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The Quasi-Stationary Transition of Strange Matter Rings to a Black Hole
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It is shown numerically that strange matter rings permit a continuous transition to the extreme
Kerr black hole. The multipoles as defined by Geroch and Hansen are studied and suggest a universal
behaviour for bodies approaching the extreme Kerr solution parametrically. The appearance of a
‘throat region’, a distinctive feature of the extreme Kerr spacetime, is observed. With regard to
stability, we verify for a large class of rings, that a particle sitting on the surface of the ring never
has enough energy to escape to infinity along a geodesic.
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I. INTRODUCTION

Although no one doubts the existence of black holes
any longer, there is not a great deal known about their
formation. Making use of the introduction of a local (3-
D) and dynamic notion of a “horizon” such as is described
in [1], numerical work has followed the collapse of an ini-
tial distribution of matter to a “black hole”, see e.g. [2].
For sufficiently long run-times, a (4-D) event horizon can
be located a postiori and there exist simulations, e.g. [3],
supporting the widely held expectation that after col-
lapse, the configuration will settle down to a Kerr black
hole. Many questions are still open however regarding
the initial data, the matter model, the accuracy of the
time evolution, etc.

In this paper, we consider in detail the quasi-stationary
transition of a strange matter ring to a black hole. Such
a transition is not plagued by the problems mentioned
above, but at the price of being very highly idealized.
In [4, 5], necessary and sufficient conditions for a quasi-
stationary transition were presented and it was proved
that an extreme Kerr black hole necessarily results. Us-
ing the analytic solution for the relativistic disc of dust
[6], a transition to a black hole was found explicitly
[7]. Transitions have also been found numerically for
rings with a variety of equations of state [8, 9]. A
quasi-stationary sequence of configurations can at best
model a “non-dynamic” collapse. In astrophysical col-
lapse scenarios, there may well be matter that does not
fall into the centre, and the time evolution of a non-
stationary spacetime will determine how gravitational ra-
diation leaves the system and leads to changes in the
angular momentum of the central region. Thus the tran-
sition to a black hole considered in this paper should
be seen as an instructive limit capable of shedding some
light on issues regarding the path matter could take in
evolving to a black hole. The methods we use to study

∗Electronic address: H.Labranche@tpi.uni-jena.de
†Electronic address: D.Petroff@tpi.uni-jena.de
‡Electronic address: mans@aei.mpg.de

this transition differ from those in the above cited papers,
since we here concentrate on the behaviour of multipole
moments and on the appearance of a region of space-
time typical of metrics close to the extreme Kerr limit.
These transitions are studied for strange matter, which is
considered to be a form of matter that may be astrophys-
ically relevant and has not been considered elsewhere for
ring topologies. Moreover, we include a comparison with
the corresponding transitions of rings governed by other
equations of state.

Section II is devoted to a brief description of the equa-
tion of state used here to model strange matter. In
Sec. III we define multipole moments at infinity and fol-
low their progression as they tend to those of the extreme
Kerr black hole. The appearance of a “throat region” sep-
arating the “inner” from the “outer world” is discussed
in Sec. IV. In Sec. V, we verify numerically that a par-
ticle resting on the ring’s surface is always gravitation-
ally bound, a condition, which can be considered to be a
minimal requirement for stability. We close with a short
summary in Sec. VI.

Throughout this paper, units are used in which the
gravitational constant G and speed of light c are equal
to one.

II. EQUATION OF STATE

Strange matter is a fluid made of up (u), down (d)
and strange (s) quarks. Our equation of state (eos) to
characterize strange matter is the same one described by
Gourgoulhon et al. [10], who studied the properties of
axially symmetric, stationary, spheroidal strange matter
configurations. Based on the MIT bag model, we con-
sider equal numbers of massless, non-interacting u,d,s
quarks, confined to a given volume, i.e. enclosed in a
“bag”. The limits of the bag correspond in our case to
the surface of the star, such that the star is entirely com-
posed of strange matter. This model leads to a simple
eos:

ǫ = 3p + 4B, (1)
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where ǫ is the energy density, p the pressure and B the
bag constant, characterizing the quark confinement.

