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Abstract: We prove that there exists a class of non-stationary solutions to the Einstein-
Euler equations which have a Newtonian limit. The proof of this result is based on
a symmetric hyperbolic formulation of the Einstein-Euler equations which contains a
singular parameter € = vy /c, where v7 is a characteristic velocity scale associated with
the fluid and c is the speed of light. The symmetric hyperbolic formulation allows us to
derive € independent energy estimates on weighted Sobolev spaces. These estimates are
the main tool used to analyze the behavior of solutions in the limit € N\ O.

1. Introduction

The Einstein-Euler equations or, in other words, the Einstein equations coupled to a
simple perfect fluid are given by the following system of equations:

871G ..
Gi = 27 (1.1)
C

V, T =0, (1.2)

where the stress-energy tensor for the fluid is given by
TV = (p+c 2p)viv/ + pgt (1.3)
with o the fluid density, p the fluid pressure, and v the fluid four-velocity normalized
by viv; = —c?, ¢ the speed of light, and G the Newtonian gravitational constant. The
study of the behavior of solutions to these equations in the limit that € = v /c N\ 0,

where vr is a characteristic velocity scale associated with the fluid matter is known as
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the Newtonian limit. By suitably rescaling the gravitational and matter variables (see
Sect. 2), the Einstein-Euler equations can be written as

G =2e*TV and V,TY =0, (1.4)

where k = 47w Gpr/ v%, vivt = —e2, pr is a characteristic value for the fluid density,
and t = x* /vt is a “Newtonian” time coordinate. In the limit € N\ 0, one expects that
there exists a class of solutions to Einstein-Euler equations (1.4) that approach solutions
of the Poisson-Euler equations

dp+dr(pw') =0, (1,7 =1,2,3) (1.5)
p@w’ +wow’y = —pd’d+0"p), B =8""d)) (1.6)
AD = p, (A = 9700 (1.7)

of Newtonian gravity in some sense. As above, p and p are the fluid density and pressure,
respectively, while w! is the fluid (three) velocity. This problem has been studied since
the discovery of general relativity by many people and there is a large number of results
available in the literature. The majority of results are based on formal expansions in the
parameter € which are used to calculate the (approximate) values of physical quantities
and also to investigate the behavior of the gravitational and matter fields in the limit
€ \{ 0. For some classic and recent results of this type see [2,3,6,9,11-13,20-22,31,41]
and references cited therein. The main difficulty with the formal expansions is that they
leave completely unanswered the question of convergence. In the absence of a precise
notion of convergence, it becomes unclear to what extent the formal expansions actually
approximate relativistic solutions.

In this paper, we go beyond formal considerations and supply a precise notion of
convergence for gravitating perfect fluids as € \ 0. This necessitates introducing sui-
table variables that are compatible with the limit € ~ 0. The metric g;;, which defines
the gravitational field, turns out to be singular in this limit. To remedy this problem, we
introduce a new gravitational density &’/ which is related to the metric via the formula

ij_ € ij

where

i st 0 2 (400 s( 0 ul* 4(0 O
ij
(0] _(0 O)+e ( 0 | +4e V2R +4e 0 ) (1.9)

From this, it not difficult to see that the density it/ is equivalent to the metric g; ; for
e >0 and is well defined at ¢ = 0. For the fluid, we also introduce a new velocity
variable w' according to

ol =w! and v =1+ew’. (1.10)
For technical reasons, we only consider isentropic flow where the pressure is related
to the density by an equation of state of the form p = f(p). Moreover, to formulate a
symmetric hyperbolic system for the fluid variables {p, v}, we need to deal with the well
known problem that the system becomes singular when p+c~2p = 0. This is a particular
problem for fluid balls having compact support. To get around this problem, we follow
Rendall [34] and use a technique of Makino [24] to regularize the fluid equations so that
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a class of gravitating fluid ball solutions can be constructed. Thus as in [34], we assume
an equation of state of the form

p= Kp(n+1)/n’ (111)

where K € R.g, n € N, and we introduce a new “density” variable « via the formula

— ; 2n
P= U4knm+ )y " (1.12)

As discussed by Rendall, the type of fluid solutions obtained by this method have freely
falling boundaries and hence do not include static stars of finite radius and so this
method is far from ideal. However, in trying to understand the Newtonian limit and
post-Newtonian approximations these solutions are almost certainly general enough
to obtain a comprehensive understanding of the mathematical issues involved in the
Newtonian limit and post-Newtonian approximations. We would also like to remark that
the results contained in this article are largely independent of the specific structure of the
fluid equations. We therefore expect that the analysis in this paper can be carried over
without much difficulty to other matter models whose equations can be formulated as a
symmetric hyperbolic system and have a finite propagation speed for the matter density
in the limit € N\ 0.

Our approach to analyze the limite “\ Ois to use the gravitational and matter variables
{/, w', a} along with a harmonic gauge to put the Einstein-Euler equations into the
following form:

1 1
PoeV)o,V = —cla;V + bl (e, VYOV + fe, VIV + —g(V)V + h(e), (1.13)
€ €

where V comprises both the gravitational and matter variables, and the ¢! are constant
matrices. This system is symmetric hyperbolic and hence by standard theory there exist
local solutions. However, the difficulty in analyzing the limit € N\, O of such solutions
is that the equation contains the singular terms € ~'¢/9;V and e~ !g(V)V. Although,
singular limits of symmetric hyperbolic equations have been previously analyzed in
[5,19,37,38], these results cannot be directly applied to the system (1.13). There are
two main difficulties in adapting these results to the Einstein-Euler system. The first is
that the Einstein-Euler system (6.1) must be modified by including an elliptic equation,
essentially the Newtonian Poisson equation, in order to be of the canonical form required
by [5,19,37,38]. This results in a coupled elliptic-hyperbolic system of the form

1
B(eW)o,W = =c'9; W + B (e, W)3; W + F(e, W)W + H (¢), (1.14)
€

where W is related to V via an elliptic equation and F is a non-local functional. The
second difficulty is that the initial data which must include a 1/r piece for the metric and
hence it cannot lie in the Sobolev space H*. This 1/r type fall-off behavior is crucial for
obtaining the correct limit and is intimately tied to the elliptic part of our formulation of
the Einstein-Euler system. The standard procedure in general relativity to deal with this
type of fall off, at least for elliptic systems, is to replace the spaces H* with the weighted
Sobolev spaces H. g‘ [1,7]. However, the arguments used in [5, 19,37,38] fail for the
weighted spaces as the weight used to define the H §‘ spaces destroys the integration by

parts argument which is used to control the singular term € ¢! 3; W in (1.14). Indeed,



134 T. A. Oliynyk

using integration by parts, it follows easily from the definition of the weighted L% inner-
product (see (A.4) with € = 1) that

1 —28—3\ .1
- <a, (0~ 23 W|W>L2 , (1.15)

<—e—1c’a,W|W> =-
LS
where o (x) = /1 + |x|%/4. In general, this term will blow up as € \ O unless § = —3/2
which coincides with the standard L? norm. However, to include 1 /r fall-off, we need
to consider —1 < & < 0 which introduces a singular 1/e term into energy estimates
based on the weighted norm H ;‘.

To overcome this problem, we introduce a sequence of weighted spaces H ;‘ . (see
Appendix A for a definition) by replacing the weight o (x) with o (x) = o (ex). Under
this replacement, (1.15) changes to

—-1.1
(~ecrawiw) , < cwiw;

8,e

which is no longer singular as € N\ 0. This allows us to derive € independent energy
estimates for solutions to the Einstein-Euler equations. These estimates can then be
used to define a precise notion of convergence for gravitating perfect fluids solutions in
the limit € N\ O which is essentially a statement about the validity of the zeroth order
expansion in €. This is formalized in the following theorem; for a more precise version
see Propositions 5.1, 6.1 and 7.8, and Theorems 7.7 and 7.12.

Theorem 1.1. Suppose —1 < § < —1/2,k > 3 +s, B/ € ()j_o C*([0, T*], HY ) is
a harmonic gauge source function, and o, w! e H;‘_], 31 e Hé‘”, 34{! € Hé‘_l is the
free initial data for the Einstein-Euler eqoua;ions where supp « C Bj, for some R* > 0.
Then for €y small enough, there exists a T € (0, T*] indepeondent of € € (0, €0], and
maps

s+1

6 (1) — ¥ (0), 987 (1), Bl (1), e (t), wi() € () €0, T1, Hy~{ ),

=0
® e CO[0, T*], HF*Y) nc' ([0, %1, HFY),
w! e (o, %1, HE_) nclqo, 71, HY ),
p € C0, T*1, Hf_)) nCl([0, T*1, HY ),
such that
(i)
=ij Eml
(@ ) = ( ! o )
—dx 35"+ B1(0)
(8 (0) = ( K +ﬁ,(0) Cokwk 4 g )

| —€kasw! = [@@ayw!)? — gaa( gy wlw!+1)
4 o 4 o o
= €Zu ’
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wg (0) = w'(0) = w,
o (0) =@,

p(0) = p = (4Kn(n +1))"a",

o

where ¢ =¢>(e,p,w 357, B7(0),3"), and o = (e, ,o,w 387, B0, 31)
is the initial data determined by the gravitational constralnt equations (see
Proposition 5.1), and g;; is determined from ¢ (0) by the formulas (1.8) and (3.1),

(ii) {ue L), ae(x!, ), w (xl t)} determines, via the formulas (1.8), (1.9), (1.10),
and (1.12), a l-parameter family (0 < € < eo) of solutlons to the Einstein-Euler
equations (1.4) in the harmonic gauge eatue + 81u = 6,3/ on the common
spacetime region (x', 1) € D =R3 x [0, T,

(iii) {®(x1, 1), ,o(xl, 1), wl(xl, 1)} solves the Euler-Poisson equations (1.5)—(1.7) on
the spacetime region D,

(iv) there exists a constant R € (R*, o0) independent of € € (0, €] such that
supp o, (), supp p(t) C Br forall (t,€) € [0, T] x (0, €], and

(v) there exists a constant C > 0 independent of € € (0, €o] such that

G2 (1) — 8585® (1)l 6 + 19757 (1) — 858507 D (1) | it + (07 (1) — w! ()] s
+e vt () — Ul it + 11oe (1) — p(Ol i1 + 13 pe (1) — 3 p (D)l 2 < Ce
forall (t,¢) € [0, T*] x (0, €].

We remark that the techniques of this paper can also be used to derive convergent
expansions in € of the type considered in Theorems 2 and 3 of [19] and [38], respectively.
These convergent expansions in general differ from the formal post-Newtonian expan-
sions. To get post-Newtonian expansion to a certain order in € requires that the initial
data must be chosen correctly. In the absence of constraints on the initial data, a general
procedure for doing this is discussed in [5]. Due to the fact that there are constraints
on the initial data in general relativity, this becomes a non-trivial problem called the
initialization problem. See [18] for an extended discussion. The proof of convergence
and a discussion of the initialization problem will be presented in a separate paper [27].

We note that similar results for the Vlasov-Einstein system have been derived in [36]
using a zero shift maximal slicing gauge. However, unlike [36], our approach is able to
handle not only higher order expansions in €, but also a wide variety of matter models.
We also note that in [16, 18], there is another interesting proposal for analyzing the limit
as € \ 0 which is based on a gauge for which the Einstein equations are again elliptic-
hyperbolic but distinct from [36]. As in this article, the authors of [16, 18] also propose
to use the methods of [5,19,37,38]. However, the required estimates are not proven and
it is yet to be verified if this approach would be successful.

We remark that the results of this and the companion paper [27] are local in time and
therefore address the “near zone” problem. In the special case of spherical symmetry,
the situation improves and there are some global results available on the Newtonian limit
[26,32]. However, because spherically symmetric systems do not generate gravitational
radiation, these results do not shed light on the “far zone” problem for post-Newtonian
expansions where radiation plays a crucial role and the € Y\ 0 limit must be analyzed in
the region “close” to future null infinity. We plan to investigate the far zone problem in
the near future.
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Our paper is organized as follows: in Sect. 2, we define dimensionless variables for the
Einstein-Euler system. Sections 3 and 4 are devoted to introducing variables and a gauge
condition that cast the Einstein-Euler equations into a form suitable for analyzing the
limit € N\ 0. Appropriate initial data which is regular in the limit € \ 0 is constructed in
Sect. 5 while in Sect. 6 we prove a local existence theorem for the Einstein-Euler system
on the weighted spaces. Finally, in Sect. 7, we show that solutions to the Einstein-Euler
system converge as € \ 0 to solutions of the Poisson-Euler system of Newtonian gravity.
A precise statement of convergence is contained in Theorem 7.12 which is the main result
of this paper.

2. Units
Our conventions for units are as follows:

; M M ; L 3
xX'1=L, [gjl=1, [p]l= I3 [P]=m, [v']=[c] = T and [G]= Tk

Note that with these choices the stress-energy tensor has units of an energy density, i.e.
[TY] = % To introduce dimensionless variables, we define
v =vrd' and p = prp,

where v and pr are “typical” values for the velocity and the density, respectively. The
Einstein-Euler equations then can be written as

G = 2ke*TV  and @ifij: ,

where
ur 47TG,0T ai i A~ A P
€= —), K = 2 ) xzﬁx’ gl]zgljy p=2_7
c VT VrpPT
and
T = (p+e2p)o' o) + pgii.
The normalization v;v! = —c?, implies that
N, N mjnd 1
;0" = 8" = —a

Also, we can introduce a time coordinate ¢ via

r=x* Jur.
With these choices, we have
el =[0"T=[81=[pl=[g)=[&']=1, [vr]= % (1] =171, and [x]= .
Thus all our dynamical variables and coordinates are dimensionless and the two constants
vr and « can be used to fix the length and time scales by using units so that

vp =1 and « =1.

In this case we can use 7 and x* interchangeably as long as we remember that they carry
different units. To simplify notation, we will drop the “hats” from the hatted variables
for the remainder of this article.
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3. Reduced Einstein Equations

To aid in deriving the appropriate symmetric hyperbolic system for the gravitational
variables, we temporarily introduce a new set of coordinates related to old ones by the
simple rescaling

! =x7, )E4=x4/e
and let
- d
0i=-—, 0i=_——.
ax! dx!

