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Abstract. We study formal expansions of asymptotically flat solutions to the
static vacuum field equations which are determined by minimal sets of freely
specifyable data referred to as ‘null data’. These are given by sequences of
symmetric trace free tensors at space-like infinity of increasing order. They are
1 : 1 related to the sequences of Geroch multipoles. Necessary and sufficient
growth estimates on the null data are obtained for the formal expansions
to be absolutely convergent. This provides a complete characterization of all
asymptotically flat solutions to the static vacuum field equations.

1. Introduction

In this article will be given a characterization of asymptotically flat, static solutions
to Einstein’s vacuum field equations Ric[g] = 0. We thus consider Lorentz metrics
which take in coordinates suitably adapted to a hypersurface orthogonal, time-like
Killing field K the form

Gg=1v2dt> +h, v=uv(z% >0, h = hay(2°) dz® da® (1.1)

where h denotes a negative definite metric on the time slices S, = {t = ¢ = const.}
and the Killing field is given by K = 0. In this representation Einstein’s vacuum
field equations reduce to the static vacuum field equations

- 1~ - .
Rab[h]:;Danv, Ajv=0 on S=05. (1.2)

It will be assumed that S is diffeomorphic to the complement of a closed ball B (0)
in R~3 with a diffeomorphism whose components define coordinates z%, a = 1, 2, 3,
on S in which the asymptotic flatness condition'

%+Ok(|x|_(1+e)) as |z| — oo,

v (1.3)

~ 2
hac: <1+|777|l) 5ac+0k(|$|_(l+é)), v=1—

IThe terms Oy (|z|~(1+9)) behave like O(|x|~(1*¢+7)) under differentiations of order j < k.
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is realized with some € > 0 and k > 2, where |.| denotes the standard Euclidean
norm.

Solutions to (1.2) satisfying the fall-off conditions (1.3) have been character-
ized by Reula [23] and Miao [18] in terms of boundary value problems for the static
field equations where the data are prescribed on the sphere 85, which encompasses
the asymptotic end.

Our interest in static solutions comes, however, from the observation that
for vacuum solutions arising from asymptotically flat, time symmetric initial data
asymptotic smoothness at null infinity appears to be related to asymptotic staticity
of the data at space-like infinity [14,25]. To analyse this situation we wish to control
the static vacuum solutions in terms of quantities defined at space-like infinity.

Another reason for giving such a characterization results from the work by
Corvino [5,6], Corvino and Schoen [7], and Chrusciel and Delay [3,4]. These au-
thors deform given asymptotically flat vacuum data outside prescribed compact
sets to vacuum data which are exactly static or stationary near or asymptotically
static or stationary at space-like infinity and use such data to discuss the existence
of null geodesically complete solutions which have a smooth asymptotic structure
at null infinity. To assess the scope of these results it is desirable to have a com-
plete description of the asymptotically flat static vacuum solutions in terms of
asymptotic quantities.

A characterization of this type has been suggested by Geroch by giving a
definition of multipole moments for static solutions [16]. He assumes the metric h
to admit a smooth conformal extension in the following sense. With an additional
point 4, which is to represent space-like infinity, the set S = SuU {4} is assumed to
acquire a smooth differential structure which induces on S the given one, which
makes S diffeomorphic to an open ball in R? with the center representing i, and
which admits a function Q € C2(S) N C>°(S) with the properties

Q>0 on S, (1.4)
hap = Q2 hey  extends to a smooth negative definite metric on S, (1.5)
Q=0, D=0, D,DyQ=-2hy at i, (1.6)

where D denotes the covariant derivative operator defined by h. We note that
these conditions are preserved under rescalings h — 94 h, Q — 92 Q with smooth
positive functions ¥ satisfying 9(i) = 1.

With these assumptions Geroch defines a sequence of tensor fields P, P,,
Puyay, - - - near i by setting?

1
P=Q"Y2(1—-v), P,=D,P, Py, =C <Da2Pa1 — §PR“2‘“) ,

Pap+1...a1 - C(Dap+1pap...a1 —Cp Pap+1...a3 Ra2a1) )
2p—1
with cpz%, P=12,3 ...,

2We depart from the convention of [16] by changing the sign of P.
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where R, denotes the Ricci tensor of hyp, and C the projector onto the symmetric,
trace free part of the respective tensor fields. The multipole moments are then
defined as the tensors

v= P(Z), Va,..ax = Pap...al(i), p=1,2,3,...,

at i. Setting aside the monopole v, we will denote the remaining series of multipoles
by

Dinp = {Vars Vasar s Vasasars -« -} - (1.7)

The problem of characterizing solutions to a quasi-linear, gauge-elliptic sys-
tem of equations of the type (1.2) by a minimal set of data given at an ideal point
representing space-like infinity is unusual and certainly quite different from a stan-
dard boundary value problem for (1.2). There are available some results which go
into this direction but little has been done on the general question of existence.

Miiller zum Hagen has shown that solutions v, e to (1.2) are real analytic
in h-harmonic coordinates [20]. The question to what extent the multipoles in-
troduced above determine the metric h,p and the function v raises the question
whether this metric is real analytic even at ¢ in suitable coordinates and confor-
mal scalings. Beig and Simon [2] have shown (under assumptions which have been
relaxed later by Kennefick and O’Murchadha [17]) that the rescaled metric does
indeed extend in a suitable gauge as a real analytic metric to ¢ if it is assumed
that the ADM mass satisfies

m+#£0. (1.8)

We shall assume this result in the following and shall not go through the argument
again, though its structural basis will be pointed out in passing. Beig and Simon
also provide an argument which essentially shows that a given sequence of mul-
tipoles determines a unique formal expansion of a ‘formal solution’ to the static
vacuum field equations.

For axisymmetric static vacuum solutions, which are special in admitting
explicit descriptions [26], the question under which assumptions a sequence of
multipoles does indeed determine a converging expansion of a static solution has
been studied by Béackdahl and Herberthson [1]. For the general case, for which the
freedom to prescribe data is much larger, this problem has never been analyzed.
For this reason the results referred to above remained essentially of heuristic value.

It is the purpose of this article to derive, under the assumption (1.8), neces-
sary and sufficient conditions for certain minimal sets of asymptotic data, denoted
collectively by D,, and referred to as null data, to determine (unique) real analytic
solutions and thus to provide a complete characterization of all possible asymptot-
ically flat solutions to the static vacuum field equations. The behaviour of these
solutions in the large will not be studied here. We shall only be interested in what
could be called ‘germs of static solutions at space-like infinity’, for which S may
comprise only a neighbourhood of the point ¢ which is quite small in terms of h
(in terms of h they cover infinite domains extending to space-like infinity).
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While the multipoles above are defined for any conformal gauge, it will be
convenient for our analysis to remove the conformal gauge freedom. As shown
below, the metric h = Q2 h defined with the preferred gauge

0 (1 —v ) 2 ,
m
on a suitable neighbourhood S of space-like infinity, can be extended with (1.4)—

(1.6) in suitable coordinates to a real analytic metric at ¢. The metric so obtained
satisfies R[h] = 0 on S. In this gauge we get with the notation above

P=m, P,=0, Py, :—% Sagay » (1.9)
Pairiar=C(Day i Pa ar = CopPa oy Savar)s P=2,3 ..., (1.10)

where s, denotes the trace free part of the Ricci tensor of h. In the given gauge
we consider now the set

Dn = {Sa2a1 (i)’C(Da38a2a1)(i)7C(Da4Da38a2a1)(i),
C(DasDa4Da35a2a1)(i), ...... } .

Given m # 0 and the sequence D,, associated with h, one calculate the multipoles
Dmp of h and vice versa. The sets D,, and D,,,, thus carry the same information,
but D,, is easier to work with because the expressions are linear in the curvature.

Let now ¢y, a = 1,2,3, be an h-orthonormal frame field near i which is
h-parallelly propagated along the geodesics through ¢ and denote the covariant
derivative in the direction of ¢, by D,. We express the tensors in D,, in terms of
this frame and write

D:L = {88231 (i),C(Da38a2al)(i),C(Da4Da3Sa2al)(i),
C(DasDa,DaySaza;) (i), ... }. (1.11)

We note that these tensors are defined uniquely up to a rigid rotation ¢, — s, ¢
with (s°a) € O(3,R). These data will be referred to as the null data of h in the
frame cy.

It will be shown that if these data are derived from a real analytic metric h
near ¢ there exist constants M, r > 0 so that the components of these tensors
satisfy the Cauchy estimates

M p!

rp

IC(Da, ... Da,sbe)(i)] < , ap,...,a;,b,c=1,2,3, p=0,1,2,....
Conversely, we get the following existence result.

Theorem 1.1. Suppose m # 0 and

,ﬁn = {’@ljagala waga2317 ¢a4a3a2a1a }7 (112)
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is a infinite sequence of symmetric, trace free tensors given in an orthonormal

frame at the origin of a 3-dimensional Fuclidean space. If there exist constants
M,r > 0 such that the components of these tensors satisfy the estimates

M p!
rpP

|wap...a1bc|§ ) apv"'valvbvczlvzagv p:071527"'7

then there exists an analytic, asymptotically flat, static vacuum solution (ﬁ,v)
with ADM mass m, unique up to isometries, so that the null data tmplied by

4 _
h = (ff ) h in a suitable frame c, as described above satisfy

C(Daq "'D3383231)(i):1/}aq ...a1> q=2,3,4,... .

A sequence of data of the form (1.12) (not necessarily satisfying any esti-
mates) will in the following be referred to as abstract null data. The type of esti-
mate imposed here on the abstract null data does not depend on the orthonormal
frame in which they are given (cf. the discussion leading to (7.30)). Since these es-
timates are necessary as well as sufficient, all possible ends near space-like infinity
of asymptotically flat static vacuum solutions are characterized by this result.