In the Newtonian limit, the pressure p is low and neg-
ligible in comparison to B, so the eos takes the form
ǫ = constant. Therefore, all the known Newtonian solu-
tions for homogeneous bodies will be found in the New-
tonian limit of the MIT bag model. Of course, a quark
model of matter is not relevant in the Newtonian limit,
but is taken as a limiting case of our eos. Also, like the
homogeneous eos, but unlike polytropic models, the den-
sity of strange matter is discontinuous at the surface.

III. MULTIPOLE MOMENTS

It has been shown in [4] that the extreme Kerr solu-
tion is the only black hole limit of rotating perfect fluid
bodies in equilibrium. The extreme Kerr black hole is
characterized by the relation

J = ±M2, (2)

where M is the mass and J the angular momentum.
To study quasi-stationary transitions that lead to black
holes, we use bodies with a ring topology, since spheroidal
bodies do not seem to have stationary sequences that lead
to black holes [11]. For spheroidal bodies, a finite upper
bound is observed for Z0, which is the relative redshift of
zero angular momentum photons emitted from the sur-
face of the body and observed at infinity. In contrast, the
transition to a black hole occurs if and only if Z0 → ∞
[5]. We explore here such transitions with the concept of
multipole moments.

A. The Metric and the Definition of Multipole

Moments

The line element for a stationary and axisymmetric
spacetime containing a uniformly rotating fluid can be
written in the form

ds2 = e−2U [e2k(dρ2 + dζ2) + W 2dϕ2] − e2U (adϕ + dt)2,
(3)

where the functions e2k, e2U , W and a depend only on
ρ and ζ. The equatorial plane is given by ζ = 0 and the
axis of rotation by ρ = 0.

To describe the surface of the ring, it is useful to in-
troduce the metric potential V ,

e2V = e2U [(1 + Ωa)2 − Ω2W 2e−4U ],

where Ω is the angular velocity of the fluid with respect
to infinity. The function V is constant along isobaric
surfaces and the surface of the ring, defined to be the
surface of vanishing pressure, can thus be denoted by
V = V0. The constant V0 is related to the relative redshift
Z0 via

e−V0 − 1 = Z0. (4)

Consider now the vacuum region exterior to the mass
distribution and extending to infinity. In this region,
there exists a conformal coordinate transformation z′ =
z′(z) (z′ := ρ′ + iζ′, z := ρ + iζ) allowing one to choose
ρ′(ρ, ζ) = W (ρ, ζ), which then leads to the metric

ds2 = e−2U [e2k′

(dρ′2 + dζ′2) + ρ′2dϕ2] − e2U (adϕ + dt)2,
(5)

which we will use below to define the multipole moments.
Note that the Cauchy-Riemann conditions for the trans-
formation from (3) to (5) imply W,ρρ +W,ζζ = 0, which
is valid only in the vacuum domain. It follows from ax-
ial symmetry that W = 0 holds for ρ = 0 (W = O(ρ)).
Along the axis of rotation, ρ = 0, one of the Cauchy-
Riemann conditions then yields

∂ζ′

∂ζ

∣

∣

∣

∣

ρ=0

=
∂ρ′

∂ρ

∣

∣

∣

∣

ρ=0

=
∂W

∂ρ

∣

∣

∣

∣

ρ=0

= lim
ρ→0

W

ρ
. (6)

After solving numerically for the metric functions in
Eq. (3), an expansion of W/ρ along the axis of rota-
tion then allows us to find an expansion of ζ′ in terms
of ζ and vice versa. Thus, taking into account that
ρ = 0 ⇔ ρ′ = 0, we are in a position to be able to write
down the series expansion about the point ζ′ = +∞ for
the metric functions, which will be used in defining the
multipole moments (see Eq. 13).

