosmological constant. It seems that in order to do this, methods will be needed which
are more direct than those using conformal invariance properties.

Another direction in which the results should be extended is to nonlinear scalar fields
with more general potentials. The case of an exponential potential with a general value of
the exponent is discussed on the level of formal power series in Appendix B of this paper.
The observation that a judicious choice of time coordinate can simplify the asymptotic
expansions may be useful for later work using other methods. A similar discussion for
a potential with a strictly positive lower bound is given in [2]. For wider classes of
potentials the only mathematical theorems concern spatially homogeneous spacetimes
of Bianchi types I-VIII, including normal matter [8, 10, 13].

Questions related to cosmic acceleration and dark energy play a key role in modern
cosmology. They deserve the attention of researchers in mathematical relativity and we
hope that this paper will contribute to the development of this area of mathematical
physics.

A. Asymptotics in Gaussian Coordinates

The coordinates in which the asymptotic expansions have been given above are not
Gaussian; in this section we investigate the asymptotic expansions in Gaussian coordi-
nates. We begin by showing that the spacetime admits Gauss coordinates that are global
to the future.

The metric and extrinsic curvature functions satisfy the following estimates:

|g̃i j | ≤ Ct̃2+4/d , |g̃i j | ≤ Ct̃−2−4/d , |�̃i
jk | ≤ C, (A.1a)

|α − ed A/2| ≤ Ct̃−4/d , |∂t̃α| ≤ Ct̃−1−4/d , |∂iα| ≤ C, (A.1b)

|σ̃ i
j | ≤ Ct̃−1−4/d , |trk̃ + (3 + 6/d)e−d A/2 t̃−1| ≤ Ct̃−1−4/d . (A.1c)

Lemma A.1. Consider a metric g̃μνdx̃μdx̃ν = −α2dt̃2 + g̃i j d x̃ i d x̃ j , cf. (41), which
is given on a time interval [T,∞), and assume that there exists C ∈ R such that the
estimates (A.1) hold. Consider a hypersurface t̃ = t̃0 and Gaussian coordinates based
on that hypersurface. If t̃0 is sufficiently large, then the Gaussian coordinates extend
globally to the future.

Proof. Consider an affinely parametrized geodesic γ (τ) that is orthogonal to the hyper-
surface t̃ = t̃0. By a slight abuse of notation we write (t̃, x̃)(τ ) for γ (τ);

t̃(τ0) = t̃0 , x̃(τ0) = x̃ i
0 ,

dt̃

dτ
(τ0) = α−1(τ0) ,

dx̃i

dτ
(τ0) = 0. (A.2)

It is a solution of the geodesic equations

d2 t̃

dτ 2 + α−1∂t̃α

(
dt̃

dτ

)2

+ 2α−1∂iα
dx̃i

dτ

dt̃

dτ
+ α−1k̃i j

d x̃ i

dτ

dx̃ j

dτ
= 0,

(A.3a)

d2 x̃ i

dτ 2 + α∂ iα

(
dt̃

dτ

)2

− 2

3
αtrk̃

d x̃ i

dτ

dt̃

dτ
− 2ασ̃ i

j
d x̃ j

dτ

dt̃

dτ
+ �̃i

jk
d x̃ i

dτ

dx̃ j

dτ
= 0.

(A.3b)
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Let ε > 0 be sufficiently small in comparison to α−1(τ0) and E > 0, let ζ ∈ (1 +
2/d, 1 + 4/d), and consider the maximal interval [τ0, τ̄ ) such that

∣∣∣∣ dt̃

dτ
− α−1

∣∣∣∣ ≤ ε , t̃ζ
∣∣∣∣dx̃i

dτ

∣∣∣∣ ≤ E on [τ0, τ̄ ). (A.4)

Integrating (A.4) we infer that there exist constants C+ > C− > 0, such that

C−(τ − τ0)< t̃(τ )− t̃0 < C+(τ − τ0) , |x̃ i (τ )− x̃ i
0| < EC−1− (ζ − 1)−1 t̃1−ζ

0 (A.5)

on [τ0, τ̄ ). (In fact, C− can be improved (iteratively) by redefining C− as C− =
minx̃∈D e−d A/2 − const t̃−4/d

0 − ε, where D is the domain in x̃ i specified by (A.5),

and analogously for C+: C+ = maxx̃∈D e−d A/2 + const t̃−4/d
0 + ε.)