In the new coordinates, the metric g;; and its inverse g'/ are given by

1J 1,14
- 81J €814 —ij g € g
i) = and 7y = . 3.1
(&ij) (6g4j 62g44) &) (61841 62g44) (3.1)

Next, consider the metric density
g/ =/1glg"7 where |g| = —det(g;;). (3.2)

We note that the metric '/ is related to the density '/ by the following formula:

.. 1 .. ..
gl = ﬁﬁ” where |g| = —detg", (3.3)
and hence
, 1 g7 et
ijy
(87) = Nt (Gﬁu 25 ) 34

To obtain a gravitational variable that is regular and non-trivial in the limit € \ 0, we
define

G — % (ﬁij . nij) ’ (3.5)

i j I3.3 O
ij _
o= (% )

is the Minkowski metric density. As stated in the introduction, for ¢ > 0, the metric

gij can be recovered from the density 1"/ via the formulas (1.8)—(1.9). As we shall see,

even though the metric g;; is singular in the limit € ~\ 0, the quantity 1"/ is well defined

at € = 0. We note that these variables are closely related to the gravitational variables

discovered by Jiirgen Ehlers and subsequently used in the papers [17,28,29] to construct

stationary/static solutions to the Einstein equations coupled to various matter sources.
In the (x') coordinate system, the Christofell symbols are given by

where

M = € (8 Qielsp — BiBep)nt? +2@ep8(0) 87 - 2800 T) . (3.6)



138 T. A. Oliynyk

We note that Christofell symbols in the (x?) coordinate system are related to the l;fj as
follows:

Pjy =€ T4y, Ti=¢ T Tiy=Th, (3.7
T4y =elhy, Tay=¢ Ty, and . =T4¢. (3.8)

Using (3.6), a straightforward calculation shows that the Einstein tensor G/ is given
in terms of the density u" by

.. 1 .. _ .. .. .. .. ..
G = 181GV = GEUA, T + € (A’/ + Bl 4 c’f) + D, (3.9)
€
where
gl = —det(@"). (3.10)
AT = 2 (§5ke@nn — Bunfen) (§7877 — 337577) 5,05, G.11)
B = 4y (28", 09,8 — 458, 88,8 — g3, 9,1 ) . (3.12)
Cil =4 (ékﬁ"-/ 3kt — éka“égﬁ-/"‘) : (3.13)
DY = g2, ikt — 257, uk gt (3.14)

To fix the gauge, we assume that
9t = ep/ (3.15)

for prescribed spacetime functions 8/ = B/ (x!, x*). For € > 0, 9;ii’/ = B/ implies
that

g’ =4’ p/
or equivalently
gt =43 and 9 gt = 4€2BA,

where g'/ = /= det(ge)g" is the metric density in the (x*) coordinates. Thus (3.15)
is, for € > 0, a generalized harmonic type gauge and is harmonic if the functions B/ are
chosen to be identically zero. Clearly, if we define

EY =g 5" — 2008 57",
then (3.15) implies that
D'/ = €EV.
Setting
Gl = Gl — DU 4 BT = G521 + e BV + 2 (A"f' + B+ C"f') (3.16)
and

21J 114
T =g TV = |z (E r- er )

61T4J T44
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the Einstein equations G/ = 2¢*T/ in the gauge (3.15) become
Gl =T, (3.17)

which we will refer to as the reduced Einstein equations.
To write the reduced Einstein equations in first order form, we introduce the variables

il ifk=1

dil i =
e = 0 = [eamii ifhk=4"

The reduced Einstein equations then become
—§0T = §*10i) + 8" 0,1 + BV 4 € (AT + B 4 CT) — T,
“[J5 =i _ =1J5 =ij
g’ ou =g'’ oy,
dait’ =1,
or equivalently
_aag <ij _ Voarg i Lopgo i i ij 4 pii i) _ Ly
—g*aait! = —g¥ o, + —g' 0,5 + EV + e (Af + Bl +c1) _ T,
€ € €
- _ij 1 _ij
g'M sl = 29”31112(,
S T
i = —1uY.
4
Next, define
ul =’ ul =1, (3.18)
and let
V= {77) € Mual detr’? +4r) > 0}
Then using vector notation
u = (uﬁ(,uljj,u”) ,

we can write the reduced Einstein equations as

| . Co. 1 ..
A*ew ol = —Clou + AT (waud + F(e,u)y — —(77,0,007, (3.19)
€ €

where
1 — deu 0 0
A*(ew) = 0 81 +4eul’ 0], (3.20)
0 0 1
0o 87 o0
cl={s" o of, (3.21)
0O 0 0
4t 4l
Al =40/ 0 0], (3.22)
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and
Fi(e,u) = (EY + ¢ f (eu, w), 0, u )T (3.23)

The functions £/ (eu, 1) are analytic for eu € V and moreover are quadratic in 1.
Here we are using the notation

u= ) and w = (u;;/).

The stress-energy tensor is given in terms of the u variable by

i _ P 1 51"])0 € 4uIJp0
i =oure g (N0 0) 7 (Mo 70)

2 i p 0 4ul4
+€ (p(v v/) + _«/@ (4114] L1 4 Aoyt , (3.24)
and hence
1 .. .
(T = (8 e_olp) + S (3.25)
where

A HER
N =r (l§|vfu4 1 (181 = DWH? + (vH? — 1>)

ez (,o+ezp)vlvj+|§|_1/2p(8”+4eu”) epvlv4+4e|g|_1/2p1.114
& epv’/ vt +de|g| =2 put pWH2+ g7 2 p(—1+4eu*h)

(3.26)

We remark that if v* — 1 = O(e), then S is regular in € as is easily seen from the above
formula and the expansion

18] = 1+4den;ju’ + f(ew), (3.27)

where f(eu) is analytic for eu € V and also satisfies f(y) = O(ly*) as y — 0.

4. Regularized Euler Equations

There are various approaches to symmetric hyperbolic formulations of the relativistic
Euler equations [4, 14, 15,34,40]. We use the approach of [4] which is based on fluid
projection and the introduction of a Makino variable.

In the coordinates (¥'), the Euler equations are given by

VT =0, 4.1)

where T = (p +€2p)v' v/ + pg'/ and the fluid velocity v is normalized according to
T

ViV = ——. 4.2)
€

Differentiating (4.2) yields
5Vt =0 (4.3)
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which implies
25, V;0" = 0. (4.4)
Writing out (4.1) explicitly, we have
(Bip+ €20 p)0'v! + (p+€2p) @ Vit +0'V;0)) + 70, p = 0. 4.5)
The operator
L =&/ + i/,
projects into subspace orthogonal to the fluid velocity v', i.e. Llj Lf{ = L,{ and Llj vl =0.

Using L,{ to project the Euler equations (4.5) into components parallel and orthogonal
to 0’ yields, after using the relations (4.2)—(4.4), the following system:

3 3ip+ (p+ ezp)Lj.?iﬁf =0, (4.6)

- 1 o
v P9 . —
MUU VkU +p+€2pLjalp_0’ (47)
where
Mij:g'ij"'zezl_}il_)j»

As discussed in the introduction, we introduce a new density variable « via the
formula (1.12). Multiplying (4.6) by the square of the function

I U P
hea) = (1 + prY— 1)(tsoz) ) ,

gives
2-i5 2 ) da o
h“v'0ja +h“(p + ¢ p)—LjViv/ =0, (4.8)
- d
M o* V0 + L ria=o0, 4.9)
p+eXpda
where

d 1
52 14 2

T dp W“
is the square of the speed of sound. A simple calculation shows that

52 dp

=h2(p+ — =gq,
o+ pda (p ep)

where

1

qg=q(e,a)= ma-
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This shows that the system (4.8)—(4.9) is symmetric, and moreover at a point where
o = 0 and hence p = p = 0, it is regular unlike (4.6)—(4.7). This is the point of
introducing the Makino variable «. Also note that the pressure is given in terms of the
Makino variable by

K
p=— " _? (4.10)
(4Kn(n + 1))n+l
Define
1 1 4. _ -4 1
w =v, and w=v — —
€
so that
ol =w!, and v*=1+ewt “4.11)
Using vector notation
w= (e, w)",
we can write (4.8) and (4.9) as
a*oaw = ald;w+b, (4.12)
where
h2(1 4 L
a4=( ( +e4w) €qL; 4)’ (4.13)
€qlL; M;i(1+ew™)
—h2w! —qL’.
I — Y 4.14
a , .
(—qL§ —M,'jwl ( )
and
GLiF) gt
p=( 9Ll ) (4.15)
—MijF,ievkve
From (3.3), (3.5), (3.18), and (3.27), we find that
8ij = nij + fij(ew), (4.16)

where the f;;(y) are analytic and satisfy f;;(y) = O(]y|) as y — 0. Also, (3.6) shows
that

- ! ¢
Ffj =¢ [nk’" (2nienjp — nijnep) €um +2 (ngp(Sl(‘ieuj‘;’ — 2ng(i6u];f)] + efl]; (eu, €u,y,)
4.17)

for functions fl’; (eu, euy,) that are analytic for eu € V), linear in the eu,,, and satisfy
££(0,y) = 0. So then

Mi; = gij +2€23ik8 je0* 0" = 8 + myj(eu, ew") (4.18)
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and
L! =& + 2 guv* v/ = 8] — 518) + t] (eu, ewh), (4.19)

where Eij (eu, ew®) and m;j(eu, ewk) are analytic foreu € Vand E{ (0,0) =m;;(0,0) =
0. Using (4.16)—(4.19), the matrices a’ and the vector b can be written as

at= (L0 +at(eu, ew), (4.20)
08

I —w! —fs] I Al

a =( o JI)+w aleu, ew) + ad’ (eu, ew), 4.21)
_Esi —5,'/'11)

and
0

b= ) ; oz131 (eu, ew) - euy
=" (204004p + Nep) W — ’

. . + A
2 (Wpfgiuﬁp - 277@4’42[)) ( ba(eu, €w) - ug
(4.22)

Note that (i) 4%, 4, a!, by, and b, are analytic in all their variables provided that eu € V,
(ii) a*, & and &' are symmetric, and (iii) a*(0,0) = 0, a’(0,0) = 0, a(0,0) = 0,
l;1 (0,0) =0,and I;Q (0, 0) = 0. Consequently the system (4.12) is symmetric hyperbolic
on a region where (eu, ew) is small enough to ensure that a* is positive definite. This
can always be arranged by taking € small enough and since we are interested in the limit
€ N\ 0 no generality is lost in assuming this.

Itis important to realize that the derivation above of (4.12) required that both the Euler
equations (4.1) and the fluid velocity normalization (4.2) are satisfied. Alternatively, we
can first assume that (4.12) is satisfied and then show that (4.1) and (4.2) are also satisfied.
To see this, define

N:=et;0' +1/e =€gas(1/e+wh)? + 1/e+2847(1 + ewHw’ +egyw/w’. (4.23)

Clearly, N = 0 is equivalent to v'v; = —1/€” for € > 0. Furthermore, any solution
of (4.12) also solves (4.6)—(4.7) for any € > 0. So assuming that v is a solution to the
system (4.6)—(4.7), contracting (4.7) with v’ yields

(1+2€*0' 0% 0 (0 0;) = 0.
For (2e N' — 1) # 0, this implies
(1 +ewhHaN = —w! o N. (4.24)

Clearly, this is a symmetric hyperbolic equation for A" whenever 0 < 1/C < (1+ew?) <
C for some constant C. This can always be arranged at x* = 0 by choosing € small
enough. Therefore, if initially N |x4:0= 0, then V' = 0 for as long as (1 + ew®) stays
absolutely bounded and bounded away from zero. Consequently, choosing initial data
for the system (4.12) such that A/ |x4:0= 0 will guarantee that the solution will satisfy

the full Euler equations (4.5) in an open neighborhood of the hypersurface x*=0.In
particular, if {o, w'} is a solution to (4.12) with initial data satisfying /| .4_g, then o is
a solution to the equation

o+ X900+ Yo =0, (4.25)
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where

w! V!
and Y := . (4.26)

x! .=
1 +ewt’ 2n(1 + ew*)h3(ea)

Observe that
Y = )_’(6w4, 605)(68;11)4 + Blw’) + )A’(eu, 6w4, ey, ew’, €),

where Y (0,0) —1/(2n) =0, Y(0, ..., 0) = 0and Y (cw?, ea®), ¥ (eu, ew?, euy, ew!,
ea*) are analytic on the region eu € V and 1 + ew?* > 0.

5. Newtonian Initial Data

Let Sy = R3 be the hypersurface defined by Sy := {(xl ,0) | h e R3}. The covector
n; = 5? is conormal to Sp implying that constraint equations for the initial data on Sp

are given by n; G'/ = 2xe*n; T/ . Defining
¢l = 1GY —kTY) and C*:=gM —kTH,
we find that C/ = 0 is equivalent to n; G/ = 2ke*n; T for € > 0. Also, by defining
H = diu —ep/, (5.1)

the generalized harmonic gauge (3.15) can be written as H/ = 0.

As will be seen in the proof of the next proposition the equations C/ = 0 are regular
at ¢ = 0. So to find appropriate initial data that is well defined at ¢ = 0, we solve
the regularized constraint equations C/ = 0. Moreover, we must also ensure that the
harmonic gauge condition 7/ = 0 and the fluid normalization A" = 0 are satisfied. To
solve the constraints C/ = 0, H/ = 0, and /' = 0, we use a implicit function technique
based on the work of Lottermoser [23]. We assume that the fluid velocity can be written
as (4.10) which is consistent with the expected behavior of the fluid velocity as € “\ 0.
We will not assume that the density and pressure are related by the equation of state
(1.11). Instead, we will consider them as independent prescribed fields for the purpose of
finding solutions to the constraint equations. We do this so that the following proposition
remains valid for other equations of state.