Turning our attention back to Eq. (5), the Einstein
equations governing a and e2U can be rewritten using
the single, complex Ernst equation

(ℜf)△f = ∇f · ∇f, (7)

where f is the complex function f = e2U + ib, ℜf is the
real part of f and △ and ∇ are respectively the Lapla-
cian and the gradient operators in a three dimensional
Euclidean space. Once a and U have been solved for,
the metric function k′ can be calculated via a line inte-
gral. Solutions of the Ernst equation lead to solutions of
the Einstein equations and the metric potentials can be
calculated from:

a,ρ′ = ρ′e−4U b,ζ′ (8)

a,ζ′ = −ρ′e−4Ub,ρ′ (9)

k′,ρ′ = ρ′[U,2ρ′ −U,2ζ′ +
e−4U

4
(b,2ρ′ −b,2ζ′ )] (10)

k′,ζ′ = 2ρ′[U,ρ′ U,ζ′ +
e−4U

4
b,ρ′ b,ζ′ ]. (11)

From the Ernst potential f , one can define another po-
tential ξ:

ξ =
1 − f

1 + f
. (12)

Taking the potential ξ on the positive part of the axis of
rotation (ρ′ = 0, ζ′ > 0), we can make a series expansion
of it at infinity:

ξ(ρ′ = 0, ζ′) =

∞
∑

n=0

mn

ζ′n+1
. (13)
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We assume reflectional symmetry about the equatorial
plane in this paper for which it follows that mn is real
for even n and imaginary for odd n [12, 13].

The multipole moments Pn defined by Geroch [14] and
Hansen [15] are algebraic combinations of the coefficients
mn and characterize the Ernst potential uniquely. In this
article, we consider the 7 first multipole moments of the
infinite set given in [16] as

Pj = mj for j = 0, 1, 2, 3 (14a)

P4 = m4 −
1

7
M20m0 (14b)

P5 = m5 −
1

3
M30m0 +

1

21
M20m1 (14c)

P6 = m6 −
1

33
M20m

3
0 −

5

231
M20m2

+
4

33
M30m1 −

8

33
M31m0 −

6

11
M40m0,

(14d)

where Mjk ≡ mjmk − mj−1mk+1. We point out that
P0 = M and P1 = iJ always hold. The multipoles Pn

can then be normalized as follows:

yn = i(−2iΩ)n+1Pn. (15)

For the Kerr black hole, the multipole moments are
simply

P (Kerr)
n = M(iJ/M)n, (16)

where M and J are respectively the mass and the angular
momentum of the black hole. Using the relation

J =
4ΩHM3

1 + 4Ω2
HM2

, (17)

where ΩH is the angular velocity of the horizon, we then
find

y(Kerr)
n (y0) = y0

(

2y2
0

1 + y2
0

)n

. (18)

Through this normalization, all multipoles yn of the ex-
treme Kerr black hole are equal to one, as can be seen
by taking into account y0 = 2ΩHM = 1.

B. Multipole Moments of Rings

As V0 tends to −∞, we expect the multipole moments
to become closer and closer to those of an extreme Kerr
black hole. We tested this numerically by making use of a
(slightly modified version of a) highly accurate computer
program as described in [17]. This program was used for
all the results presented in this paper.

Figures 2 and 3 show the first seven multipole mo-
ments for homogeneous and strange matter rings where
the ratio between the inner coordinate radius ρi and the
outer radius ρo (see Fig. 1) is held constant at a value
of ρi/ρo = 0.7. The left side of the plots corresponds to

ρi ρo

ρ

ζ

FIG. 1: Example of a meridional cross-section of a strange
matter ring. The ring in this example has the parameters
ρi/ρo = 0.7 and e2V0 = 0.1.

