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Abstract

The dimensional reduction of D-dimensional spacetimes arising in
string/M-theory, to the conformal Einstein frame, may give rise to cos-
mologies with accelerated expansion. Through a complete analysis of the
dynamics of doubly warped product spacetimes, in terms of scale invari-
ant variables, it is demonstrated that for D ≥ 10, eternally accelerating
four-dimensional κ = −1 Friedmann cosmologies arise from dimensional
reduction on an internal space with negative Einstein geometry.
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1 Introduction

The current standard model of cosmology has as an essential element the
accelerated expansion of the universe. In order to achieve accelerated expan-
sion, the strong energy condition must be violated. Numerous matter mod-
els which provide accelerated expansion have been proposed, among them
the cosmological constant Λ and scalar field models like quintessence and
k-essence.

It has been shown by Townsend and Wohlfarth [10] by considering a
Kaluza–Klein reduction of a D-dimensional spacetime with a hyperbolic
internal space that the dimensionally reduced universe may exhibit a period
of accelerated expansion, even though the D-dimensional model one starts
from does not violate the strong energy condition. This result thus circum-
vents a ‘no-go’ theorem which states that dimensional reduction of super-
gravity models arising from string/M-theory (which in particular satisfy the
strong energy condition) cannot give rise to cosmologies with accelerated
expansion in case the internal geometry is time-independent [7, 9].

The D-dimensional models discussed in [10] are vacuum spacetimes which
are warped products of a (3 + 1)-dimensional κ = 0 Friedmann model with
an n-dimensional hyperbolic space, and are thus examples of Lorentzian dou-
bly warped products. The dimensionally reduced model exhibits a transient
phase of acceleration. In [1], it has been shown that it is possible to obtain
late time accelerated expansion, if the (3 + 1)-dimensional model is a κ = −1
Friedmann model. Whether there exist, among these models, solutions with
eternal acceleration, i.e., solutions that exhibit accelerated expansion for all
times from the singularity onwards, has been as open question.

In this paper, we apply the method of scale invariant dynamics to the
study of vacuum doubly warped products and their dimensional reduc-
tion. In particular, we prove the existence of eternally accelerating solu-
tions for D ≥ 10, and we prove that no eternally accelerating models can
occur for D < 10. Our analysis shows that eternally accelerating cosmolo-
gies cannot be obtained from perturbations of the (dimensionally reduced)
D-dimensional Friedmann model; in fact, our analysis is based on techniques
that capture the global dynamics of solutions.

We consider line elements on a D = m + n + 1 dimensional spacetime
R × M × N of the form

−dt2 + a2(t)g + b2(t)h, (1.1)

where (M, g), (N, h), are m- and n-dimensional Einstein spaces of non-
negative Einstein curvature. (Positive curvature is discussed in Section 6.)
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The vacuum Einstein equations give a system of ODEs for a, b; however,
in our approach, we formulate the equations in scale invariant variables and
obtain a regular dynamical system on a compact state space, cf. Section 2.
The state space is topologically a disk; in the interior there are represented
models where both factors g, h have negative Einstein curvature; solutions
on the boundaries correspond to models where one of the factors is Ricci flat.

For the D-dimensional geometry, we show that the behavior is asymptot-
ically Friedmann in the expanding direction, corresponding to the approach
to a stable fixed point (F∗) in the formulation of the scale invariant dynamics,
and asymptotically Kasner like in the collapsing direction. The asymptotic
behavior in the expanding direction depends on the dimension; for D < 10,
the Friedmann point (F∗) is a stable spiral point, while for D ≥ 10, (F∗) is a
stable node. The system exhibits two qualitatively different types of orbits
for the collapsing direction: the generic orbit is asymptotically Kasner like
with non-vanishing generalized Kasner exponents, which implies that in the
direction of the singularity one of the factors in the doubly warped product
is expanding while the other is collapsing. This case is analogous to the
vacuum Kasner spacetime with line element −dt2 + t2pdx2 + t2qdy2 + t2rdz2

and with exponents (p, q, r) = (2/3, 2/3,−1/3). In addition, there are two
exceptional orbits, asymptotic to one of two fixed points (FA), (FB) on the
boundary of the state space, with the property that one of the factors con-
verges to a constant and the other scales asymptotically with proper time
toward the singularity. These cases are analogous to the flat Kasner space-
time with exponents (1, 0, 0). The analysis leading to this description is
performed in Section 3, in particular, Theorem 3.1 summarizes the main
results.

The issue of whether the D-dimensional models considered in this paper
are stable in the sense that they admit large families of perturbations with
quiescent behavior at the singularity is discussed in Section 4. We find that
for D ≥ 11, this is indeed the case. This agrees with the general analysis
of [6, 3]. Thus, we see an indication in this simple context that spacetimes
with D = 11 exhibits special features.

In Section 5, we apply the results about the D-dimensional scale invariant
dynamics to the dynamics of the dimensionally reduced models. We take the
factor (N, h) as internal space. It turns out that a cosmological model that
arises through dimensional reduction exhibits accelerated expansion when
the corresponding solution of the scale invariant dynamical system lies in a
certain region A of the state space, cf. figure 3. This domain of acceleration
A intersects the boundary of the state space in an open interval; hence, solu-
tions on the boundary (which describe models where g is Ricci flat) exhibit
a phase of acceleration, which explains the transient acceleration found by
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Townsend and Wohlfarth [10]. Furthermore, we find that the Friedmann
fixed point (F∗) lies on the boundary of A. The fact that, for D < 10, the
Friedmann point (F∗) is a spiral point thus entails that the models cannot
exhibit late time accelerated expansion, even with negatively curved spa-
tial slices and hyperbolic internal space. Instead one finds that cosmologies
which arise through dimensional reduction of spacetimes with D < 10 have
an infinite sequence of episodes with accelerating and decelerating expansion.
However, for D ≥ 10, based on arguments combining the local properties of
(F∗) and global properties of scale invariant dynamical system, we are able
to prove that there exists a unique dimensionally reduced cosmology with
eternal acceleration (i.e., a cosmology that expands at a accelerated rate for
all times), cf. Theorem 5.1. Note, however, that uniqueness of this model
amounts to the model being unstable under any perturbation; the behavior
of generic models is described in Corollary 5.2.

Finally, in Section 6, we consider the case where one of the factor in (1.1)
has positive Einstein curvature and one negative curvature. Using again a
formulation in terms of scale invariant variables, we are able to perform a
complete analysis of the dynamics of the D-dimensional geometries as well
as their dimensional reduction. The domain of acceleration can be found
explicitly, and it turns out that there exist models with one or two epochs
of expansion (whereof one can be partly accelerating), but that all models
undergo recollapse to a big crunch.