The proof of the result above will be given in terms of the conformal met-
ric hqp. For this purpose (1.2) are reexpressed in Chapter 2 as ‘conformal static
vacuum field equations’ for hy, and fields derived from h,p and v. In Chapter 3 it
is shown by a direct argument that in a certain setting a set of abstract null data
defines the expansion coefficients of a formal expansion of a solution to these equa-
tions uniquely. Showing the convergence of the series so obtained appears difficult,
however. Using the analyticity of the solutions to the conformal static vacuum
field equations at the point 7, we study in Chapter 4 their analytic extensions into
the complex domain. Denote by N; the ‘cone’ with vertex at i generated by the
complex null geodesics through the point 7. The null data are then represented by
a function on N, the component of the Ricci tensor obtained by contracting it
with the null vector tangent to A;. In this setting the original problem assumes
the form of a characteristic initial value problem with data prescribed on Nj;.

We wish to obtain the equations in a form which allows us to derive from
prescribed estimates on the null data appropriate estimates on the expansion co-
efficients. This requires a choice of gauge which is suitably adapted to N;. Because
of the vertex, any such gauge will necessarily be singular at a certain subset of
the manifold. The manifold S considered in Chapter 4 organizes the singularity
in a geometric way. In Chapter 5 the conformal static vaccum field equations are
considered on S , and it is shown how to determine a formal solution to the com-
plete set of conformal field equations from a given set of abstract null data. The
convergence of the series so obtained is shown in Chapter 6. Making use of the
lemmas proven in the previous chapters, this result is translated in Chapter 7 into
a gauge which is regular near i and allows us to prove Theorem 1.1. A transla-
tion of the estimates on the null data into equivalent estimates on the multipoles
and a generalization of the present result to stationary solutions will be discussed
elsewhere.
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2. The static field equations in the conformal setting

The existence problem will be analyzed completely in terms of the conformally
rescaled metric. We begin by describing the conformal gauge and then express
the static field equations in terms of the conformal fields. This discussion follows
essentially that of [12] and [14].

2.1. The choice of the conformal gauge

Consider a situation as described by conditions (1.4)—(1.6). If the metric h is
asymptotically flat and has vanishing Ricci scalar R[h] on S the function ) satisfies

(cf. [14])
<Ah — éR[h]) (9*1/2) =0 on S and rQ V251 as r—0,

where r denotes the h-distance from 4. Sufficiently close to ¢ one obtains the rep-
resentation
Q—l/Z — <—1/2 + W,

with smooth functions ¢ and W satisfying

An— LR w=o0, 2.1)
(a0~ g

and
(i) =0, Du(i)=0, DyDp(i)=—2hg. (2.2)
The functions ¢ and W are real analytic if the metric h is real analytic. In [2] Beig
and Simon consider static vacuum metrics of the form
g=eVdt? + e 2V hyyda® da,

related to (1.1) by v = eV and hay = v%hap, and show that the function w =
(U/m)? and the metric

By =w?hay = Q2 hay with Q' =weY | (2.3)

extend in h'-harmonic coordinates near i to real analytic fields at ¢ so that €’
satisfies requirements (1.4)—(1.6) with the A’-covariant derivative operator D’.

It follows [12] that Q' ~1/2 = ¢'~V/2 4 W’ with ¢/ = ot and W=
m sinh(U/2) G

5 =m Assume S to be chosen so that U # 0 on S. Rescaling with ¢ =
W' /W'(i) > 0 on S gives

h=0'" =0%h with Q=09
where the conformal factor can be written

Q:<1_”>2 on S. (2.4)

m

Because of (2.1) the metric h has then vanishing Ricci scalar
Rh =0 on S, (2.5)
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and it follows that

O e o (2.6)
where ,
m 1 /1—-vw . m?

The fields h and ¢ are real analytic on S and the functions W and ¢ satisfy (2.1),
(2.2). In the following the gauge (2.4) and thus (2.5)—(2.7) will be assumed.

2.2. The conformal static vacuum field equations

The function ( satisfies on S the equation
Ay (V) =4ns;, (2.8)

where §; denotes the Dirac distribution with weight 1 at ¢. This equation implies

2¢s=D,(D* on S with s:%AhC, (2.9)
which, together with (2.2), implies in turn the equation above. The function ¢ —1/2
can be characterized as a fundamental solution of Ay with pole at i so that ( is
real analytic on S and satisfies (2.2). It is uniquely determined by h because the
expansion coefficients of ¢ in h-normal coordinates centered at ¢ are recursively
determined by (2.2), (2.9).
We derive now a representation of the static vacuum field equations (1.2) in
terms of the conformal metric h and fields derived from it. With (2.5) follows

Rab[h] = Sab (210)

where s is a trace free symmetric tensor field. The first of (1.2) implies in the
gauge (2.4)

0=%w=DsDp(—5sha +C(1—pC)Sapb, (2.11)
with s asin (2.9). With the Bianchi identity D%s,; = 0 the integrability conditions
0= % DSeq, 0= % <D[C Salb +% D%y, ha]b)

for the overdetermined system (2.11) take the form
0 =S4 = Das+(1—C) sy D'C. (2.12)
and
0= Heap = (1 — p¢) DeSagp — 11 (2 D€ S + D¢ sape hagy) - (2.13)

We note that this can be read as an expression of the Cotton tensor Bp., =
D R, b—% D R hy)p, in terms of the undifferentiated curvature. Its dualized version
reads by (2.13)

1 1
Bapy = 5 Bucaer,® = 1 —MMC <Sda € “"De¢ — 5 Sde €ha dDeC) . (2.14)
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Equations (2.10), (2.11), (2.12), (2.13) together with conditions (2.2), which
imply
s(i) = —2, (2.15)

will be referred to as the conformal static vacuum field equations for the unknown
fields

h7 Ca S, Sab- (216)

The second of (1.2) implies that R[h] = 0 and can thus also be read as the
conformally covariant Laplace equation for v. With the conformal covariance of the
latter and (2.4), (2.5), (2.7), its conformal version reduces to (2.8). The identity

D,(2¢s—D.(D0)=2(S, —2%,.DC,

shows that (2.9), whence (2.8), is a consequence of equations (2.2) and (2.11). It
follows that for given m # 0, which defines W and p, a solution of the conformal
static vacuum field equations provides a unique solution to the static vacuum field
equations (1.2).

The system (2.10), (2.11), (2.12), (2.13) represents a quasi-linear, overde-
termined system of PDE’s which implies elliptic equations for all unknowns in a
suitable gauge. The Ricci operator becomes elliptic in harmonic coordinates and
the elliptic character of the remaining equations can be seen by taking the trace
of (2.11), by contracting (2.12) with D?, and by contracting (2.13) with D¢ and
using the Bianchi identity and (2.11) again so that in all three cases one obtains
an equation with the Laplacian acting on the respective unknown. By deducing
from the fall-off behaviour of the physical solution at space-like infinity a certain
minimal smoothness of the conformal fields at ¢ and invoking a general theorem of
Morrey [19] on elliptic systems of this type, Beig and Simon [2] concluded that the
solutions are in fact real analytic at 7. To avoid introducing additional constraints
by taking derivatives, we shall deal with the system of first order above.

3. The exact sets of equations argument

Constructing solutions from minimal sets of data prescribed at ¢ poses quite an
unusual problem for a system of the type of the static conformal field equations. To
see how it might be done, we study expansions of the fields in normal coordinates.

For convenience assume in the following S to coincide with a convex h-normal
neighbourhood of i. Let c5, a = 1,2,3, be an h-orthonormal frame field on S
which is parallelly transported along the h-geodesics through ¢ and let ® denote
normal coordinates centered at i so that ¢?, = <d;vb, Ca) = 8% 4 at i. We refer to
such a frame as normal frame centered at i. Its dual frame will be denoted by
Xc — Xc b d$b.

At the point with coordinates x® the coefficients of the frame then satisfy

Aoz =82, mpla=2p0"a,
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(where we set z, = 2P 8y, and assume, as in the following, that the summation
rule does not distinguish between bold face and other indices). Equivalently, the
coefficients of the dual frame satisfy

Xabxb=5abxb, Ta X2 =Tq 0%y, (3.1)
which implies with the coordinate expression hgp = —0ac X2 5 X© ¢ Of the metric the
well known characterization 2% hgp, = —x% d4p of the 2% as h-normal coordinates

centered at i. In the following all tensor fields, except the frame field ¢, and the
coframe field x€, will be expressed in terms of this frame field, so that the metric
is given by hap = h(ca,c) = —0ab. With D, = D, the connection coefficients
with respect to ¢, are defined by Dy ce = TaP ¢ cp.

An analytic tensor field T, . .a, on S has in the normal coordinates z% a
normal expansion at i, which can be written (cf. [13])

1 ,
Toyoap (@) =Y =2 .2 De,, ... De, Tay.a (i) - (3.2)

(This is a convenient short version of the correct expression; more precisely, the z®
should be replaced here by the components of the vector field X which has in
normal coordinates the expansion X (x) = 2 62 ¢, and which can be characterized
as the non-identically vanishing vector field near ¢ which satisfies Dx X = X,
X (i) = 0.) In the following it will be shown how normal expansions can be obtained
for solutions

hab, C, S, Sab, (3.3)

to the conformal static vacuum field equations. In 3 dimensions the curvature
tensor satisfies

. 1
Rabcd[h] = 2{ha[CLd]b + hb[ch]a} with Lab[h] = Rab[h] - Z R[h] hab7

and can be expressed because of (2.5) completely in terms of sap. Once the latter
is known, the connection coefficients I'a P ¢ and the coefficients of the 1-forms x?
can be obtained, order by order, from the structural equations in polar coordinates
cf. [8],

L (sxy(s29) = ) 4 T als0) 53 sfaa?) o
d
- (Ca®e(sal) sxo(s27)) = R caa(s ) 2" sxs(s27),

where s denotes along the h-geodesics through ¢ with unit tangent vectors an affine
parameter which vanishes at i, so that s? = g 2° ab.