10−210−11
0.0

0.2

0.4

0.6

0.8

1.0

eV0

yn

y0

y6

FIG. 2: The normalized multipoles yn versus eV0 for homo-
geneous rings with ρi/ρo = 0.7 .

the Newtonian limit and the right side tends toward the
black hole limit. As V0 → −∞, the normalized multi-
poles all tend to one, demonstrating that this sequence
indeed approaches the extreme Kerr solution.

It is interesting to note, with respect to eV0 (or Z0),
how slowly the exterior spacetime approaches that of a
Kerr black hole. Consider, for example, the configuration

10−210−11
0.0

0.2

0.4

0.6

0.8

1.0

eV0

yn

y0

y6

FIG. 3: The normalized multipoles yn versus eV0 for strange
matter rings with ρi/ρo = 0.7.
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0 1
0

1

y0

yn

y1

y6

FIG. 4: The multipole moments yn, n = 1 . . . 6 versus y0 for
strange matter rings with ρi/ρo = 0.7.

from Fig. 3 with eV0 = 10−2. Whereas the value J/M2 =
1.00014 is very close to the limiting value of one reached
in the extreme Kerr limit, the product 2ΩM = 0.9813
deviates rather significantly from it. This makes itself
felt particularly for the higher multipole moments where
powers of Ω are in play. The moment y4, for example, has
reached only a value of y4 ≈ 0.91 for this configuration.

To understand better the nature of the transition to
the black hole, we compare the multipole moments of
the above strange matter ring sequence with those of the
Kerr solution. In Fig. 4 the yn for n = 1 . . . 6 are plotted
against y0 = 2ΩM for the strange matter ring sequence
from above. A corresponding picture for the sequence of
Kerr solutions (see (18)) is displayed in Fig. 5. The clear
similarity between these plots is emphasized in Fig. 6
where each yn for the ring (solid line) and the Kerr so-
lution (dotted line) is compared in a small figure over
its whole range. The region very close to the extreme
Kerr limit is then shown for y1–y5 in detail. The graphs
strongly suggest that the slopes

dyn

dy0
(y0 = 1) (19)

are the same for the Kerr family and for the strange mat-
ter ring sequence discussed here. In fact, we found these
slopes to be indepedent of the specific eos being used.1

For the Kerr solutions, it follows from (18) that

dyn

dy0
(y0 = 1) = n + 1, (20)

which leads us to the conjecture that (20) holds true for
all sequences of rotating bodies that admit the transition

1 We checked this for ring sequences governed by homogeneous,

polytropic and Chandrasekhar eos as well as for the rigidly rotat-

ing dust family. The Chandrasekhar eos describes a completely

degenerate, zero temperature, relativistic Fermi gas.

0 1
0

1

y0

yn

y1

y6

FIG. 5: The multipole moments yn, n = 1 . . . 6 versus y0 for
the sequence of Kerr solutions.

TABLE I: The multipole moments yn for various configura-
tions, all with eV0 = 10−2. The abbreviation ‘s.m.’ refers to
a strange matter ring, ‘hom.’ to a homogeneous ring, ‘pol.’
to a polytropic ring with the polytropic index n = 1 and ‘rel.
disc of dust’ to the relativistic disc of dust.

y0 y1 y2 y3 y4

s.m. (ri/ro = 0.6) 0.982 0.964 0.947 0.930 0.913

s.m. (ri/ro = 0.7) 0.981 0.963 0.945 0.928 0.910

s.m. (ri/ro = 0.8) 0.981 0.962 0.943 0.925 0.907

hom. (ri/ro = 0.7) 0.981 0.963 0.945 0.927 0.910

pol. (ri/ro = 0.7) 0.982 0.965 0.948 0.931 0.914

rel. disc of dust 0.984 0.969 0.953 0.938 0.924

to an extreme Kerr black hole. This conjecture provides a
universal growth rate with which the yn approach unity.

