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Search for continuous gravitational waves: metric of the multi-detector F-statistic

Reinhard Prix
Maz-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Am Mdihlenberg 1, 14476 Golm, Germany

We derive the parameter-space metric of the multi-detector F-statistic, which is the optimal
detection statistic for continuous gravitational waves in stationary Gaussian noise. We find that
there is a family of F-statistic metrics, parametrized by the (unknown) amplitude parameters. We
explicitly derive the maximal mismatch-range of this metric family, and we introduce a corresponding
“average” F-metric. We show that the multi-detector metric consists of noise-weighted averages
of single-detector contributions, which implies that the number of templates required to cover the
parameter space does not scale with the number of detectors. Contrary to using a longer observation
time, combining more detectors (of similar sensitivity) is therefore the computationally cheapest way
to improve the sensitivity of a coherent wide-parameter search for continuous gravitational waves.
We explicitly compute the F-statistic metric (family) for signals from isolated spinning neutron
stars, and we evaluate the quality of different metric approximations in a Monte-Carlo study. We
also compare the metric predictions to the measured mismatches and identify two regimes in which
the metric is not a good description of the parameter-space structure.

I. INTRODUCTION

Continuous gravitational waves (GWs), which would
be emitted, for example, by spinning non-axisymmetric
neutron stars, or by solar-mass binary systems, are gen-
erally expected to be so weak that they will be buried
several orders of magnitude below the noise of even the
most sensitive detectors. The detection of such signals
therefore requires the exact knowledge of their waveform,
in order to be able to coherently correlate the data with
the expected signal by matched filtering.

In a wide-parameter search for unknown sources, how-
ever, we only have the general family of waveforms (or an
approximation thereof) at our disposition, parametrized
by the unknown signal parameters (such as the frequency
or sky position). The corresponding parameter space
needs to be covered by a finite number of “templates”,
which must be placed densely enough, so that no more
than a certain fraction of the signal-to-noise ratio (SNR)
is lost at the closest template. On the other hand, coher-
ently correlating the data with every templates is compu-
tationally expensive, and therefore an optimal covering
with the smallest possible number of templates is desir-
able.

In order to solve this covering problem, it is essen-
tial to understand the underlying parameter-space struc-
ture. Most studies on the construction of optimal tem-
plate banks so far have been performed in the context of
binary-inspiral searches. It was realized that a geometric
approach to this problem is the most fruitful, in particu-
lar the introduction of a metric on the parameter space
by Balasubramanian et al. [1] and Owen [2], building on
the earlier concept of the “fitting factor” introduced by
Apostolatos [3]. Note, however, that this definition of the
metric differs subtly from the “canonical” definition used
in the present work (and also in [4]), which is derived di-
rectly from the detection statistic (see appendix [Al for
more details). This canonical definition of the metric is
based on the fact that the relative loss of the expected
detection statistic due to an offset in the signal param-

eters represents an invariant “distance” measure, which
can locally be expressed as a quadratic form in the pa-
rameter offsets. The metric is closely related to the well-
known data-analysis concept of the “Fisher information
matrix”, which describes the statistical errors in the pa-
rameter estimation. It turns out that the (canonical)
metric is simply the normalized Fisher matrix, although
it describes a conceptually rather different aspect of the
detection statistic.

A somewhat related question is the global parameter-
space structure, which was studied in [5] for the case
of isolated neutron-star signals. This study found that
the global structure (the “circles in the sky”) deviates
significantly from the local metric picture of a simple
quadratic decrease of SNR around the signal location.
The global structure is relevant, for example, for decid-
ing whether different (threshold-crossing) detection can-
didates are consistent with the same signal, i.e. whether
they are “coincident candidates”. Obviously, the met-
ric description is the local approximation to this global
parameter-space structure.

In this paper we consider gravitational-wave signals
that are nearly monochromatic and sinusoidal in the
frame of the GW source (but allowing for a slowly varying
intrinsic frequency), and which are of long duration (i.e.
typically longer than the observation time 7"). This class
of signals is usually referred to as “continuous waves”,
and the prime examples are GWs from non-axisymmetric
spinning neutron stars (e.g. see [@, 4, I§]) and stellar-mass
binary systems in the LISA frequency band (e.g. see [4]).

The phase of the signal received at the detector is
Doppler modulated by the rotation and orbital motion of
the detector. The observed phase therefore does not only
depend on the intrinsic frequency evolution of the signal,
but also on its sky position. In addition to the phase
modulation, there is a time-varying amplitude modu-
lation, which depends on the polarization angle ¢ and
the amplitudes Ay and Ay of the signal. As shown
by Jaranowski et al. [6], these unknown coefficients, to-
gether with the initial phase ¢, can be eliminated by



analytically maximizing the detection statistic over these
four parameters. The resulting, reduced space includes
only parameters affecting the time evolution of the sig-
nal phase, which we will refer to as the “Doppler param-
eters”. The amplitude-maximized detection statistic is
generally known as the “F-statistic”. After two earlier
(partly successful) attempts 4, Ifl] to generalize the F-
statistic to a coherent network of detectors, this problem
was fully solved only more recently by Cutler and Schutz

Somewhat surprisingly, however, there has not been
much work on the metric of the F-statistic, neither
for the single- nor the multi-detector case: the single-
detector F-statistic metric was derived on a formal level
by Krélak et al. [4], but was not evaluated explicitly or
studied further. A single-detector F-statistic metric was
used (albeit without giving any details) in [10] to nu-
merically estimate the number of templates for galactic-
binary searches with LISA. An earlier work by Brady
et al. [L1] for isolated neutron-star signals used a (single-
detector) metric approximation in which the amplitude
modulation of the signal is neglected, and only the phase
modulation is taken into account. In the following we will
refer to this metric approximation as the “phase metric”.
The phase metric has a simpler structure than the full F-
metric, and it can even be computed analytically [12] if
one assumes a circular orbital motion. This is the only
type of continuous-wave metric currently implemented in
LAL/LALApps [13].

As we will see in this study, the amplitude modulation
cannot always be neglected in the metric, but “on aver-
age” the phase metric is a useful approximation, and its
quality improves with longer observation time and with
the number of coherently-combined detectors. However,
with the recent multi-detector generalization of the F-
statistic formalism [d] and its subsequent implementation
in LAL/LALApps, the need to understand the multi-
detector F-statistic metric became more urgent. The
most important question in this context is whether the
metric resolution increases with the number of detectors,
i.e. whether a denser covering of the parameter space is
required, which would increase the computational cost.

The main result of this work is to show that the metric
resolution does not scale with the number of detectors.
Therefore, sensitivity can be gained at the cost of only a
linear increase in the required computing power (as the
signal has to be correlated with the data stream of each
detector). This has to be contrasted with the oc T scal-
ing (for isolated neutron-star signals with one spindown,
see ([[IH)) of the required number of templates with ob-
servation time 7. Increasing the number of coherently
combined detectors (of similar sensitivity) is therefore the
computationally cheapest way to improve the sensitivity
of a coherent search for continuous gravitational waves.
Note that by combining the data of several detectors via
coincidence (as opposed to a coherent combination), the
required computing power also depends linearly on the
number of detectors, albeit without increasing SNR.

The plan of this paper is as follows: in Sect. [l we in-
troduce the formalism and notation of the multi-detector
F-statistic, following [9] and 4]. In Sect.[[Tllwe derive the
F-statistic metric family for the case of high-frequency
signals (as relevant for ground-based detector networks).
We compute the extremal range of this metric family,
its average metric, and the long-duration limit, in which
the F-metric family reduces to a simple “orbital met-
ric”. In Sect. Ml we apply this framework to the special
case of GWs from isolated spinning neutron stars, and
we evaluate the quality of the metric predictions (and
of different approximations) by comparison to measured
mismatches in a Monte-Carlo study. The main results
are summarized in Sect. [Vl Appendix [A]l presents an al-
ternative, more elegant derivation of the F-statistic met-
ric, and Appendix [Bl gives the general expressions for the
F-metric, which would also be valid for low-frequency
signals relevant for LISA.

II. THE MULTI-DETECTOR F-STATISTIC

A. General definitions

In this section we introduce the formalism and notation
of the F-statistic, a matched-filtering detection statistic
for continuous gravitational waves, which was first intro-
duced by Jaranowski et al. [], and subsequently gener-
alized to the multi-detector case by Cutler and Schutz
[9]. As shown in |d], the dimensionless strain signal s (¢)
of a continuous gravitational wave at detector X can be
represented in the form

4
sX(6) = AR, (1)

in terms of four signal-amplitudes A*, which are inde-
pendent of the detector X, and the detector-dependent
basis waveforms h; (t). The four amplitudes A* can be
expressed in terms of two polarization amplitudes A,
Ay, the initial phase ¢ in the solar-system barycenter
(SSB) at a reference time 7of, and the polarization an-
gle 1 of the wave frame with respect to the equatorial
coordinate system, namely

Al = A, cosggy cos2yp — Ay singg sin 21,
A? = A, cosgg sin2y + Ay singg cos 21, @)
A3 = — A, singg cos2y — Ay cosdg sin 29,
A* = — A, singg sin2y + Ay cospg cos2i.