2 Preliminaries

Let (M, g) and (N, h) be Einstein manifolds of dimension m and n with

Ricg = kg(m + n − 1)g, Rich = kh(m + n − 1)h; (2.1)

kg and kh are constants taking values in {+1, 0,−1}. On the D = 1 + m + n
dimensional spacetime R × M × N , consider a line element of the form of a
doubly warped product

−dt2 + a2(t)g + b2(t)h, (2.2)

where a > 0 and b > 0 without loss of generality, and impose the vacuum
Einstein equations. Let i, j be indices running over 1, . . . , m + n. The second
fundamental form is

Kj
i =

{
−(ȧ/a)δj

i 1 ≤ i, j ≤ m

−(ḃ/b)δj
i m + 1 ≤ i, j ≤ m + n,
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where we use the notation ḟ = ∂tf . Let p = −ȧ/a, q = −ḃ/b. Then the
mean curvature is H = trK = mp + nq, and the Einstein evolution equa-
tions imply

ṗ = pH + kg
m + n − 1

a2 , (2.3a)

q̇ = qH + kh
m + n − 1

b2 . (2.3b)

From these evolution equations, we obtain

Ḣ = mp2 + nq2.

Here, we have employed the Hamiltonian constraint equation,

0 = kg
m(m + n − 1)

a2 + kh
n(m + n − 1)

b2 + H2 − (mp2 + nq2).

Note that kg ≤ 0 and kh ≤ 0 entails H �= 0; in the following we focus on this
case, the case kg ≥ 0, kh ≤ 0 is treated in Section 6. We now introduce scale
invariant variables (P, Q, A, B) according to

P =
p

H
, Q =

q

H
, A = − 1

aH
, B = − 1

bH
. (2.4)

The variables A, B are curvature quantities. By definition, we obtain that
mP + nQ = 1, and the Hamiltonian constraint now reads

1 = −(m + n − 1)(kgmA2 + khnB2) + (mP 2 + nQ2).

In the following, we introduce the time τ by ∂τ = H−1∂t; we will use a prime
′ to denote differentiation w.r.t. τ . Note that with our conventions H < 0,
hence by introducing the time τ we have the singularity to the future.

3 Analysis

The variable transformation (a, b, p, q) �→ (A, B, P, Q, H) enables us to write
the Einstein equations as a system of evolution equations,

H ′ = H(mP 2 + nQ2) (3.1)

and

A′ = A[P − (mP 2 + nQ2)], (3.2a)

B′ = B[Q − (mP 2 + nQ2)], (3.2b)

P ′ = P [1 − (mP 2 + nQ2)] + (m + n − 1)kgA
2, (3.2c)

Q′ = Q[1 − (mP 2 + nQ2)] + (m + n − 1)khB2, (3.2d)
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supplemented by two constraint equations,

C1 = mP + nQ − 1 = 0, (3.3a)

C2 = (mP 2 + nQ2) − (m + n − 1)(kgmA2 + khnB2) − 1 = 0. (3.3b)

Since equation (3.1) decouples, the entire dynamics is encoded in the reduced
dynamical system (3.2a–d), which is autonomous and regular for all (A, B,
P, Q) ∈ R

4. From (3.2a) and (3.2b), it follows that A > 0 and B > 0 are
invariant under the flow of the system; henceforth, without loss of general-
ity, we will always impose these conditions, i.e., we consider the dynamical
system (3.2a–d) on the state space X = {(A, B, P, Q)|(A > 0) ∧ (B > 0)}.

In our subsequent analysis, it will turn out that there exist solutions with
AB → 0 for |τ | → ∞. This suggests to include the boundaries A = 0 and
B = 0 of the state space in our dynamical systems analysis; note that the
system (3.2a–d) can be smoothly extended to X̄.

The equations on the invariant subset A = 0 (respectively, B = 0) can be
interpreted as the reduced system of coupled equations that arises when the
first factor (respectively, the second factor) of the metric (2.2) is Ricci flat.
This is because setting A = 0 in (3.2a–d) and (3.3a, b) corresponds to setting
kg = 0 and discarding the decoupled equation for A. (In the case kg = 0,
due to the decoupling, the equation for A does not carry any dynamical
information; note, however, that the equation must be added in order to
reconstruct the original variables.)

By construction, the constraints (3.3a, b) are preserved during the evolu-
tion. To see the propagation of constraints explicitly we compute

C ′
1 = [1 − (mP 2 + nQ2)]C1 − C2, (3.4a)

C ′
2 = −2(mP 2 + nQ2)C2. (3.4b)

Hence the physical state space

S :=
{
(A, B, P, Q)|(C1 = 0) ∧ (C2 = 0) ∧ (A > 0) ∧ (B > 0)

}
(3.5)

and the closure S̄ are invariant subsets of X (and X̄, respectively).

When the variable constraint (3.3a) is solved for Q, the Hamiltonian con-
straint (3.3b) becomes

m

n
(m + n)

(
P − 1

m + n

)2
− (m + n − 1)(kgmA2 + khnB2) =

m + n − 1
m + n

.

(3.6)
When kg = kh = −1, this condition defines an ellipsoid centered at the point
(A, B, P ) = (0, 0, 1/(m + n)). Hence, S̄ corresponds to a quarter ellipsoid,
which is topologically a disk; see figure 1. In particular, we see that in the



ETERNAL ACCELERATION FROM M-THEORY 377

Figure 1: The state space S̄.

case kg = kh = −1 the state space S has a compact closure. (Recall that the
dynamical system induced on the boundaries of S represents the reduced
dynamics of the cases kg = 0, kh = −1 and kg = −1, kh = 0.)

In the subsequent sections, kg = kh = −1 is understood (the case kgkh = −1
is treated in Section 6). This entails that the dimensions of the factors M
and N satisfy m > 1 and n > 1.

3.1 Equilibrium points and invariant subsets

An elementary analysis shows that the equilibrium points in S̄ of the autono-
mous system (3.2a–d) are

(F1,2) : A = B = 0, mP 2 + nQ2 = 1, mP + nQ = 1, (3.7a)

(FA) : A = 0, B2 =
n − 1
n2

1
m + n − 1

, P = 0, Q =
1
n

, (3.7b)

(FB) : A2 =
m − 1
m2

1
m + n − 1

, B = 0, P =
1
m

, Q = 0, (3.7c)

(F∗) : A = B = P = Q =
1

m + n
. (3.7d)

Note that in (3.7a), the equations mP 2 + nQ2 = 1 and mP + nQ = 1 pos-
sess two solutions (P1, Q1) and (P2, Q2), which define the fixed points F1
and F2, respectively; we have P1 > 0 (Q1 < 0) and P2 < 0 (Q2 > 0); see
figure 2. Note that |Pi| < 1 and |Qi| < 1, because m > 1 and n > 1.

As noted above, the boundaries of the state space are invariant subsets.
We denote UA = {A = 0} ∩ S̄ and UB = {B = 0} ∩ S̄. The set UA contains
the fixed points F1, F2, and FA; UB contains F1, F2, and FB. Recall that
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Figure 2: Schematic of the flow on the state space S̄ for the cases m + n < 9
and m + n > 9. The point at the center is the fixed point (F∗). (The flow
in the case m + n = 9 looks qualitatively like (b); however, the eigenvectors
of the linearization at (F∗) coincide.)

these invariant subsets describe the dynamics of a spacetime with spatial
geometry which is a product of an Einstein manifold with a Ricci flat space.