In Table I, a comparison of the values of the first
five moments yn for a variety of configurations all with
eV0 = 10−2 is provided. The set of configurations chosen
includes rings with various different eos and various ra-
dius ratios and also includes the uniformly rotating disc
of dust. A discussion of the multipoles of this last con-
figuration as well as plots analogous to Fig. 3 can be
found in [18]. Since all multipole moments tend to one in
the limit V0 → −∞, these multipoles will provide almost
no way of distinguishing between various configurations
close to this limit.

In contrast, we present the multipole moments for con-
figurations near the Newtonian limit (e−V0 = 1.1) in Ta-
ble II. Here one can see that there is far more variation
amongst the rings and that the disc of dust differs sig-
nificantly from any of the rings. The values in the table
also reflect the fact that strange matter has the same
Newtonian limit as homogeneous matter.

A further comparison of rings of various eos can be
found in Fig. 7. Sequences of rings rotating at the mass-
shedding limit, are plotted in a two-dimensional param-
eter space with 1 − eV0 on the y-axis and ρi/ρo on the
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0 1
0

1

y0

y1

0 1
0

1

y0

y2

0 1
0

1

y0

y3

0 1
0

1

y0

y4

0 1
0

1

y0

y5

0 1
0

1

y0

y6

0.94 0.96 0.98 1.00
0.8

0.9

1.0

y0

yn y1

y5

FIG. 6: Various multipole moments yn are plotted versus y0 for strange matter rings with ρi/ρo = 0.7 (solid lines) and
the sequence of Kerr solutions (dotted lines). In the detailed plot, the curve for y6 was omitted because of slight numerical
inaccuracies for higher multipole moments.

x-axis. The mass-shedding limit is reached when the path
followed by a particle rotating at the outer edge of the
ring becomes a geodesic. For a given eos, other ring con-
figurations (i.e. not rotating at the mass-shedding limit)
lie to the right of the corresponding curve. One can
see that a transition to the extreme Kerr black hole is
a generic feature of all rings considered here. The transi-
tion to spheroidal bodies exists for strange matter rings,
but not for all eos. What is particularly striking is how
close together the curves for strange and homogeneous
rings remain right up to the black hole limit. This figure
is a modified version of Fig. 1 of [9]. A discussion of the
polytropic and Chandrasekhar eos can also be found in
that paper.

IV. THROAT GEOMETRY

One of the most interesting feature of bodies near the
extreme Kerr black hole limit is the appearance of a
throat geometry [7, 19]. In the limit, the throat sep-
arates the ‘inner world’, containing the ring, from the
‘outer world’. The outer world is the asymptotically flat
extreme Kerr spacetime, which is described by a single
parameter and in which the horizon is located at the end
of the infinitely long throat. On the other hand, the inner
world is not asymptotically flat and is related to the outer
world through its asymptotic behaviour, which contains
information about the one free parameter that uniquely
describes the outer world. Any point in the outside world
is infinitely far away from any point in the inner world.
For example, in the equatorial plane, one finds that the
radial proper distance δ from the point ρ = 0 to the point
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TABLE II: The multipole moments yn for various configurations, all with e−V0 = 1.1 ⇔ Z0 = 0.1. The configurations are
labelled as in Table I.

y0 y1 y2 y3 y4

(×10−2) (×10−3) (×10−3) (×10−5) (×10−5)

s.m. (ri/ro = 0.6) 2.22 1.21 1.04 8.92 7.44

s.m. (ri/ro = 0.7) 2.09 1.16 1.02 8.69 7.43

s.m. (ri/ro = 0.8) 1.92 1.09 0.978 8.49 7.46

hom. (ri/ro = 0.7) 2.09 1.16 1.01 8.68 7.42

pol. (ri/ro = 0.7) 2.14 1.27 1.11 10.1 8.75

rel. disc of dust 2.36 1.73 1.56 12.5 21.7

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ρi/ρo

1 − eV0

homogeneous
strange matter
polytrope (n = 1)
Chandrasekharm

as
s-
sh

ed
di
ng

lim
it

transition to
spheroidal
bodies

extreme Kerr black hole limit

⇓ Newtonian limit ⇓

FIG. 7: The parameter space for rings with a variety of eos is considered in the (ρi/ρo)–(1 − eV0) plane. Each eos is bounded
on the left by the corresponding mass-shedding curve.