We can further relate the two polarization amplitudes A
and Ay to the overall amplitude hy and the inclination
angle ¢ of the quadrupole rotation axis with respect to
the line of sight, namely

1
Al = §h0 (1+cos2 L) , Ay =hgcost. (3)



The four basis waveforms h; (t) can be written as

hi(t) = a*(t) cos ¢™(t), hi (t) = b*(t) cos 6™ (1),

a®(t)sin ¢®(t), h¥(t) ; bX(t) sin X (), )
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where a®(t) and bX(t) are the antenna-pattern func-
tions (see Eqs.(12,13) of [f]), and ¢*(¢) is the signal
phase at the detector X. The antenna-pattern functions
a®(t), ¥*(t) depend on the sky position 7 of the GW
source, and on the location and orientation of the de-
tector X. The phase ¢™(t) also depends on the intrinsic
phase parameters, w say, of the signal. In the case of con-
tinuous waves from isolated neutron stars, w would only
consist of the s + 1 spin parameters, i.e. w = {f®}s_
where f*) is the k-th time-derivative of the intrinsic sig-
nal frequency in the SSB (see Sect. [¥). In the case of
signals from spinning neutron stars in a binary system,
w would also contain the binary orbital parameters. We
can summarize these dependencies as

o =a (i), V=0 (), o = (tiw). (5)

In the following we denote the set of “Doppler parame-
ters” (i.e. the parameters affecting the time evolution of
the phase) by A = {7, w}, as opposed to the four “ampli-
tude parameters” {A}* = A*. Note that in the litera-
ture the Doppler parameters are sometimes referred to as
“intrinsic”, and the amplitude parameters as “extrinsic”,
but we will not use this convention here.

Using the multi-detector notation of [4, 9], we write
vectors in “detector-space” in boldface, i.e. {s}* = s%,
and so the signal model () can be written as

s(t; A, A) = A hy (8 2), (6)

with implicit summation over repeated amplitude in-
dices, u € {1,2,3,4}. We assume the data x%(t) of
detector X contains a signal with parameters {A, A} in
addition to Gaussian stationary noise n*(t), i.e.

z(t) =n(t) + s(t; A N) . (7)

In general, the noise contributions n*(t) of the different
detectors could be correlated (which might be relevant
for the two LIGO detectors in Hanford, or for LISA),
and so we define the (double-sided) noise-density matrix
SXY as

SXY(f) _ / HXY(T) e—i27r fr dT, (8)
in terms of the correlation functions

Y ()= E [nx(t +7)nY (t)] ) (9)

The corresponding multi-detector scalar product is de-
fined (in analogy to [14]) as

(aly) = [ T ST A, (10)

— 00

where Z(f) denotes the Fourier-transformed of z(t). We
use implicit summation over repeated detector indices,
and the inverse noise matrix is defined by S)Z\l, SYZ = 5%,
In the case of uncorrelated noise, where SXY = §X §X¥
the scalar product simplifies to

(@ly) = (@ "), (11)
X
in terms of the usual single-detector scalar product
(wX|yX) = /OO gX(f) gX*(f)
oo ()

With the definition ([[[) of the multi-detector scalar prod-
uct, the likelihood function for Gaussian stationary noise
n(t) can be written as

df . (12)

P (n(t)[SXY) = ke z(nIn) (13)

where k is a normalization constant. Using ([d) we can
express the likelihood of observing data x(t) in the pres-
ence of a signal s(t; A, \) as

P(x| A\, SXY) = ke~ (@l) p(@ls)—5(sls) (14)

We can now obtain the posterior probability for the pres-
ence of a signal {4, A} in the data x using Bayes’ theo-
rem, which yields

P(A Nz, SXY) = K P(A,N) e@92619 - (15)

where P (A, \) is the prior probability for a signal {A, A}
to be present, and k' is a (signal-independent) normal-
ization constant. Assuming a flat prior, i.e. P(A,\) =
const., and substituting the signal model (), the poste-
rior log-probability is found as

1
log P(A, M|z, SXY) = pg + Az, — A My A, (16)

where we defined

(A = (xlhy) (17)
M (V) = (hyulhy) - (18)

The posterior ([[H) can therefore be maximized analyti-
cally with respect to the unknown amplitudes A*, and
(dropping pg) the resulting detection statistic for the
Doppler parameters A is the so-called F-statistic, namely

F(Nz) = %xu MH gz, (19)

where MM = {M™1} ie. MuaM™ = 6;. Note
that the four (multi-detector) wavefunctions h,,(t) form
a basis of the signal space, and M is the associated
metric, which allows us to raise and lower amplitude
indices. In particular, we could define a “dual” basis,
h*(t) = M* h,(t), satisfying (h*|h,) = §*, and the F-
statistic (I3) could then be written even more compactly
as 2F(A) = a* xy,.



B.  [F-statistic of perfectly matched signals

Let us consider the case where the target Doppler pa-
rameters A are perfectly matched to the signal Ag, so the
measured data would be x(t) = n(t) + s(t; A, A). In this
case, the projections () are

2u(AN) = 1u(A) + 5u(AA) (20)

where we defined n, = (n|h,) and s, = (s|lh,). Assum-
ing Gaussian stationary noise, one can show that

E[nu] = 0, and E[TLH TLV] :Muua (21)

where E|.] is the expectation value. We further find

E[I#] =Su, and E[I#IU] :M#U+S#SV) (22)

so the four random variables x,, have mean s, and co-
variances M,,,,. Using this together with ([[d), we find
the expectation value of the F-statistic as

E[2F] =4+ p*(0), (23)

in terms of the “optimal” signal-to-noise ratio p(0), given
by

P2(0) = s, MM 5, = AP M, A = (s|s) . (24)

Using @22), it is straightforward to show that the
quadratic form [[d) can be diagonalized as the sum of
four squares of Gaussian random variables with unit co-
variance matrix. This implies that 2F is distributed
according to a (non-central) x2-distribution with four
degrees of freedom, as previously shown by Cutler and
Schutz [9]. The corresponding non-centrality parameter
of this y2-distribution is p?(0).

C. [F-statistic of mismatched signals

In the case of unknown signal parameters, there will
generally be an “offset” A\ between the Doppler param-
eters s of the signal and the target parameters A, i.e.

A=A+ AN (25)
In this case, the projections [[7) can be expressed as
2u(A A A) = 1u(A) + A% Rap(As; A) - (26)
where the 4x4 matrix R, is defined as
Rau(Asi A) = (ha(As)|Ru(N)) - (27)

This matrix is generally not symmetric, but evidently
satisfies the symmetry relation Rau(As; A) = Rpua(A; As)-
Using this together with (), we can write the mis-
matched (SNR)? as

PP(A XN = E[2F] —4
= AR (As; VMM (AR s, (As; ) A .(28)

Assuming the target parameters A to be “close” (in a
suitable sense) to the signal, we can Taylor-expand these
matrices around the signal-location As, and keeping only
terms up to second order, we obtain

M (N) = MM (\) + M () AN
FOMI ) ANAN, (20)
RHV()\S;)\) = M;,w()\s) +Ruui()\s) A)"L
F5Ruws () AN AN, (30)

where indices i,j refer to the Doppler parameters M
(with automatic summation), and where we defined

R,uui S5 (h,u|alhl/) 9 (31)
Ruuij = (hu|aijhu) ’ (32)
with 8; = 9/0X" and 0;; = 9?/ON'ON. Substituting
these expansions into ([E8), we find to second order
P2 (AN) = A" [Myuy + Lui AN — G AN AN | A
(33)

where the first- and second-order coeflicients explicitly
read as

Li = Ri+"Ri+ M-OM - M, (34)
1 1
—gij = 5(7?,1] + TRZ'J') + 5./\/1 '&jMﬁl - M
+M - 81'./\/171 'TRJ' +R; - M1 'TRj
+R; - MM, (35)

using matrix notation, and writing T for the transpose
of the amplitude indices. By applying derivatives to the
identity M - M~ =1, we find
MOM M = —OM, (36)
M-&ij/\/l_l-/\/l = —(91']‘./\/1 + 26i/\/1-/\/1‘1-8j/\/l,(37)

and using [[§) and the product rule, we further obtain
OIM = Ri + Ry, (38)
OijM = Rij+ "Rij +2hyj, (39)
where we defined
hywsy = (Ol (40)

For simplicity of notation, we assume the Doppler indices
in (BH) to be implicitly symmetrized, i.e. G;; = G;;, as any
non-symmetric parts will not contribute to the quadratic
form (B3)). Using the identities BH)—(Bd), we can reduce
the expansion coefficients B4)), (BH) to

L =0, (41)
Gij = hij— "Ri- M™'-R;. (42)
The exact vanishing of the first-order coefficient L; shows

that the perfectly-matched case, A = g, is a local ex-
tremum of the F-statistic, as expected. The zeroth-order



term in ([B3) corresponds to the perfectly-matched case
&), and so we arrive at

P2(AN) = p*(0)— A" G ij A” AN AN +O(AN), (43)
where G55 can be written more explicitly as

Guvis = (Oihuldjhy) — (ha|Oiby) M7 (h|0shy) . (44)

As discussed in ], this matrix is directly related to the
projected Fisher matriz I', namely

T, =A-Gj- A, (45)

describing the statistical information on the Doppler pa-
rameters A\*, given the amplitude parameters A*.