Making use of (A.1) the geodesic equation (A.3a) yields

d2 t̃

dτ 2 = ι(τ ) where |ι(τ )| ≤ const t̃1−2ζ+4/d , (A.6)

and by integration
∣∣∣∣ dt̃

dτ
(τ ) − α−1(τ0)

∣∣∣∣ ≤ const t̃2(1+2/d−ζ )
0 , hence

∣∣∣∣ dt̃

dτ
− α−1

∣∣∣∣ ≤ const t̃2(1+2/d−ζ )
0 ,

(A.7)

where the constants depend on ε, E , but are independent of t̃0. The geodesic equa-
tion (A.3b) can be treated by noting that

αtrk̃ = (α − ed A/2)trk̃ + ed A/2
(

trk̃ +

[
3 +

6

d

]
e−d A/2 t̃−1

)
−
[

3 +
6

d

]
t̃−1. (A.8)

By (A.1) we obtain

d2 x̃ i

dτ 2 +

(
2 +

4

d

)
t̃−1 dt̃

dτ

dx̃i

dτ
= ς(τ) where |ς(τ)| ≤ const t̃−2−4/d; (A.9)

integration leads to

∣∣∣∣dx̃i

dτ

∣∣∣∣ ≤ const
(

t̃−1−4/d − t̃0 t̃−2−4/d
)

and t̃ζ
∣∣∣∣dx̃i

dτ

∣∣∣∣ ≤ const t̃−1−4/d+ζ
0 .(A.10)

If t̃0 is sufficiently large, then const t̃2(1+2/d−ζ )
0 < ε and const t̃−1−4/d+ζ

0 < E , hence (A.7)
and (A.10) improve (A.4) on [τ0, τ̄ ). Since τ̄ was chosen maximal, τ̄ must be infinite,
and the above estimates hold globally. In particular, from (A.10),

∣∣∣∣dx̃i

dτ

∣∣∣∣ ≤ const t̃−1−4/d and

∣∣∣∣ dt̃

dτ
− α−1

∣∣∣∣ ≤ const t̃−4/d , (A.11)

where the second inequality results from the fact that the geodesic is affinely parame-
trized. Global existence of the timelike geodesics orthogonal to the hypersurface t̃ = t̃0
has thus been established; the asymptotic properties are given by (A.11).
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To show that the family of geodesics gives rise to a global Gaussian coordinate system
we investigate geodesic deviation. Consider the geodesic γ (τ) and let dμ

j be the deviation
vector between γ and an infinitesimally neighboring geodesic in the direction ∂ j , i.e.,

d0
j (τ0) = 0 , di

j (τ0) = δi
j ,

dd0
j

dτ
(τ0) = −(α−2∂ jα)(τ0),

ddi
j

dτ
(τ0) = 0.

(A.12)

In analogy to (A.4) we can assume that |dd0
j /dτ +α−2∂ jα| ≤ ε and t̃ζ |ddi

j/dτ | ≤ E on
a maximal interval [τ0, τ̄ ). Along the lines of the above argument, by using derivatives
of the geodesic equations (A.3) w.r.t. spatial variables we can improve these inequalities
to obtain τ̄ = ∞, and we get that∣∣∣∣∣

ddi
j

dτ

∣∣∣∣∣ ≤ const t̃−1−4/d so that |di
j − δi

j | ≤ const t̃−4/d
0 (A.13)

on [τ0,∞). For large t̃ the component d0
j will increase linearly in t̃ . In line with the

existing gauge freedom we may redefine dμ
j ,

d̃μ
j =

(
d0

j
di

j

)
+ λ(t̃)

(
dt̃/dτ

dx̃i/dτ

)
=
(

0
δi

j + const [t̃−4/d
0 + t̃−4/d ]

)
(A.14)

for a suitable choice of λ(t̃). We infer that the deviation vector behaves in a nice manner,
at least for t̃0 sufficiently large, so that the family of geodesics originating from t̃ = t̃0
generates a Gaussian coordinate system that is global in the future. �


Let {τ, x̃ i } denote the Gaussian coordinate system constructed above. In these coor-
dinates the field equations take the form ∂τ g̃i j = −2k̃i j ,

∂τ k̃i
j = R̃i

j + (trk̃)k̃i
j − 8π Si

j + 4πδi
j (trS − ρ), (A.15a)

− ∂2
τ ϕ + �̃ϕ + (trk̃)∂τ ϕ = V ′(ϕ), (A.15b)

where Si j and ρ stem from the scalar field energy-momentum tensor (2), i.e., ρ = T00,
Si j = Ti j .