ρ is

δ =

ρ
∫

0

√
gρρ

∣

∣

ζ=0
dρ̃. (21)

For the extreme Kerr black hole δ tends logarithmically
to infinity as ρ → 0 (the horizon in the coordinates used
here is located at ρ = 0).

One way to represent the throat is to plot
√

gϕϕ/M
in the equatorial plane as a function of δ/M . Then, the
throat appears as a plateau, i.e. a region appears in which
the circumference of a circle of constant radius ρ = ρc,
tends toward a constant, independent of the radius ρc.
As the extreme Kerr black hole is approached, this region
becomes infinitely long. Figure 8 shows the appearance
of the throat for a sequence of strange matter rings with
ρi/ρo = 0.7 as the parameter eV0 tends to zero. Even
in the first of these pictures (e2V0 = 10−1), the highly
relativistic nature of the ring is demonstrated by the fact
that a small portion of the curve has a negative slope.
That is, there exists a region of spacetime in which cir-
cles lying in the equatorial plane and centred about the

origin have decreasing circumference with increasing ra-
dius. The last of these pictures is similar to Fig. 13 in
[20] in which the ‘inner world’ is separated from the ex-
treme Kerr solution by the infinite throat region. The
proper distance between a point in what becomes the in-
ner world (e.g. the outer edge of the ring ρ = ρo) and
a point in what becomes the outer world (e.g. ρ = M)
tends to infinity as e2V0 → 0. In a sense, we can say that
the ‘throat region’ near the black hole limit ‘swallows’ the
information as to what kind of configuration is sitting at
the centre, as can be seen in Table I.

The numerical ‘inner world’ solution was produced
with a program that prescribes the asymptotic behaviour
of the throat region (see [19]). Since the ‘asymptotically
flat computer program’ is capable of rendering rings with
a relative redshift Z0 well in excess of 100, the metric
behaviour provided by this program can be used as ini-
tial input for the Newton-Raphson method of the ‘inner
world program’ [17].
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√
gϕϕ

M

e2V0 = 10−1

0 2 4 6 8 10 12 14 16
0

2

4

6

δ/M

√
gϕϕ

M

e2V0 = 10−3

0 2 4 6 8 10 12 14 16
0

2

4

6

δ/M

√
gϕϕ

M

e2V0 = 10−5

0 2 4 −4 −2 0 2 4

ρ = M
0

2

4

6

δ/M ∆/M

√
gϕϕ

M

inner world extreme Kerr solution

FIG. 8: The function
√

gϕϕ in the equatorial plane is plotted versus proper distance, both normalized with respect to the mass
M . In the throat region,

√
gϕϕ/M tends to the constant value 2. All four plots were made for a strange matter ring with a

radius ratio ρi/ρo = 0.7 and with a value for e2V0 as indicated. In the last plot, ∆ gives the proper distance in the Kerr metric
to the reference point ρ = M . Note that the proper distance between any point in the ‘inner world’ region and any point in
the ‘extreme Kerr’ region tends to infinity as e2V0 → 0.

V. ESCAPE ENERGY

With the four-velocity ui and the Killing vector ξ =
∂/∂t corresponding to stationarity, one can define the
specific energy of a test particle with respect to infinity,
i.e. the energy per unit mass, as

E = −uiξi, (22)

which is a conserved quantity along any geodesic.
With ui referring to the four-velocity of a particle rest-

ing on the ring’s surface, E−1 could be called the “escape
energy”. If it is negative, then a sufficiently small per-
turbation will not suffice to induce the particle’s escape
to infinity on a geodesic, and it is referred to as gravita-
tionally bound. In proving that V0 → −∞ is a sufficient
condition for reaching the Black Hole limit [5], use was

made of the reasonable assumption that particles on the
fluid’s surface are gravitationally bound. One expects
that this minimal requirement for stability will always
be satisfied. We now proceed to verify this assumption
for a large class of rings.