III. THE F-STATISTIC METRIC FAMILY
A. General definitions

The relative loss in expected F-statistic due to an offset
A\ with respect to the signal location Aq defines a natural
dimensionless “mismatch”! mz, namely

_ 20— AN
p*(0)
Using () for the mismatched SNR, we can cast the F-

mismatch in the form

mr (A, Ag; AN) . (46)

mr = gl (A, N) ANAN + O(AN?), (47)
where we defined the F-statistic metric gf; as

_A-Gi(N-A Ty
TA-MON) AT p2(0)

This expression is identical to that found previously
(for the single-detector case) in [4, [1], referred to as
the “normalized projected Fisher matrix”. A more ele-
gant method of obtaining this result by projecting the
full parameter-space metric into the Doppler subspace is
shown in appendix [Al Tt is obvious from {H) that the
overall signal amplitude kg cancels out, and that the mis-
match m is therefore, contrary to the Fisher matrix Fij,
independent of hyg.

The Fisher matrix characterizes the statistical uncer-
tainty (due to the presence of noise) of the maximum-
likelihood estimators for the signal parameters. In par-
ticular, the diagonal elements of the inverse Fisher matrix
give lower bounds on the variances of the corresponding
parameter estimators (the so-called Cramér-Rao bound).

gL (AN

(48)

1 See appendix [ for a discussion of a slightly different mismatch
definition sometimes found in the literature.

The Fisher matrix can therefore be regarded as a mea-
sure of the accuracy of parameter estimation. The con-
cept of the metric, on the other hand, describes the rel-
ative “extent” of the detection-statistic peak around the
signal-location, even in the absence of noise. This (SNR-~
independent) resolution in parameter space is a purely
deterministic property of the detection statistic, which is
not to be confused with the (SNR-dependent) accuracy.

The F-metric E@¥) is not a unique metric on the
Doppler-parameter space A of the F-statistic, as it de-
pends on the (generally unknown) signal amplitudes A*.
Expression [{3) therefore describes a whole family of
metrics, corresponding to different A = const. subspaces
of the full parameter space, which is of very limited direct
use for the covering problem of the Doppler-parameter
space.

However, we can explicitly compute the possible range
of mismatches for any given A and A\. For this, consider
the extrema of mx as a function of A, i.e.

omg 26 A AGA

0= 34 = AMA ~ (AMA)

OMA,  (49)

where we wrote G = G;; AN'AN, which is a 4x4 matrix
in amplitude space. Equation [#J) is equivalent to

(M™1-G) A=mzr(\,AN) A, (50)

which determines the extremal values mgz of the F-
mismatch as the eigenvalues of M~'-G. According to
the Rayleigh principle, the minimum and maximum of
the mismatch will be given respectively by the smallest
and largest eigenvalues. As suggested in [15], a more
practical mismatch measure can be constructed from the
mean of the eigenvalues, and we can define an “average”
F-metric as

= ;T MGy @y

where the trace Tr refers to the amplitude indices. This
average JF-metric, contrary to g{? , is independent of the
amplitudes A*, and is therefore of more practical inter-
est as a metric on the Doppler-parameter space. The
corresponding average F-mismatch mz is simply

(A, AN) = 55 (0) ANVAN . (52)

We note that in the analogous case of binary-inspiral
signals, where one can equally maximize the detection
statistic over some of the signal parameters (referred to
as “extrinsic” parameters), the metric of the reduced pa-
rameter space depends again on both extrinsic and intrin-
sic parameters [16, [17]. A common choice of mismatch
metric for the template placement in this binary-inspiral
context is to use the most conservative case (based on the
concept of the “minimal match” |2]), namely the worst-
case mismatch

ME (A, AN) = max,, mz(A N AN (53)



The is referred to as the “minimax” prescription in [1€].
Contrary to the average metric (B2), this extremal metric
cannot be expressed as a quadratic form in the Doppler
separations A\, and so the corresponding iso-mismatch
surfaces are not described by hyper-ellipsoids.

As we will see in the following section, for the type
of narrow-band continuous-wave signals considered here,
the 4x4 matrix M~! -G has only two independent eigen-
values, corresponding directly to the maximum and min-
imum possible F-mismatches for any given A and A\.

B. Narrow-band signals, uncorrelated noise

In the following we restrict our analysis to continuous
gravitational waves with a well-defined, slowly varying
(intrinsic) frequency f. This assumption applies, for ex-
ample, for GWs emitted from spinning non-axisymmetric
neutron stars, and from stellar-mass binary systems (rel-
evant for LISA). We assume the observation time T to
be much longer than the GW period 1/ fs, such that the
number of cycles N is large, i.e.

N=fT>1. (54)

The phase ¢(t) of the signal will be dominated by

the zeroth-order term 2w fst, while the intrinsic fre-

quency variability and the Doppler modulations are much

smaller corrections. Assuming two such narrow-band sig-

nals z(t) and y(t), we can approximate the scalar product
as

(xly) ~ T Sxy (fs) (=™ ), (55)

in terms of the time-averaging operator (.), defined as

T
W=7 | sa. (56)

Note that the noise matrix SXY(f;) can be considered
as a metric in “detector space”, allowing us to lower
and raise detector indices, e.g. we could write zx(t) =
Sxv (fs)zY (), and the scalar product (EH) would then
read as (zly) = T (¥ yx).

For simplicity, we restrict our analysis to the (more

common) case of uncorrelated detector noises, i.e. we
SXY — SX 5XY

assume , which allows us to define the
“noise weights” wx as
Sy ! . s -1
wxz?, with SEZSX , (57)
X

such that > wx = 1. Using this, the scalar product (BH)
can now be expressed as

(xly) = TS (wy)s, (58)

where we introduced the noise-weighted averaging oper-
ator (.)g, defined as

(@)=Y wx (QF). (59)

The scalar products involved in the F-statistic consist
of functions containing slowly varying antenna-pattern
functions {a(t), b(t)}, and highly oscillatory phase func-
tions {sin ¢(t), cosp(t)}. For products g(t)p(t) of a
slowly-varying function ¢(¢) and one that is rapidly os-
cillating, p(t), we can expand the time-average in the
following way

(gp) = )g) +T " (tp) (9(T)— g(0)) + .... (60)

For the oscillatory phase functions p(t) involved in the F-
statistic, namely sin® ¢, cos? ¢ and sin ¢ cos ¢, one finds

(sing) = 172,
(sing cos¢) = 0,
T (tsin®¢) = 1/(4N), (61)
T~ {(tsing cosp) = —1/(87N).

Each successive order is found to decreases by a factor of
1/N, and we can therefore neglect all higher-order con-
tributions and keep only the zeroth order (p)(g) in ex-
pressions of the type ([B0). Using this approximation, the
4x4 matrix M,,,, defined in [IJ), is explicitly found as

14.(CO
szﬁw(o c>’ (62)

where C is the 2x2 matrix

c=(43). (63)

in terms of the three independent antenna-pattern coef-
ficients

A=(a*)g, B=()g, C=ab, (64)

and we further define D = AB — C?. Inserting the ex-
plicit expressions (@) for the amplitudes A* and using
[E2), we can write the optimal SNR (4] explicitly as

P?(0) = %hng[a1A+azB+2a30], (65)

in terms of the amplitudes (writing n = cos):

ar(n, ) = L1+ n?)? cos? 2 + n? sin? 24,
as(n,¥) = (1 +n%)?sin® 29 + 177 cos® 29, (66)
az(n,¥) = 1(1—n?)?sin2¢ cos2¢.

We see that the optimal SNR does not depend on the
initial phase ¢g, and it scales linearly with the overall
amplitude hg, and with the square-root of the observation
time T'. The dependence on the number of detectors will
be discussed in the next section.



C. Dependence on the number of detectors N

A question of central importance is how the SNR and
the metric resolution depend on the number N of co-
herently combined detectors. The dependence of the op-
timal SNR is very easy to see: in the explicit expres-
sion (BH), the antenna-pattern coefficients A, B, C' are the
noise-weighted averages (B4 over detector-specific quan-
tities, and the only scaling with the number of detec-
tors AV therefore comes from the total inverse noise floor
S = Y Sx'. If we assume, for simplicity, that all A’
detectors have a similar noise floor Sp, i.e. S ~ ./\/'So_l,
then the optimal SNR scales as

2(0) o j—g_o VTN . (67)

Doubling the number of detectors (of similar noise floor)
therefore has the same effect on the SNR as doubling the
observation time 7.