It can be shown by example that series of the type

g̃i j = τ 2+4/d
∑
m≥0

g(m)

i j τ−2m/d , ϕ = [2κ−2(d + 2)/d]1/2 log τ +
∑
m≥0

ϕ(m) τ
−2m/d

(A.16)

do not provide solutions of (A.15a) in general. The asymptotic expansions of g̃, ϕ, etc.
necessarily include logarithmic terms, i.e.,

g̃i j = τ 2+4/d
∑
m≥0

Lm∑
l=0

g(m,l)

i j (log τ)l τ−2m/d , etc., (A.17)

where Lm ∈ N ∀m. It turns out that Lm = 0 for all m < d/2 in the case d = 4k, k ∈ N,
and Lm = 0 for all m < 3 + d in the case d = 2(2k + 1), k ∈ N.
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It is interesting to contrast (A.17) and (7): in Gaussian coordinates the asymptotic
expansions contain logarithmic terms in general, however, by the use of a suitable
time coordinate these logarithmic terms can be removed. In Appendix B we investi-
gate whether this statement can be generalized, on the level of formal power series, for
arbitrary exponents d.

B. Formal Asymptotic Expansions with General Exponents

For a spacetime (M, g̃, ϕ) consider the Einstein scalar field equations with potential

V (ϕ) = V0 exp

(
−κ

√
2

√
d

d + 2
ϕ

)
with d ∈ R. (B.1)

In [9] it was shown that the equations admit power series as formal solutions. The anal-
ysis was performed in Gaussian coordinates {τ, x̃ i }, so that g̃ = −dτ 2 + g̃i j d x̃ i d x̃ j , and
it was found that

g̃i j = τ 2+4/d
∑

m∈M

g(m)

i j τ−2m/d , ϕ = [2κ−2(d + 2)/d]1/2 log τ +
∑

m∈M

ϕ(m) τ
−2m/d ,

(B.2)

where M is the set {0}∪{(d/2)n1 +2n2 +(3+d)n3 |ni ∈ N}. However, the series contain
logarithmic terms, cf. (A.17), if there exists n1, n2 ∈ N such that (d/2)n1+2n2 = (3+d),
which is the case when d = n or d = 6/n, n ∈ N.

The problem simplifies considerably when we make the ansatz

g̃ = eφ
(
−dt2 + gi j dxi dx j

)
, ϕ = κ−1

√
d + 2

2d
φ, (B.3)

which is inspired by (21). Let ki
j denote the second fundamental form of the hypersur-

faces t = const in the spacetime (M,−dt2 + g), and σ i
j its trace-free part. Then the

Einstein scalar field (evolution) equations become ∂t gi j = −2gilkl
j and

∂tσ
l
j = tfRl

j + (trk)σ l
j − 1

d

(
∇lφ∇ jφ − 1

3
∇kφ∇kφ

)
−
(

∇l∇ jφ − 1

3
∇k∇kφ

)
,

(B.4a)

∂t trk = R + (trk)2 − κ2V0
2

d + 2
− ∂tφ trk − 1

d
∇kφ∇kφ − ∇k∇kφ, (B.4b)

�φ + ∇kφ∇kφ − (∂tφ)2 = −κ2 2d

d + 2
V0, (B.4c)

where R and ∇ refer to g. It can be proved that this system of equations, complemented
by the constraints, admits power series of the following type as formal solutions:

gi j = e2Ht

(
g(0)

i j +
∑

m∈M
g(m)

i j e−m Ht

)
, φ = d Ht + φ(0) +

∑
m∈M

φ(m) e−m Ht , (B.5)

cf. (31), where H2 = 2V0κ
2(d +2)−1(d +3)−1 and M = {2m1+(3+d)m2 |mi ∈ N}. The

recursive algebraic system specifying the coefficients is essentially identical with (35),
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the free data is represented by the 0th and the (3 + d)th coefficients. In this context the
exponent d ∈ R is still not completely arbitrary, though: for d = 2k + 1, k ∈ N, the
expansions (B.5) must be supplemented by logarithmic terms.

These results suggest that there exist two types of logarithmic terms in formal expan-
sions: (i) artificial logarithms which are due to an unsuitable choice of coordinates and
can be removed by using different coordinates, and (ii) genuine logarithms. In our par-
ticular case we have seen that, of the logarithmic terms in [9] which appear for d = n
and d = 6/n, n ∈ N, only those in the case d = 2k + 1, k ∈ N can be genuine.
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