By formally taking covariant derivatives, the expansion coefficients of ¢ and s
up to order m + 2 resp. m + 1 can be obtained from equations (2.11) and (2.12)
once Sap is known up to order m. Calculating the expansion coefficients for sap
by means of equation (2.13) leads, however, to some complicated algebra. It turns

out that the latter simplifies considerably in the space spinor formalism.
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To achieve the transition to the space-spinor formalism we introduce the
constant van der Waerden symbols

aABa; OZG‘AB; a:172537 Aszoalv

which map one-index objects onto two-index objects which are symmetric in the
two indices. If the latter are read as matrices, the symbols are given by

gaﬁgAB:aABaé-a:i(_gl_iéa 53 >7

V2 & gh—ig?
L [ =& +i& &3
— =&,a% Ap = — . .
é-a é-AB é-a AB \/§ ( 53 51 + 252
With the summation rule also applying to capital indices one gets
5°a=0aap a’P,, —Sava® apa’ cp = —eac€pys = hasep,
a,b=1,2,3, A B,C,D=0,1,
where the constant e-spinor is antisymmetric, eap = —€pa, and satisfies €g; = 1.
It is used to move indices according to the rules tp = Aeap, 14 = 2B g, so
that e4 P corresponds to the Kronecker delta. We shall denote the ‘scalar product’

ka2 of two spinors k4 and 14 occasionally also by €(k, ). It is important here to

observe the order in which the spinors occur.
Given the van der Waerden symbols, we associate with a tensor field
Ta1--ap bi...b, JivEN in the frame c, the space spinor field

TAlBl---Apo OCAIBI b

al...a
C1D1..CqDy = T2 b, b, PIRERERS o’ ¢.D,

= T(AlB1)-~~(Apo) (CLD1)..(CyDy) -

In the following we shall employ tensor or spinor notation as it appears convenient.
Consider the spinor field

! ’ !
AN A b he A

We assume that primed indices take values 0 and 1 and the summation rule applies,
use a bar to denote complex conjugation, and take from SL(2, C) two-index spinor
theory the conventions that indices acquire a prime under complex conjugation and
that the complex conjugate of €4p is denoted by €4/p/. Setting

ng...H =mat s g Eapr
one finds that a space spinor field
TayBy...AB, = T(A,B))..(A,B,) s
arises from a real tensor field Ty, .. a, if and only if it satisfies the reality condition
_ +
TAlBl-~~Apo - (_1)p TAlB1...Apo . (3'4)

It follows in particular

Eap €M =2 (€00 €11 — €01 €01) = 2 det(bap) = —0ap E7E°,
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and we can have £45 48 = 0 for vectors €48 £ 0 only if £ is complex. Since
EAB = ¢(AB) the relations Eap 4P = 0, €48 #£ 0 imply by the equation above
that 48 = kA kP for some kK # 0. This fact will allow us to interpret the
data (1.11) as ‘null data’.

Any spinor field Tapc...cm, symmetric or not, admits a decomposition into
products of totally symmetric spinor fields and epsilon spinors which can be written
schematically in the form (cf. [21])

Tapc..aa = Tiac...am) + Z €'s x symmetrized contractions of T. (3.5)

Later on it will be important for us that spinor fields Ta,B,...A,B, arising
from tensor fields Ty, ..., satisfy

Ta,By..4,8,) = C(Tay..a,) ™ a8, .. Q" 4B, ,
i.e., the projectors C onto the trace free symmetric part of tensors is represented in
the space spinor notation simply by symmetrization. If convenient, we shall denote
the latter also by the symbol sym.
To discuss vector analysis in terms of spinors, a complex frame field and its
dual 1-form field are defined by

AB AB a
CAB:O[aABCa, X =« aX >

so that h(cap,cap) = hapep- If the derivative of a function f in the direction of

cap is denoted by cap(f) = foc® ap and the spinor connection coefficients are
defined by

1
Tup“p = 3 TaPca®apa®yapy, sothat Tapep =T (apycp)

the covariant derivative of a spinor field ¢* is given by

c c ¢ B
Dapt” =eap(t™)+Tap” L.

If it is required to satisfies the Leibniz rule with respect to tensor products, it
follows that covariant derivatives in the ca-frame formalism translate under con-
tractions with the van der Waerden symbols into spinor covariant derivatives and
vice versa.

The commutator of covariant spinor derivatives satisfies

(Dep Der — Dep Dop)t* = R poper?, (3.6)

with the curvature spinor

B R[] RIA)
RABCDEF = 3 {(SABCE e hABCE) €pr + (SABDF — 6 hABDF) €CE ¢,

where R[h] is the Ricci scalar and sapcp = Sab @® aB ab ep represents the trace
free part of the Ricci tensor of h, which is completely symmetric, sapcp =
s(apcp)- The gauge condition (2.5) implies

Rapcper = 5 (SABCE €DF + SABDF €CE) - (3.7)
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In the space-spinor formalism equations (2.13) acquire the concise form
2p
1—p¢
Applying to this equation and to the spinor versions of (2.11) and (2.12) the theory

of ‘exact sets of fields’ discussed in [21], we get the following result.

Da¥spepe = seep Day PC. (3-8)

Lemma 3.1. Let there be given a sequence

Dy, = {1 4,B,4,B1» VA3B3A2BsA1By> VA BiAsBsA2 By A1 Bys -+ -} 5
of totally symmetric spinors satisfying the reality condition (3.4). Assume that
there exists a solution h, (, s, Sapcp to the conformal static field equations (2.2),
(2.10), (2.11), (2.12), (2.13) so that the spinors given by D,, coincide with the null
data Df given by (1.11) of the metric h in terms of an h-orthonormal normal
frame centered at i, i.e.,

VA, B,.. AsBsAsByA By = Da,B, -+ DayBy Sa,ByA B, (1), D >2. (3.9)

Then the coefficients of the normal expansions (3.2) of the fields (2.16), in
particular of

1 .
SABCD(CC) = Z i xdeBr | A1 DApo - DA131 SABCD(Z) , (3.10)
pzo V"
with 48 = oAB , 2, are uniquely determined by the data D, and satisfy the

reality conditions.

Proof. Tt holds sapcp(i) = ¥apep by assumption and the expansion coefficients
for ¢, s of lowest order are given by (2.2), (2.15). The induction steps for ¢ and s
being obvious by (2.11) and (2.12), we only need to consider sapcp and (3.8).
Assume m > 0. If spinors D, g, ... Da,B, scper(i), p < m, have been obtained
which satisfy (3.9) and, up to that order, (3.8), the totally symmetric part of

Da,iiBoiy - DB, sScpEr (1),

is given by the prescribed data while its contractions, which define the remaining
terms in the decomposition corresponding to (3.5), are determined as follows.
Observing the symmetries involved, essentially two cases can occur:

i) If one of the indices Bj; is contracted with F, say, the operator D ;p; can be
commuted with other covariant derivatives, generating by (3.6), (3.7) only
terms of lower order, until it applies directly to scprr. Equation (3.8) then
shows how to express the resulting term by quantities of lower order.

ii) If the index B; is contracted with By, k # j, the operators D4,p, and
D4, B, can be commuted with other covariant derivatives, until the oper-
ator Da; g Da, " applies directly to scpgp. If the corresponding term is
symmetrized in A; and Ay the general identity

Dya D" pyscper = —2spcpr sryap ",
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implied by (3.6), (3.7) shows that this term is in fact of lower order. If a
contraction of A; and Ay, is involved, the general identity

Dap D*P scppr = —2Dp % De " scppn + 3 scucp spyr ",
shows together with (3.8) that the corresponding term can again be ex-
pressed in terms of quantities of lower order, showing that Da,,, . B,. ., ---
Da,B, scper(i) is determined by our data and terms of order < m. That
the expansion coefficients satisfy the reality condition is a consequence of the
formalism and the fact that they are satisfied by the data D,. O

To achieve our goal, we have to show the convergence of the formal series
determined in Lemma 3.1. This requires us to impose estimates on the free coeffi-
cients given by D,,. We get the following result.

Lemma 3.2. A necessary condition for the formal series (3.10) determined in
Lemma 3.1 to be absolutely convergent near the origin is that the data given by D,
satisfy estimates of the type

p! M
[Y4,B,..A,B,0DEF| < e P=012.., (3.11)
with some constants M,r > 0.

Proof. If f is a real analytic function defined on some neighbourhood of the origin
in R™, it can be analytically extended to a function which is defined, holomorphic,
and bounded on a polydisc P(0,r) = {z € C"| 27| < r, 1 < j < n} with some
r > 0. Its Taylor expansion f = 2\0420 % 0% f(0)z* is absolutely convergent
on P(0,7) with sup,¢p(o,) [f(z)] £ M < oo so that its derivatives satisfy the
estimates

07Ol < = < = (3.12)

The first of these estimates are known as Cauchy inequalities. Here o € N™ denotes

a multi-index and we use the notation |a| = a1 + -+ + @n, @l =ai!l- -+ - ay,,

80‘ = 8?1 e aﬁ‘n’ and ¢ = (;1;1)0‘1 e (xn)an
If the series (3.10) and thus
1 )

Sab(z) = Z ] ... 2 De, ... D¢, sab(i), (3.13)

p>0""

is absolutely convergent near the origin, there exist therefore by the second of the
estimates (3.12) constants M,,r, > 0 with

p! M,
i

|De,, ... De, sab(i)] < , Cp, ...,C1,a,b=1,2,3, p=0,1,2,....

Observing the transition rule from tensor to spinor quantities, one gets from this

the estimates

p! M
rp

. ApB,,...E,F=0,1, p=0,1,2,...
(3.14)

|Da,B, - Da,B, scper(i)] <
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with M = 9¢? M, and r = r,/3 ¢, where ¢ = max,—1 2.3, 4,5=0.1 | ap|. To derive
from these estimates the estimates (3.11) we consider instead of (3.5) directly the
symmetrization operator to get

|Ya,B,..A,B,cDEF| = |D(a,B, - Da,B, sScDEF)(1)]

1 .
= (2p+4)! Z |Dr(apB, --- Dayp, scper) (i)
TES2pta
!
< p.M7
=5
where S, denotes the group of permutations of m elements. 0

We note for later use that if the derivatives of a smooth function f satisfy
estimates of the type (3.12) with some constants M, r > 0 then the function f is
real analytic near the origin because its Taylor series is majorized by

Mr™

> Mprlelgr = T BTl |29 < 1, (3.15)
and
|Oé|' —lal .« Mr - j
Z?Mrux S ey >l <1 (3.16)
ey ’ j=1

3.1. Relations between null data and multipoles

We express the relation between the sequences D}, of null data and the sequences

D;,,, of multipoles of h (in the same normal frame centered at i) in terms of

space-spinor notation.