It is not difficult to see from (E) and definitions ()
and (), that both the numerator and denominator in
[EX) have the same scaling with S (and therefore N),
which cancels out. To make this more explicit, we can
write the multi-detector F-metric ({@¥) for narrow-band
signals as

95 = (68)

Al [(Dih05h,) g — <haaih,,>5<hahﬁ>;1<hﬁajh,,>5] A
AP (hyhyYg A '

It is evident from this expression that the F-metric only
depends on noise-weighted averages of single-detector
contributions, but does not scale with /. Note, however,
that the multi-detector metric is not a simple average of
single-detector metrics.

Increasing the number of detectors therefore does not
increase the metric resolution in parameter space. This
is in strong contrast to the effect of increasing the ob-
servation time 7', in which case the metric resolution,
and therefore the number of templates, grows at a high
power of T' (e.g. o T°, see ([[IH)). We can therefore gain
SNR o VN with N similar-sensitivity detectors, at the
cost of “only” a linear increase oc A in the required com-
puting power. Using a coherent multi-detector search is
therefore the computationally cheapest way to increase
SNR in a coherent wide-parameter search for continuous
gravitational waves.

As discussed in Sect. [MTAl the metric resolution
must not be confused with the accuracy of parameter-
estimation. The latter increases with SNR (and therefore
also with the number of detectors), as described by the
Fisher information matrix, while the former does not. It
might still seem somewhat surprising that the additional
“information” coming from the time delays between de-
tectors does not result in a higher metric sky resolution.
This can be understood in terms of the diffraction limit,

which can be used to estimate the order of magnitude of
the sky resolution from the ratio of the wavelength ¢/ f
to the “baseline” V'T', where V is the orbital velocity.
The expected metric sky resolution is therefore of the
order AQy ~ ¢/(TfV), which is exactly the metric scal-
ing found in Sect. It is therefore evident that for
detector distances of the order ~ 1,000 km, the “integra-
tion baseline” V' T dominates the sky resolution starting
from observation times as short as 7" 2 100 s, and no
additional sky resolution can be gained from the baseline
spanned by different detectors.

D. The F-metric family for high-frequency signals

In order to explicitly calculate the F-metric family
([Y), we need to consider the derivatives 8ihff of the basis
functions @), namely (omitting detector indices)

O;h1 = 0;a cos¢ —a 0;¢ sing,
O;ho = 0;b cos¢p — b0;¢ sing,
O;hs = 0O;asing+ ad;¢ coso,
Oihy = 0;bsing +b0;¢ cos¢.

(69)

The antenna-pattern functions a(t),b(¢) do not depend
on any of the Doppler parameters A except for the sky po-
sition 7. From their explicit expressions (cf. Egs.(12,13)
of [A]) for ground-based interferometers one sees that

Opa~a~OD(1), Ozb~b~0(1), (70)
while the corresponding phase derivatives will typically
be of order

|070(t)| ~ |0 ict)| ~2nf TOTrb +2rfTV/c+ .... (T1)
Ignoring the constant term, which will not contribute to
the metric, the second term will be much larger than
unity if the number of cycles N = fT satisfies N >
¢/V ~ 10*%. This will always be be true for high-frequency
signals relevant for ground-based detectors, for which we
can therefore neglect the antenna-pattern derivatives in
Q) with respect to the phase derivatives, i.e.

0;¢0 > O;a, O;b, (72)

This assumption might not hold in the case of low-
frequency signals that would be more relevant for LISA,
or for very short observation times. The correspond-
ing calculations are somewhat more tedious, but lead to
equivalent results and are presented in appendix Us-
ing (@), () and keeping only the leading-order terms

in (B), we can approximate ) as

P P% 0 0
14 P P 0

h#m’j ~ §ST OJ OJ Pil‘ Pz'S‘ ) (73)
0o o PP

ij T



with the three independent components

Pj=(a®0:69;)s, Pjj=(b"0:60;0)g,

(74)
P} =(ab0;00;¢).
In the same way, ([BIl) can be approximated as
0 0 RP RH
14 0 0 R* R#
R,uui ~ §ST _Rz13 _le'A 0 0 ’ (75)
—-R* —R* 0 0
where
R}B = <a2 ai¢>sa Ri24 = <b2 ai¢>sa (76)
RI* = (ab0;¢)g.
Using this and (@2), we obtain
L@k 0 0
B 1.1 0% o2 o o
T 1 ~ 3 [
URMT R}, = 38T | 507 ) gu g |- (77)
0 0 @ @

with the three independent components

DQL = Alabd;g)g(abd;d)g + B(a>d;d)s(a>D;0)

—2C(a?0,;¢)g(ab0;¢)g , (78)
DQ; = A(b*0;4)5(b*0;0)s + B(abd;d)g(abd;d)g
—2C (abd;$)g (b%0;d)g , (79)

D Q% = A(abang}S <b28j¢>5 + B(ab&@S <a28j¢>5
-C [<b2ai¢>s <a28j¢>5 + <ab8i¢>s <abaj¢>5} 7(80)

assuming implicit index symmetrization in ¢, j. Combin-
ing this with (@) and @), we find the 4x4 amplitude
matrix G,, in the form

1
3

1~
g#,, ~ §ST 3 s (81)

2

m
m
0
0 3

m> 0 0
m2 0 0
0 m! m
0 m> m
in terms of the three independent mismatch components

m” (A AX) = mi; ANAN (82)
where r € {1,2,3}, and the corresponding matrices are

mi;(\) = P — Q7 . (83)
In analogy to (BH), we can write the projected Fisher
matrix ([@H) as

= 1
Fij:i

in terms of the amplitudes a, = «a,(cost, ) defined in
8). This allows us to express the F-metric family @)
in the more explicit form

WETS [ayml + azmi; +2asm%] ,  (84)

a1 m%j + o mfj + 2a3 m?j

F —
. ‘) = . 85
gij(cose, b A) AT B 1 20.C (85)

As discussed in Sect. [MTA] the extrema Mz of the mis-
match family mgz(A) are given by the eigenvalues of
M~1. G namely

0 = det [M~"-G—mrl]
= det M~ det [G — mFr M|, (86)
and therefore
0= (m!' —mrA)(m? —mzeB) — (m®> —mzC)*. (87)

We see that there are maximally two independent eigen-
values, namely

mﬁaxhnin()\; A)\) =mmr+ \/ﬂ, (88)

mr = (2D)7' [Bm' + Am* —2Cm?®] |, (89)
m? = D' [m!'m? — (m?*)?] . (90)

where

Note that m? > 0 is necessary for the positivity of the
F-mismatch myz, and is equivalently to the matrix G;;
being positive definite, as can be seen from ([Il). The ex-
tremal solutions (BY) determine the maximum and min-
imum possible mismatch, respectively, as well as the av-
erage JF-mismatch mr, for given signal location A and
offset AX. The corresponding average F-metric is found

from (B2) and &9) as
95;(\) = (2D)7" [Bmj; + AmZ; —2Cmi;] . (91)

Note that, contrary to the average mismatch mz, the
extremal values ﬁl?mlmax cannot be written as quadratic
forms in the Doppler offsets AX. The range of possible
F-mismatches for given A and AX can be characterized

by an intrinsic “uncertainty” Amg, which we define as

Amr(%AN) = © (g i) =k -, (92)

and we further introduce the relative uncertainty oz as

o\ 1/2
or(N AN) = Am—"";f - (1 _ g—z) . (93)
f

which is bounded in oz € [0,1]. The maximal mismatch
ME™ can never be larger than twice the average mis-
match Mz, and in most cases it will be smaller. The
average F-metric §£— might therefore be quite a reliable
mismatch measure in practice, which will be confirmed in
the Monte-Carlo studies in Sect. [Vl for isolated neutron-

star signals.