3.2 Stability of the fixed points

The case (F1,2): Since the fixed points (F1,2) on S̄ are given as intersections
of the one-dimensional invariant subspaces UA and UB, the eigenvectors of
the linearization of the system (3.2a–d) must be tangential to UA and UB.
For (Fi), the associated eigenvalues are (Pi − 1) and (Qi − 1), which follows
from A−1A′|(Fi) = Pi − 1 and the analogous relation for B−1B′. Since |Pi| <
1 and |Qi| < 1, the eigenvalues are negative, and we conclude that the points
(F1,2) are sinks.

The case (FA,B): As the fixed point (FA) lies on UA, one eigenvector of the
linearization of the system at (FA) is tangential to UA. The associated eigen-
value is (n − 1)/n, which follows when we set A = 0 in (3.2c) and compute
P−1P ′|(FA) = 1 − (1/n). There exists a second eigenvector which is transver-
sal to UA; the associated eigenvalue is (−1/n), since A−1A′|(FA) = −(1/n).
We conclude that (FA) is a saddle, so that generic orbits in S do not tend to
(FA). However, there exists exactly one orbit that converges to (FA) along
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the stable subspace as τ → ∞. Finally, since UA coincides with the unstable
manifold, (FA) is a repellor in UA. A similar analysis applies to (FB).

The case (F∗): Let J∗ denote the linearization matrix of the system (3.2a–d)
at (F∗), i.e., the Jacobian of the right hand side of (3.2a–d). The tangent
space T(F∗)S of the constraint manifold S at (F∗) in X is spanned by the
vectors (n, −m, 0, 0)t, (0, 0, n,−m)t. Let

S =

⎛
⎜⎜⎝

n 0
−m 0
0 n
0 −m

⎞
⎟⎟⎠

and denote by S−1 any (2 × 4)-matrix that is left-inverse w.r.t. S. The
restriction of J∗ to T(F∗)S is given by S−1J∗S, which yields

J∗
∣∣
T(F∗)S

= S−1J∗S =
1

m + n

(
0 1

−2(m + n − 1) m + n − 1

)
. (3.8)

The eigenvalues of this matrix are

λ∗
1,2 =

m + n − 1
2(m + n)

±
√

(m + n − 1)(m + n − 9)
2(m + n)

. (3.9)

We distinguish three qualitatively different cases: when (m + n) < 9, there
exists a non-vanishing imaginary part; when (m + n) = 9, λ∗

1 = λ∗
2; when

(m + n) > 9, the eigenvalues are real and 1 > λ∗
1 > λ∗

2 > 0. For all (m, n),
the real part of λ∗

1,2 is positive, which entails that (F∗) is a repellor, i.e.,
locally stable toward the past.

3.3 Global dynamics

The global properties of the flow on the boundaries of S are simple: since
UA and UB are one-dimensional, the local stability analysis implies the
global dynamics. UA can be viewed as an interval, whose end points are
the stable fixed points (F1) and (F2). In between there exist one additional
fixed point, the repellor (FA). It follows that every orbit (different from the
fixed points) originates from (FA) and ends in (F1) or (F2). The picture on
UB is analogous.

On S, we observe that P is monotone when P ≤ 0, i.e., P ′ < 0 when
P ≤ 0, which is because mP 2 + nQ2 ≤ 1. Analogously, Q′ < 0 when Q ≤ 0
(which in turn corresponds to P ′ > 0 when P ≥ (1/m) via (3.3a)). The flow
on S is thus particularly simple for P ≤ 0 and P ≥ (1/m).
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Now consider the non-negative function Z = AmBn on X̄ (Z is essentially
the inverse of the rescaled volume density of the spatial metric). Under the
side-condition C2 = 0, cf. (3.3b), hence in particular on S̄, Z attains a global
maximum, namely at the point (F∗). On the boundaries UA and UB, Z
becomes zero, which is its minimal value. From (3.2a–d) we obtain that

Z ′ = Z[1 − (m + n)(mP 2 + nQ2)] (3.10)

on S̄. Since (mP 2 + nQ2) > 1/(m + n) on S̄ unless P = Q = 1/(m + n),
the bracket in (3.10) is negative almost everywhere. In the special case,
P = Q = 1/(m + n) we obtain Z ′′ = 0 and

Z ′′′ = −2Z(m + n)(m + n − 1)2⎡
⎣m

(
A2 −

(
1

m + n

)2
)2

+ n

(
B2 −

(
1

m + n

)2
)2

⎤
⎦, (3.11)

which is non-positive and vanishes only when A = B = 1/(m + n), i.e., at
the fixed point (F∗). We infer that Z is strictly monotonically decreasing
along all orbits in S\(F∗). This excludes that there exist any non-trivial
periodic orbits in S and allows us to invoke the monotonicity principle: the
α-limit of every orbit in S must coincide with the fixed point (F∗); the
ω-limit of every orbit must lie on the union of UA and UB, i.e., AB → 0 as
τ → ∞.

Summarizing, we have proved the following theorem:

Theorem 3.1 (Global dynamics). Let kg = kh = −1 and m, n > 1 and
consider the dynamical system (3.2a–d) on the two-dimensional physical
state space S̄.

(1) Consider an orbit with A = 0, B �= 0 that is different from (FA). The
α-limit of the orbit is the fixed point (FA), the ω-limit is (F1) or (F2).
The statement for A �= 0, B = 0 is analogous.

(2) Consider the family of orbits with AB �= 0 that are different from (F∗).
The α-limit of every orbit is the fixed point (F∗). There is one orbit
whose ω-limit is (FA), another one whose ω-limit is (FB). The ω-limit
of a generic orbit is one of the equilibrium points (F1), (F2).

The flow of the dynamical system on S̄ is depicted in figure 2.

The behavior of the decoupled variable H is given by equation (3.1): the
equation implies that H is monotonic in τ . By virtue of the inequalities
1 ≥ (mP 2 + nQ2) ≥ 1/(m + n) on S̄ we obtain H ≤ H ′ ≤ H/(m + n); in
particular, H ↘ −∞ as τ ↗ +∞, and H ↗ 0 as τ ↘ −∞.
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Remark. In [4, 5], the D-dimensional Einstein vacuum equations for
(Riemannian) metrics dt2 + a2g + b2h are analyzed as a constrained Hamil-
tonian system, in particular as regards the integrability of the equations.
The authors provide evidence that the cases D = 10, 11 are special (and
perhaps integrable); indeed, at least for three subcases conserved quantities
for the flow are constructed in [4], see also the remark in Section 5.

3.4 Asymptotics of the scale factors a and b

Every orbit in S gives rise to a solution −dt2 + a2g + b2h of the D-dimensi-
onal Einstein vacuum equations via the transformation (2.4). The particu-
lar asymptotic behavior of the orbit translates to characteristic asymptotic
behavior of the scale factors a and b:

Proposition 3.2 (Asymptotic behavior). An orbit that converges to
(F1,2) as τ → ∞ generates a solution with asymptotic behavior of Kasner
type, i.e., a ∼ tp, b ∼ tq as t ↘ 0, where mp + nq = 1 and mp2 + nq2 = 1.
When an orbit converges to (F∗) as τ → −∞, then the corresponding solu-
tion is of Friedmann type as t → ∞: a ∼ t, b ∼ t. Finally, convergence to
(FA,B) as τ → ∞ leads to a → const, b ∼ t and a ∼ t, b → const as t ↘ 0,
respectively.