Lemma 3.3. The spinor fields Pa,p, ... a,B, near i, given by (1.9), (1.10), are of
the form

m
Pa,B,.. A8 = _E{D(APBP oo DBy SayByarBy) + Fa,B, . A . (317)
with symmetric spinor-valued functions
Fy=Fa,B,..AB;
=Fa,B, .08, {Da,B, - DasBs Sa,,4181) Ya<p—2] s P> 2,
which satisfy
FA2B2AlBl =0, FAsB3A2BzAlB1 =0,
and which are real linear combinations of symmetrized tensor products of
SAsB2A1Brs D(A3Bs SA,B,4,B1)s -+ DA, _oBy_y - DAgBy SA,B,4,By) 5

forp > 4.
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Proof. The first two results on F' follow by direct calculations from (1.9), (1.10).
Inserting (3.17) into the recursion relation (1.10) gives for p > 3 the recursion
relations
Fa,iiByir .. a8 = Dea, B,y Fa,B, ... A1B)) (3.18)
% {S(Ap+13p+1Apo Da, 1B,y - 54,B,A,B))

T 8(Ap1 By a8, ~~~A131)}'

With the induction hypothesis which assumes the properties of the F’s stated
above for Fa,B,.. A8, ¢ < p, the relations (3.18) imply these properties for
FA, 1Bypr... AyB - O

A further calculation gives

Fy = —C38(A,B1A3B3 SA2B2 A1 By) 5
F5 = —(2c3+c4) $(AsB544B, DAsB35A,B24,By) »
and by induction the recursion law above implies the general expressions

Fop = oy sym(s @ DP74s) + -+ 4 wop sym(@Ps), p >3,

Fopi1 = qopr1 sym(s ® D2p*35) + o Fwopt sym(@pfls ® Ds), p>3,
with real coefficients agp, dop+1, .. ., wap, waps1. The first terms on the right hand
sides denote the term with the highest power of D occurring in the respective
expression. The sum of the powers of D occurring in each term is even in the case
of Fy, and odd in the case of Fb,11. The sum of the powers of D occurring in each
of the terms indicated by dots lies between 2 and 2p — 4 in the case of Fy, and

between 3 and 2p — 3 in the case of Fy,41. The coefficients indicated above are
determined by

046:—(2C3+C4+C5), a7:—(203+04+05+cﬁ),

ws = —(2¢3+c4), we = €3 C5,
and, for p > 3, by

Qop41 = Qi2p — C2p, Q2p42 = Q2pt1 — C2p+1,

Wap+1 = PWap — C2p W2p—1, Wop+2 = —C2p41 W2p ,
which implies in particular

_ 1 -1
wop = (=PI eagr, p >3, (3.19)

Restricting the relation (3.17) to i defines with the identification (3.9) a non-
linear map which can be read as a map

@:{@n}_’{f)mp}a
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of the set of abstract null data into the set of abstract multipoles (i.e., sequences of
symmetric spinors not necessarily derived from a metric) satisfying

m
VA,By .. By = T (wApB,, B Y Fayp, . as [{¥a,B, ...AlBl}qufﬂ) ;

p>2. (3.20)

Corollary 3.4. For given m the map ¥V which maps sequences D, of abstract null
data onto sequences D,y of abstract multipoles is bijective.

Proof. An inverse of ¥ can be constructed because Fo = 0, F3 = 0, and the F,
depend only on the ¢4, B, .. a,B, With ¢ < p — 2. The relations (3.20) therefore

determine for a given sequence D, recursively a unique sequence D,. O

It follows that for a given metric h the sequences of multipoles and the se-
quences of null data in a given standard frame carry the same information on h.
The relation is not simple, however. It can happen that a sequence D,, with
only a finite number of non-vanishing members is mapped onto an sequence ﬁmp
with an infinite number of non-vanishing members and vice versa. For instance,
the relations given above show that the sequence D,, = {12, 0, 0, 0,...} with
o = Ya,B,4, B, # 0 is mapped onto the sequence f)mp ={wa, 0, vy, 0, v, ...}
with v, =va, B, .. A, B,, where

vo =12, vop = (—1)PFH (T2 corp) sym(@Pea) £0, p>2.

4. The characteristic initial value problem

To complete the analysis one would have to show that the estimates (3.11) imply
estimates of the type (3.14) for the coefficients of (3.10). The induction argument
used in the proof of Lemma 3.1 leads, however, to complicated algebraic consid-
erations. The commutation of covariant derivatives generates with the subsequent
derivative operations more and more non-linear terms of lower order. Formalizing
this procedure to derive estimates does not look very attractive. To arrive at a for-
mulation of our question which looks more similar to a boundary value problem to
which Cauchy—Kowalevskaya type arguments apply, we make use of the inherent
geometric nature of the problem and the geometric meaning of the null data.
The fields h, ¢, s, sapcp are necessarily real analytic in the normal coor-
dinates z* and a standard frame c4p centered at i. They can thus be extended
near i by analyticity into the complex domain and considered as holomorphic fields
on a complex analytic manifold S.. Choosing S. to be a sufficiently small neigh-
bourhood of 7, we can assume the extended coordinates, again denoted by =%, to
define a holomorphic coordinate system on S, which identifies the latter with an
open neighbourhood of the origin in C3. The original manifold S is then a real,
3-dimensional, real analytic submanifold of the real, 6-dimensional, real analytic
manifold underlying S.. If a®, 6%, a = 1,2, 3, define real local coordinates on the
real 6-dimensional manifold underlying S, so that the holomorphic coordinates x®
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can be written z* = a® + i 3%, we use the standard notation dye = (9 — i Oga)
and Oze = £(0ne + i0g-). The assumption that the complex-valued function
f = f(z*) be holomorphic is then equivalent to the requirement that 9z« f = 0 so
that we will only have to deal with the operators d.. Under the analytic extension
the main differential geometric concepts and formulas remain valid. The coordi-
nates % and the extended frame, again denoted by cap, satisfy the same defining
equations and the extended fields, denoted again by h, {, s, sapcp, satisfy the
conformal static vacuum field equations as before.

The analytic function I' = §,5 2% 2® on S extends to a holomorphic function
on S, which satisfies again the eikonal equation h®® D,I' D,I' = —4T. On S it
vanishes only at 4, but the set

N; ={p e S| I(p) =0},

is an irreducible analytical set (cf. [22]) such that A;\{i} is 2-dimensional complex
submanifold of S.. It is the cone swept out by the complex null geodesics through ¢
and we will refer to it shortly as the null cone at i. While some of the following
considerations may be reminiscent of considerations concerning cones swept out
by real null geodesics through given points of 4-dimensional Lorentz spaces, there
are basic differences. In the present case there do not exist splittings into future
and past cones. The set AV \ {7} is connected and its set of of complex null gener-
ators is diffeomorphic to P(C) ~ S2. If N; \ {4} is considered as a 4-dimensional
submanifold of the 6-dimensional real manifold underlying S, the set of real null
generators is not simply connected but diffeomorphic to SO(3,R).

The set N; will be important for geometrizing our problem. Let u — z%(u)
be a null geodesic through i so that x%(0) = 0. Its tangent vector is then of the
form 248 = 14 ,P with a spinor field 14 = 14 (u) satisfying Dz = 0 along the
geodesic. Then

so(u) = %3 sap (z(u) = B P sapep (z(u)) , (4.1)

is an analytic function of u with Taylor expansion

oo
1 dr
50:Z—u”—so(0),
| P
2 du
where
dp )
Tur 50(0) = JAv Be O P Da,B,-.-Da,B sapcp(i)
= A B O P Da,B, - -Da,B,sapcp)(i)-

Knowing these expansion coefficients for initial null vectors ¢ +Z covering an open
subset of the null directions at i is equivalent to knowing the null data D;, of the
metric h.

Our problem can thus be formulated as the boundary value problem for the
conformal static vacuum equations with data given by the function (4.1) on N,

where the 4.7 are parallely propagated null vectors tangent to N;. The set N; can
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be regarded as a (complex) characteristic of the (extended) operator A, and also
to the conformal static equations. Therefore we shall refer to this problem as the
characteristic initial value problem for the conformal static vacuum field equations
with data on the null cone at space-like infinity.

The conformal static vacuum field equations (2.10), (2.11), (2.12), (2.13) form
a 3-dimensional analogue of the 4-dimensional conformal Einstein equations [9].
Characteristic initial value problems for these two type of systems are therefore
quite similar in character.

The existence of analytic solutions to characteristic initial value problems
for the conformal Einstein equations has been shown in [10] by using Cauchy—
Kowalevskaya type arguments. In the present case we shall employ somewhat
different techniques for the following reason.

The remaining and in fact the main difficulty in our problem arises from fact
that A; is not a smooth hypersurface but an analytic set with a vertex at the
point 7. A characteristic initial value problem for the conformal Einstein equations
with data on a cone has been studied in [11] and some of the techniques introduced
there and further developed in [13] will be used in the following. The method we
use to derive estimates on the expansion coefficients has apparently not been used
before in the context of Einstein’s field equations.

4.1. The geometric gauge

To obtain a setting in which the mechanism of calculating the expansion coefficients
allows one to derive estimates on the coefficients from the conditions imposed on
the data, a gauge needs to be chosen which is suitably adapted to the singular
set N;. The coordinates and the frame field will then necessarily be singular and
the frame will no longer define a smooth lift to the bundle of frames but a subset
which becomes tangent to the fibres over some points. The setting described in
the following will organize this situation in a geometric way and provide control
on the singularity and the smoothness of the fields.