E. Long-duration limit: the “orbital metric”

Consider the limit of very long observation times com-
pared to a day 74, i.e. T > 74. We can always write the
signal phase ¢*(t) at the detector X as

O (t) = Porn(t) + AP™(2), (94)



where ¢or1, () is the signal phase modulated by the orbital
motion, while A¢X(¢) accounts for the additional diurnal
phase modulation due to the spin of the earth, which is
of order

AP*(t) ~ 2w f ATR (L), (95)

where the time delay |[A7X(¢)| < 0.02 s is periodic over a
day. We restrict ourselves to signals with slowly varying
frequency over the timescale of a day (e.g. excluding
neutron stars in close binary systems), for which we can
assume ¢orh(t) ~ 2mft. With these assumptions and
@), we can approximate the typical contributions to
the F-metric in the following way:

(@®0ig)s = Y wx(a®a*0,6™)
X

> wx(a®aX0igom) + > wx(aXa*9;A¢%)
<6i¢orb> Z wx <GXGX> + <a28iA¢>S . (96)

Q

According to our assumptions, the average (9;dorpb) is at
least linear in the observation time T, while the second
term will be roughly constant on timescales longer than
a day. In the limit T > 74 we therefore find

T>T
<a281'¢>5 ~ ! A <8i¢orb> . (97)
In the same way, we can approximate in this limit

1~ b 2 ~ b 3 ~ b
Py~ Ags®, PRxBER®, P~ Cob,

) ) )

Ql~ Ao, Qh ~ BT, (98)
Qf ~ Cora,

where we defined

¢§3rb = <ai¢orb> , and ¢?;b = <ai¢orb aj¢01rb> . (99)

Introducing the “orbital metric” go®

i as

orb — jorb orb jorb
Gij = Pij — ¢ ¢j )

and the corresponding orbital mismatch mep,

(100)

Morb = g5 AN AN | (101)

we find the limiting T > 7; approximations

mb &~ Ameom,, m? ~ Bmom, m> =~ Cmep.  (102)
The F-mismatch range B8) therefore reduces to a single
eigenvalue, namely

mmin|max T%sz

minlmax T2, (103)

Morb ,

and the multi-detector F-metric family reduces to the
orbital metric ([[0O0), i.e.

T>T .
gl (AN =7 g (N,

(104)

which is independent of the unknown amplitudes and of
the number and position of detectors.

Note that a different, but related metric approxima-
tion is the “phase metric”, which neglects the amplitude
modulation a®(t), bX(t), but retains the detector-specific
phase modulation A¢™(t), namely

957 (V) = (0:0%0;6%) — (9:0%)(9;0%) . (105)
While this is intrinsically a single-detector metric, one
could formally generalize it by analogy with the F-
metric, and simply replace the time averages (.) by noise-
weighted multi-detector averages (.)g. In this manner we
could define an ad-hoc multi-detector phase metric as

95 (N) = (0:6 0;)5 — (9i)s (0;0)s - (106)

IV. APPLICATION TO SIGNALS FROM
ISOLATED NEUTRON STARS

In the following we apply the general framework of the
previous sections to a particular class of gravitational-
wave signals, namely GWs emitted from isolated spin-
ning neutron stars. Restricting ourselves to a specific
signal model allows us to explicitly compute the metric
and evaluate different approximations for various cases
of interest. It also allows us to compare the metric pre-
dictions to measured mismatches using a realistic search
code for computing the F-statistic.

A. The phase model

GWs emitted from isolated spinning neutron stars can
be described by a very simple phase model, namely

5 ) (e .
Xty =2r > f(k%wﬂ) X)), (107)

where f(*) is the k-th time derivative of the intrinsic sig-
nal frequency f(7) in the solar-system barycenter (SSB),
and 7%(t) is the arrival time in the SSB (with respect
to the reference time 7o) of a wavefront reaching the
detector X at time ¢t. Neglecting relativistic effects, this
relation is simply given by

(108)

— Tref »

where 7% () is the position of detector X with respect to
the SSB. This can be separated into an orbital and a spin
component, namely

P (8) = Torb () + Fopin(t) , (109)
where 7,1, is the position of the earth in the SSB, and

Fﬁ)in is the position of the detector on earth. The unit



vector 7@ denotes the sky position of the source, which
can be written as

7i = (cosd cosa,cosd sina,sind) | (110)

in terms of the equatorial coordinates right ascension o
and declination 6. For this phase model we have the
derivatives

a0 (0]
X X s r(k)
8¢aﬁ(t) = 21 C(t) f—'[TX(t)}’“. (112)
k=0

The intrinsic signal frequency f(7) can usually be as-
sumed to be a slowly varying function of time, and typ-
ically one only needs to include a small number of spin-
down coefficients f*), between s = 0 and s = 3, say.
With these phase derivatives and the explicit antenna-
pattern functions a(t), b(t) (Egs.(12),(13) in [d]), we
can numerically compute the different metrics derived in
Sect. M

The corresponding time integrals involved in these
expressions were computed numerically using a Gauss-
Legendre quadrature of order 2000. This results in a (sat-
urated) convergence of the metric components g;; and the
antenna-pattern integrals A, B, C' at the level of a relative
precision of 107'°, while the corresponding mismatches,
m = g;;AN' AN, only converge to a level of about 1075.
The weaker convergence of m is can be attributed to the
fact that the metrics are highly ill-conditioned matrices,
as will be discussed further in Sect.

B. Natural units for the Doppler offsets A\

We can easily find the scaling and the order of magni-
tudes of the metric components: keeping only the dom-
inant scaling-terms in the phase derivatives ([I), (TI2)
we find

af(k) (bX ~ thrl ) 8ﬁ¢x ~ fForb(t)/C-

Taylor-expanding 7o,1,(t) for “short” observation times
T < 1 year, and neglecting the antenna-pattern func-
tions a(t) ~ b(t) ~ O(1), we find following scaling for the
metric components ([H):

(113)

Gpeprr ~ THITHTL

Gnini ~ (fTV/C)2 €i €5,
Gfkpi TkJrl fTV/C €,

(114)

where e’ is the unit vector along the orbital velocity V*.
This allows us to read-off the scaling of the metric de-
terminant g = det g;; and of the corresponding volume
measure /g, namely

Vg~ e [T (115)
k=0
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where s is the number of spindown coefficients to include.
For example, if we consider of a single spindown, s = 1,
we find the volume scaling /g ~ f2T°.

In order for these metric components to be dimension-
less and of order (1), we should measure the Doppler
offsets AX" in terms of “natural units” A)j, namely

Afék) =1/T* ) Ang=c/(fTV), (116)
where V/e ~ 1074
natural units as

We denote the Doppler offsets in

AN = AN /AN . (117)
Note that 77 is the unit vector pointing to a sky location,
and using its expression ([I0) in terms of equatorial co-
ordinates «, §, we find

|A7T|? = cos® § (Aa)? + (A6)?. (118)
For small offsets, |Afi] is simply the angular distance cor-
responding to offsets Aa and Ad. We therefore define the
natural-unit angular offset AQ2 on the sky as

| AT

AQ =1

Ang (119)

In these units, the statement of “small” Doppler offsets in
the expansion [{3)) is really meaningful, i.e. the validity
of the metric approximation is guaranteed in the regime

AfM <1, AQ<1. (120)
However, as will be seen later, this condition is in many
cases not necessary for the approximate validity of the
metric. Note that the metric iso-mismatch ellipses on
the sky are highly anisotropic (the dominant contribu-
tion shown in ([[I4) is in fact degenerate), and the actual

metric scale can therefore deviate significantly from Aﬁ,
depending on the direction of the angular offset. In fact,
AQ corresponds to the larger of the two angular eigenval-
ues on the sky (resulting in the smaller mismatch-scale),
but it nevertheless captures the correct scaling of the sky
metric.

C. Numerical exploration of the parameter space

The results in the following sections are based on
Monte-Carlo simulations of the parameter space of sig-
nals and Doppler offsets. Here we summarize how the un-
derlying random distributions are generated. For the sig-
nal amplitudes A", given in ), we pick cost¢ and ¢ with
uniform distributions from the ranges cos¢ € [—1,1] and
¥ € [0, 7]. We simply fix the overall amplitude to hg = 1
and the initial phase to ¢9 = 0, as these parameters
have no effect on the metric. The Doppler parameters
A% of the signal are picked (with uniform distributions)
from the ranges f € [100,200] Hz, f € [-1079,107%] 52,



a € [0,27] and sind € [-1,1]. Note that ¢ is picked in
such a way as to obtain an isotropic distribution of points
{a, d} on the sky sphere.

The appropriate selection of random Doppler offsets
AN is more delicate, because their distribution should
be roughly “isotropic” in some metric sense, and the cor-
responding F-mismatches should lie in a “reasonable”
range, where the metric approximation is applicable, e.g.
my < 0.5 say. Note that the second requirement is ir-
relevant for the purpose of studying intrinsic properties
of the metric and for comparing different metric approx-
imations with each other. However, it is essential for
a comparison of the metric predictions to measured F-
mismatches, which will be described in Sect. V.Gl

We use the following algorithm to generate suitable
Doppler offsets AN, satisfying the above requirements:

1. Pick the signal parameters A* and A\’ as described
above, and compute the corresponding F-metric
gf; (cost,1p; ) at this parameter-space point.

2. Pick a random offset vector AN in natural units
with a uniform distribution in the hypercube, i.e.
AX'? € [-1,1]. The corresponding dimensional
offsets AN are therefore uniformly distributed in
Af e [-Afo, Afo], {Ad/,Ad'} € [—Ang, Ang),
and Af' € [~Afo, Af]

3. Normalize A" using the metric, i.e. construct

iy = AXN'/|AN|, where |AX| = gl AN AN

4. Pick a distance d = y/m with uniform distribution

in d € [0.1,v/0.5).