Proposition 5.1. Suppose —1 <8 < 0,k > 3/2, R > 0and (., p, w' 557, p7,317) e
(H;‘__zz)2 X H;C_l X (H(;‘_ll)2 X BR(Hk) Then there exists an €y > 0, an open neigh-
borhood U of (,5 p,w! 34 ,ﬁ/ 3 ) and analytic maps (—eg, €g) X U — Hé‘ |

(e.p.p.w! 347 31— wh, (- 60,eo)><U—>H" D60, pow! 34 B

¢, (—e€o, €9) X U — Hg‘ : (6,p,p,w 34 ,,3/ 317 |—> ! such that for each
(o, p,w!, 5411], B/, 31 e U, (e, p, p,w!, w?, i u4 . B7, 0417 is a solution to the three
constraints
C/=0, H =0, and N =0, (5.2)
where
1J I
Sijy €3 €
(u ) (6\‘0J ¢ )1 (53)

1J KI 1
TN 34 —0dg3" '+ B _ 4
(0;u’) = (—aKZKJ +’31 gk +,84) (t=x"), (5.4)
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and

wt = ! + —egasw’ \/ez(g“wj_)z — gaa(e2grywlw’ + 1).
¢ €844

(5.5)

Moreover, if we let pg = ¢|c—0, m(’) = 10! |c=o, and u)é = w4|€:o, then ¢, m(l), and u)é
satisfy the equations

Ago =kp, Aw)=dp* — a3k +rpw’, and wg =0,
respectively.

Proof: Let ﬁ44 = ¢’ ﬁl‘, = 651‘], ):114 = Eml, and 541_11'] = 63‘{]. SO]Ving 7_{j|SO= 0
yields

5% = ¢ (—a,m’ + ,34) and 340 = e(—a;317 + B, (5.6)

while solving N|SO= 0 gives

w1, ZeBw’ = VEGw)? — pugwlv v o
€ €844
From (3.3) and (3.5), it is not difficult to verify that

wt = e_lf(ewl, 633, eSm, 62¢),

where f(y) (y = (y1, - - -, y4)) is analytic in a neighborhood of (0, 0, 0, 0) and moreover
¥ =0y asy — 0. _ i}
Using the relation (5.6) to eliminate 94u** and 841 in favour of ! and 51 7 we

find that
gheaz,ut + DM = Ap — cox 35 +4e%h,
G2, 0% + DY = ¢ (Am’ — 9,4+ apsk! +4eh1) ,
where
h* = e3KLogrd + epdr 35E — 2e2 0l 0%, ok,
h = 2KL92 w0’ + e’ 0%, KL — b9 5K — sk’ — 237La, .
Using this and Egs. (3.9), (3.10)—(3.14), (3.24)—(3.26), and (4.10)—(4.11), we see that

¢l = A’ + 8L3§] +eh’ +ef1(e33, e3m, e2¢, e€Dj3,eDw, D¢, €34,
(=’ + Y, (=gt + phy) —wesY, (5.8)
and
c = Ap —kp — Ke(2w4 + e(w4)2)p - 68[2“31“ +4eh* + 62f4(e35, 3w, equ,
€Dj3, eDw, D, €34, (=0’ + B), e(—ax KL + BL)) — ex SH, (5.9)
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where the functions f 1 )y = O1, ..., y9))areanalyticinaneighborhood of { (0, 0, 0)}
x U, where U is any open set and are quadratic in (ya, ..., y9). Note that

S* = pSte, w!, €%, €*w, €d) + pSi(e, w!, €%, €1, €9)
and
SH — ,owl +e,oS11(6, wl, 625, ezm, €P) +6pS£(€, wl, 623, ezm, €p),

where the functions S/ &y y = (1,-...,y7)) are analytic in a neighborhood of
U x {(0,0,0)} for any open set U.

Using Lemma A.8 and Proposition 3.6 of [17], we see from the above considerations
that for any R > 0 there exists an €y > 0 such that the maps

(—€0, €0) X Br(HY_ ) x Br(HY)? — Hf : (e, w!, 3,1, ) — w*
and

(—€0, €0) X (Hy )% x Br(HE_) x (HY=)? x Br(HS)?

— HYF 2 (e, p, pyw!, 34, B3, 10, ) —> CF
are analytic. Since
Clle=o = Ar’ —8;8* + 935" —kpw',  Clleco=A¢—kp  (5.10)

and for —1 < § < 0 the Laplacian A : H;‘ — H;‘_zz is an isomorphism (see [1],

Proposition 2.2), we can use the analytic version of the implicit function theorem (see
[10] Theorem 15.3) to conclude, shrinking €( if necessary, that there exists an open
neighborhood U of any point in (H(é‘__zz)2 X BR(H(é{—l) X (H(é‘__ll)2 X BR(Hg‘) and
analytic maps

(—e€g,€0) x U — H(é‘ : (e, p, p, w1,34,ﬂ,3) — ¢
and
(—€0.€0) x U —> Hf : (e, p, p.w’. 34, .5 —> 3
such that the constraints are satisfied, i.e.
Cle,p,pyw' 34, B,3,0(e, p, p,w' 34,3, 0(e, p, pw’ 34,5) =0

for all (67 P, D, wla 34, ﬂ’j) € (_EO»EO) x U. a
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6. Local Existence for the Einstein-Euler System

The combined systems (3.19) and (4.12) can be written as

1
Bo(eU, eV)a,V = —clo;V + bl (e, U, V)31V + f(e, U, V)V
€

1
+—gVV+he (t=xY), 6.1)
€
where
U:=(0,0,u”,0,00", u¥:=u"|,_ =i, (6.2)
o o
Vo= @ sul e w)T, sul =l (6.3)
o
4
0 (A (ew) 0
b (eU,eV) = ( 0 ateu. ew' ea)) (6.4)
1. f(cl o
o= (o 0), (6.5)
Al (u) 0
I — )
bie U, V) = ( 0 al (e, eu, w', a)) ’ (6.6)
€ fU(eu, ) — SV +4esul i pF — 8edy pUsu*
0
fe, U, V)V .= ij . (6.7)
Ll4 )
b(e, eu, ug, w', )
g(V)V = (=838 p(@).0.....0), 6.8)
and

(6.9)

(46uif5kﬂk — 8ed BUuk 4l oy pF — Zékﬁ(iﬂj)k)
€ = 0 o .
0

For initial data, we will use the following notation: given a function z that depends on
time ¢, we define

Z:= Z|=0.
o

To fix a region on which the system (6.1) is well defined, we note from (3.20), (4.20),
and the invertibility of the Lorentz metric (n'/) that there exists a constant Ko > 0 such
that

—det(n +4eu’y > 1/16, 1+ew* > 1/16, (6.10)
1 1
A*(eu) > Al a*(eu, ew, ear) > T (6.11)
and
|A*(ew)| < 16, |a*(eu, ew, ea)| < 16 (6.12)

for all |eu| < 2K, lew’| < 2Ky, |ear| < 2K(. The choice of the bounds 1/16 and 16 is
somewhat arbitrary and they can be replaced by any number of the form 1/M and M for
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any M > 1 without changing any of the arguments presented in the following sections.
However, since we are interested in the limit € Y\, 0, we lose nothing by assuming
M = 16.

Proposition 6.1. Suppose —1 < 8 < 0,k > 3+s, a,w! € HF |, /7 € H* 517 €
o o

Hgﬂl, ,Bj e C\([-T,T], ch,])- Let gllg], 8,52] and lé)? be the initial data constructed in

Proposition 5.1 which, by choosing €y < 1 small enough, satisfies

ew' , lea], el < Ko foralle € (0, ¢].
€
o o o

Then
(i) for each € € (0, €o], there exists T\ (€), Tr(€) > 0 and a unique solution
s+1
Ve € ) C'(=Ti(e). Ta(€)). H{~})
£=0
to the system (6.1) with initial data
Ve = (0 03 0 .
(ii) The identities
ij

u .. ..
4,¢ ij =ij
, and uj,e_ajue

-
o =

hold where by definition i =e v = u +80Y, and u, = eii,.
o o o

(iii) Thetriple {ﬁé/, wé, o } determines, via the formulas (1.12), (3.4), (3.5), and (4.11),
a solution to the full Einstein-Euler system (1.1)—(1.2) that satisfies the constraints

1

ea,ﬁ?] +81ﬁ£f =¢€B! and v'v; = —=-
€

(iv) For some constant C > 0 independent of €, the initial data V . satisfies the estimate
o
Ve=V <C|Ve-=V < Ce
”06 00”[-15':1,E = ||oe 00”[.[5:] =

while

10 Vel o1 = 10, VeO)ll s = €

forall € € (0, €o].

(v) Ifsupo<; -7y Ve @) llw1.00 < o0andforall (x, 1) eR3 x [0, Tr(¢)), |educ (x, 1)| <
Ko, lew' (x,1)| < 2Ko, and |eac(x, )| < 2K, then there exists a T, > Ta(€)
such that the solution V¢ can be continued to the interval (—Ti(¢€), Ty).

Proof. (1) Follows directly from Theorem B.5, Proposition B.6, and Corollary B.7,
where we use the initial data from Proposition 5.1.

(ii) This follows from standard arguments on reductions of 2" order hyperbolic equa-

tions to 1% order symmetric hyperbolic systems. See [39], Sect. 16.3 for details.
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(iii)

(v)

By part (ii), the triplet {ﬁij , u)é, o, } satisfies the reduced Einstein equations (3.17)
and the fluid equations (4.12). By construction, {1 =0, wé l1=0, e |s=0} satisfies
the constraints A'|,—g = 0, H/|;—¢ = 0, and (G* — T%)|,—¢o = 0. The reduced
Einstein equations (3.17) can be written in terms of the Einstein density G as
G — gl B H* + 25 HU gk = T
Using (G* — T%)|;—¢ = 0, we see that
(—§4f5kH" + 25kH(4gf>") =0 (6.13)
t=

A straightforward calculation then shows that this implies that 9 H/ ;=0 = 0.
As discussed in Sects. 4 (see (4.24)), N satisfies a linear symmetric hyperbolic
system and hence by uniqueness, it follows that A" = 0 for all (x/,7) € R? x
(=Ti(¢), To(¢). Thus {wé, o} determine a solution, via the formulas (4.11), to
the Euler equation which are equivalent to VT = 0. So taking the divergence
of (6.13) while using V; 7%/ = V;G" = 0 shows that H/ satisfies an equation of
the form
§ LM + 04" @ 4B, H =0,

where the Q}7 are analytic in § and 3;§. Clearly, this is a linear, 2 order hyper-

bolic equation for HJ. Since HY |;—9 = 8, H’|;—0 = 0, we must have H/ = 0 for

all (x, 1) € R3 x (=T (e), Ta(e)).

We know from Proposition 5.1 that the map (0, eg] 3¢ — V. € H, (;:1 . is analytic
b .

which implies the estimate ||V — V| HE < Ce for some fixed constant C > 0.
o o -
So then

IVe=Vollyr < IVe= Vol | = Ce
by Lemma A.11. Since {1, w, o} solves the reduced Einstein equations (3.17),
we have that
€gt0,040 + 820,040l + KL 0%, 0l + €2 f1U (€%, By, DL Tic)
= ?S1 (€2, ae, wh),

where the f!/ are analytic and quadratic in d4iic and diie while S’/ are also
analytic and linear in o and w. Evaluating this equation at t = 0, and using the
following facts from Proposition 5.1,

—1y=1j -44 —ij i
€ u + ||u 1 + || 01 + || + ||w <dC, (6.14
1571 gy + 1TE N g + 18,87 1 ge + lltell g + 1wl e < C. (6.14)

we find upon solving for 9, d41t// that
18,3457 )| g1 < € ¥ € € (0. €0 (6.15)

—1
by the calculus inequalities of Appendix A. But from part (iii), we get that 541_1?4 +

a1 ﬁ£4 = 0 and hence differentiating this with respect to # and evaluating atr = 0
yields

18,348 O 1 = 198,01 | it < C Ve € 0. €0l (6.16)
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From the estimates (6.14), the fluid equations (4.12) and similar arguments as
above show that

|rte )l gy = C+ 19wl gy < C VeeOeol (617

Estimates (6.14)—(6.17) and Lemma A.11 then imply that ||81V€(O)||H§71 <
—1l,e
||0; Ve(0)||H§711 < C forall € € (0, ¢].
(v) This is just a statement of the continuation principle of Theorem B.6. 0O

7. The Newtonian Limit

Let {V,0 < € < ¢} be the sequence of solutions from Theorem 6.1 where we will
always assume that

—1 <8 <—1/2 and suppa C Bg for some R > 0.
o

If we let T, (¢) denote the maximal time of existence for the solution V., then

s+1 s+1
Ve € () CH(10. T(e)). Hy—{) € () C*(10. T(e)). Hy~{ ). (7.1)
=0 =0

Soae € ﬂ”l Ce([O Tm(€)), Hk Z) and hence Proposition 3.6 of [17] and Lemma A.8
imply that

s+1

pe = plae) € () CH(10, Tu(€)), Hy ).
£=0

Using Proposition 2.2 of [1], we can solve the equation

Ad, = pe (7.2)
to find
s+1
@ € () CHI0. T (e)). H7O).
£=0

To obtain the Newtonian limit, we use @, to take care of the singular term e ! g(Vo) Ve
in (6.1) by introducing the new variable

We = (uf ] ol ae,wi) ulf =l —8i8]0, .. (7.3)
Observe that
Ve =W +dde,
where

= (0,8,8]0;9¢,0,0,0).
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Noting that
b(eUe, €Ve) = b (eUc, eW,) and b'(e, Ue, Vo) = bl (e, Uc, We),  (7.4)

W, satisfies the equation

b (eUc, eWe)d W, = éc’a,we +b' (€, Ue, W) We + fle, Ue, We + d D) We + He,
(7.5)
where
He :=he — b2(eUe, eWe)0,dDe + b (€, Ue, W)d1dDe + f (€, Ue, We +dDe)d de.
By construction the initial data V, is bounded in H §71 as € \( 0. Therefore by Lemma
A.11, there exists a constant K su(éh that
||W5|t:0||H§71’€ < K; foralle € (0, €g]. (7.6)
Also by definition of W, and Lemma A.7,
max{[|ducll e, oo, lwillz=) < IWellep < CoallWell g+ (2.7)

where Csop is the constant from Lemma A.7 that is € independent. Shrinking €q if
necessary, we can always assume that

2¢0Csob K1 < K. (7.8)
Define

0<t<t o<t<t

Te :=min [sup [r>0| sup ||W€(f)||Hk <2K; and sup ||V€||Hk < oo] , 1].

(7.9)
From the continuation principle in Theorem 6.1, it is clear that 7, satisfies

0 < 1e < Ty(e).