Let SU(2) be the group of complex 2 x 2 matrices (s4

B)A,B=0,1 satisfying

A B A B
€aBs” c8 p=¢€cp, Tap'S  ¢c8 p =TCcDr, (4.2)

B

— ’ . .
where s% p — 5% p denotes complex conjugation. The map

SU(2) > SAB — S(A(CSB)D) — Sab = OzaABSAcsBDOéCDb S SO(?),R),
(4.3)
realizes the 2 : 1 covering homomorphism of SU(2) onto the group SO(3,R). Under
holomorphic extension the map above extends to a 2 : 1 covering homomorphism
of the group SL(2, C) onto the group SO(3,C), where SL(2,C) denotes the group
of complex 2 x 2 matrices satisfying only the first of conditions (4.2).
We will make use of the principal bundle of normalized spin frames SU(S) =
S with structure group SU(2). A point § € SU(S) is given by a pair of spinors
§ = (03, 04) at a given point of S which satisfies

€(6a,0p) =€an, €(6a, 0" p)=Tap, (4.4)
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where the lower index, which labels the members of the spin frame, is assumed
to acquire a prime under the “4”-operation. The action of the structure group is
given for s € SU(2) by

0 — -5 where (5-8)AZSBA5B.

The projection m maps a frame § onto its base point in S. The bundle of spin
frames is mapped by a 2 : 1 bundle morphism SU(S) 2 SO(S) onto the bundle

SO(S) Lt S of oriented, orthonormal frames on S so that 7’ o p = 7. For any spin
frame § we can identify by (4.4) the matrix ((5}3),47,473:0)1 with an element of the
group SU(2). With this reading the map p will be assumed to be realized by

SU(S) 36 — p(6) ap = 02 65 cpr € SO(S),

where c4p denotes the normal frame field on S introduced before. We refer to p(9)
as the frame associated with the spin frame §.

Under holomorphic extension the bundle SU(S) — S is extended to the
principal bundle SL(S.) = S, of spin frames § = (53!, 07!) at given points of S,
which satisfy only the first of conditions (4.4). Its structure group is SL(2, C). The
bundle SU(S) = S is embedded into SL(S.) = S. as a real analytic subbundle.
The bundle morphism p extends to a 2 : 1 bundle morphism, again denoted by

p, of SL(S.) = S. onto the bundle S0(S,) Lt S, of oriented, normalized frames
of S. with structure group SO(3,C). We shall make use of several structures on
SM(S.).

With each a € sl(2,C), ie., « = (a? ) with aqp = apa, is associated
a vertical vector field Z, tangent to the fibres, which is given at § € SL(S.) by
Za(8) = (5 - exp(va))|v=o, where v € C and exp denotes the exponential map
sl(2,C) — SL(2,C).

The C3-valued soldering form o = o(AB) maps a tangent vector X €
T5SL(S.) onto the components of its projection T5(m) X € Tr(5) S in the frame p(J)
associated with § so that Ts(m)X = (048, X)p(8) ap. It follows that (42, Z,) =0
for any vertical vector field Z,.

The sl(2,C)-valued connection form w? g on SL(S.) transforms with the
adjoint transformation under the action of SL(2,C) and maps any vertical vector
field Z, onto its generator so that (w? 5, Z,) = o 5.

With 248 = 2(4B) ¢ C? is associated the horizontal vector field H, on
SL(S.) which is horizontal in the sense that (w? g, H,) = 0 and which satisfies
(648 H,) = z4B. Denoting by Hap, A,B = 0,1, the horizontal vector fields
satisfying (048, Hop) = hAP ¢p, it follows that H, = 248 H,p. An integral
curve of a horizontal vector field projects onto an h-geodesic and represents a spin
frame field which is parallelly transported along this geodesic.

A holomorphic spinor field ¥ on S, is represented on SL(S..) by a holomorphic
spinor-valued function v4,...4,(0) on SL(S.), given by the components of ¢ in the
frame §. We shall use the notation vx, = 9(a,...4,),, ¥ =0,...,7, where (...... )k

AB
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denotes the operation ‘symmetrize and set k indices equal to 1 the rest equal to 0.
These functions completely specify ¥ if 1 is symmetric. They are then referred to
as the essential components of 1.

4.2. The submanifold S of SL(S.)

We combine the construction of a coordinate system and a frame field with the
definition of an analytic submanifold M of SL(S.) which is obtained as follows.
We choose a spin frame §* in the fibre of SL(S.) over ¢ which is projected by 7’
onto the frame c4p at considered 7 before. The curve

Co>v—d0(w)=0""s(v) € SL(S.),
with

s(v)zexp(va)z(l (1)) a:(? 8)&1(2,@), (4.5)

v

in the fibre of SL(S.) over i defines a vertical, 1-dimensional, holomorphic sub-
manifold I through 6* on which v defines a coordinate. The associated family of
frames eap = eap(v) at i is given explicitly by

e00(v) = coo +2vcor +v%cr1, eo1(v) =co1 +venr, en(v) =ci.

The following construction is carried out in some neighbourhood of I. If the latter
is chosen small enough all the following statements will be correct.

The set I is moved with the flow of Hy; to obtain a holomorphic 2-manifold Uy
of SL(S.) containing I. The parameter on the integral curves of Hy; which vanishes
on I will be denoted by w and v is extended to Uy by assuming it to be constant
on the integral curves of Hy;. All these integral curves are mapped by 7 onto the
null geodesics v(w) with affine parameter w and tangent vector v/(0) = ¢1;1 at
~v(0) = i. The parameter v specifies frame fields which are parallelly propagated
along ~.

The set Uy is moved with the flow of Hyy to obtain a holomorphic
3-submanifold S of SL(S,) containing Uy. We denote by u the parameter on the
integral curves of Hyy which vanishes on Uy and extend v and w to S by assuming

them to be constant along the integral curves of Hyg. The functions 2! = u, 22 = v,

23 = w define holomorphic coordinates on S. The restriction the projection to S
will be again denoted by 7.

The projections of the integral curves of Hyy with a fixed value of w sweep
out, together with v, the cone N.Y(w) near y(w) which is generated by the null
geodesics through the point v(w). On the null geodesics u is an affine parameter
which vanishes at (w) while v parametrizes the different generators. In terms of
the base space S. our gauge is based on the nested family of cones N, which
share the generator . The set Wy = {w = 0}, which projects onto N; \ v, will
define the initial data set for our problem. The map 7 induces a biholomorphic
diffeomorphism of §' = S\ Uy onto 7(S"). The singularity of the gauge at points of
Uy (resp. over ) consists in m dropping rank on Uy because the curves w = const.
on Uy are tangent to the fibres over y(w) where 9, = Z,. The null curve v(w) will
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be referred to as the singular generator of N; in the gauge determined by the spin
frame 6* resp. the corresponding frame cap at i.

The soldering and the connection form pull back to holomorphic 1-forms on S ,
which will be denoted again by 04” and w? 5. Corresponding to the behaviour
of 7 the 1-forms ¢, g%, o1 are linearly independent on S’ while the rank of
this system drops to 2 on Uy because (045,0,) = (648, Z,) = 0. If the pull back
A seppr P A GEF to § is denoted again by
04 p, the soldering and the connection form satisfy the structural equations

of the curvature form Q4 5 = r

dodB = —wAc ANoCB —WB o ANC, dutp=—-wtc AW B+ 0%,
By construction of S we have
(c18,0,) =0, (0?89, =141 B on Uy,
(WA B,0u) =0, (WA B,0,) = (W' B,Zs) =e1eg® on Uy,
<0AB,BU) =e?e? and (wAB,au) =0 on S
while (04%,8,) #0 on S'.
To obtain more precise information on 042 and w? g we note the following

general properties (cf. [11] and [13] for more details). If, for given 248 € C3, the
Lie derivative with respect to H, is denoted by L, then

LooB = 2,04, (EwwAB, )= (QAB,Hw AL
Since 0 = [y, 0y] = [Hoo, O] on S and Q4 5 is horizontal, it follows that
Ou(0P,8,) = 260 M w?) 0,0,),
Oulw™ B,0)lu=o = (Q* B, Hy A Zo)|u—0 = 0.
This gives with the previous relations
(W B,8,) =e1 2 ep? + O(u?)
whence (w? g,8,) =2ueo Per P +0W?®) as u—0.

Similarly we obtain with 0 = [3y, 8w] = [Hoo, D] on S

1
Du(0B,0,) =20 MW 0,00),  9u(w? B, Ow)|u=0 = 3 r oot -

In terms of the coordinates 2% we thus get 042 = 48 , dz% on S’ with a co-frame
matrix

1 (7002 0'003 1 O(u3) O(U2)
(@*P)=[0 0% %5 | =[ 0 u+0®®) O? as u—0.
0 0 1 0 0 1

On S’ there exist unique, holomorphic vector fields e4p which satisfy

(2B epp) = WP pp .
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If we write eap = €% 4p 0.a, the properties noted above imply for the frame
coefficients
1 61 01 61 11 1 O(u2) O(u2)
(e“ag)=1| 0 €201 €e*ny =1 0 ﬁ—FO(u) O(u) as u—0.
0 0 1 0 0 1
(4.7)
In the following we shall write
e ap=¢€"ap+€"aB, (4.8)
with singular part
1
e*aAB:5‘1161406304—5‘21;6(,4063)1+5§6A1631, (4.9)
and holomorphic functions é* 45 on S which satisfy
e ap=0w) as u—0. (4.10)

We define connections coefficients on S’ by writing w? g = T'cp? po©P

with
I'cpas = (was,ecp),
so that 'cp ap = I'(¢p) (aB)- The definition of the frame then implies
FOOABZO on S’ and F11AB=0 on UQ,

and it follows from the discussion above that

Tapcp =Thpep +Tasen, (4.11)
with singular part
. 1
ABCD:_Ee(AOEB)lecoﬁDO, (4.12)

and holomorphic functions r ABCD On S which satisfy
Capep =O(u) as u—0. (4.13)

The singular parts are ‘universal’ in the sense that their expressions only
depend on the construction of S and not on properties of the metric. If the latter
is flat the functions é* 45 and T ABCD Vvanish on S. With the frame and the
connection coefficients so defined we have the spin frame calculus in its standard
form. The expressions above imply for any holomorphic spinor valued function
Ya..c that Doga..c and D114, o extend to S as holomorphic functions so
that

Dooha. .c =0utpa.c on S and Dyitha o =dwthba o on Up.
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4.3. Tensoriality and expansion type

A holomorphic function on SL(S,) induces a holomorphic function on $ which
can be considered as a holomorphic function of the coordinates z*. While these
coordinates are holomorphic on the submanifold S of SL(S,), the induced map 7
of S into S, is singular on Uy. As a consequence, not every holomorphic function
of the z% can arise as a pull-back to S of a holomorphic function on SL(S,). The
latter must have a special type of expansion in terms of the z* which reflects the
particular relation between the ‘angular’ coordinate v the ‘radial’ coordinate wu.
The following notion will be important for our discussion.