Remark. Note that the orbits on the boundaries converge to (FA,B) as
τ → −∞. The corresponding solutions satisfy a → const, b ∼ t and a ∼ t,
b → const as t → ∞.

In the following, we establish the above proposition; furthermore we ana-
lyze in more detail the approach to Friedmann as t → ∞.

The case (F1,2): Consider a solution that converges to (F1) as τ → ∞. We
have H → −∞, which suggests that the limit corresponds to a singularity.
Since dt/dτ = H−1 and H decreases exponentially with τ , we find that τ →
∞ corresponds to t ↘ 0.

In a neighborhood of the fixed point (F1), the dynamical system (3.2a–d)
on S̄ can be approximated by its linearization at (F1), which is given by

A′ = A[P1 − 1], B′ = B[Q1 − 1], P ≡ P1, Q ≡ Q1, (3.12)

cf. the previous stability analysis. It is important to note that the equa-
tions (3.12) coincide with the system of equations (3.2a–d) and (3.3a,b)
obtained for kg = kh = 0. We conclude that all solutions that converge to
(F1) as τ → ∞ behave asymptotically like solutions representing a spacetime
where both factors g and h are Ricci flat. In other words, the dynamical
effects of curvature become negligible at the singularity.
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When we solve (3.12) and the decoupled equation (3.1) for H, and recall
that dt/dτ = H−1, we obtain via (2.4):

a = a0 tP1 , b = b0 tQ1 (3.13)

for t ↘ 0; a0 and b0 are constants. By construction, mP1 + nQ1 = 1 and
mP 2

1 + nQ2
1 = 1; P1 > 0. A completely analogous result is obtained for solu-

tions that approach (F2), where (P1, Q1) is replaced by (P2, Q2).

The case (F∗): Consider a solution that converges to (F∗) as τ → −∞. We
have H → 0 and t → ∞, which suggests that (F∗) corresponds to the limit
of infinite expansion. Since P = Q in the limit we expect Friedmann like
behavior.

Assume that m + n < 9. In a neighborhood of the fixed point (F∗), the
dynamical system (3.2a–d) on S is approximated by its linearization (3.8).
Using the variable transformation

B =
1√

9 − (m + n)

(
1

√
m + n − 1

0 4
√

m + n − 1

)
(3.14)

in T(F∗)S, the linearized system takes a normal form given by

B−1
(
J∗
∣∣
T(F∗)S

)
B =

√
m + n − 1
2(m + n)

( √
m + n − 1

√
9 − (m + n)

−
√

9 − (m + n)
√

m + n − 1

)
.

(3.15)

Based on this we can show that, modulo terms of order O(t−(m+n−2)),

a = t
[
1 − nc0

√
9 − (m + n)t−(m+n−1)/2 cos(·)

+ nc0
√

m + n − 1t−(m+n−1)/2 sin(·)
]

(3.16a)

b = t
[
1 − mc0

√
m + n − 1t−(m+n−1)/2 sin(·)

+ mc0
√

9 − (m + n)t−(m+n−1)/2 cos(·)
]
, (3.16b)

where the argument of the trigonometric functions is

(·) =
(

−1
2
√

m + n − 1
√

9 − (m + n) log(t/d0)
)

; (3.17)

c0, d0 are constants.

When m + n ≥ 10, the eigenvalues λ∗
1,2 of the linearization of the dynam-

ical system at (F∗) are real with 1 > λ∗
1 ≥ 2λ∗

2 > 0. Oscillatory terms as
in (3.16a,b) do not occur in this case. A thorough analysis of the system
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yields that orbits converging to (F∗) as τ → −∞ correspond to solutions of
the type

a = t
[
1 + nc0t

−λ∗
+ O(t−2λ∗

)
]

(3.18a)

b = t
[
1 − mc0t

−λ∗
+ O(t−2λ∗

)
]

(3.18b)

as t → ∞, where λ∗=(m + n)λ∗
2 = 1/2(m + n − 1 −

√
(m + n − 1) (m + n − 9)).

(In (3.18) there appears only one free parameter; the second parameter of
the two-parameter family of solutions is connected to terms of the order
t−(m+n)λ∗

1 .)

In the special case m + n = 9, the linearization of the dynamical system
at (F∗) is represented by a non-diagonalizable matrix. Orbits converging to
(F∗) as τ → −∞ correspond to solutions of the type

a = t
[
1 + nc0(log t)t−4 + nd0t

−4 + O
(
(log t)2t−8)] , (3.19a)

b = t
[
1 − mc0(log t)t−4 − md0t

−4 + O
(
(log t)2t−8)] (3.19b)

as t → ∞, where c0, d0 are constants.

The case (FA,B): Consider a solution along the orbit that converges to (FA)
as τ → ∞. We have H → −∞ and t → 0 as τ → ∞, which suggests that the
limit corresponds to a singularity. Using again approximation techniques,
we eventually find that

a → a0 b =
√

m + n − 1√
n − 1

t (3.20)

as t → 0. This completes the proof of Proposition 3.2.

Corollary. Combining the above results with the statements on the behavior
of generic orbits in S, cf. Theorem 3.1, we find that generic solutions of the
D-dimensional vacuum equations are of Kasner type, as in (3.13), as t → 0
and of Friedmann type, as in (3.16a,b), (3.18a,b), or (3.19a,b), as t → ∞.
Interestingly enough, the approach to the Friedmann solution is oscillatory
if and only if m + n < 9 (D < 10).

4 AVTD condition

In this section, we briefly address the question of whether there exist families
of perturbations (that are general in the sense that they depend on the
maximal number of free functions) of the D-dimensional models described
above that exhibit quiescent behavior at the singularity, cf. [6, 3].
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Consider a (d + 1)-dimensional Kasner spacetime, with Kasner exponents
pi, i = 1, . . . , d, and line element

−dt2 +
d∑

i=1

t2pi(dxi)2. (4.1)

The vacuum Einstein equations imply the Kasner relations
d∑

i=1

pi = 1,

d∑
i=1

p2
i = 1. (4.2)

We consider the case where d = m + n, with pi = P , i = 1, . . . , m, and pi =
Q, i = m + 1, . . . , m + n. Then the Kasner relations (4.2) read

mP + nQ = 1, mP 2 + nQ2 = 1, (4.3)

which we recognize as the constraint equations (3.3a,b) in case A = B = 0.
These equations hold at the equilibrium points (F1,2), cf. (3.7a).