7.1. Energy estimates. We will now use energy estimates on the HX 5_1.c Spaces to show
that 7. is bounded below by a constant independent of €. The strategy we use is that
of [5,19] adapted to the H5" spaces. All of the results below will be derived under the
assumption that the 1-parameter family V. of solutions has the additional regularity

s+1
Ve € () €0, e, Hi 7.
=0

It is then not difficult to use a solution of this type to approximate solutions of the
regularity type (7.1) and thereby show that all of the following results also hold for
solutions with the regularity (7.1). Since these sort of approximation arguments are
standard, we will leave the details to the interested reader.

The next lemma contains the basic energy estimate which is the key to deriving
estimates independent of €. We note that this type of estimate has been derived previously
for the standard Sobolev spaces in [5,19]. It also makes clear why we need to introduce
the variables W, and @, to put the Einstein-Euler equations into the form (7.5).
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Lemma 7.1. Suppose ¢ > 0, a° € C'([0, 7], W), a! € C%(0, 7], W'™®), ¢ €
CO([O, 7], L%’e), and that w € C! ([0, 71, H)}ﬁé) is a solution to the linear equation

a08tw = alalw +g.

Then there exists a constant C > 0 independent of € such that

d
0 . - 2
i <
T (wla w)le\ve < C|(||divalpe + €|lal| ) ||w||Li,€ + ||(g'||L§.€||w||L%.e ,

where diva = 8,a° + 3;a’ and a = (a', a2, a>).

Proof. Let 6 = 05’2)“’3. Then ||6’18j6||Loo < €C for some constant C > 0 that
is independent of €. Using this, the proof follows by a standard integration by parts
argument as in the proof of Lemma B.4. O

To continue, we estimate, in terms of K, how much the support of a¢ can change as

€\ 0.
Lemma 7.2.
supp e (1) C BRra3ak,

forall (t,e) € [0, tc] x (0, €o].
Proof. Letting X I'Y and Y be as in Sect. 4 (see (4.26)), we define

XLty .= X (ew? 1), w! (1))
and

Y1) = P(ewd ), eac) (ewt) + 9wl ()
+l?(e()z)1€ +8u(r)), ew* (1), ewr (1), ew’ (1), ea(r)).
Using (6.10), (7.7), (7.8), and (7.9), we obtain the bound
X101 < 32K ¥ (z,€) €0, 7] x (0, €]. (7.10)

From Lemmas (A.7) and (A.10), and (7.1), it follows that Xi € CO([O, Te], Cg) and
YEI e C%([0, 7.1, Cg). Therefore the vector field X 6’ can be integrated to get a C! flow
wél(t, x) that is well defined for all (¢, x) € [0, 7] x R3. For each x € R3, define
oX () == ate (t, Ye (2, x)). Then 3,9/ (1, x) = XL (t, ¥e (2, x)) together with the evolution
equation (4.25) implies that

%a? @O+ Y, Ye(t, x))el (1) =0.

By assumption suppag C Bgr and hence o (0) = a(x) = 0 forx € Eg := R3\ Bg.
o
Therefore

ae(t, Ye(t,x)) =0 allx € Ep (7.11)



Newtonian Limit for Perfect Fluids 153

by the uniqueness of solutions to ODEs. But
Te Te
|Ye(t, x) — x| S/ [0 e (2, x)| =/ | Xe(t, Ye(t, x))| < 32K 17 < 32K,
0 0

by (7.10) and 0 < 7. < 1. From this, (7.11), and the fact that for each ¢ the map R3 5
X = Ye(t,x) € R3 defines a C! diffeomorphism, it follows that supp e (1) C Br432k;,
forall (r,¢) € [0, ] x (0,€9]. O

Next, we estimate ||CI>€||H§+2 in terms of || W, ||H§ L
—1,€

Lemma 7.3. Let R = R + 32K, and

Ci=(1+R)"2732 /14 (1+R)*.

Then there exists a constant C > 0 such that

190}z < COIWeOle

forall (t,¢) € [0, tc] x (0, o).

Proof. By Lemma 7.2, the supp ae(t) C Brisok, forall (7, €) € [0, t]x (0, €o]. Letting
R = R + 32K, it follows directly from the definition of the weighted norms that

p\—Nn—3/2
el z2 < 2, < (4 R u] 12

for all functions # whose supportis containedin Bz andforany € € (0, 1]and —n—3/2 >
0. Therefore

loclye, < CCillocll g, -

where C > 0 is a constant independent of € and

Ci=(1+R)“2D732 /14 (1+R)%*.

Since A : H§+2 — Hé‘_z is an isomorphism and A®, = p., we have ||<I>6||H§+z <
Clloell HE and hence, by Lemma A.8 (see also (1.12) and (7.3)) and the above estimate
that

o <CC < CCillac|" < CCy|W|" .
@l < CCtllpell g, < CClllaclly < CCUIWely

We note that for the remainder of this section, all of the constants appearing in the
estimates may depend on the fixed constant K ;. We will often use C to denote constants
that depend on K and that may change from line to line.

Let W¢ = DW, (Ja| > 0), b = beU, eW,), bl = bl(e, U, Vi) and
fe = f(e,Ue, We +dP)We. The evolution equation (7.5) implies that

1
9 We = (B)~! (Ecl +b§) We+ 0O e + WO H. (7.12)
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Differentiating this equation yields
poo, We = éc’a,wg +blo W +q% |a| >0, (7.13)
where
q® = b[D%, W) e et + b1 We + 60D (DY) fo) + B2 DY (b)) T He). (7.14)
From Lemma A.11, we know, since —1<6 < —1/2, that ||6L;LE I HEH <eld+1/21 ||£l€ ||H§+1 .

Since || ue || HEH is uniformly bounded in €, we get, by Lemmas A.7 and A.11, that
o

IUellgroe < CsobllUell gaer < Ce*1/2 (7.15)

ey
for some constant C > 0 independent of €. So
IbL @)l < C VY (2, €) €10, 7] x (0, €] (7.16)
by (7.4), (7.7), (7.9) and (7.15) . Also, note that
[d®ellLoe + [[DdPellLoe < CllPellyrer < € and [[8;d el = ClPel prien

by (A.3), (A.24) and Lemmas 7.3 and A.7. The evolution equation (7.12) then implies
that

18211 = lle Db (eUe, €We) - 8 WellLoe < C(1+[|8d e yrsr).  (7.17)
Together (7.16) and (7.17) establish the existence of a constant C > 0 such that

Idivbe (1) |20 < C(L+ [ Pe @l o) ¥ (1, €) € [0, 7] x (0, €0l (7.18)
Differentiating (b2)~! yields
3N = —e@) (DB (eU, eWe) - (35U, 35 We)) (b)) 7"

This along with (7.15), (7.16), (A.3), (A.24), and Lemmas A.7 and A.9 can be used
to control the singular term in (7.14) and results in the following estimate (see also
Appendix B.2)

lg* Oz, = PallWe®llgs | NPl g, 1Pl o) Vi€ [0,7]
(7.19)

where P,(y1, y2, ¥3) is a polynomial that is independent of € and satisfies P(0) = O.
Note that in deriving this result, we have used the estimate

Id®ell g +IDdPell s | = Cl@ell o and [3dPell e | = ClOPell g
(7.20)

for some C independent of € which follows from (A.3), (A.24), and Lemma A.11.
Define

2 . 0
IWellE 5-1.c = D (9 WelbPa“We) 1

| <k

—|al,e
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Then
1
FIWeOllge | S IWellesre S4IWe@lls | Vi€l (721)

by (6.11) and (6.12). Lemma 7.1 combined with the estimates (7.16), (7.18), and (7.19)
implies that

d 2
i Wellis—1.e = PUWellk.s—1.e 1Pl o2 19 Pell s DU Wellk.5-1.¢

or equivalently

d
2 IWeOlles—1.c = PUAWeOllk.s-1e.

|(D5(t)||H§+2» I|3z¢e(l)||H8k+1) Vtel0,z]
(7.22)

for a € independent polynomial P(yi, y2, ¥3) satisfying P(0) = 0. By Lemma 7.3,
| De|| i+ can be bounded by a polynomial of || W¢|| HE that is independent of € and

vanishes for ||W¢ || H = 0. The differential inequality (7.22) shows that if we can do

the same for ||9; D || H(g@ then we get an estimate for || We (¢)||x.s—1,e independent of €.

Lemma 7.4. There exists a polynomial P (y) with coefficients independent of € such that
P0) =0and

19 @e Ol g = PAWeOll x| )
forall (t,¢) € [0, 7] x (0, €].
Proof. By (4.12), we := (e, wé)T satisfies an equation of the form
a4(eU€, eW)we = a' (eUec, eWe)d,We + b1 (eUc, eW)We + ba(eUe, eWe)d D,
and so
dwe = (a)'a’dywe + @) byWe + (a*) " 'brd @,

Thus

lrwell e = @™ al Il s IDWell ot

@)™ bl g WWell e+ 1@ ™ ball e ld el it

by Lemma A.8. Also by (7.15), (A.3), (A.24), and Lemmas A.7 and A.9, we have that

l@H ™ a e < PAWellge | Ds IDWellger < IWellge |

1@) ™ bill gt < PAWellgr ). and (@)™ b2l et < PAWell s )

for some polynomial P (y) that is independent of €. The above two inequalities along
with (7.20) and Lemma 7.3 show that

rcrell iy < 18wel iy < PCIWellgg | )
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for a polynomial P(y) independent of € and satisfying P(0) = 0. Using Lemma A.8,
the above estimate implies that

1cpcl ey = P (IWellg, ).

where as above P(y) is a polynomial that is independent of €. Since Ad; @ = 9; pc, the
same arguments used in the proof of Lemma 7.3 can be used to conclude

18,@ell gt < Clapel s =< P (Wl ).
O

Lemmas 7.3 and 7.4 combined with the estimate (7.22) yield

d
d_t|||We(t)"|k,871,e < PUIWeOllk,s—1,NWe®llk,5-1, Yte€[0,t] (7.23)

for a polynomial P (y) that is independent of € and whose coefficients depend only on
K. By Gronwall’s inequality there exists a time 7* € (0, 1), independent of €, such
that if y(r) > 0is C! and satisfies dy/dt < P(y)y, then y(¢r) < ¢X3'y(0), where K3 is
a constant that depends on K. Therefore

IWe@llks-1.e <€ IWe(O)lli.s-1.c forall ¢, €) € [0, min{T*, 7c}1x (0, €0]. (7.24)

Shrinking 7* if necessary, we conclude that

3
IWe)llk,s—-1.¢ < EKl forall (t,€) € [0, min T*, 7] x (0, g]. (7.25)

Note also that
||V€(l‘)||Hk671’€ < C forall (t,€) € [0, min{T*, t}] x (0, €] (7.26)

by 7.20, 7.21 and Lemma 7.3. Therefore by the definition of t., we musthave 0 < T* <
7. forall 0 < € < €. ] )

Differentiating (7.12) with respect to ¢z, shows that W, := 9; W, and d®, := 9;d D,
satisfy the equation

. 1 . .
b(eU,, eW,)o, W, = Zc181W€ +bl(e, U, W)a; W,

+fl (e, Ue, We, DWe, d®¢, DA P, dd)e)We
+fo(€, Ue, We, d®c, DAD, dDe, DADc, d,dDc) + 3;h
for analytic functions f1, f> with f> linear in the last 3 variables. This equation has

the same structure (7.5) and it is not difficult to show that the arguments used to derive
(7.24) can also be used to obtain the estimate

||W€(t)||H§:]1 <C V(1) € (0,e0] x [0, T*] (7.27)

under the assumption that || W (0)|] ph-1 s bounded as € \( 0. But this is clear from
§—1,e

Proposition 6.1 and Lemma 7.3 and so the estimate holds. We have proved the following
proposition.
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Proposition 7.5. For €y > 0 small enough, there exists a T* > 0 independent of € €
(0, €0] such that the one parameter family of solutions V exists, for all € € (0, €y], on a
common time interval [0, T*]. Moreover, there exist constants C > 0, R > 0 such that

Ko
P IIVe(t)IIHSk_Le <C, HB’VEO)”H&',E <C,

A

max{[|duellzoe, llove [l oo llwe Lo}

19l = €. %Pl o = C,
and supp o (t) C By for all (e, t) € (0, €o] x [0, T*].

7.2. Properties of the limit equations. To fully understand the limit equations of Sect. 7.3,
we first need to consider the following system:

A

~ Ao A (24 A1
3t06 = —w a[(X — —81w s (7.28)
2n
9 = —Zﬁaf& — oo’ — 87 d, (7.29)
n
AD = p, (7.30)
with initial data
@0)=a and ®'(0)=w', (7.31)
o o

where a and w' are as defined in Proposition 6.1. This system is precisely the Poisson-
o o

1 ~2
W(x n, Indeed, a

straightforward calculation shows that (p, ') satisfy the Poisson-Euler equations of
Newtonian gravity

Euler equation written using the Makino variable p =

ap+0r(pw’) =0, (7.32)
P07 + o0’y = —(pa’ D+ 97 p), (7.33)
AD = p, (7.34)

where p = K p+D/n,
Proposition 7.6. There exist a T > 0 and a solution
&, w!' e (o, T1, HE_Hnclqo, 11, HE D,
e €0, T1, HH ncl(o, 11, HEY, 8,d € €O(0, T1, HE)

to the initial value problem (7.28)—(7.31), where &(t) has compact support for all
t € [0, T). Moreover

(i) this solution is unique in the class
@, weC’(0, T1, HYNC'(R" x[0, T]) ®eC((0, T, HF*)NC (R %[0, T1),

where a(t) has compact support for all t € [0, T, and
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(ii) the solution also satisfies
& ' e M0, T, H{ 7)),
d e nithcto, T1, HF?7Y, 8,0 e nd_yC(0, T1, HF17O).
Proof. Writing the system (7.28)—(7.30) as

a (&Y %" 535, (&) 1 0
') T\ g5t ol )T N\@!) T @k )y 9 @l )

we see that this system is symmetric hyperbolic with a non-local source term. Since
A : Hg 2 Hj 9 _, i an isomorphism, it is not difficult to adapt the approximation
scheme and energy estimates of Appendices B.1 and B.2 to this system. Then as in
Appendix B.3, this is enough to produce an existence theorem. Consequently, there
exists a 7 > 0 and a solution

&, v’ e (o, T1, HE_ ) nclqo, T1, HED. (7.35)
Therefore
p e (o, 11, HE ) ncl(o, 11, HS), (7.36)

and hence ® = A~!5 € CO((0, T, HE?) n C1([0, T1, HF™).
Differentiating (7.34) with respect to ¢ and using (7.32) yields

A3 D = —3;(p0)). (7.37)

But, (7.35) implies that p! € C°([0, T], HF ,) and hence A~!(pi!) € C°([0, T],

Hk+2) Taking the divergence then gives 3;(A~!pw!) e C([0, T], H§+1)- However,

(7.37) implies that 9, = —A~19; (p!) = —a;(A~1(pw!)) and so 3, P € C([0, T},
k+1

5-1)-
The statement about compact support follows from the symmetric hyperbolic equa-

tion satisfied by & and the property of finite propagation speed. Uniqueness follows from
a slight modification of standard arguments, see [39] Proposition 1.3, Sect. 16.1. O

7.3. Convergence as € N\ 0. In this section, we identify the limit of the relativistic
solutions as € \, 0. To accomplish this, we adapt the arguments of [37], Sect. III. Define

V= ﬁi{,uJ,Su a, w7,

9
i[
al :( 81 )
2111 w

il Al (Su’f) 0

- al
iy !
s7i=p (wf 4n; ;51 + 20 )

@
( ™ (204en4p + Nep) T

FNV = (=87,0,if,5)7,

0

@‘1

p . ,
-2 (ngpéiuf — 2175411%))
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and
b= 7" —20;8n"",0,...,00.