5. The resulting Doppler offset is then obtained as
AN =d €.

The lower bound of mxz > 0.01 on the generated F-
mismatches is chosen in order to avoid numerical errors
dominating the relative differences between mismatches,
which happens especially when comparing to measured
mismatches. We typically generate about 250,000 ran-
dom choices of signal parameters and offsets, for obser-
vation times ranging from 7' = 12 hours to 1" = 200 hours
in steps of 4 hours, which corresponds to about 5000 tri-
als for each choice of observation time. By construction,
the distribution of myr is such that /mz is uniformly

distributed in the range [0.1,4/0.5]. The distribution of

the Doppler offsets A\ in natural units is found to be
approximately Gaussian with zero mean and a standard
deviation of about 0.3. There are, however, a few percent
of offsets reaching up to a few hundreds in natural units,
which corresponds to highly degenerate directions of the
metric.
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D. Intrinsic uncertainty of the F-metric

As discussed in Sect.[[TA] the reduced parameter space
of the F-statistic is the Doppler space A, while the am-
plitude space A has been “projected out” by maximiza-
tion. For the problem of covering the Doppler-parameter
space with templates, the amplitudes represent unknown
external parameters, and so we cannot directly use the
F-metric family gf; (A, ) for the covering problem. How-
ever, as shown in Sect. [[IIBl we can compute an average
F-metric §£ (M), and a corresponding intrinsic relative
uncertainty oz (A, AX), which are both independent of
the unknown amplitudes A. This uncertainty range in

11
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FIG. 1: Iso-mismatch (m = 0.1) ellipses of the F-metric fam-
ily gi’;(cos t,; A) for 100 random choices {cos¢, ¥}, and of
the average metric §£(A) Parameter-space cut along the sky
plane {«,d}. The top and right-hand axes show the corre-
sponding offsets in natural units. [Parameters: f = 100 Hz,
a = 1.45 rad, § = 0 rad, f = 0, detector = 'LL1’; GPS start-
time to = 810720013 s, duration 7' = 50 hours.]

the predicted mismatch is illustrated in Fig. [l and Fig. &,
which show different parameter-space cuts through the
iso-mismatch hyper-ellipsoids for the average metric §£
and for 100 randomly picked members of the F-metric
family g7 (cos ¢, 1)). Note that the intersection of all these
mismatch hyper-ellipsoids mz < 0.1 corresponds to the
worst-case mismatch region m2** < 0.1, which is clearly
not a hyper-ellipsoid. Fig. Blshows the distribution of the
relative uncertainty oz(A, AN), as a function of the ob-
servation time 7" for randomly chosen signal parameters
and offsets (using the algorithm described in Sect. [VCJ).
These results are for the single-detector case only, the
corresponding dependence on the number of detectors is
investigated in Sect. [VFl We see in Fig. Bl that for short
observation times, of the order of T' ~ 12 hours, the
relative uncertainty can be as large as 100%. For longer
observation times of the order of a few days, o decreases
substantially, but even for T ~ 8 days, the intrinsic un-
certainty can still reach up to about 20 %.
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FIG. 2: Same as Fig. [l for a parameter-space cut along the
{f, f} plane. The top and right-hand axes show the corre-
sponding offsets in natural units.

1 mean =+ std—— | |
max
min -----

0.8

ol

S

0.4 1
0.2 i T ~
N H “HI s
0 1 2 3 4 5 6 7 8
T [days|

FIG. 3: Distribution of the relative intrinsic uncertainty or
of the F-mismatch as a function of observation time 7', for
the single-detector case. Plotted are the mean, standard de-
viation and extremal values of the distribution for each value
of T.

E. Comparing different metric approximations

For the following comparisons of different metric ap-
proximations, it will be useful to define the relative error
e(a,b) between two quantities a and b as

a—2>b

(00 = Tz

(121)

which is the harmonic mean of (a —b)/|a| and (a —b)/|b].
This definition has the advantage of being bound within
[—2,2] even for large deviations a > b or b > a, while
it agrees with the more common definitions of relative
errors for small values |e| < 1.
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1. Monte-Carlo study of mismatches

As we have seen in Fig. Bl the intrinsic relative uncer-
tainty oz decreases substantially on the timescale of a
few days, corresponding to a convergence gf; — §£ . The
average metric gf? is therefore expected to be an increas-
ingly reliable approximation of the full F-metric g£ with
longer observation times T'. This is indeed the case, as

0.8
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FIG. 4: Distribution of relative errors e(mz,mx) of the
(single-detector) average F-mismatch s with respect to the
exact F-mismatch mz as a function of observation time T
Plotted are the mean, standard deviation and extremal values
of the distribution for each value of T'.

can be seen in Fig. B, which shows the distribution of rel-
ative errors e(mg, M) as a function of observation time
T. This distribution was obtained using random choices
of the signal parameters and Doppler offsets as described
in Sect. VA The standard deviation of the relative er-
rors is about 20 % for short observation times T < 1 day,
but rapidly decreases to about 1 % for timescales of a few
days. Note that these errors are somewhat smaller than
could have been expected from the intrinsic uncertainty
o shown in Fig.[B, which indicates that mismatches near

the extremal values m?inlmax are less likely than those
closer to the average mr.
As shown in Sect. [ITH the F-metric family g7; con-

verges to the orbital metric gf}b for very long observa-
tion times 7' > 1 day, but it is not obvious on which
timescales this convergence happens in practice. Fig.
shows the relative errors e(mz, meyp) of the orbital met-
ric compared to the exact F-metric, as a function of ob-
servation time. Note that a plot with the distribution of
g(mg, mg) would look virtually indistinguishable. These
two metric approximations perform nearly identically as
far as predicting mismatches is concerned, as can be
seen in Fig. Bl showing the distribution of relative errors
e(mg, Morb). Note that the orbital as well as the phase
metric show a tendency to overestimate the mismatch for
short observation times 7' < 1 days, which is apparent
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FIG. 5: Distribution of relative errors e(mz, morb) of the or-
bital metric with respect to the (single-detector) F-metric
as a function of observation time 7. Plotted are the mean,
standard deviation and extremal values of the distribution for
each value of T'.
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FIG. 6: Distribution of relative errors £(mg, mors) of the or-
bital metric with respect to the phase metric as a function of
observation time 7T'. Plotted are the mean, standard deviation
and extremal values of the distribution for each value of T'.

in Fig. Bl Summarizing, we conclude that the “mismatch
quality” of the orbital and of the phase metric seem vir-
tually identical, and both approximations perform only
sightly worse than the average F-metric shown in Fig. Bl
However, as will become clear in the next section, there
is an important difference between the phase metric and
the orbital metric, which does not manifest itself in this
Monte-Carlo study due to the smallness of the relevant
parameter space in which the difference becomes appar-
ent.
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2. Metric determinants and eigenvalues

A complementary way of comparing different metrics is
to look at their eigenvalues and determinants. These in-
variant quantities characterize the semi-major axes and
the volume of iso-mismatch hyperellipsoids, which are
important properties for the template covering of the pa-
rameter space. We denote the four metric eigenvalues as
g1 > g2 > g3 > g4. The metric for isolated neutron-
star signals is quite generally represented by highly ill-
conditioned matrices in the default parameter-space co-
ordinates («, 9, f, f,...). That means that g; is typically
many orders of magnitude larger than g4, correspond-
ing to very thin and elongated mismatch hyperellipsoids.
This property can be characterized by the so-called condi-
tion number, defined as k = g1/g4. Well-conditioned ma-
trices have k ~ (1), while the metrics encountered here
typically have r(g7;) ~ 10?° in SI units, and /@(gi’:;) ~ 108
in natural units (cf. Sect. [V B). Ill-conditioned matri-
ces can strongly amplify numerical errors in computing
their maps, inverses, determinants or eigenvalues. One
has to be very careful when handling such matrices nu-
merically, as the results can be quite unreliable. Using
SI units, it turns out to be all but impossible to com-
pute the determinant or the eigenvalues using standard
double-precision arithmetic, which suffers from complete
loss of significant digits in this case. In natural units,
however, these quantities can be computed (albeit not
with good precision, and not for all points in parame-
ter space), and the results for one example are shown in
Fig. [@ and Fig. Contrary to the apparent fast con-
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FIG. 7: Determinants of different metric approximations (in
natural units) as functions of observation time 7. [Parame-

ters: f =100 Hz, f =0, « = 1.0 rad, 6 = 0.5 rad, detector =
"H1’, GPS start-time to = 792576013 s]

vergence of the orbital- and the F-mismatches shown in
Fig. B we see a very different picture for the metric de-
terminants in Fig. [ For timescales of a few days, the
determinant of the orbital metric is a few orders of mag-
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nitude smaller than the determinants of the other met-
ric approximations, and the expected convergence ([
takes place only for timescales longer than 7" 2 1 month.