Definition. A holomorphic function f on S will be said to be of v-finite expansion
type ky, with k¢ an integer, if it has in terms of the coordinates u, v, and w a
Taylor expansion at the origin of the form

0o oo 2mtky

f:ZZ Z fmm,pumvnwpa

p=0m=0 n=0
where it is assumed that f,, ,, =0if 2m + ky < 0.

We note that the construction of S does not distinguish the set I = 7~1(3)
from the sets 7~ (y(w)). Correspondingly, the Taylor expansions of the function f
above at points (0,0, wp) with wg close to 0 have the same structure with respect
to u and v.

Lemma 4.1. Let ¢pa,..4; be a holomorphic, symmetric, spinor-valued function on
SL(S.). Then the restrictions of its essential components ¢, = DAy A 0 <

k<j, toS satisfy
8U¢k:(j_k)¢k+la k':O,...,j, on U07 (414)
(where we set ¢j11 = 0) and @i is of expansion type j — k.

Proof. In the following we consider S as a submanifold of SL(S.). The tensorial

transformation law of ¢ under the action of the 1-parameter subgroup (4.5) with

generator atp=eep? implies

Zoak = —k)pry1 for 0<k<j on SL(S.),

and thus (4.14) because Z, = 8, on Up. From the relations above follows in
particular that

Zi7k g =0 on SL(S.). (4.15)
A general horizontal vector field H, has with Z, the commutator
[Zou Hm] = Ha-w P

AB

where « acts on 248 = z(4B) according to the induced action by

A
CCAB_)(a_x)AB:aACxCB+aBCxAC:2€§ B0
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With 248 = ¢y 4 ¢y B, so that H, = Hyo, it follows
[ZasHool =2Ho1, [Za,Hoil=Hi1, [Za,H11]=0.
By induction this gives the operator equations
ZVHo=n(n—1)H Z" 2 +2nHp Z0 ' + Ho 22, n>1,

and, more generally,
2m—1
ZRHG = anm HY Z07" + > Apma Z07 + Hig 20, myn>1,
1=0
where the ay, ,,, are real coefficients, the A,, ,,,; denote operators which are sums of
products of horizontal vector fields, and the terms in which Z, formally appears
with negative exponent are assumed to vanish. With (4.15) this implies

ZUHp ¢, =0 for n>2m+j—k on SL(S.).
The results follows because Z7 H} ¢r, = 0, 0, ¢, at points of Uy. g

4.4. The null data on Wy

We shall derive an expansion of the restriction of the essential component sg of
the Ricci spinor to the hypersurface Wy, i.e.,

SO(U, U) = S(ABCD)0|W0 B

in terms of quantities on the base space S.. Consider the normal frame cap on S,
near ¢ which agrees at ¢ with the frame associated with §* and denote by

D} = {Disp, - Doy Sapemy @), p=0,12... ).

the corresponding null data of h in the frame c4p5. Choose a fixed value of v and
consider s = s(v) as in (4.5). The vector Hpp(d* - s) then projects onto the null
vector s4 o s2 gcap at i. Since cap is a normal frame near i, the null vector field
540 5% ¢ cap is tangent to a null geodesic = 7(u, v) on N; with affine parameter u
with © = 0 at 7 and the integral curve of Hyy through §* - s projects onto this null
geodesic. It follows from this with the explicit expression for s = s(v) that

so(u,v) = s o(v) 5% 0(v) s 0(v) 5 0(v) $hBEDIn(uw)

=~ 1 . * « ,
= Z—'u sAlo(v)sBlo(v)...sDo(U)D(AlBl...DAmBmsABCD)(z)

=D D Ymaum ", (4.16)

1bm,n =

m!

1 M2m+4
n

>DZA131"'DT4mBm SZBCD)n(i), 0<n<2m+4.

This formula shows how to determine the function so(u,v) from the null data D}
and vice versa. We note that the expansion above is consistent with sy being of
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v-finite expansion type 4. We shall refer to (4.16) as the null data on Wy in our
gauge.

5. The conformal static vacuum field equations on S

With the frame esp and the connection coefficients I'sgcp on S we have thg
standard frame calculus available. Given the fields (, s, sapcp, we define on S
the quantities

EF _ E E
tap” cpe’Er =2Tap” (ce’ pyp —2lcp ™ (u€e” ByE
b b
—e%cpye’ ap+e®appe’cp,

1
RABCDEF =TABCDEF — 5 {SABCE €DF + SABDF €CE}7

with

rapcper = ecp(Terap) —epr(TcpaBn)
K K K
+Ter” clkpap+TErFr” Dlckap—Teop " ETkFan
K K K
—Tep” rlExaB +TErF” Blepax —T'ep ™ BUEFAK

—tep M grTGuas.,
%endalign¥Xap = Dap ¢ — CaB,

Yapecp =Daplcp —shapep + ¢ (1 — pu¢)sapcp
Sap=Daps+ (1 —pul)sapcp P,

2
Hapep =Da¥spepe — ﬁ semep Cay ¥

In terms of the tensor fields on the left hand side, which have been introduced
as labels for the equations as well as for discussing the interdependencies of the
equations, the conformal static vacuum equations read

E

F
tap ™ cpe®Er =0, Rapcper =0, Yap =0,

Yapcp =0, Sap =0, Hypep =0.

The first equation is Cartan’s first structural equation with the requirement that
the (metric) connection be torsion free (tap “¥ cp being the torsion tensor). The
second equation is Cartan’s second structural equation with the requirement that
the Ricci tensor coincides with the trace free tensor s,,. The third equation de-
fines Cap, the remaining equations have been considered before.

To discuss these equations in detail we need to write them out in our gauge,
observing in particular the nature of the singularities in (4.8) and (4.11).
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The equations tag FF oo e® gr = 0:

. 1. . . .
Ouét 01 + 56101 = —2T0101 +2T0100 € 01,

1 N R
A2 2 42
O0u€ 01 +—¢€" 01 = — o100 + 210100 €” 01,
u u
A1 - B A1
Oue 11 =—2T1101 + 211100 € 01,
1. .
.2 .2
Ou€” 11 = Efuoo +2T1100€% 01 -

The equations Rapoopr = 0:

N 2 N R 1
Oul'0100 + u To100 — 21_%100 = 3 50,
N 1 R R R 1
Oul0101 + E T'oi01 — 2T0100 o101 = 5 51,
N 1 R R R 1
Oulo111 + E To111 — 20100 o111 = 5 59,

. 1. . .
Oul'1100 + Efuoo —2T1100 o100 = 51,
duT1101 — 2T 1100 To101 = 52,
duT1111 — 21100 To111 = 83 -
The equations g9 = 0, Xgocp = 0, Spg = 0:
0= 0u¢ — Coo0 »
0=0uCoo+¢(1—pC)so,
0=0uCo1+¢(1—pQ)s,
0=0uC1—s5+¢(1—puQ)ss2,
0=0us+ (I —p¢)(soCi1 —2s1 o1 + 52 C00) -

The equations —Hypcp), = 0 in the order k = 0,1,2,3:

1
Ous1 — ﬁ(au so —451) — &' 0104 50 — €% 010y S0

~ ~ 2u
= —4T0101 80 + 40100 51 — 77— {50 C0o1 — 51 €00} ,
(1-pd) { J
1
Ou 52 — ﬁ(au s1—382) — &' 010, 51 — €% 010, 51
. . . 1
= —T'o111 50—2T 0101 81 + 30100 S2— =7 {50 C11 + 251 o1 +352C00},
2(1-pq) { J

1
Ou 53 — ﬂ(av So —2583) — €' 010y 52 — €2 010, 52

= —200111 51 + 20100 53 — ﬁ {s1¢11 + 8300},
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1 R A
Ou 54 — ﬂ(av 83— 84) — €' 010y 53 — €% 010, 53

I

2(0-p0) {352¢11—253C01—54C00} -

= —3T0111 52 + 2T 0101 53 + Lo100 54—

These equations, referred to as the d,-equations, will be read as a system of
PDE’s for the set of functions

Al A2 Al A2 o -
€ o1, €01, € 11, €11, Towan, T11as, ¢, CaB, s, s1, S2, 83, 54,

which comprises all the unknowns with the exception of sg. The following features
of them will be important.

All 9,,-equations are interior equations on the hypersurfaces {w = wp} in the
sense that only derivatives in the directions of u and v are involved.

The equations are singular with terms u~' occurring in various places. It
will be seen later that these terms come with the ‘right’ signs to possess (unique)
solutions which are holomorphic in u, v and w. Remarkably, the equations for the s
ensure regular solution to have the correct tensorial behaviour by the occurrence
of terms u~! with factors 9, s — (4 — k) sr.41. By Lemma 4.1 we know that they
have to vanish U.

The system splits into a hierarchy of subsystems, with

EF 2
to1 " o0e”Er =0, Rooooor1 =0,

being the first subsystem,

EF 1
e gr =0, Ro10001 =0, Yoo =0,

Y0000 = 0, Y001 =0, Hopoo =0,

being the second subsystem, and so on. The hierarchy has the following property.
If sg is given on {w = wy }, the first subsystem reduces to singular system of ODE’s.
Given its solution, the second subsystem also reduces to a system of ODE’s (with
coefficients which are calculated from the functions known so far by operation
interior to {w = wp}), and so on. Thus, given sy and the appropriate initial data
on Up N {w = wp}, all unknowns can be determined on {w = wp} by solving a
sequence of systems of ODE’s in the independent variable u.