Following [6], see also [3, Section 3], the condition for asymptotically
velocity-term dominated (AVTD) behavior for an asymptotically Kasner
spacetime is

1 + p1 − pd − pd−1 > 0,

which in terms of the generalized Kasner exponents P, Q reads

1 + P − 2Q > 0. (4.4)

At the equilibrium points (F1,2), we have

P1,2 =
1

m + n

(
1 ± n

√
m + n − 1

mn

)
, (4.5a)

Q1,2 =
1

m + n

(
1 ∓ m

√
m + n − 1

mn

)
. (4.5b)

The condition (4.4) at (F1), i.e., 1 + P1 − 2Q1 > 0, is satisfied for all (m, n)
such that

m >
4n

n − 1
, n > 1. (4.6)

Equivalently, 1 + P2 − 2Q2 > 0, when m > 1 and n > 4m/(m − 1). equation
(4.6) implies, with d = m + n,

d >
n(n + 3)

n − 1
, (n > 1). (4.7)

For n = 2, 3, 4, 5, . . . the right hand side is 10, 9, 91/3, 10, . . ., and for n ≥
3, the right hand side is monotonically increasing. Therefore we find, in
agreement with the result of [6], that d ≥ 10 is a necessary condition for
AVTD behavior.
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5 Accelerating cosmologies from compactification

Dimensional (Kaluza–Klein) reduction transforms classes of D-dimensional
vacuum spacetimes into classes of (1 + m)-dimensional spacetimes (where
typically m = 3) with non-linear scalar fields. In some instances, the result-
ing (1 + m)-dimensional models represent accelerating cosmologies, as has
been demonstrated by a sizable number of examples, see, e.g., [10–12] and
[1, 2]. In the following, we present a systematic treatment of accelerating cos-
mologies arising from the compactification of the D-dimensional spacetimes
discussed in Section 3. In particular, we prove existence and uniqueness of
a model that exhibits eternal acceleration.

Consider the family of D = 1 + m + n dimensional vacuum spacetimes
R × M × N with metrics −dt2 + a2g + b2h that has been constructed. We
perform a dimensional reduction, i.e., we assume that the m spatial dimen-
sions connected to the factor g are the large spatial dimensions representing
the classical spacetime (where typically m = 3 in order to obtain a four-
dimensional spacetime), while the n spatial dimensions connected to h are
to be compactified;

−dt2 + a2g + b2h
reduction−−−−−−→ γ = e−2φ(−dt2 + a2g). (5.1)

We choose a conformal Einstein frame for the (1 + m)-dimensional metric,
see, e.g., [2, Appendix A], i.e., we conformally rescale −dt2 + a2g by choosing
φ according to

eφ = b−n/(m−1), (5.2)

which entails that the reduction of the (1 + m + n)-dimensional Einstein–
Hilbert action results in an effective action, again of Einstein–Hilbert type,
for the metric γ and a nonlinear scalar field ϕ that stems from the compacti-
fied dimensions, ϕ = −(8π)−1/2n−1/2(m − 1)1/2(m + n − 1)1/2φ. Therefore,
(M, γ, ϕ) satisfies the Einstein non-linear scalar field equations, i.e.,

Ricγ − 1
2

Scalγγ = 8πT, (5.3)

where T is the energy–momentum tensor of the scalar field,

Tμν = ∇μϕ∇νϕ −
[
1
2
∇σϕ∇σϕ + V (ϕ)

]
γμν (μ, ν = 0 . . . m). (5.4)

The potential V (ϕ) of the scalar field is an exponential function,

V (ϕ) = (8π)−1 n(m + n − 1)
2

exp

[
−

√
8π

2√
m − 1

√
m + n − 1

n
ϕ

]
. (5.5)

For details on dimensional (Kaluza–Klein) reduction see, e.g., [8].
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For the metric γ, by introducing a new time variable t̄ through dt̄/dt =
bn/(m−1) we finally obtain

γ = b2n/(m−1)(−dt2 + a2g) = −dt̄2 +
(
abn/(m−1)

)2
g = −dt̄2 + ā2g (5.6)

with ā = abn/(m−1).

In the following, we investigate the spacetimes R × M with metrics γ; in
particular we focus on the question of whether these solutions give rise to
cosmological models that exhibit accelerated expansion.

By construction, every orbit in S is associated with a solution γ = −dt̄2 +
ā2g of the (1 + m)-dimensional Einstein equations (with non-linear scalar
field φ), where the scale factor ā = abn/(m−1) is determined via (2.4). A
simple calculation shows that the derivative of the scale factor ā is

dā

dt̄
=

1
m − 1

1
A

[1 − P ]. (5.7)

Since P < 1 on the entire state space S̄, dā/dt̄ is positive for all solutions,
so that all metrics γ describe expanding cosmologies.

Differentiating (5.7) we obtain

d2ā

dt̄2
=

ab−n/(m−1)

m − 1
H2

[
− (1 − P )2 − (m + n − 1)(kg(m − 1)A2 + khnB2)

]
.

(5.8)
The first term in brackets is negative, the second term is non-negative on
the state space S̄. Clearly, in a neighborhood of the fixed points (F1,2),
where A = B = 0, the sum is negative, hence d2ā/dt̄2 < 0. However, in the
following we will establish the existence of a domain A ⊆ S such that

d2ā

dt̄2
> 0 for all (A, B, P, Q) ∈ A ⊆ S. (5.9)

The domain A is the domain of acceleration: whenever an orbit passes
through this domain, the cosmological model (R × M, γ) it represents under-
goes accelerated expansion.

Remark. As before, in (5.7), kg = kh = −1 is understood. However, recall
that setting kg = 0/kh = 0 corresponds to setting A = 0/B = 0; thus the
cases kg = 0, kh = −1 and kg = −1, kh = 0 are included in our treatment
by our investigation of the boundaries of S.

Consider first the boundary UA given by A = 0 in S̄. Setting A = 0
in (5.8) we find by simple algebraic manipulations of the bracket in (5.8)
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and by using the Hamiltonian constraint that

d2ā

dt̄2
∝ m + n − 1

kmn
− kmn

n

(
P − m + n

kmn

)2

(5.10)

with kmn = m(m + n) + n. We infer that d2ā/dt̄2 > 0 in a neighborhood of
P = (m + n)/kmn, namely for P ∈ (π−, π+), where

π± =
m + n ± n

√
m + n − 1

kmn
; (5.11)

for all m and n, π± are positive. Hence, on the boundary A = 0 there exists
a non-empty interval of acceleration; note that the fixed point (FA) is not
an element of this interval.

Remark. Since the orbit (FA)–(F1) on the boundary UA passes through
an interval of acceleration, the corresponding model (R × M, γ) exhibits a
(finite) phase of accelerated expansion; note that M is Ricci flat for this
model. This solution was originally found in [10]; it provided the first exam-
ple for accelerated expansion from compactification.

On the boundary UB, by setting B = 0 in (5.8) and using the constraint,
we obtain

d2ā

dt̄2
∝ −m

n
(m + n − 1)

(
P − 1

m

)2

. (5.12)

Hence, d2ā/dt̄2 = 0 at the fixed point (FB) and negative elsewhere on B = 0.

Inserting the Hamiltonian constraint into equation (5.8) it is straight-
forward to show that ∂A (given by d2ā/dt̄2 = 0) defines an ellipse in S̄.
Combining this fact with the results collected above, we conclude that the
domain of acceleration A in S possesses the following main properties: Ā
intersects the boundary A = 0 in an interval that does not contain (FA) and
the boundary B = 0 in the point (FB); ∂A is tangential to the boundary
B = 0 at that point. Moreover, a simple calculation shows that (F∗) lies on
∂A; see figure 3(a).