How can this be reconciled with the apparently much
faster convergence of the mismatches in Fig. B In order
to better understand this, let us look at the four eigen-
values g; as functions of 7', which is shown in Fig. B We
see that the largest discrepancy of the orbital metric oc-
curs for the smallest eigenvalue, g4, corresponding to the
most degenerate direction of the metric. The largest two
eigenvalues g1, g2 agree well, and g3 only differs by a fac-
tor of a few. In order for the mismatch to be affected by
the smallest eigenvalue, we would have to pick a Doppler
offset that is very closely aligned with the most degen-
erate principal axis, as any appreciable offset along the
other axes would easily dominate the total mismatch. A
very rough order-of-magnitude estimate of the probabil-
ity p of picking such a direction yields an upper bound
of p < \/(94/91)(94/92)(94/g3) S 107°. Tt is therefore
very unlikely to pick a Doppler offset for which the mis-
match is dominated by the smallest eigenvalue. This is
consistent with the fact that in about ~ 10° trials we
did not see any cases in which the orbital metric had
dramatically underestimated the mismatch, i.e. where
e(mz, morp) ~ 2 in Fig. A

It is interesting to note that while the phase metric
seems virtually identical to the orbital metric for “al-

most all” directions in parameter space, its determinant
(and eigenvalues) agree much better with the (average)
F-metric. The small effect of the spin motion of the earth
is negligible for most directions in parameter space, ex-
cept for the most degenerate one, where it substantially
reduces the degeneracy.

F. The multi-detector F-metric

As discussed in Sect. I the parameter-space reso-
lution of the multi-detector F-metric does not scale with
the number of detectors. Instead, the effect of combining
detectors coherently results in a noise-weighted average
of contributions from different detectors. This averaging
operation (BY) would be expected to decrease the effects
of the antenna-pattern functions a*(¢) and b (t), as well
as the detector-specific Doppler modulation A¢X(t) of
the signal phase ([@). In Fig. @ we see indeed that both
the intrinsic uncertainty oz of the F-metric family, as
well as its relative difference to the orbital metric de-
crease with the number of detectors. These results are
based on a Monte-Carlo simulation with ~ 40,000 ran-
domly chosen parameters (see Sect. [N(), for a fixed
observation time of T' = 55 hours, and using between
one and six coherently combined detectors. For the sake
of this example, we have made the (obviously unrealis-
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tic) assumption that all 6 detectors have the same noise
floor, otherwise the convergence would be much weaker.
Note that we would find exactly the same mismatch con-
vergence for the phase metric as that shown in Fig. [@i(b)
for the orbital metric.

G. Comparing metric predictions to measured
mismatches

In order to validate the theoretical F-statistic mis-
match mg, derived in Sect. [IIBl we compare it to
the measured relative SNR loss mg in a simulated mis-
matched search. This is done in the following way:

1. Generate (using lalapps Makefakedata [13]) a sig-
nal with parameters {A, A} picked at random (see
Sect. V(). The signals are generated without
noise, which has the advantage that the measured
value of the F-statistic is not a random variable
and directly yields the expectation value of F.

2. Measure (using lalapps_ComputeFStatistic [13])
the perfectly-matched F-statistic F(0) at the signal
location As.

3. Measure the mismatched F-statistic F(AN) at off-
set Doppler parameters As + AX. The offsets A\
were picked at random using the algorithm de-
scribed in Sect. V(1

4. Following the definition f) for mz, we compute
the measured F-mismatch mg as

F(0) — F(AN)

mo(A, As; AX) = F(0) 2

(122)

In comparing mz to mgy, we immediately notice a prob-
lem with the metric approximation for large natural-unit
angular offsets, in particular AQ 2> 5. The origin of this
“metric failure” can be understood in terms of the metric
curvature and will be discussed in more detail in
In the meantime we simply removeAthis known source
of errors by excluding points with AQ > 5, which affects
less than 1% of the Monte-Carlo trials. Fig. [ shows the
measured mismatches mg as a function of the prediction
mg, for observation times of (a) T = 10 hours and (b)
T = 60 hours. We see that there is a substantial scatter-
ing of measured mismatches in the case of T'= 10 hours,
which has virtually disappeared for T' = 60 hours. This
second type of “metric failure”, which only affects short
observation times, will be discussed in V-Gl

Another effect seen in these figures is a systematic de-
viation of mgy with respect to mz with increasing mis-
matches, which becomes noticeable at around mxz 2
0.15. This deviation would be suspected due to higher-
order corrections @(AN3) with respect to the local met-
ric expansion, and is found to be roughly independent
of the observation time T'. We can approximate this sys-
tematic deviation by an empirical quadratic correction of
the form

mz qu(mz) = mr —0.38m%, (123)

which can be used in comparisons to measured mis-
matches, as it compensates for the systematic “drift” in
mg. Note that this deviation makes the metric a conser-
vative over-estimate, as the actual mismatches tend to
be smaller than the predicted ones.
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1.  Metric problems for T < 1 day

The strong scattering of mismatches seen in Fig. [TKa)
for short observation times can be attributed to an in-
trinsic property of the F-statistic: namely, the “local”
parameter-space structure for short observation times
is not very well approximated by a quadratic form in
offsets. Note that obviously the metric approximation
is valid in the strict local sense of sufficiently small
offsets, but in practice we are more interested in a
finite “local” region of small mismatches, m < 0.5

~

say. An illustrative example for this is shown in
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FIG. 12: Same as Fig. [l for an observation time of T =
30 hours.

(using lalapps_ComputeFStatistic) over a ~ 107* Hz
band around the true signal frequency, with the other
Doppler parameters («, 9, f) held fixed at their correct
values. For an observation time of T' = 5 hours, the
quadratic decrease predicted by the F-metric is clearly
not a good approximation, as can be seen in Fig. [k
depending on the sign of the frequency offset, the met-
ric would either substantially under- or overestimate the
mismatch. This effect decreases rapidly with observation
time, and for T' = 30 hours (and the same signal), the de-
crease of the F-statistic is “locally” much better approx-
imated by the metric, as seen in Fig. This effect can
be understood as follows: the quadratic decrease of the
F-statistic predicted by the metric has a typical width in
frequency of Afy ~ 1/T (cf. Sect. [N B). However, the
spin motion of the earth creates “side-lobes” in frequency
space at offsets of a few fspin = 1/day~ 107> Hz, which



are clearly visible in Fig. For observation times much
smaller than a day, these side-lobes are therefore not well
separated from the main peak and will substantially al-
ter its quadratic form, e.g. by creating “plateaus” and
steeper “cliffs”, as seen in Fig. [[11 As the observation
time gets longer, i.e. T' 2 1 day, the main peak becomes
well separated, and therefore well described by the metric
approximation.

2. Metric problems for AQ>5

As already mentioned, another problem with the met-
ric approximation affects points with large angular off-
sets Aﬁ, and is present even for long observation times.
This can be seen in Fig. [ showing the relative errors
e(mo, mz qu) as a function of angular offset Aﬁ, for ob-
servation times T' > 48 hours. For angular offsets AQ <

1
T>48h %y

X

X X
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g X X
Y X x X
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£ x
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©
y x

0 5 10 15 20 25 30 35 40
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FIG. 13: Relative errors e(mo, mF,qu) versus angular offset
AQ in natural units, for observation times 7' > 48 hours. For
better readability of the figure, the displayed range of angular
offsets is limited to AQ < 40.

5, the relative errors stay below e(mg, mz qu) < 0.1, but

with increasing Aﬁ, the errors start to spread out sub-
stantially.

The reason for this metric failure can be traced to the
curvature of the metric on the sky. While the metric el-
lipses have constant orientation as functions of frequency
and spindown, their orientation changes with sky posi-
tion. This curvature is closely related to the global “cir-
cles in the sky” (CiS) structure discussed in [d], as the
metric ellipses on the sky are “tangential” to these cir-
cles. To first order, the CiS are described by the equation

f(1+ﬁ-V/c) — /1, (1+ﬁs-17/c) , (124)

where f and 7 are the “target” frequency and sky posi-
tion respectively, while fs and 75 are the corresponding

17

-20 -15 -10 -5 0 5 10 15

-0.29 — T T
AQ=0 X 150
03 tA0=84 +
m = 0.05 100
-0.31 } CiS -------
50
-0.32
il 0
£ 033}
034 | -50
-0.35 -100
-0.36 i -150
3.926 3.928 3.93 3.932 3.934

a [rad]

FIG. 14: Metric “failure” for large angular offset AQ = 84
at T' = 68 hours. The point 'x’ indicates the signal location,
4+’ shows an offset location on the m = 0.05 iso-mismatch
ellipse with a measured mismatch of mg ~ 1. The dashed line
indicates the “circle in the sky” (Z4)) defined by the signal
location. The top and right-hand axes show the offsets in
natural units. [Parameters: f = 186.34 Hz, o = 3.93, § =
—0.33, f =1.7x 107572 cost = 0.4, ¢ = 1.65 |

signal parameters. The problem stems from the curva-
ture of the F-statistic circles in the sky-coordinates a, 9,
which is why the CiS is only locally well approximated
by the respective mismatch ellipses. This effect is seen
clearly in Fig. [d which shows an extreme example of
such a metric “failure” due to large AQ. In this fig-
ure, '+’ indicates a sky position on the mx = 0.05 iso-
mismatch ellipse, which has an angular offset from the
signal of AQ = 84. Contrary to the predicted mismatch,
the measured mismatch at this point is mg ~ 1, as the F-
statistic decreases rapidly away from the CiS (indicated
by the dashed line).