The functions é% 45 and I'4 pcp vanish on Uy by our gauge conditions. There-
fore only initial data for (, (4p, s, and si need to be determined on Uy and the
function sg needs to be provided on {w = wg}. While sg will be prescribed on Wy
as our initial datum, an equation is needed to determine its evolution off W,. For
this purpose we will consider the following equations.

The equations Hy(pcp), =0 in the order £ =0,1,2,3:

to1

1 1 2 1 2
Ow S0 — ﬁ(av $1—382) + € 110y S0 + €110, S0 — € 010y $1 — €% 010y 51

= — (o111 — 4T1101) 50 — (2T0101 + 4 T1100) 51 + 3 To100 52

+ﬁ % {s0Ci1 + 251 Go1 —352C00} (5.1)
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1 . . . .
Ow 51 — ﬁ(av Sg —283) + e 110, 51 + €2 110, 51 — €' 0104 52 — €% 010, 52
= T'1111 50 — (2 Coinn — 2T1101) 51 — 31100 52 + 20100 53

+ ﬁ % {s1¢i1 = s3C00}

1 R . . R
Ow 52 — ﬁ(av s3—284) + e 110, 52 + €2 110, 52 — €' 0104 83 — €% 010, 53

= 201111 81 — 310111 52 — (2 1100 — 2IA‘0101) s3 + To100 54

20 1
+ ——= — {352¢11 — 253001 —54C00}
001
_i sl 52 _pl _ 52
Ow 53 Oy 54+ € 110y 83+ €110, 53 — € 0104 54 — €010y S4

2u
=3T1111 82 — (40111 + 2T1101) 53 — (T1100 — 4T0101) 84

+ ﬁ {s3C11 —54Co1}-

All singular terms cancel in the equations 0 = Hypcp),,, +Hi(Bcp),, which
are given in the order £k = 0,1,2 by

Ow 50 — Oy 52 + 1110y S0 + €2 110y S0 (5.2)

= 41110150 — 4T 1100 51 + ﬁ {5011+ 25101 —3s2C00},

Ow 51— Oy 53 + €1 110y 51 + 2110, 51
. N ~ 2
=T11115 + 2T1101 51 — 3T1100 $2 — R {s1¢11 —s3Co0},

(1—pQ)

1 2
Ow S2 — Ou 84+ € 110y 52 + €% 110y 52

. - u
=2T1111 81 —2T1100 83 + ———— {38211 — 283 o1 — 84 Coo} -
(1—u<){ J

We can consider (5.1) or (5.2) as equation prescribing the propagation of sg
transverse to the hypersurfaces {w = const.}.

Because I'11¢cp = 0 on Uy, the equations X211 = 0, X110p = 0, S11 = 0 reduce
on Uy to the ODE’s

Ow(="C1, Owlop=shuep—CA—p)suep, Ows=—(1-p)snep P .
By (2.2), (2.15) we must impose
(=0, Cap=0, s(i)=-2 on I={u=0,w=0}.
This implies with the equations above
(=0, (1=0, (1=0 on Uy={u=0}. (5.3)
To determine (, (ap, and s on Uy it remains to solve on U, the equations

OwCo0 =5, Ows=—54C00- (5.4)
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The tensorial properties of (45 and s imply with (5.3) that
0y Co=0, 0;8=0 on Uy for n>1. (5.5)
Later it will be important that these relations can in fact be deduced from (5.3),

(5.4), (5.6), and the initial conditions on I.
To ensure the tensor relations for the s, and thus the existence of regular

solutions to the equation for the si, we determine the initial data for sq,...,s4
on Uy by imposing the conditions
Oysp=4—k)sg+1, k=0,...,3, on Up. (5.6)
They imply recursively the expressions
4—k)!
oy Ob s, = ( ) R oP 5,

4!
k=0,...4, n,p>0 at {u=0,v=0,w=0}.
5.1. Calculating the formal expansion

The system of equations is overdetermined. We choose from it a subset of equations
to define a systematic way of calculating a formal expansion of the solution. It will
then follow from Lemma 5.5 that the expansion obtained by this procedure will
lead to a formal solution of the full system of equations. A solution obtained by
any other procedure will thus have to coincide with the present one.

It will be convenient to replace s by the unknown

§=2+s,
and it will also be useful to write
sp=s;+ 8 with 0Oyusf =0 and sf|u=0 = Sk|u=0
so that & =O(u) as wu—0.
By (5.6) we can then assume that
Oy st = (4= k) st -

and the J,-equations for the §; can be written in the form

2u
+ terms of zeroth order,

1 . G « A
Skt~ 50 Op 8k + €% 01 0a(s), + 8k)

0= —Hy(Bcp), = Oudkt1 +

so that the coefficient (4 — k)/2 of the singular term u~! 35,1 is positive and the
term «~ !9, &5, which involves the unknown §; determined in an earlier step of
the integration procedure, creates no problem because §; = 0 on Uy. Writing

@ = (6" ap, Tancp, €, Cas, 8, 51, 52, 53, 54) ,
so that the full set of unknowns are given by x and sy, we proceed as follows.
On Wy we prescribe sg as given in (4.16) with the null data D} satisfying
the reality conditions and the estimates (3.11). By (5.6) all components of x can
be determined on I.
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We successively integrate the subsystems in the hierarchy of 9,-equations to
determine all components of z on Wj. These will be holomorphic in 4 and v and
unique, because the relevant operators in the singular equations are of the form
Ouf +cu™! f with non-negative constants ¢ (a proof of this statement follows from
the derivation of the estimates discussed below).

The equation Hy19o9 + H10oo = 0 is used to determine 0,89 from the fields x
and sg on Wy as a holomorphic function of u and v.

Applying the operator 0,, formally to the J,-equations, one obtains equations
for Oyx on Wy which can be solved with the initial data on {w = 0,u = 0} which
are obtained by using (5.4) and by applying 9, to (5.6). Applying 9, to the
equation Ho1go + Hi0o0 = 0, one obtains 8280 on Wy.

Repeating these steps by applying successively the operator 02, p = 2,3, ...,
one gets an sequence of functions 9% x, 9% s on Wy, which are holomorphic in u
and v.

Expanding the functions so obtained at u = 0, v = 0 we get the following
result.

Lemma 5.1. The procedure described above determines at the point O = (u = 0,v =
0,w = 0) from the data sg, given on Wy according to (4.16), a unique sequence of
expansion coefficients

ooy ok f(O), myn,p=0,1,2,...,
where f stands for any of the functions

" aB, L'aep, ¢, CaB, 5, sj5.

If the corresponding Taylor series are absolutely convergent in some neighbour-
hood P of O, they define a solution to the 0,-equations and to the equation
Hip00 = 0 on P which satisfies on PNUy equations (5.6) and ¥11 =0, L110p =0,
Sll =0.

By Lemma 4.1 all spinor-valued functions should have a specific v-finite ex-
pansion type. The following result will be important for our convergence proof.

Lemma 5.2. If the data so are given on Wy as in (4.16), the formal expansions
of the fields obtained in Lemma 5.1 correspond to ones of functions of v-finite
expansion types given by

ksj=4—j, ke, =2—1, ke =0, ks = ks <2,
kg =-—-A-B, k2 =3—-A—-B for AB=01,10 or 11.

AB AB
kg =2-A-B, kg =1-A—-B for AAB=0 or 1.

01AB 11AB

Remark 5.3. The scalar functions s, § must have expansion type ks = ks = 0. As
pointed out below, this does not follow with the simple arguments used here. Since
it will not be important for the following discussions, we shall make no effort to
retrieve this information from the equations.
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Proof. We note the following properties of v-finite expansion types:

For given integer k£ the functions of expansion type k form a complex vector
space which comprises the functions of expansion type < k.

If the functions f and g have expansion type ky and k, respectively, their
product f g has expansion type kry = ks + k.

If f has expansion type ky, the function 0,f has expansion type ky + 2.
Conversely, if 0, f has expansion type kf + 2 and if the function independent of
u which agrees on Uy with f has expansion type k; (for instance if f|,—o = 0),
then f has expansion type k.

If f has expansion type k¢ and f|,=o = 0 then % f has expansion type kf+2.

If f has expansion type ky, the function 0, f has expansion type k;y — 1.

If f has an expansion type, the function J,, f has the same expansion type.

Applying these rules one can check that the expansion types listed above are
consistent with the 0,-equations, the equation H1ggo+Hp100 = 0 and the equations
S11 =0, Y1100 = 0 used on Uy in the sense that all terms in the equations have
the same expansion types.

Assuming the given expansion types for the sg, the 0,-equations for the
I pep imply at lowest order in u that in general the kaBCD must take the values
given above. It follows then from the d,-equations for the €4 5 at lowest order in u
that the k'é%B must take in general the values above. The remaining J,-equations
then imply at lowest order the other expansion types.

With these observations the Lemma follows from our procedure by a straight-
forward though lengthy induction argument. We do not write out the details. [

The equation
0= S00 = s+ (1 —pu¢)secp P,

should imply more precisely ks = 0, because the expansion type of the tensorial
component spocp (P should be 2. The contraction of the spinor fields on the right
hand side implies cancellations which lower the expansion types of the contracted
quantities on the right hand side. These cancellations cannot be controlled in the
explicit expression

0= 0us+ (I —pQ) (s0C11 — 25101 + 52 C00) 5

by the simple rules given above, they only suggest an expansion type ks < 2.
Fortunately, this does not prevent us from determining the other expansion types.
In the equation

0 = Yoo11 = Ou C11 — 5+ ¢ (1 = 1 C) 50011 ,
s is added to a field of expansion type 2 and the equation
0=2511=0ws+51100CP =0uws+ 511110 on Up,

is consistent with ks < 2. No further equation involving s is needed in the conver-
gence proof.
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5.2. The complete set of equations on S

Because only a certain subset of the system of equations has been used to deter-
mine the formal expansions of the fields, it remains to be shown that the latter
define in fact a formal solution to the complete system of conformal static vacuum
field equations. To simplify stating the following result it will be assumed in this
subsection that the formal expansions for

€ ap, I'aecp, ¢, CaB, 8, s;,
determined in Lemma 5.1 define in fact absolutely convergent series on an open
neighbourhood of the point O, which we assume to coincide with S. There will

arise no problem from this assumption because the following two lemmas will not
be used in the derivation of the estimates in the next section.