The boundary of A consists of three semipermeable segments: the flow of
the dynamical system on the segment (A = 0) − (F∗) is directed toward the
interior of A, while the flow on the segments (F∗) − (FB) and (FB) − (A = 0)
is directed toward the exterior. This is because

∂

∂τ

(
d2ā

dt̄2

) ∣∣∣
d2ā/dt̄2=0

∝ −
(

P − 1
m

)2 (
P − 1

m + n

)
. (5.13)

Consider the case m + n < 9 (D < 10). The cosmological model (R ×
M, γ) possesses a phase of accelerated expansion whenever the associated
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Figure 3: The domain of acceleration A on the state space S̄. Whenever
an orbit passes through this domain, the cosmological model (R × M, γ) it
represents undergoes accelerated expansion. For m + n ≥ 9 (m > 2) there
exists a unique orbit that lies entirely in A; the associated model exhibits
eternal acceleration.

orbit in S passes through A. Superimposing figures 2(a) and 3(a) we
see that a generic solution (represented by an orbit converging to (F1)
or (F2)) does not exhibit accelerated expansion for early times. How-
ever, toward the future, there exist infinitely many phases of accelerated
expansion (associated with the orbit spiraling out from (F∗)). The proper-
ties of the non-generic solution converging to (FA) are analogous, but the
solution converging to (FB) is of a different kind: it generates the single
model that is accelerating for early times (i.e., in a neighborhood of the
singularity).

Now consider the case m + n ≥ 9 (D ≥ 10), i.e., figure 2(b) together with
figure 3(a). The figures suggest that, in contrast to the case m + n < 9,
there might exist one orbit that lies entirely in A. We thus formulate the
following

Theorem 5.1 (Existence and uniqueness of eternal acceleration). Let m +
n ≥ 9 (with (m, n) �= (2, 7)); kg = kh = −1. Then there exists a unique solu-
tion γ = −dt̄2 + ā2g of the (1 + m)-dimensional Einstein equations (with
nonlinear scalar field ϕ) arising from the dimensional reduction of a (1 +
m + n)-dimensional vacuum solution, such that d2ā/dt̄2 > 0 for all t̄.
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Proof. Since (F1), (F2), and (FA) do not lie in Ā, orbits converging to
any of these fixed points cannot generate models with eternal acceleration.
This leaves the orbit connecting (F∗) with (FB) as the only candidate. To
establish eternal acceleration for the associated model, we must show that
this orbit lies entirely in A. To that end consider the intersection of the
plane{

(A, B, P, Q) ∈ X| cos ψ

(
A − 1

m + n

)
− sin ψ

(
P − 1

m + n

)
= 0

}
,

(5.14)

where ψ is a constant, and the state space S̄ ⊆ X. This intersection gener-
ates a curve αψ in S̄ that connects (F∗) with a point on B = 0, cf. figure 3(b).
When ψ is chosen according to

ψ = arccot
(

1
2
√

m + n − 1
[√

m + n − 1 +
√

m + n − 9
])

, (5.15)

then αψ possesses the following favorable properties: (i) αψ connects (F∗)
with a point on B = 0 with P > 1/m, i.e., with a point on the (FB) − (F1)
segment (and αψ does not intersect the segment (F∗) − (FB) of ∂A); (ii)
αψ is semipermeable for the flow of the dynamical system: orbits can pass
through αψ in one direction only (namely from the lower left side to the
upper right); see figure 3(b). We have thus constructed a region Aψ ⊆ A,
enclosed by αψ and segments of ∂A, that is past invariant for the flow of the
dynamical system. Since the orbit converging to (FB) lies in Aψ as τ → ∞
it follows that it must lie in Aψ and thus in A for all times. By this, the
theorem is established.

Remark. For one special case of m and n, namely m = 2, n = 7, the above
argument fails (in particular (ii) does not hold). A thorough numerical
investigation yields that this is indeed because the statement is wrong: the
orbit connecting (F∗) with (FB) does not lie entirely in A but intersects ∂A
transversally on the segment (A = 0) − (F∗); hence the orbit lies in A for
early times and outside for late times. The numerical evidence thus suggests
that in the special case (m, n) = (2, 7) eternal acceleration is impossible.

Remark. In three special cases, the “orbit of eternal acceleration” can
be obtained explicitly: for (m, n) ∈ {(2, 8), (3, 6), (5, 5)} the orbit is given
simply as{(

1
m

− 1
m + n

)(
A − 1

m + n

)
−
(

A(FB) − 1
m + n

)(
P − 1

m + n

)
= 0

}
,

(5.16)
where A(FB) = (m − 1)1/2m−1(m + n − 1)−1/2, cf. (3.7c). This is analo-
gous to the analysis of [4], in which it is shown that the D-dimensional
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Einstein vacuum equations (for Riemannian metrics) regarded as a Hamil-
tonian system are integrable for (m, n) ∈ {(2, 8), (3, 6), (5, 5)}. This coinci-
dence suggests that the analysis of [4, 5] might also apply in the Lorentzian
case.

Corollary 5.2. The generic solutions cannot exhibit eternal acceleration.
Orbits that converge to (F1) correspond to solutions that exhibit a phase of
accelerated expansion (ti, to); there are two subcases: solutions correspond-
ing to orbits closer to the boundary A = 0 possess a finite phase of acceler-
ated expansion, i.e., 0 < ti < to < ∞, while solutions corresponding to orbits
closer to B = 0 accelerate forever toward the future, i.e., 0 < ti < to = ∞.
In contrast, accelerated expansion does not occur for all orbits that converge
to (F2): orbits closer to A = 0 generate solutions with decelerating expan-
sion. (Note that the same holds for the non-generic solution converging to
(FA).) The expansion for orbits closer to B = 0 is accelerating in (ti, to)
with 0 < ti < to = ∞.

The proof of the corollary is based on the established properties of the
orbit of eternal acceleration (F∗)–(FB); (m, n) �∈ {(2, 7), (7, 2)} is necessary.

We conclude by discussing the leading term of the scale factor ā(t̄) of the
model (R × M, γ) as t̄ → 0 and t̄ → ∞.

(F1,2) : For the generic orbit that approaches the Kasner fixed point (F1) or
(F2) as t → 0 we obtain t̄ ∝ tm(1−P )/(m−1), hence t → 0 corresponds
to t̄ → 0 and we obtain ā ∝ t̄ 1/m as t̄ → 0.

(F∗) : In the limit we have t̄ ∝ t(m+n−1)/(m−1) and the leading term in ā
is proportional to t̄.

(FA,B): The orbit converging to (FA) generates a solution that satisfies t̄ ∝
t(m+n−1)/(m−1) and ā ∝ t̄n/(m+n−1) in the limit t̄ → 0. The solution
corresponding to the orbit converging to (FB) satisfies t̄ ∝ t and
ā ∝ t̄ in the limit t̄ → 0.