Theorem 7.7. For any r > 0, ®. and V. converge in CO([O, T*], HiH = "y and cY

loc

([0, T*], H "y as e \ 010 ® € C'(R? x [0, T*)) N CO([0, T*], HX*?) and the unique

loc
solution V € C1(R3 x [0, T*]) N C°([0, T*], HY) of the system
P (0,7 =0,V = f(7HV k) =0,
o (V —d®d) =0,
V(0) = Vo(0),
o
Ad = p,
where P is the projection onto the L* orthogonal complement of {¢'9;W = 0|W € H'}.
Moreover,
(i) there exists a R > 0 such that supp&(t) C By forallt € [0, T*],
(ii) there exists a w € C°([0, T*], HX ) such that 3;0 € C°([0, T*], H*"1) and

loc
WV —blo;V—fVV—h—-cldw=0, (7.38)

(iii) and for 81 > —1/2, there exists a i € C°([0, T}, LY) such that

i = a,u.

Proof. By assumption —1 < § < —1/2, and so it follows directly from the definition
of the weighted norms that for every £ > 0,

leell e < llull e~ forallu e Hy .. (7.39)
So by Proposition 7.5,

Vee (0, 71, HHnc' (0, 71, H*H c €00, T*1, H_, )NC' (10, T*1, H{~' )

and @, € CO([0, T*], HF**)NC1 ([0, T*], H*') are uniformly bounded for € € (0, €o].
Therefore by the Banach-Alaoglu theorem there exists subsequences of &, and V,
which we still denote by ®, and V,, and ® € L">°([0, T*], H;‘“) N Lip([0, T*], Hak),
V e L'°([0, T*], H*) N Lip([0, T*], H*~1) such that ®, and V, converge weakly to
®and V, respectively, as € N\ 0.

By Proposition 7.5, the support of a¢ is uniformly bounded in € and hence the
support of the weak limit @ must also be bounded. From Proposition 6.1, we have that

ule = E)Jue So by Lemmas A.7 and A.11, and (7.15), we find that for §; > —1/2 > 4,
18205 <CIZ g =ClIl N =€ (I iz, + 1wz ) < CO+ Vel )

for a constant C independent of e. It follows that &i! converges weakly to a '/ €
L>°([0, T*], L§,) for which 8,17 = {i;.
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Now, V. satisfies

1
bO(GUs» €Ve)o Ve — _ClaI(Ve —dd,) +b1(57 Ue, V) Ve
€
—f (e, Ue, Vo) Ve — h(eUe) =0, (7.40)

and hence it follows from the boundedness of ®. and V. that

le01(Ve = d®o)ll s < €'y (Ve = d@) |y < Ce.
Letting € N\ O yields

o (Vv —dd) = 0.
Next, applying the projection P (note that V, — d®, € H') to (7.40) gives
P’ (eUe, V)3, Ve — bl (€, U, V) Ve — f(€, Ue, Vo) Ve — h(eU.)) =0

or equivalently

PbOPY, Ve + PO — P)3, Ve — P(b19; Ve — fo —he) =0,
where we set b = b0(eUe, €Ve), bl = b’ (e, Uc, Vo), Ve, fo = f(€, Ue, Ve) Ve, and
he = h(eUe). Suppose ¥ € C3° and let (u|v) = fR3 uv d3x be the standard L? norm.
Then

(YIPLY (L —P)o, Ve) = ((IL — P)bIPY |3, Ve) (7.41)

as P is a self-adjoint projection operator. Since the imbedding H*(Bg) — H*"(Bpg)
(r > 0) is compact for any ball Bg, V. and &, converge in CO([O, T*], Hk_r) and

loc

C 0([0, T*], H k+2_r) to V and Ci>, respectively, as € \( 0. Using this strong convergence

loc

and (7.15), we find that (I — P)b?Pyy — (I — P)Py = 0in L? as € \, 0 and hence
(W]P’bg( I —P)o, Ve) — 0 by (7.41) and the fact that ||0; V|| 2 is uniformly bounded in
€. Therefore, we have established that

IP’bg(lI —P)3,;Ve — 0 weakly in L*ase N 0.

The remainder of the proof follows from a straightforward adaptation of the proof of
Theorem 2in [37]. O

From the block diagonal form of the matrix ¢!, itis clear that @ can be written as

w:(a)ﬁ{,wl]J,O,...,O)T.
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Using this, we can write the system (7.38) as

0a = —iloa — —a,w!, (7.42)
2n
o’ = —2131& —alawt — sl (u +8KLuKL), (7.43)
n

it = —i oyt — ( +84iil J) , (7.44)
o, = 45t o, + 488 o, + n'ia BT — 20,80 — 8 + 01w, (7.45)
o, = asu!’ 9,1 + 0,07, (7.46)
9,801 = "ﬁ{, (7.47)
9 f” =0, (7.48)
3'u = 815 AD, (7.49)
AD = 2. (7.50)

with initial conditions

/o =0, @0 =0 =09 (¢:=2a""50)), (7.51)
a0)=a, w'= Lg’, w* = 0. (7.52)

Equation (7.48) immediately implies that

~’f =0, (7.53)
and hence, by uniqueness and the fact that Sul/(0) = 0, it follows from (7.47) that

81 =0. (7.54)

Since ﬁi]j = 9;u/, we get from (7.49) that AW/ = SQ&{A(‘I“). But 1/ € Lgl and
AD € L§_2 and so by Theorem 1.2 and Proposition 1.6 of [1], we find that TUNS Hg‘z
forQ > 6, > §1 > —1/2 > 6 > —1. Since the Laplacian A : Hé‘z — H;;zl is injective
for §o < 0 (see [1], Proposition 2.2), we must have T 6384{ ® and hence

i = s8]0, ®. (1.55)

Substituting (7.53)—(7.55) into (7.42)—(7.49) yields

9,a = —w! 06 — %a,w’, (7.56)

! = ——ola—w'ow’ — 9’ , (7.57)

AD =5, (7.58)
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and
8[1]}4 _ —II)[a[ﬁ}4, (7.59)
o' =n'orp" — 20,8 )" + SV, (7.60)
81w4 _o. (7.61)
39,01 = it (7.62)

Since w*(0) = 0, uniqueness of solutions to hyperbolic equations implies that
Wt =0. (7.63)

Proposition 7.6 and (7.56)—(7.58) imply that {®, @', &} must satisfy

i e (10,71, B ) n et (10,7, HE) (7.64)

and
d e ([0, T, Hk+2) 1([o, T, Hé‘“), (7.65)
9 e 0 ([0, T*1, H;‘ji) nc! ([o, T+, H§_1) . (7.66)

We then get from (7.61) and (7.62) that
ot =8,® e C'([0, T*], HE ) (7.67)
and
o =0. (7.68)

Equations (7.54) and (7.63) imply that S/ can be written as SY = 28?8?11}1 . We then
find from (7.60) that

o = 8,7, (7.69)
where
QY = A" o 8" — 20,8y f>’+25‘la“ Y (7.70)
Note that
ij 1 # k+1
QY e C([0,T7], Hg™),
since 3,8/ € C'([0, T*], Hy~,) and S € C'([0, T*], Hy")) by (7.64). Therefore
ol = 9,97 e ([0, T*], HF ). (7.71)

We collect the above results in the following proposition.
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Proposition 7.8. The limit solution {V, ®} from Theorem 7.7 satisfies
it =it = w* =0,
® e o, 7*1, HFH nclo, T*1, HE,
3@ e €0, T*1, HFHh nc'(o, T*1, H ),
il =8i8]0,® e (0, T*1, HE ncl (0, T*1, HE ),
a,w' e 0o, %1, HY_ ) nclqo, %1, HETh,

while {®, &, W'} solves Egs. (71.56)—(7.58). Moreover, the w from Theorem 7.7 is given
by

w=(of,o?,0,...,07,
where
a)4 = 8i5]0,® e C' ([0, T*], HE ),
of = a7t (n7,8" — 20,8090 +26( 80" ) € €110, 77, HE ).

7.4. Error estimate. To get an error estimate which measures the difference between the
relativistic and Newtonian solutions, we adapt the arguments of [37], Sect. IV. Define

Ze=V.—V+d®, —dd —ew and Ve i= e — Q.
A simple but useful observation is that
Ivell s =lee —@llge | <NZellypr and  wg = d' e <0 Zell e - (7.72)
Lemma 7.9. There exists an € independent constant C > 0 such that
[dPe(t) = D) oy +1DAR(r) = DAGD)] gy = [Pe() = D)l o
< CIZeO) ot
18dDe(t) = 0 dDD)ll gt < 10 De(t) = 4D gt < CIZe(D)ll gy +Ce
and
18,vell g2 < CUIZe()lypos +Ce
forall (t,€) € [0, T*] x (0, €o].

Proof. Since the support of «,(¢) and @(¢) are both bounded for all (¢, €) € [0, T*] x
(0, €o], there exists a € independent constant C > 0 such that

-1 ~ ~ ~
C™ lpe — pIIH§:; < llpe — p”Hsk:ﬁg < Cllpe — pIIHakal-
Also, Ad, = p,, AD = 0,and A : HSI‘Jrl — Hk | is an isomorphism, and therefore

1®e=®ll g = llpe=pll gt <Cllpe—pll s <Clivell s <ClZell gt (1.73)
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by Proposition 7.5 and Lemma A.10. From (4.25) and (7.56), it follows that y, satisfies

ayw!

0 Ye = _Xlalye —Yye+ (XI - 1])[)315[+ (Y —
n

)&, (7.74)

where X! and Y are given by (4.26). But X! = X/ (ew?, w!) and @' = X'(0, w'),
and hence

I~ I =1
X" —w ||H§:12,e <Clw;, —w ||H§:ﬁ€ < C||Z€||H§:11,E (7.75)
by (7.72), (A.24), Lemma A.10 and Proposition 7.5. Next,

!
2n

Y —

_ 1 P T
= (Pevo -5, (eatwe + 81w€) + 5]
= (ayw! — o) + P(eUe, eV)
2n lwe jw €Ue, €Ve¢),

where ?(0) =0and Y(0) — 1/(2n) = 0. Using (7.15), (A.3), (A.24), Proposition 7.5,
and Lemmas A.7-A.10, we can estimate each of the above terms as follows:

_ 1 . § 1
|| (Y(eva ~ 5) (0w + 9wl oz < | (Y(eva - 5) e

§—1,€
4 I
x (eldwdl s+ lw!l s )
< CellVellyr | (€N Vell s +1Vell e ) = Ce,

1
4
—edw =2 < Ce||0; Vel -1 < Ce,
5 edrwll e < CelldVell gy <

1 1 ~1
I, @rwl = 01"l g2 < CZell e

and
17 (Ve eVolllygr = Ce (IUell g+ Vel e, ) = Ce.
Therefore
Y = 2 s < ClZal s+ Ce. (7.76)
2n B Hy_y .

We can also estimate X’ and Y as follows:
I
1X a2 < CllVellgg < C. (1.77)
1Yl < CAUellgs +1Vellgg | +10 Vel )< €. (1.78)

The estimates (7.72), (7.75), (7.76), (7.77), (7.78) along with Lemma A.8 imply via Eq.
(7.74) that

18:vell iz = CliZell i1+ Ce. (7.79)
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Since Ad; @, = 8p. and Ad; ® = 3, the same arguments used to establish the estimate
(7.73) can be used in conjunction with (7.79) to show

18, Pe = 3@l gt < CllZell g1+ Ce. (7.80)
Finally from (7.73), (7.80), and Lemma A.11, we get the desired estimates
ld®e —d| s +1DdDe = DAl iy < [0 = Bllyror < CllZell .

and

13:dPe = hd Pl s < 18:Pe — 0Pl < CllZel oy +Ce
for some constant C independent of €. O
Lemma 7.10. There exists a constant C > 0 such that

ldhote = 0@l g2 +1Ve(®) = VO)ll i1 = Ce forall (1,€) € [0, T*] x (0, €l

Proof. From the evolution equation (6.1), we find that Z, satisfies the equation

1
b9, Z. = Ec’a,ze +bl9;Z + F, (7.81)

where b0 = b%(eU,, € V), bl = b(e, U, V) and
Fe=—b3,(dd — dd.)—eb?d,w + bl (3;ddD — 9;d D) +eb! b0
—(b2 — )3, V+(b" —b1Yo; V+f(e, U, Vo) Ve— F(V)V + he—h. (1.82)

Using (7.15), (A.3), (A.24), Lemmas 7.9, A.7-A.9, and Propositions 7.5 and 7.8, we
get the following estimates:

168 = Wiz, < CelUellge_+ 1 Vell g | ) = Ce, (7.83)
16291 (d® — d @) et <11 (B¢ = W) (AdD — dD) | yret +]1(dP—d D) | ot
< C(Ib¢ = Wl + DIG AP —dP) | yro1 < CllZellpe) +Ce, (784
0 0
lebedyll i < €CAUIbe = Tl + DIl yroy < Ce, (7.85)