Figures 9 and 10 show the value of E along the sur-
face of a variety of strange matter rings as it depends
on radius. The radial parameter (ρ − ρi)/(ρo − ρi) is
chosen such that it runs from 0 to 1 for every ring. In
Fig. 9 curves are plotted for a constant value ρi/ρo = 0.7
and for varying V0. We see that E tends to 1 in the
Newtonian limit, which follows directly from Eq. (22).
Figure 10 shows the behaviour of E for various values of
ρi/ρo and constant V0. Since configurations with small
ρi/ρo do not exist when V0 becomes too negative (see
Fig. 7), we chose V0 to be in the Newtonian regime in or-
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ρ−ρi

ρo−ρi

E

e2V0 = 10−4

e2V0 = 10−2

e2V0 = 0.9

FIG. 9: The specific energy E versus (ρ− ρi)/(ρo − ρi) on the
surface of a variety of strange matter rings with ρi/ρo = 0.7.

0.0 0.2 0.4 0.6 0.8 1.0
0.94

0.96

0.98

1.00

ρ−ρi

ρo−ρi

E

ρi/ρo = 0.1
ρi/ρo = 0.3
ρi/ρo = 0.5
ρi/ρo = 0.7
ρi/ρo = 0.9

FIG. 10: The specific energy E versus (ρ−ρi)/(ρo−ρi) on the
surface of a variety of strange matter rings near the Newtonian
limit (e2V0 = 0.9).

der to be able to consider a wide range of values for the
radius ratio. For every example considered in Figs 9 and
10, a maximal value at the outside edge of the ring in the
equatorial plane is reached, just as one would expect. It
is interesting to compare these results with the relativis-
tic disc of dust for which E = 1 holds at the outer edge
independent of the value of Z0 [21].

Focussing our attention now on the outer edge of the
ring in the equatorial plane, we see in Fig. 11 how E
depends on V0 for a sequence of strange matter rings with
ρi/ρo = 0.7. It is apparent that a maximum is reached
in the Newtonian limit. For rings rotating at the mass-
shedding limit, the value of E is also significantly smaller
than one for small eV0 . The results for homogeneous rings
are very similar and we can verify that E ≤ 1 holds (i.e.

10−210−11
0.6

0.7

0.8

0.9

1.0

eV0

E

FIG. 11: The specific energy E versus eV0 at the outer edge in
the equatorial plane for strange matter rings with ρi/ρo = 0.7.

the escape energy is negative) for a large class of rings.

VI. SUMMARY

It was shown numerically that a parametric transition
exists from strange matter rings to the extreme Kerr
black hole. Whereas it is known analytically that the
eos describing strange matter tends to that of a homo-
geneous body in the Newtonian limit, it was shown here
that properties of configurations with these two eos re-
main similar right up to the limit V0 → −∞.

Figs 2 and 3 suggest that the transition to the black
hole is rather slow as e2V0 → 0. This can be made more
precise through the comparison with the Kerr solution,
which leads us to conjecture that for every stationary
rotating body permitting a transition to a black hole,
the multipole moments yn tend to one according to the
formula

dyn

dy0
(y0 = 1) = n + 1.

It is expected that E ≤ 1 always holds on the surface
of a fluid body. Indeed, this inequality was used to prove
that for rotating fluids the extreme Kerr black hole nec-
essarily results if e2V0 → 0 [5]. We have verified that this
inequality is correct for a large class of rings.

As our knowledge of astrophysical collapse scenarios
improves, it will be interesting to see how strong the
connections can be to the quasi-stationary collapse con-
sidered here.
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