Remark. The fixed point (FA) represents a model −dt̄2 + ā2g where g is
Ricci flat; the scale factor satisfies a power law, ā ∝ t̄n/(m+n−1). This model
is well known, it is the simplest of solutions of the Einstein nonlinear scalar
field equations with exponential potential (5.5). Since the exponent in V (ϕ)
is overcritical, the power in the scale factor ā is less than one.

6 The case kg ≥ 0, kh ≤ 0

Consider again the metric −dt2 + a2g + b2h with Ricg = kg(m + n − 1)g and
Rich = kh(m + n − 1)h. Assume kg = 1 and kh = −1. For the analysis of
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this case, the equation system (3.2a–d) is ill-adapted since the variables
become ill-defined (which is due to the possibility of H going through zero).
We replace the system (3.2a–d) by equations that are adapted to the case
kg = 1, kh = −1. With

D =
(

H2 + kg
m(m + n − 1)

a2

)1/2

(6.1)

define, in close analogy to the previous definitions,

P =
p

D
, Q =

q

D
, A = (aD)−1, B = (bD)−1. (6.2)

This transforms the Einstein equations to a system consisting of the decou-
pled equation

D′ = D
(
(mP + nQ)(mP 2 + nQ2) + kgm(m + n − 1)PA2) (6.3)

and the coupled equations

A′ = A
[
P − (mP + nQ)(mP 2 + nQ2) − kgPA2] (6.4a)

B′ = B
[
Q − (mP + nQ)(mP 2 + nQ2) − kgPA2] (6.4b)

P ′ = P
[
(mP + nQ)(1 − mP 2 − nQ2) − kgPA2] + kg(m + n − 1)A2

(6.4c)

Q′ = Q
[
(mP + nQ)(1 − mP 2 − nQ2) − kgPA2] + kh(m + n − 1)B2,

(6.4d)

where kgPA2 = kgm(m + n − 1)PA2 and the prime denotes ∂τ = D−1∂t.
The two constraints are

C1 = (mP + nQ)2 + kgm(m + n − 1)A2 − 1 = 0 (6.5a)

C2 = mP 2 + nQ2 − khn(m + n − 1)B2 − 1 = 0. (6.5b)

We consider the system (6.4a–d) on the (new) state space S̄ defined by
C1 = 0, C2 = 0 and A ≥ 0, B ≥ 0. In equations (6.4a–d) and (6.5a,b) kg = 1
and kh = −1 is understood. Note that the dynamical system induced on
the boundaries A = 0 and B = 0 of the state space describes the reduced
dynamics of the cases kg = 0, kh = −1 and kg = 1, kh = 0, respectively.

Equation (6.5b) together with B ≥ 0 describes the “northern hemisphere”
of an ellipsoid. By (6.5a), A ≥ 0 implies −1 ≤ (mP + nQ) ≤ 1. Hence, S
corresponds to a strip on the ellipsoid that connects two diametrically oppo-
site segments of the “equator” B = 0 via the “north pole” P = Q = 0. Topo-
logically, S is a rectangle, whose sides are B = 0 (with P > 0), A = 0 (with
mP + nQ = 1), B = 0 (with P < 0), and A = 0 (with mP + nQ = −1); see
figure 4.
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Figure 4: A projection of the state space S in the case kg = 1, kh = −1 and
schematic of the (projection of the) flow.

6.1 Equilibrium points and invariant subsets

The equilibrium points in S̄ of the autonomous system (6.4a–d) are

(F1...4) : A = B = 0, mP 2 + nQ2 = 1, mP + nQ = ±1, (6.6a)

(FA+,−) : A = 0, B2 =
n − 1
n2

1
m + n − 1

, P = 0, Q = ± 1
n

. (6.6b)

The equations mP 2 + nQ2 = 1 and mP + nQ = ±1 possess four solutions
(P1, Q1), . . . , (P4, Q4), which define the fixed points F1, . . . ,F4. For i = 1, 2
we have mPi + nQi = 1, P1 > 0 (Q1 < 0) and P2 < 0 (Q2 > 0); for i = 3, 4
we have mPi + nQi = −1, see figure 4. Note that (P3, Q3) = −(P1, Q1) and
(P4, Q4) = −(P2, Q2). Clearly, |Pi| < 1 and |Qi| < 1, because m > 1, n > 1.
We define the boundaries of the state space UA = {A = 0} ∩ S̄ and UB =
{B = 0} ∩ S̄.

6.2 Stability analysis

The case (F1...4): Since the fixed points (F1...4) are given as intersections of
the one-dimensional invariant subspaces UA and UB, the eigenvectors of the
linearization of the system (3.2a–d) must be tangential to UA and UB. The
relation A−1A′|(Fi) = Pi − sign(mPi + nQi) and the analogous relation for
B gives the eigenvalues of the linearization of the dynamical system at the
fixed points. The eigenvalues are (Pi − 1) and (Qi − 1) for i = 1, 2; hence
(F1,2) are sinks. The eigenvalues are (Pi + 1) and (Qi + 1) for i = 3, 4; hence
(F3,4) are sources.
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The case (FA+,−): One eigenvector of the linearization of the system at
(FA+,−) is tangential to UA. The associated eigenvalue is ±(n − 1)/n,
which follows when we set A = 0 in (6.4c) and compute P−1P ′|(FA+,− ) =
±[1 − (1/n)]. The second eigenvector is transversal to UA; the associ-
ated eigenvalue is (∓1/n), since A−1A′|(FA+,− ) = ∓(1/n). We conclude that
(FA+,−) are saddles, so that generic orbits in S do not tend to (FA+,−).
However, there exists exactly one orbit that converges to (FA+) along its
stable subspace as τ → ∞, and there exists exactly one orbit that converges
to (FA−) along its unstable subspace as τ → −∞.

6.3 Global dynamics

The existence of periodic orbits in S is excluded by the absence of interior
fixed points; furthermore, there exist no heteroclinic cycles. Consequently,
all orbits converge to the fixed points as τ → ±∞.

The fixed points (FA+,−) are of particular interest. Recall that there exists
exactly one orbit that originates from (FA−) into the interior of S, and one
orbit that converges to (FA+) as τ → ∞. Making use of global properties of
the flow we prove that these orbits do not coincide:

Consider equation (6.4c) in the case |P | � |Q|, A < B, i.e.,

P ′ ≈ kg(m + n − 1)A2 + (−kh)n2(m + n − 1)B2PQ. (6.7)

In a neighborhood of (FA−), we obtain P ′ > 0 if P ≤ 0. It follows that the
orbit originating from (FA−) satisfies P (τ) > 0 for all τ sufficiently small.
Analogously, in a neighborhood of (FA+), P ′ > 0 if P ≥ 0, hence the orbit
converging to (FA+) satisfies P (τ) < 0 for sufficiently large values of τ . Since
P ′ > 0 when P = 0 by (6.4c), it follows that the two orbits are distinct.

Using again the fact that P ′ > 0 when P = 0 it is straightforward to
conclude that the orbit that originates from (FA−) converges to (F1) as
τ → ∞; conversely there is one orbit that originates from (F3) and ends
in (FA+).