I I I
eb.diw| yi-1 < Ce||lb ool yi-1 < Ce|lb 1w < Ce, (7.86
lebloroll gt < Celblllyp 11910l gt < Cellbl el | < Ce. (1.86)

lhe — ﬁ||H§:116 < Ce. (7.87)

To estimate the term bg — l;, we first note that
I(yid I(syid
pi = (AW AT | 0 )
0 al(eué,ewé,eae,wg,ae)—aI(O, 0,0, w", a)
where the map a! is analytic. Next, the estimate (7.15) implies that

ij ij ij
111 e < N ot + CloW Ny < C+CNZellyoy . (1.89)
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From Proposition 5.2 and Lemma A.11, we see that the uil can be estimated by

o
i J ~iJ S+1/2| =il 5+1/2]+1
lue s = llete! Il g < V2T pans < CelPF 2L (7.89)
Also, from Proposition 7.8 and Lemma 7.9, we obtain

10, e — al&l|H§:lze +||Ve — V”ch:lle = ”Ze”}.];‘:lle +|dPe — dCD”H;(:llE

telloll yje-1 < CllZell i1 + Ce. (7.90)
§—1,¢ §—1,¢

The three estimates (7.88)—(7.90) along with Lemmas A.9 and A.10, and Propositions
7.5 and 7.8, show that

I.,iJ T, ilJ iJ iJ
1A% W) + AT G < Clul e+ CISU gy < Cet ClZel gy
and
la! (eue, ew’, eae, w!, ac) —a’ (0,0,0, %", &)
€ € € € e s YUy Uy ’ Hé{;l
ij = i i
= C (GHUE ”Hg‘zl + ||Ol€ Ol”H(éc:ll,e + “we w ”ngll,e =< Ce+ C”ZGHH;‘:II.E) .
Therefore
bl —b|, i1 <Ce+C|Z _
16 =Bl iy < A
and hence

o o N
1B = b3 Vil iy < Cllb = bl gt 1DV Il it < Ce+ 1 Zell ey - (7.91)
Next, we notice that
f(e,Ue, VolVe — fF(VIV = —pFe + f(Ve)Ve — (V) Ve + € f(€, Ue, Vo) Ve,
where

Feo:= —4p. (eagajnpqggq, 0,....,007

and f and f are analytic. We obtain
If(VeVe = FNVe+ef (6. Ue, VOVell ot < CllZellyp1 +Ce (1.92)
by the arguments used above. Also, the boundedness of the support of o (#) implies that

i i i
1Fell gy < Cellpeniji | g1 < Celpell gt 1l g < Cellpel ooy 1l s < Ce.

(7.93)
So then

I/ (e, Ue, VoVe = V)Vl gir < CliZell s+ Ce (7.94)
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by (7.92) and (7.93). Combining the estimates (7.83)—(7.87), (7.91), (7.92), and (7.94)
yields

||F€”H§:11,e < C||ZE||H§:111€ + Ce. (7.95)

Letting Z¥ = D%Z. and differentiating Eq. (7.81) yields
0 vt 1 I o I o o
b 0 Z; = 012 +b.01Z +¢q 0<|a|<k-—1,
where
g% = —[D%, b°19, 2% + [D*, b118; 2% + D*F..

Using the estimates above along with Propositions 7.5 and 7.8 and the calculus inequa-
lities from Appendix A, we find

18/ Zell ) = CliZell g+ Ce,

1D b2 ZE0 2 | = CIBE = Wl 118 Zell oy < CliZell oy +Ce,

|,

D, b9, 7% < CIIbL ki IDZe || k2 < CN Zell it s
It ezl =Cl SIIH(;;III sllegzge <C| gllﬂgfl{e

al,
and hence
o
19 1 < ClZell oy +Ce.
Combining this estimate with the estimates
0 1 I
10:b¢ + 01bcllLe < C,  |lbellL= < C,

and Lemma 7.1 shows that

R O0<|a|<k-—1.
§—1—|al,e

< (zenze)

— < Cl1Zell gy + )12

”H;(:]l,e
Summing over « and using Gronwall’s inequality, we get
1ZeOl g1 < CNZe O]l o1 + Ce forall (¢, €) € [0, T*] x (0, €.
8—1,e 8—1,¢
This estimate and (7.90) then prove the proposition since [|Z¢(0)|| x-1 < Ce by
5—1,¢
Proposition 6.1. O

We are now ready to prove a precise error estimate for the difference between the
relativistic and Newtonian solutions.

Proposition 7.11. Suppose —1 < § < —1/2 and k > 3. Then there exists a constant
C > 0 such that

15 (1) = 88D Wl,g + 11015 (1) = 8383d DO i + 110 (1) = D Ol ey
eV = Uigeer +10e(0) = 5Ol g +10,pe(0) = 3@l a2 = Ce

forall (t,€) € [0, T*] x (0, €].
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Proof. From the evolution equations and Proposition 7.8, we have
€0; (ﬁij — 828;{ CID) = ii — ea)ij,
and hence integrating yields

t
T i sJ & ij i o) ij ij
elif (1) — 8830l 2 < ellnf — 8i8iell 2 + /0 Iy (5) = ewf ©)ll 2 ds.

(7.96)
But
! ij ij ! ~ ii
1
/0 [ug (s) — €wy (S)IILg’GdS =< /0 | Ve(s) — V(S)”Hé\k:]“e + EIlw’(S)Il,rjyak_—ll‘eds (7.97)
and

e||gy' — s8]0l 3, < cé? (7.98)

by the calculus inequalities of Appendix A and Proposition 5.1. Also, by Lemma A.4
and uy ¢ = 9drii, we have

luy — 826£®||Lg€ < C||ull{€ - Sf‘SA{a’CI)IngiLE +ellu (1) — 85‘8‘1‘¢(t)||L§,<
+ellid (1) — 8,83 D)l 3 - (7.99)
Recall that pe = (4Kn(n + 1)) "a2" and p = (4Kn(n + 1)) "&>". Since [l | mk s
bounded as € N\ 0, we obtain Y
loe = Al = Cllae =@l = ClIVe = Vil e (7.100)
by Lemma A.10. We also have that ||0;ac|| ;-2 is bounded as € N\ 0, so the formulas
8—1,¢

2n 2n—1 ~ 2n ~n—1q ~
0tpe = —————0a " 0e, Ohp=——"""—0a"" 0,
4Kn(n+ 1) AKn(n+1)"

and the calculus inequalities of Appendix A imply that
[19¢ oe — 8tl5||[1(§f:l2E < C(llae — &”1.1(4\:12e + 10rce — at&||H§:]2€)

< CUVe = Vllgir +ldae = 9@l g ). (7.10D)

Finally, from the definition of V, and V, we have
nij i oJ 1 1 ~1 —1y,,4
371 () — 8264dd>(t)||H§_711’6 + 0 @0 =@ Ol et +eT IO = l”Hé‘:#,e
< ClIVe = Ve - (7.102)
§—1,e

The proof now follows as a direct consequence of Lemma 7.10 and (7.96)—(7.102). O
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In the above error estimate, the norm itself depends on €. We now show how to choose
norms independent of € which are compatible with the error estimate above. First, for
any n € R define a norm by

lulle,py i= D 1D%ullp-
loe| <€

Recalling that —1 < § < —1/2, fix n € [, —1/2]. Then from (A.24) and Lemma A.11,
we get that

1/2 1/2
lulleon—1 < CE™ P ullye — and oo < Ce™ 2 |ulye  (7.103)

for some constant C > 0 independent of €. Combining (7.103) with Corollary 7.11
yields the following theorem which is our main result.

Theorem 7.12. Suppose —1 < § < —1/2, —§ < n < —1/2 and k > 3. Then there
exists a constant C > 0 such that

15 (1) — 8485®(1) 10,6, + 11975 (1) — 848797 D (D) llk—1,2,9—1
Hv (@) = DT O llk—12.9-1 + € vH@) = Ulk—1.2,5-1
+Hlpe(®) = WO lk=1,2.9-1 + 130 (1) — 35 (D) llk—2,2,9—1 < Ce
forall (t,€) € [0, T*] x (0, €o].

n+3/2

Note that for n = —1/2, we have

lullo,6,—12 = llullpe and lulle2,—3/2 = llull g,

where ||u|| ge is the standard Sobolev norm. So the above theorem shows that the diffe-
rence between the relativistic and Newtonian solutions is of order € with respect to the
norms || - [|z6 and || - || gx—1.

A. Weighted Calculus Inequalities

In this and the following sections C will denote a constant that may change value from
line to line but whose exact value is not needed.

Let V be a finite dimensional vector space with inner product (-|-) and corresponding
norm | - |. Foru € L{, (R",V),1 < p < 00,8 € R, and € € Rx, the weighted L”
norm of u is defined by

lull,r = loe "™ ullLy it 1< p < oo (A.1)
Le ™ o ullp~  ifp=oo ~

/ 1
where o, (x) :=,/1 + 7 |ex|2. The weighted Sobolev norms are then defined by

1/p
> ID%u|)?, ifl1<p<oo
lullyer := 7 \lal<k Pl : (A2)
S.€ .
2 ID%ule if p = 0o

| <k
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where k € No, @ = (a1, ..., @) € Njj is a multi-index and D* = 3" ... 9,". Here
0
0 = —,
ox!
where (x!, ..., x) are the standard Cartesian coordinates on R".

The weighted Sobolev spaces are then defined as
Wyl = [u e WEP (R, V)| lulyier < 00
Directly from this definition, we observe the simple but useful inequality
18jullys = llullypn - (A.3)
We note that W 0 are the standard Sobolev spaces and fore > 0, the W P are equivalent

to the radlally weighted Sobolev spaces [1,7]. For p = 2, we use the alternate notation
H ;‘ ¢ = W& . The spaces L2 5.cand H g‘ . are Hilbert spaces with inner products

(ulv), / (ulv)o 2 "d"x, (A.4)
and
(ulo) e = D (D*ul D> " (A5)
T Jal<k o

respectively. When € = 1, we will also use the notation Wa P W; [ and Hf = Hf .
Let By be the open ball of radius R and ag and Ay denote the annuli B \ Bg and
B4 \ Bp, respectively. Let {¢;}52 =0 o be a smooth partition of unity satisfying

suppo C B, suppe; C Ayt (j = 1), and ¢;(x) = 12" 0)(j = .
Scaling gives a one parmeter family of smooth partitions of unity
P5(x) :=¢j(ex) (j =0)
which satisfy

SUpp @5 C Baje. supp ¢S C Ayji)e (j = 1), and ¢5(x) := ¢{ 2 )(j = D).

(A.6)
Define a scaling operator by
Siu(x) == u@’"1x). (A7)
This operator satisfies the following simple, but useful identities:
Si=10, SjoSk=3580S8;==S8uj-1, (A.8)
Sigs=¢7 (=1, (A.9)
ISjullLr =2 T llullzr, (A.10)

and

Sj oD% =20=Dllpe o ;. (A.11)
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Lemma A.1. For 1 < p < oo, there exists a constant C > 0 independent of € > 0 such
that

1
p p
clullfy < ligGul?, +le5 @5l = Cllul7, -
. =
Proof. From the identity
el 7 =/ |u|f’d"x+2/ lul? d"x
Byye Ayl e

and a simple change of variables, it follows that

a7y = llos* "/Pu||m34/)+22"<f DIS; @ W] gy ) (A12)

j=1
This identity and
—dp—n
max o (x)—ap—n _ 1272 if -6p—n>0
veBye 1 if—8p—n<0’
1 if -8p—n=>0
min Ug()()_ap_n = { —p—n P - s
x€B4ye 277 if-6p—n<0
2j) =% TR
max (Sjo0 ()~ = { U2 e =iy == 0
X€ly)e A+220-))y=7 if8p—-n<0
2=y 52 i sp —
IILiIl (Sjaé)(x)_ap_n (1 +2 . 7617)771 ’ if 3p "= 0 s
X€ay)e (1+2%)H)—2 if =8p —n <0
show that
—5—
Sy = 10l = Cll (A13)

and

1 -
22N < 2"V 0 TP ) L e

u||Lp(a4/ )

< C27PYVNS Ul ]y oy

(A.14)

for some constant C > 0 which is independent of € > 0. Using a change of variable,
the inequality (A.14) can be written as

1 i _ _
—p—pé(j=Drd J)n”unzp(a e )_2"(] 1)||S (o] 5— ”/pu)”Ll)(m;/E)

< 7P 7, (A.15)
2J+ /e
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From
2 2
¢f| =1g, and Z¢;+k’ =1, (A.16)
k=0  'Baje k=0 A+l /e
and (A.10), we obtain
3
Il Zp gy, < € (n«ssunip + D IS¢ ||£p) , (A.17)
k=1
and
2
11y ) = C Y 2RSS 1], (A.18)
k=0

Combining (A.12) with the inequalities (A.13), (A.15), (A.17) and (A.18) yields

o
lllfy = C [ Ngfullyy + > 277V IS; @5wl (A.19)
S€ j:l

for some constant C > 0 independent of € > 0.
Since supp ¢ C Baje and [|¢§ 1L = l[poll L, we get from (A.13) that

195175 < 10§11 700 1ull7 0, .y < Cllo® ™ Pullf g, . (A.20)
for some constant C > 0 independent of € > 0. Next,
—ps(j—1
27U (5w

< 2= P3(i=Dpn—j) Suell o a by (A.10) and (A.6),

2-f_|/e)
—ps(j—1 1—j :
< 2P DG Nl o) gy, Since Il = 165 L.

So there exists a constant C > 0 independent of € > 0 such that

C (W1 iy + 101 ) ifj =1

2=Pi=lig (p€)P . < ) . .
WO = om0 0D 82l ) 1522

_/'—1+k/6)

(A21)

Therefore

o0
lp§ull 7, + D 277U DS (@SwllY,
j=1

o0
<c Hae—s—n/pu"ip(&/e) +Z2n(]—1)”Sj(ae—é—n/l’u)||ip(a4/g)
j=1
by (A.15), (A.20), and (A.21)
< Cllull, by (A12),

where C > 0 is a constant independent of € > 0. The proof then follows from this
inequality and (A.19). O
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The above lemma shows that the norm
o0
—ps(j—1
lll7p = l9§ullyy + 227UV US (@51
,€ j=1

is equivalent for 1 < p < o0, independent of € > 0, to the weighted norm ||u||, » . For
q p p g LY
N3
p = 00, the appropriate norm is

lag = sup {Iggullie, 220~V gSule (j = 1)

and it is easy to see that there exists a constant C > 0 independent of € > 0 such that
Sl < Ml < Cllullzg.