3. Summary of metric validation

Fig. [ summarizes the relative errors e(mg, mz qu) be-
tween the (quadratically corrected) predictions ([23)) and
the measured mismatches mg, as a function of observa-
tion time T. We see that, as expected, excluding large
angular offsets (AQ > 5) yields a substantially improved
agreement between the metric prediction and the mea-
surements, as it eliminates the type of “metric failures”
discussed in We also see that the relative er-
rors can still be quite large for short observation times
T < 1 day, as discussed in [VG1] and that these er-
rors decrease rapidly with T'. For observation times of
T 2 1 day, the average error is below a few percent.
We can therefore conclude that the agreement of the F-
metric with the measurements is very good in the domain
of applicability of the metric approximation.
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V. DISCUSSION

We have derived the parameter-space metric of the
multi-detector F-statistic for general continuous gravita-
tional waves, and we have computed this metric explicitly
for the case of GWs from isolated spinning neutron stars.
We have shown that there is not one unique F-metric in
the Doppler-parameter space, but a family of metrics,
parametrized by the two (unknown) amplitude param-
eters ¢ and cost. We explicitly derived the extremal
“mismatch bounds” (i.e. the maximum and minimum
possible mismatches) of the F-metric family. We have
introduced the average F-metric, which is independent
of the unknown amplitude parameters, and which makes
this a more readily useable metric approximation.

We have shown that the multi-detector F-metric does
not scale with the number of detectors. Increasing the
number of detectors does therefore not increase the re-
quired number of parameter-space templates. We have
further shown that the F-metric family converges to-
wards a simple orbital metric gf}b in the long-duration
limit (7" 2 1 month). Both the orbital and the phase met-
rics were seen to be good mismatch approximations, with
their quality improving with longer observation times and
with the number of coherently-combined detectors. The
orbital metric, however, while virtually identical to the
phase metric for almost all directions in parameter space,
was found to be substantially more degenerate for obser-
vation times shorter than a month. This has important
consequences for the covering problem of the parameter
space and requires further study. Finally, we have identi-
fied two regimes in which the metric approximation is not
very reliable: namely, for observation times 7' < 1 day,

and for large angular offsets AQ 2> 5 (in natural units).
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APPENDIX A: ALTERNATIVE DERIVATION OF
THE F-METRIC

A more elegant derivation of the F-metric {T) can
be obtained [1&] by projecting the full parameter-space
metric in {A, A} into the reduced parameter space A of
the F-statistic.

Let us consider the full parameter space 8 = {A, A},
for which we use the index conventions §% = {A* \'}.
From the posterior likelihood (&), we get

log P(8]x) = log N + Q(0|x), (A1)

where we defined the “matched-filtering amplitude” Q) as

1
QOlz) = (x[s(9)) — 5 (s(6)[s(0)) - (A2)
If the data contains a signal with parameters 65, i.e.
xz(t) = n(t) + s(t;0s), and if the target position 6 is
“close” to the signal location, i.e. 8 = 0y+ A6 for “small”
Af, then the expectation value of @ can be expanded as

2E[Q(6]65)] = (s[s) — (9as|Ops) AG*AG* + D(3), (A3)
so the full parameter-space metric g, is found as

~ (0a5|0ps)
Gab = (S|8) .

This expression is sometimes referred to as the normal-
ized Fisher matrix [4]. As mentioned in the introduction,
this “canonical” metric is different from another defini-
tion often found in the literature (e.g. [1I,12, [10]), which is
based on a more ad-hoc measure of the “match”, namely
M = (s(6s)|s(9)), instead of the full log-likelihood ([AZ).
As it turns out, both definitions result in the same phase
metric () when considering constant-amplitude sig-
nals (after maximizing ([Ad)) over the unknown ampli-
tude). In general, however, the canonical definition (A4,
and correspondingly #H), is more directly relevant to the
covering problem, as it describes the relative loss of de-
tection statistic. For the assumed general form of the
signal (), we have

p2(0) = (SlS) = A#MuuAyu

(A4)

(A5)

and the respective derivatives with respect to the ampli-
tude and Doppler subspaces are given by

s

s = T h,(t; A, (A6)
Os

8is = 8)\1 :.AM &hu (A?)

The full metric gqp therefore consists of the three blocks
(with respect to the two subspaces):

My,l/ AVRHVi )

A8
AUR#UZ' AahamjAﬁ ( )

=720 (



in terms of h;; and R; defined in @) and (EI). The
F-metric gf; in the Doppler subspace can be regarded
as the distance corresponding to given Doppler offsets
AO* = AX', minimized over the amplitude offsets AG* =
AA* de.
g5 AN AN = minaas Gap AG*AG°. (A9)
This can be minimized trivially, since it is a quadratic
function in AA*, and the “compensating” amplitude
mismatches are
AOH = —g" G A" (A10)
where g"” is the inverse matrix of g, i.e. g"“ga, = 9%
Inserting this into (AJ) we obtain
9% = Gij — Gind"" oy » (A11)
which corresponds to the projection of the full metric Gup

into the Doppler subspace. Using the explicit compo-
nents ([AF), we find

gf;(A) = p72(0) A [h” - RTiMile] A (A12)
A-Gij- A
= —_— 9 A13
A-M-A (A13)
in perfect agreement with the earlier result {Z), which
was obtained in a more straightforward, but somewhat
more tedious calculation.

APPENDIX B: F-METRIC FOR
LOW-FREQUENCY SIGNALS

In the case of low frequencies fs (which would be rele-
vant for LISA) and/or short observation times 7', where
fsT % 10%, we cannot use the simplifying approxima-
tion of Sect. We can nevertheless proceed in the
same way: using the expansion ([B) and keeping only
leading-order terms, we can express ([E0) as

P, P: 0 P
14 P P-g- —P4 0

h,ul/ij ~ §ST 6J _}_%1 Pziz })12 > (Bl)
Py 0
in terms of the four independent components
le = <8Za 8ja’>5 + <CL2 a’L¢ 8J¢>S ’
P} = (9ib;b)g + (b 0,0 0;0)g , (B2)

with implicit symmetrization in ¢, j. In a similar manner

we calculate R, ;, defined in @Il), which yields
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where the 2x2 matrices ﬁi and 751 are defined as

~ Rl R12 ~ R RM
R’L = <R,L21 R’L22> s and R'L = (R'L14 RZ24) y (B4)

in terms of

RI' = (adia)g, R}*=(adib)g,
R = (bdha)g, R = (boib)g, B5)
Ri13 - < 261¢>S ) R24 <b2az¢>57

RM* = (ab0;p)g .

Note that R; only contains derivatives of the antenna-
pattern functions a*, b% (which where neglected in

Sect. IT), while R; only contains derivatives of the

phase. As a consequence of this block structure, one
finds
1 3 0 4
3 1 17
] o[ @f @ ey o
{TRMTIR; ), = 58T | "7 G o017 o8 |
ij [ 3
4 Y o7
ij 0 Qij Qij
(B6)

with the four independent components
DQj; = A[RI'R' + R}“R}*| + B [R}'R}!
—2C [RI'R} + RPPR}Y]
DQ;; = A[R'R3 + RPR?| + B[R/'R}" + R[°R}?]
—2C [R}*R3* 4+ R}’R??] |
DQB = A [R14R24 + R22R21] + B [R14R13 +R12RJ1-1}
-C R R13 +R14R14 +R11R22 + R12R21]
DY = A [RflRf‘l R}“RJQQ] + B [RlUR]14 R}QRJB}
—C[RI'R3* — RPPR3® + R*R}' — RI*R}*|
i 1l i 1Y ] v 2Tyl

+ RISRY]

(B7)
Putting all the pieces together, we find G;;, defined in
E), in the form:

ml m? 0 mt
14 m3 m?2 —m* 0

guu ~ 58T 0 _m4 ml mB ’ (BS)
m* 0 m3 m

in terms of the four components (r =1,2,3,4):
= (P, - Q;) ANAN . (B9)

As discussed in Sect. [Tl the extrema Mz are the eigen-
values of M~! .G, which are the solutions of

= det M~ ! det [G — mzr M|, (B10)
or equivalently
0 = (m' —mrA)(m? — mzB)
—(m? —mrC)? — (m*)?. (Bl1)

We see that there are again maximally two independent
eigenvalues, namely

MR AN) = e £ \/mE —m2,

(B12)



mz = (2D)7' [Bm! + Am? — 2Cm?] |

m = D! [m1m2 _ (m3)2 _ (m4)2] )

which is formally very similar to the earlier result (5.

(B13)
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