6.4 Asymptotics of the scale factors

The case (F1...4): Consider a solution that converges to the fixed point
(F3) as τ → −∞. In a neighborhood of the fixed point, the dynamical
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system (6.4a–d) can be approximated by its linearization at (F3), which
is given by

A′ = A[P3 + 1], B′ = B[Q3 + 1], P ≡ P3, Q ≡ Q3. (6.8)

The equations (6.8) coincide with the system of equations (6.4a–d) and
(6.5a,b) obtained for kg = kh = 0. Consequently, all solutions that con-
verge to (F3) as τ → −∞ behave asymptotically like solutions representing
a spacetime where both factors g and h are Ricci flat. In other words, the
dynamical effects of curvature become negligible in the limit.

Solving (6.8) and the decoupled equation (6.3) we obtain

a = ā0t
P1 , b = b̄0t

Q1 (6.9)

for t ↘ 0; ā0 and b̄0 are constants. We have used here that −P3 = P1 and
−Q3 = Q1; recall that mP1 + nQ1 = 1, mP 2

1 + nQ2
1 = 1, P1 > 0. A com-

pletely analogous result is obtained for solutions that approach (F4), where
(P1, Q1) is replaced by (P2, Q2).

Similarly, solutions that tend to (F1) as τ → ∞ correspond to

a = a0(T − t)P1 , b = b0(T − t)Q1 ; (6.10)

the analogous result holds for (F2). In (6.10), T is the time of the future
singularity of the spacetime.

The case (FA+,−): Now consider a solution along the orbit that converges
to (FA+) as τ → ∞. We find

a → a0 b =
√

m + n − 1√
n − 1

(T − t) (6.11)

as t → T . Analogously,

a → ā0 b =
√

m + n − 1√
n − 1

t (6.12)

for a solution along the orbit that converges to (FA−) as τ → −∞.

The global properties of the flow of the dynamical system translate to the
following statements: all solutions undergo recollapse; there exist two generic
types of past singularities and one special type; analogously, there exist
two generic types of future singularities and one special type, cf. figure 4.
(I) Every solution with a past singularity of the type (a ∝ tP2 , b ∝ tQ2)
possesses a future singularity of the type (a ∝ (T − t)P1 , b ∝ (T − t)Q1). (II)
For a solution with a past singularity of the type (a ∝ tP1 , b ∝ tQ1) there
exist three scenarios: (1) (a ∝ (T − t)P1 , b ∝ (T − t)Q1), (2) (a ∝ (T − t)P2 ,
b ∝ (T − t)Q2), or (3) (a → const, b ∝ (T − t)) as t → T . The scenario (3) is
not generic. (III) There exists a non-generic solution with a past singularity
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of the type (a → const, b ∝ t) for t → 0. This solution possesses a future
singularity of the type (a ∝ (T − t)P1 , b ∝ (T − t)Q1).

6.5 Accelerating cosmologies from compactification

Consider, in complete analogy to Section 5, the dimensionally reduced space-
time R × M with metric

γ = −dt̄2 + ā2g, (6.13)

where dt̄/dt = bn/(m−1) and ā = abn/(m−1). Orbits in S generate cosmologi-
cal models (R × M, γ); in the following we analyze their properties.

A simple calculation shows that the derivative of the scale factor ā is

dā

dt̄
= − 1

m − 1
1
A

[(m − 1)P + nQ]; (6.14)

hence the equation [(m − 1)P + nQ] = 0 divides the state space: there exists
a domain of expansion and a domain of contraction in S; the former is the
region below the straight dashed line in figure 5. As long as an orbit lies
in this domain, the cosmological model it represents is expanding. Super-
imposing figures 4 and 5, we see that all models (R × M, γ) are expanding
initially and contracting toward the end.

Differentiating (6.14) we obtain

d2ā

dt̄2
=

ab−n/(m−1)

m − 1
D2

[ 1
m

− P 2 − n

m
(m + n)Q2

]
. (6.15)

Figure 5: The state space S in the case kg = 1, kh = −1.
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It is straightforward to show that d2ā/dt̄2 is positive in some domain A of the
state space S. This domain is indicated by curved dashed lines in figure 5.
The intersection with the domain of expansion is non-empty, thus we see
that there exists a domain AE ⊆ S of accelerated expansion: whenever a
solution passes through this domain, the cosmological model (R × M, γ) it
represents undergoes accelerated expansion. (In the complementary domain
AC we have dā/dt̄ < 0 and d2ā/dt̄2 > 0.)

The boundary of AE consists of semipermeable segments. This is because

∂

∂τ

(
d2ā

dt̄2

) ∣∣∣
d2ā/dt̄2=0

∝ −(1 − mP 2 − nQ2)(P − Q) (6.16)

and

∂

∂τ

(
dā

dt̄

) ∣∣∣
dā/dt̄=0

∝ (m − 1)A2 − nB2. (6.17)

Hence, orbits can enter AE through the upper or the right boundary and
leave through the lower boundary.

We conclude that there exists a one-parameter family of solutions that
exhibits a phase of accelerated expansion, cf. figures 4 and 5; these solu-
tions are a subfamily of the family of solutions that connects (F3) with
(F1). Note that there can be at most one phase of accelerated expansion.
Interestingly enough, not all solutions are simply expanding–contracting;
there exist solutions with two phases of expansion, i.e., models that are
expanding–contracting–expanding–contracting. For those models, the sec-
ond expanding phase begins as a phase of accelerated expansion.

7 Concluding remarks

In this paper, we have analyzed the dynamics of D-dimensional vacuum
doubly warped product spacetimes and their dimensional reduction to the
conformal Einstein frame. The method of scale invariant dynamics has
allowed us to give a comprehensive description of the global dynamics; in
particular, we have proved that, for D ≥ 10, when the four-dimensional
spacetime is a κ = −1 Friedmann model and the internal space a negatively
curved Einstein space, there exists a unique (thus non-generic) dimension-
ally reduced model which is expanding at an acclerated rate for all times
(eternal acceleration). Generic models, on the other hand, fall into classes:
there exist models that exhibit a transient phase of acceleration, late time
acceleration, or no accelerated expansion at all.
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The D-dimensional models we have considered are of the simplest type:
doubly warped product solutions of the Einstein vacuum equations. General-
izations include multiply warped product spacetimes, see, e.g., [1],
D-dimensional gravity coupled to n-form field strengths [15] or n-form field
strengths and a dilaton, see, e.g., [13, 14]; for reviews see [11, 12].

In the study of these models, in particular in view of the question of
accelerated expansion, dynamical systems methods and phase space analysis
have proved to be powerful tools; for instance, the methods permit the com-
plete classification of the qualitative late-time bahavior of models [11, 15]
(as re-derived by the local dynamical systems analysis in Section 3.4 and at
the end of Section 5). In the present article, in order to obtain a description
of the global dynamics of models we have employed the method of scale-
invariant dynamics. This approach naturally embeds the local analysis (late
time behavior,. . .) into a global context, which has allowed us, in particular,
to establish the existence of a non-generic model exhibiting eternal acceler-
ation. Whether the methods generalize to models as in [1, 13, 15] is under
current investigation.
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