The same arguments used in proving the previous lemma can be used to establish the
following generalization.

Lemma A.2. For 1 < p < oo, let

|||u|||” = ||</>0u||Wk,,+22 PU=DIS; @5l (A.22)
j=1

and for p = oo let
el oo = sup{li@gullpnos. 277V US; (@5 llweee (G = DY (A23)

Then there exists a constant C > 0 independent of € > 0 such that

1
p p p
—|lu < |lu Cllu
ey < Wil < Cllulfy,.
For the remainder of this section, we will use the two equivalent norms || - || Wk and
8.€
Il wher interchangeably and refer to both using the notation || - || t.p. From (A.22), it
8.€ 5
follows that there exist a constant C > 0 independent of € > 0 such that
[|ue]| wher = C||u|| ..» Whenever ky < k; and §; < 8. (A.24)

52 (51 €

Thus we have the inclusion W;}lﬁ’ép C W;;”ep for ko < ky and §; < &;. The representation
(A.22) is particularly useful for extending estimates from the usual Sobolev spaces Wk""

to the weighted ones Wa " (e > 0) as the next lemma shows. It also makes clear the
philosophy behind deriving weighted Sobolev inequalities which is to derive global
estimates from scaling and local Sobolev inequalities [1].

We remark that the norm || - || Wk as an alternate representation for the standard
8,1

weighted norms || - || x.p, was introduced by Maxwell in [25]. There he used the norm
5 1

to define the weighted Sobolev spaces for non-integral k (see also [4]). Here we will
only be interested in integral k.
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Lemma A.3. Suppose g > 0 and for allu € C*°[R", V), u — Fi(u) is a map that
satisfies

6 F1(u) = ¢G5 F1((dg + o7u),
1
P F1(u) = (b;Fl(Z ¢j+ku) (=D,
k=—1
SiFiu) =2"Y"V F(Su) (j =D,
and Fy (o = 2,3,4,5) are linear operators on V.

(i) If there is an estimate of the form

||F1(u)||wk1.171 = C1||F2(M)||Wk2w2s

where p1 > pa, then

||F1(u)||W5k1,p1 = ClF2)l k.

1-€ 8p.€
for some constant C > 0 independent of € € [0, €g] provided §1 + A > §».
(ii) If there exists an estimate of the form
| (U)”kapl <Cq F2(“)||Wk211>2 | F3 (“)”szm +Ca|| Fo(u) ||W/<4-P4 | Fy () ||W/<5.p5 >
1 1 1 1

1
where — = —+ — = — 4+ — (1 < p1 < py <00 a=2,3,4,5), then
P1 P2 P3 P4 D5

I F1(u)ll Wi =< C(Cl 1 F2(u)]] Wi I F3)]l Wi +Co || Fa(u) || Wi | 5 (u)||W;;5:€P5)
for some constant C > 0 independent of € € [0, 9] provided 51 + A > max
{02 + 83, 84 + 05}

Proof. We only proof part (ii) for | < p, < oo. Part (i) can be proved in a similar
manner using the inequality

1/p 1/q
Za;’ < Za;f fora; >0 and 0 <g < p (A.25)
j J

instead of Holder’s and Minkowski’s inequalities. See also the proof of Theorem 1.2
in [1].

Recall Holder’s and Minkowski’s inequalities which state thatfor 1 < p < g <r <
00, 1/p =1/q +1/r and any two sequences a;, b; > 0 that the following holds

1/p 1/q 1/r

Z alb? < Z al Z b (A.26)
J J J

and
l/p I/p 1/p

AR NLE B DICE B DI I (A-27)
] j
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Next, suppose j > 2. Then

[BYICH ST

1 P1 1 Pl
= [¢5S; Fy ( > ¢§+ku)) < 27 U=Drr g ( > S,-¢;+ku)
k=—1 wki.p1 k=—1 wki.r1
1 1
k=—1 wka.p2 k=—1 Wk3.p3
1 1 P1
+C» F4( Z Sj¢;+k“) Fs ( Z Sj¢j+k"‘) s
k=—1 Wk4.p4 k=—1 Wk5,p5

where C > 0 is a constant independent of € > 0. Note that in deriving this, we have
used the fact that ||¢5 ||y« .« is bounded for € € [0, €p]. From the above inequality, we
see that

270U S (g Fr ()|

Wki1-P1

1
<C (612“‘2”‘“ ( > ||Fz(s,-+k<¢;+ku>>||sz,p2)2—<‘3<f—l>

k=—1

1
X (z ||F3(Sj+k(¢j+ku))||W’<3~p3)

k=—1

1
+Cp2700D ( > ||F4<sj+k<¢;+ku>>||Wk4,p4)2‘55”‘”

k=—1

1 D1
X (Z ||FS(Sj+k(¢;+ku))||W’<5~p5)) s

k=—1

where we have used §; + A > max{§, + &3, 84 + ds}. The above inequality along with
(A.26) and (A.27) imply

~ 1/p1
D 27D (@S FL @) I,
j=1
o 1/p2
<c| | D 27UV (S @5unIb,
j=1

~ 1/p3
x| D 27U F(S (@Sun D, s

Jj=1
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. 1/pa
+C5 22754174(]71)||F4(Sj(¢;l"))”;jk4,p4
j=1
N | 1/ps
% 22—65175(]—1)”[;‘5(5‘]- (¢;u))||€;k5’p5 )
j=1
and hence
. 1/p1
Z 2=1p1(j—1) IS; (q‘)j Fi(u)) ||€VlkI )l <C (Cl | F2 ()|l WB’;Z’:Z | F3 ()|l Wﬁ’?’:@
Jj=1 Y ’

+Co || Fy(u) || W§4'k4 | F5@) |l W;s-ks) .
4.€ 5.€
(A.28)

Similar arguments show that

1/p1
(||¢6F1 @I, #1515 F (u))n’v’v'kl.pl) e (clan(u)qup;_;kz 5@l

31.€ 31.€

+C2 | Fa )l paks IIFS(M)IIWps,ks) )

84.€ 35,€

(A.29)

for some constant C > 0 independent of € € [0, €p]. The proof now follows from the
two inequalities (A.28) and (A.29). O

The next lemma is a variation of the previous one and can be proved in the same
fashion.

Lemma A.4. Suppose €y > 0 and for allu € C®(R", V), u — F(u) is a map that
satisfies

o6 F1(u) = ¢G5 F1((¢5 + d)u),

1
¢S F1(u) = ¢5F ( Z ¢§+ku) (=D,
k=—1
SiFi(u) =27V F(Sju) (= 1),
and

F»=DP), F3=P;, Fy=DPy, and Fs= Ps,

where Py (a = 2,3,4,5) are linear operators on V.
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(i) If there exists an estimate of the form

IF1 ) Lk < CLlF2@) gy s

where p1 > po, then there exists a constant C > 0 independent of € € [0, €o] such
that

IF1)ll wher = c (IIFz(M)II .72 + €| Poul| wh: pz)
1 N3 27 L€ 2 €
provided §1 + A > 5.
(ii) If there exists an estimate of the form

1F1@) [y < CLlE2G0) [yka.pa | F3 () sz +Coll F2 @) [l kg pa 1|1 1 @) [ yks.ps »

1 1 1 1 1
where — = — + — = —+ — (1 < p; < py <00 a=2,3,4,5), then
P1 P2 P3 P4 D5

[ F1 @) whn = C( (IIFz(u)II kp.py +ElPaull k. Pz) I[£3 (@) | w3

16 Sy—1l,e 526 36

+Cs (”F4(M)HW/‘4 rg t €| Pau| k4 1)4) | F5 ()| ks 175)

84—1,€ 4e 56

for some constant C > 0 independent of € € [0, €9] provided §; + . > max
{872 + 83, 64 + &5}

Remark A.5. By using the generalized Holder’s inequality, part (ii) of Lemmas A.3 and
A.4 can be extended in the obvious fashion if there exist estimates of the form

Il 1 (U)HW’%M = C||F2(u)||wk2~P2 ||F3(u)||wk3-P3 T ||FN(M)||W1<N-PN s

where % = Zzsz % (1 < p1 < pi <), FrisasinLemma A.3, and F; (i > 2) are
of the form F; = P; or F; = D P; with P; a linear operator on V.

We will now use these two lemmas to extend various inequalities from the standard
Sobolev spaces to the weighted ones. All of these inequalities have been derived before
by various authors, see for example [1,4,7,8,25,30]. The new aspect here is that we
show that the constants in the inequalities are independent of € > 0 and hence we find
inequalities that interpolate between the weighted (¢ > 0) and the standard ones (¢ = 0).
We begin with a weighted Holder inequality.

1 1 1
Lemma A.6. Suppose €y > 0, 61 = §1+62 and — = — + —. Then there is a constant

P1 p2 D3
C > 0 independent of € € [0, €o] such that

uv <Clu v
luvll < Cllallpz 0l s

P2 P3
forallu € Ls, . and v € Ls;

Proof. Follows directly from Holder’s inequality and Lemma A.3. O

Next, we consider weighted versions of the Sobolev inequalities.
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Lemma A.7.

(i) Foreg > 0andk > n/p there exists a constant C > 0 independent of € € [0, €q]
such that

leellge, = Cllullyrr

forallu € Ws ¢ - Moreover u € Ca . and for e > 0, u(x) = o(|x1%) as |x| = oo.
(ii) Foreg > Oand1 < p < nthere exists a constant C > 0independent of € € [0, €]
such that

lull i < € (UDull g +elulyy )

forallu e W;”Ep.
Proof.

(i) The estimate ||u||Loc < C||u|| «.p for some constant C > 0 independent of € > 0
6

follows from the usual Sobolev inequality [u]lp~ < Cllullyk» (k > n/p) and
Lemma A.3. Since || - Iy for € > 0 is equivalent to || - Iy kops the statement
6,6

u(x) = o(]x|®) as |x| — oo for € > 0 follows from Theorem 1.2 in [1].
(i) Follows from Lemma A.4 and the Sobolev inequality ||u||; np/w-p < C||Dul|Lr
which holds for allu € W7 where 1 < p <n. O

In addition to the Sobolev inequalities, we will also require weighted versions of the
multiplication and Moser inequalities. We first consider the multiplication inequalities.

Lemma A.8. Supposeeg > 0,1 < p < 00, ki, ky > k3, ks < kj+ko—n/p, 814682 < 83,
and Vi x V; — V3 :(u,v) — uv is a multiplication. Then there exists a constant
C > 0 independent of € € [0, €y] such that

luvll hs.p < Cllul| klpllvllwkz,p
(Sge (31 8),€

ki,p ka,p
forallu € Wy '~ and v € Wy

Proof. This proof does not follow directly from Lemma A.3, but can be proved in a
simlar fashion. To see this first recall the Sobolev mlutiplication inequality

||MU||Wk3-p = C”””Wkl,P”U”sz,P (A.30)
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which holds for 1 < p < o0, k1, k2 > k3, and k3 < k1 +ky —n/p. So

1/p
vl gyt = Il¢ouvllww+22 PEU=DYS; (@Suv)Il
j=1
= C (g5 +vllp,,,
o 1/p
+Zz-p83<f-l>usf<¢5u>sf(Z )
j=1
2
= C (I95u@ +$D0l7)7,
2/p

o0
_ i 2
e3ams a3 o )i,
j=1 k=—1
2 2
< ¢ (Iggullyle 1950172,
. i 2/p
+ > 2PNy (@t | P 2 PRI YIS  (S0) s
j=1
1/p
<C ||¢ou||wk1p+zz R NTCHD
j=1
1/p
x ||¢0v||Wk”+Zz e T [
j=1

< Cllullyx.p 0]l k.p
WSI W(;2

where in deriving the third, fourth, and fifth lines we used (A.25), (A.30), and (A.26),
respectively. 0O

Lemma A.9.

(i) If 9 > 0 and §1 > max{5y + 83, 84 + 85}, then there exists a constant C > 0
independent of € € [0, €g] such that

<
||uv||H§1.E <C (||u||H§2’€||U||L§;E + ||U||H§4,E||“”L§’§,s)

forallu e H;‘Z’E ﬂLg’;E and v € Hk cNLE ..

(ii) If 9 > 0 and §1 > max{§ + I3, 84 + 85}, then there exists a constant C > 0
independent of € € [0, €g] such that

D%, ulv <C Dull k-1 +€|lu v
(D%, u] ||L§1_my€ < [ ||H51<2_1LE [ ”sz.e olige,

+(1Dulge,  +elulleg,) ||v||H;57;)
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forall la| <k, u e Hg‘z,e N W;ﬁo and v € H;:el N Lg;e.
(iii) Suppose ey > 0, F € CY(V, R™) is a map that satisfies DF Ck_l(V, R™), and
b

1 < |a| < k. Then there exists a C > 0 independent of € € [0, €q] such that
ID“F@ll, = CIDFlgslullfx (1Dull ey +elullz )

forallu € H(SI"E N L.

(iv) Suppose €g > 0 and F € C][j(V, R™). Then there exists a C > 0 independent of
€ € [0, €g] such that

IFGON g < CIFller (0 + Tl =Dl

forallu € H;"e N L.

Proof. Inequalities (i)—(iv) follow directly from (A.24), Lemmas A.3 and A.4, and the
following standard Sobolev inequalities:

@) uvllge < C (”M”Hk”UHLOO + ||v||Hk||u||Loo) forallu € H* N L*>® and v €
H*N L™,
(i) [[DY ulvlz2 < C (I Dullg-tllv]ze + | Dullzo [|v]| ge-1) for all || < k, u €
H*NWh® andv e H*=1 n L™,
(iii) Suppose F € C*(V,R™) is a map that satisfies DF € C}Ij_l(V, R™) and 1 <
|| < k. Then [|[0%F(u)]l;2 < C||DF||C£_1 ||u||]2§Ol||Du||Hk_| forall u € H* N

L.

(iv) Suppose F € C’l;(V, R™). Then || F(u)|| g < C||F||c}§(1 + ||u||]i;l)||u||Hk for all
ue H N L™,

Note that we have used || - ”L8°e = -|lgee. O

In addition to the Moser inequalities, we also need to know when the map u +— F(u)
is locally Lipschitz on H Sk .

Lemma A.10. Suppose g > 0, F € Cﬁ(V, R), FO) = 0,8 <0, and k < ¢, and
k > n/2. Then for each R > 0 there exists a C > 0 independent of € € [0, €] such that

IF @) = Fun)llgs < Clluy —uall gy for all uy, uz € Br(Hy,).
Proof. See the proof of Lemma B.6 in [30]. O
We conclude this section with a lemma comparing the norms || - || L and || - || Ly
Lemma A.11.
(i) If6 <—n/p,1 <p<00,and0 <e€ <1, then

—6-n/p < <
€ llullpp < ||“||L§e = llullpr

forallu € Lg.
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(ii) If —n/p < 6,1 < p <oo,and(0 < € < 1, then

—5—n/p
u < ||lu <e€ u
” ”L§ = ” ||L§,e = ” ”LSP

forallu e Lg.

Proof. (1) By assumption 0 < ¢ < 1, and so we have €o1(x) < oc(x) < o1(x)

for all x € R". By assumption —§ — n/p > 0 and so we get e“s_"/pol_s_"/” <

o < o 810 Therefore, directly from the definition of the weighted norm, we

find e =3/ ||u|| 12 < llullpp < lullp. Part (ii) is proved in a similar fashion. O
N3

B. Quasilinear Symmetric Hyperbolic Systems

In this section we establish a local existence and uniqueness theorem for a particular
form of the quasilinear symmetric hyperbolic system on the weighted Sobolev spaces
H g‘ In [30], we proved a local existence and uniqueness theorem for quasilinear parabolic
systems on the H g‘ spaces by adapting the approach of Taylor [39] (see Theorem 7.2,
p. 330, and Proposition 7.7, p. 334) which is based on using mollifiers to construct a
sequence of approximate solutions and then showing that the sequence converges to a
true solution. Here, we will again follow the same approach for quasilinear symmetric
hyperbolic systems and adapt the local existence and uniqueness theorems of Taylor (see
Proposition 2.1, p. 370) to work on the weighted Sobolev spaces. We will only provide
a brief sketch of the proof since the proof is very similar to the one in [30] and the
details can easily be filled in by the reader. Related existence results have been derived
independently in [4] using a different method.
The hyperbolic equations that we will consider are of the form

bo(u,v)atv :bj(u,v)aiv+f(u, v)v+h, (B.1)
v];=0 = vo, (B.2)

where

(i) the map u = u(t, x) is R"-valued while the maps v = v(¢, x) and h = h(t, x) are

Rm-valued,
() b b7, f e CER" x R™ Myw) (j = 1,...,n),
(ii) »%andb’ (j=1,...,n)are symmetric, and

(iv) there exists a constant @ > 0 such that

bO(€1.6) = oy forall (51,&) € R x R™. (B.3)

B.1. Galerkin method. Let j € C3°(R") be any function that satisfies j > 0, j(x) =0
for |[x| > 1, and fR,, j(x)d"x = 1. Following the standard prescription, we construct
from j the mollifier j,(x) :=n~"j(x/n) (n > 0) and the smoothing operator

Jy@)(x) := je ¥ u(x) = /Rn Jn(x = yuy)dy.
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Following Taylor ( [39], Ch. 16, Sects. 1 & 2), we first solve the approximating
equation

B0t Jyvg) vy = Jyb? (1, Jyvy)0i Jyvy + Jy £ty Jyvyg) Jyvy + Jyh,  (B.4)
Upli=0 = vo, (B.5)

and later show that the solutions v, converge to a solution of (B.1)-(B.2) as n — 0.

Proposition B.1. Suppose T1, T, > 0, n > 0,§ <y <0,k > n/2, vo € Hk,
u e CO([—Tl, T3], H)’f), and h € CO([—Tl, 1>], Hf)for some T > 0. Then there exists

aTy > 0 (Ty < Th, T) and a unique v, € Cl((—T*, Ty), Hak) that solves the initial
value problem (B.4)—(B.5). Moreover if supy<, -, [|v,(?) ||H5k < 00 then there exists a

T* € (Ty, T2] such that vy extends to a unique solution on (=T, T*).
Proof. Fix n > 0 and define
F(t,v) i= (b"(u, Jyu) " (Jyb! u, Jyv)d;i Jyv + Jy f u, Jyv) Jyv + Jyh).

Then the approximating equations (B.4)—(B.5) can be written as the first order differential
equation v = F(v) ; v(0) = vg on H§ . If we can show that F is continuous and is

Lipshitz in a neighborhood of vg in HX, then the proof follows immediately from standard
existence, uniqueness, and continuation theorems for ODEs on Banach spaces.
To prove that F is locally Lipshitz, we first prove the following lemma.

Lemma B.2. Suppose § <y <0, £ > n/2 and that f € Cﬁ(Rm x R™, My xm). Then
for eachu € H)f and R > 0 there exists a constant C > 0 such that

I f(u, v)vr — f(u, v)vall e = Cllvi = vall
forall vi, v, € Br(HY).
Proof. Let £(0,0) =c and g(x, y) = f(x,y) — c so that g(0, 0) = 0. Then
S, v)vr — fu, v2)vy = c(vr — v2) +(g(u, v1) — g(u, v2))vy + g(u, vV2) (V1 — v2).
Since y < 0and ¢ > n/2, we get from Lemma A.8 that
£t o1 = £, vl e < € (141G, 02l g ) on = vl
+”U1”H§ llg(u, v1) — g(u, U2)||H§-

By Lemma A.10, Lemmas A.7 and A.9, and (A.24), we get from the above inequality
that

1 f e o1 = £, v2)vall g < CClull g, Mot lges 02l golion = vall e,
where P(y1, y2, y3) is a polynomial. This proves the lemma. 0O

Using Lemma A.7 of [30], it is not difficult to prove the following variation of the
above lemma.
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Lemma B.3. Suppose§ <y <0,n>0,¢ > n/2andthat f € Cﬁ(Rm X R™, My scm)-
Then for each u € Hf and R > 0 there exist a constant C > 0 such that

If @, Jypr)DJyor = f (u, Jyv2) DIyl e < Cllvy = vall e

forall vy, vy € BR(HY).

The proof now follows easily from the above lemmas, Lemma A.7 of [30], and the
estimates of Appendix A, which show that for any R > 0 the map F : ([—T1, T2] %
Br(H é‘_l) — H g‘_ | is continuous and moreover there exists a constant C > 0 such that

IF(t, v1) = F(t, u2)ll s < Cllor = wall e forall vy, v € Br(HY). O

B.2. Energy estimates. Fix k > n/2 + 1. By Proposition B.1, we have a sequence of
solutions v, € Cl(—T ), T, H;‘) (0 < T(n) < T, Tr) to the approximating Eqs.
(B.4)-(B.5). The goal is to derive bounds on v, in the H, g‘ spaces independent of 5. To
do this, we use energy estimates which we now describe.

Lemma B.4. Supposea® € C'([0, t], W), a/ € CO([0, 7], W), f e C([0, 7], L})
and that w € CL(]0, 7], Li) satisfies the equation

" w = Jnajajan +g.

Then there exists a constant C > 0 independent of n > 0 such that

d 0 . = 2
gr (wlatw) = €[ iaivalis + o) 1wl +lgloz 1wl .z |

where diva = 9,a° + Bjaj anda = (a', ..., a".

Proof. First, we have

4 <w|a0w> = 2<w|a08 w> +<w|8 a0w>
dt L e B
i 0
= 2<w|]na18jl,7w>L% +2 (w|g)L% + <w|8;a w>L% .
Letting JnT denote the adjoint of J,, with respect to the inner-product (A.4), we can write
the above expression as

L (B

d . .
—<w|a0w> , = 2<J,7Iw|a/8j.l,,w>Li +2(w|g)L% +<w|81a0w> :

dt L2
Integration by parts shows that

<J,;rw|aj8jfnw>L — _<ajj,jw|af1nw>L2 _ <J,jw|(ajaf +afp*13jp)1,,w>L2 . (B.7)
A A

2
A

where p = 01_2)\_". Since ||p~19;pll < oo, together Lemmas B.7 and B.8 of [30]
and (B.7) imply that

(fwlalapaw) , <=(0;0ywlal Jyw) +C(1+ 00 |t @) w]2. (B.8)
x X *
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Again integrating by parts and using Lemma B.8 of [30], we find that

—<Bjan|afan>L < CA+ 3" [l + allL=)lwll 7. (B.9)

, =
A

The proof now follows from the Cauchy-Schwartz inequality and Egs. (B.6), (B.8), and
(B.9). O

Let vy = D%y, b = b, Jyvy), b = bI (u, Jyvy) and fy = f(u, Jyvg)Jyvy.
The evolution equation (B.4) implies that

vy = (b))~ Iybldj Tyvy + BNy + b)) (B.10)
Differentiating this equation yields
Yo = Jyblo; Jyv + g%, (B.11)
where
0 0y—1 j 0 0y—1 0 0y—
g7 =bYLD, (W) ,b10; Jyvy + D (B, 1)+ D% (67 0h)
(B.12)

To simplify the following estimates, we will assume that b/ (0,0) = 0. It is not
difficult to treat the case where b7 (0, 0) # 0. Recalling that§ <y <Oandk > n/2+1,
we get from the calculus inequalities of Appendix A and Lemma A.7 of [30] the following
estimate

1651, (b~ Jaby10; Iyvgll 2 < Wbyl LD, ()™ Iybg 19 vyl 2
<C (n(b‘;)—lan,f;qu 19 yvpllLee | + ||(b2>—11nb4'||W1‘oo||a,-fnvn||H6k:;)
k—1
< [+ Ul +oyl=) ) (Nl g + ol gg ) oyl
+(1+ s + oyl vl ]
where C is independent of 7. By the Sobolev inequality (Lemma A.7) we have
lullwroe < Cllullpg. lwios + [l ree < Cllvgl e,
and hence
165LD%. ()™ Jybjlo Iyvgll 2 < PClull g oyl )

for a n independent polynomial P (y;, y2) . The other terms in g% can be estimated in a
similar fashion to get

e Nz, = P (g Ionlgs 1l g) (B.13)

where as above P(y1, y2, y3) is an n independent polynomial . It can also be shown
using the calculus inequalities and (B.10) that

Idivblize < P(lull g, vyl g 1l - (B.14)
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Finally, we note that
1Bl < C. (B.15)
Next, if we define
lonls = > (D w60 v,) ,
lor| <k 8= lel
then by (B.3) and (B.15) there exists a constant C > 0 independent of 1 such that

Cﬁlllvnlngk = llvglle,s < Clivgll e (B.16)

Since supy,<7 ||u(t)||H}/f < 00 and supy,<7) ||h(t)||H;( < 00, Lemma (B.4) and
(B.13), (B.14), (B.15), and (B.16) imply that

d
27 1o 175 < Cllvgllx.o)llvgllx.s (B.17)

or equivalently

d
77 Inllis = P(llvylle.s)

for a polynomial P(y) with positive coefficients that are independent of n > 0. By
Gronwall’s inequality, (B.17), and Proposition B.1, this implies that there exists constants
Ty, K > 0, both independent of n > 0, such that 7'(n) > T, and

sup [luy @l gr = K. (B.18)
0<t<T,
Using the time reversed version of the equation (i.e. sending t — —f) we also get,
shrinking T if necessary, that

sup ||vn(t)||H§ <K. (B.19)
—T,<t<0
Finally, from (B.10), (B.18), (B.19), Lemma A.7 of [30], Lemmas A.7 and A.9, and
(A.24), we see, increasing K if necessary, that

sup ||8zvn(t)||H5k—1 <K. (B.20)

—Ti=<t<Tx

B.3. Local existence and uniqueness. To get local existence following the approach of
Taylor (see Theorem 1.2, p. 362 in [39]), we let N\ 0 and use the bounds (B.18)—(B.20)
obtained from the energy estimates to extract a weakly convergent subsequence of v,
which has a limit that solves the initial value problem (B.1)—(B.2). Since the proof is
very similar to that of Theorem B.2 in [30], we omit the details.

Proposition B.5. Suppose T\, T» > 0,8 <y <0, k > n/2+1, v9 € H*, u €
CO([—Tl,Tz],H)’f) and h € CO([—Tl,Tz],Hf). Then there exists a T, > 0

Ty < min{T), Tr} and av € L®((—Ty, Ty), Hg‘) N Lip((—Tx, Ty), Hg‘_l) that solves
the initial value problem (B.1)—(B.2).



186 T. A. Oliynyk

Using the estimates of Appendix B of [30] and of Appendix A and B.2 of this paper,
it is not difficult to adapt the proofs of Propositions 1.3—1.5, pp. 364-365, in [39] to get
the following theorem.

Theorem B.6. The solution v from Proposition B.5 is unique in L°° (=T}, Tz), Hll(‘)c) N
Lip((—T1, T7), Hk_l) and satisfies the additional regularity

loc
ve CO(=Tw, T, HH N CY(~T, ), HETY).

Moreover, if T, < Th and supy<p 7, |v(0)|ly1.00 < 00, then there exists a T* € (Ty, T5)
such that the solution can be extended to a solution of (B.1)-(B.2) on (—T, T*).

For linear systems, the energy estimate (see Lemma 7.1 with € = 1) ensures, via the
continuation principle of the above theorem, that the solutions can be continued as long
as the functions u(¢) and h(t) are defined.

Proposition B.7. Suppose T1, T, > 0,6 < y < 0, k > n/2+1, vy € Hk,
u e CO([—Tl, T3], H)’f) and h € CO([—Tl, T3], Hg‘). Then the initial value problem

b2(u)dv = b/ (w)djv + f(w)v +h, (B.21)
v];=0 = vo (B.22)

has a solution
ve CO—T, Tol, HY) N Y (-Ty, Tal, HE YY)
that is unique in L ((=Ty, T»), H{fm) N Lip((=T1, 1), Hllf);l)-

Let [n/2] denote the largest integer with [rn/2] < n/2 and ko = [n/2] + 2. Then
differentiating the solution from Theorem B.6, with respect to ¢, and using Proposition
B.7 yields the following result.

Corollary B.8. Suppose k = ko + s, u € ()j_o C'(-T1, T2], H}’,"Z) and h €

Nizo CYU-T1, T2], Hé‘%). Then the solution from B.5 satisfies the additional regu-
larity

s+1
ve () CH(=T T, Hy ).
=0
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