Lemma 5.4. With the assumptions above the corresponding functions

e ap, I'acp, ¢, CaB, s, Sj,

satisfy the complete set of the conformal vacuum field equations on the set Uy in
the sense that the fields

E

F
tap™" ¢p, RaBcper, YaB, YaBcp, Sas, Hapcp,

calculated from these functions on S \ Uy have vanishing limit as u — 0.

Proof. Because of the equations solved already and the symmetries involved, we
only need to examine the behaviour of the fields

t1i1 ¥ 01, Rapoun, Zo1, Zowep, Sor, Himepy, k=1,2,3,

near U.

With (4.8), (4.9), (4.11), (4.12) the 9,-equations imply for the frame and the
dual frame coefficients the slightly stronger results (4.6), (4.7). A direct calculation
gives then

tn PP =20 Fra® -1 Foe D -1 F gD

— B a (ea 11,¢c €01 — e 01,c e’ 11) = O(U) )

as u — 0.
With the particular result
1 1
to1 ' 11 = Dorn1 — 3 e 110 — %0 e' 114+ 0(w?) =O(u),
follows

1 2 1 2
Rooo111 = '1100,1€ 01 +T'1100,2 € 01 — Lo100,1 € 11 — Lo100,2 € 11 — T'o100,3

—T'1100 T'1100 + 2T0100 (T1101 — Lo111) — to1 ** 11 Toto0

11
—to1 1111100 — 5 Soo11

1 1 3 1
= — (Tii002 — 2T Toit1 — = €110 — —el 11 | — =
2u< 1100,2 1101 +3 L0111 26 11,2 2u6 11) 280011 + O(u)
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1 1 3
-3 <3v5u I'100—20u 1101 +3 0w Lo111 —531; Du €® 11 —133 et 11—80011>
=0 as u—0,

where the 0,-equations and the relation 9, s = 3 s2 on Uy are used to calculate
the limit. Similarly,

1 1 1
= — Ty — — 1111 — = 0
Roio111 5q ) 1012~ 5ol =5 so111 + O(u)
1
—3 (Op OuT1101 — OuT1111 — S0111) =0 as u—0,
where the 0,-equations and the relation 9, s = 2 s3 on Uy are used,

1 1 1
Riio111 = 7 Fi1112 — 5 Sun +0(u) — 3 (Op OuT1111 —51111) =0 as u—0,

where the 0,-equations and the relation 9, s3 = s4 on Uy are used.
By (5.3) and the remark following (5.5) we know that ¢ =0, (o1 =0, (11 =0,
Oy Coo = 0, 9y, s =0 on Uy. The 9,-equations and (5.6) imply

Yo1 = %@C —Co1 +O(u) — %811C00 —Co1 =0,
o100 = % (Ov Coo — 2¢o1) + O(u) — % (0v Ou oo — 20y Co1) =0,
Soi01 = 5= 0 G — 1) + 35+ O(w) = 3 (8 0u Gor — 0u G +35) =0,
Y111 = i Oy C11 + O(u) — %31, 0, ¢1=0.

So1 = % Dy 8+ so111 Goo + O(u) — % (O Ou s + 2 s0111 Coo)

1
253U(3u8+50011<00):07 as u—0.

With our assumptions (and formally setting s5 = 0) we get for k =0,...,3
W = lim (=2 Hoapcy,) = (6 — k) Qu k41 — 0 Ou sk — (4= k) sk oo s
B = lim (=2 Hy(apc),) = 200 sk = Oy Ou sk1 + (3= k) Ou skra
— (3= k) psk+2Coo -
The expected tensorial nature of sypcp and Hapep (cf. Lemma 4.1) would
imply
461 =0y00 —Om + 272,
1282 =02 B — 021 —20p 72 + 473,
2483 =05 o — 031 —202792 — 88,73 on Up.

It turns out that these relations can in fact be verified by a direct calculation with
the expressions for 7., Or obtained above. Because the equations used to establish
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Lemma 5.1 imply v, = 0, By = 0, it follows that §; = 2 = 83 = 0 so that in fact
Hapep — 0asu — 0. 0

We can now prove the desired result.
Lemma 5.5. The functions

e“aB, Lacp, ¢, CaB, s, sj,

corresponding to the expansions determined in Lemma 5.1 satisfy the complete set
of conformal vacuum field equations on the set S.

Proof. Tt needs to be shown that the zero quantities

EF
to1 “" 11, Rapoiir, o1, 211, 2oicp, 1icp, Soi, Su, Hiascp,

vanish on S. For this purpose we shall derive a system of subsidiary equations for
these fields.
Given the fields

e“aB, Tapcp, ¢, CaB, S, SABCD,

A A_CD

we have the 1-forms o4 dual to e4 5 and the connection form w? 5 = Tep Booo.
To derive the subsidiary system we consider the torsion form

=-tocp” " EF

1
AB AB CD . _EF
(C) 5 o“Y No™h

and the form
A 1
V=0 -0 g = gRABCDEFUCD AP
obtained as difference of the curvature form

1
A A cD EF
Q Aot

B:§r BCDEF O

and the form

AHA 1 A C EF
Q) 3258 BCEO F/NO .

The following general relations will be used: The identity o A o® A 0¢ = v
with v = % €def o¢ Ao® Aof, which holds in 3-dimensional spaces. In space spinor
form it takes the form

O'AB /\O'CD /\O'EF _ 6ABCD EFI/

)

with ¢ABCDEF _ kA (EAC ¢BF [DE _ (AE BD 6Fc)
V2
which implies
oAB A 6C o AGED = _i/2eAC BB, 3 pABCE
and thus
QAB/\JBD = %SABCEUBD/\UCF/\UEF =0.
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The equations
ig(aAB) =igahB+ (1) raniyf, Lro=(doig+igod) a,

which holds for arbitrary vector field H, k-form «, and j-form (. Finally, we note
that in the presence of torsion the Ricci identity for a spinor field tg. . g of degree m
reads

L L
(DapDcp —DepDaB)ter.H=—LtLF. . HT EABCD — LEL..H T FABCD
L
— -+ = LEF..L T  HABCD

KL
—tap " " cp DKLlEF.H.

We shall derive now the subsidiary equations. The fields ©45 and Q4 p
satisfy the first structural equation

dodB = —wA c N8 — WP o A gAY + 4B
and the second structural equation
dop=—wtc AW’ p+0%p,
respectively. These equations imply
dO4P =201 A PO 20 A0PIC =205 L A oPIC — 20 L APIC.
We set H = egg and observe that the gauge conditions and the 0,-equations imply

AB A B AB BZO, iH@ABZO, Z'HQ*ABZO.

igo”” =€ e = hoo , igw?
It follows that
L0428 = (doiy +igod) ©4F =20 ¢ B,
and thus
L0428 eqi Neqr) = 200" g o1 Aerr)de P
+ <@AB, [H, eo1] A 611> + <@AB, eo1 A [H, 611]> .

The first structural equation, the gauge conditions, and the J,-equations
imply
0= (0", HAecp)epr = —Tcp ®F oo epr — [H,ecp],
whence
[H,ecp] = —2T¢po1 eoo + 2T cpoo €or -
This implies
L1 (047 o1 Aerr) = 2T0100(047, eo1 Aerr) + 2(Q0 P g, e01 Aerr e ),

ie.,

1 ~
(3u + a> tor *% 11 = 2T0100 to1 *# 11 + 2R go111 60 7. (5.7)
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With the first structural equation we obtain

. A A 1
dQAB—wHA/\QHB—wHB/\QAHZ EDGHSABCDO'GH/\CTCF/\UDF

i oE
=-—=H" spp v,

V2

and from the second structural equation we get
dQap —w? AANQup —wT EAQAr =0,

which give together

dVip —wT AN Qg —w B AUy = —LHEABE v,
V2
and thus, with the equations above,
1 N 1
(3u + a) Rapoir11 = 200100 Rapor11 + 3 Hiapo. (5.8)

The identity
Dap¥cp — DepSap =tap ¥ cp Der + Ycpap — Xapcp

gives with the gauge conditions and the d,-equations
2 .
Ou Xcp + € epy ! Bo1 = 2T poo Sor + Senoo - (5.9)
The identity

DapScper — Dop Saper = =2 (ke R™ pyasep +tas " cp DonCer
+ Scp haper — Saphcper
+ (1 =2u()(Xap scpeF — XcD SABEF)
+¢(1—pu¢)(ecaHeprr + €pp Hoagr) ,

implies with the gauge conditions and the J,-equations

Ou XopEF + % e’ epy ! Zo1pr = 2T cpoo o16F + Scp hoorr
- (1 =2u¢)Ecp sooer
+¢ (1 —p¢)epo Hoorr - (5.10)
The identity
Dap Scp — Dep Sas =tas ™" ¢p Ders
— p{Sapscper — Xcpsaper} CPF (1 — 1)
x {Sap P  scppr — Scp P saper

+ (eca Heper + €pp Hoapr) (1},
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implies with the gauge conditions and the 0,-equations

2 R
OuScp + S € epy ! So1 =2Tcpoo So1 + 1 Sep soopr ¢FF

— (1=p¢) {Zcp ¥ soopr — €po Hoopr (P}

(5.11)
Finally we have the identity
2D Hppap = —4sgen R® 4) P9 5™ +t7 p *F gy Dirsag ™ (5.12)
4p EF __H 2 p? EF H
- s Ay
1= ¢ SH(ABF Q) =22 SH(ABF CE)
m
+1 m—e {2Hpuap """ —2H" praCp ™'},

where the right hand side is a linear function of the zero quantities. The gauge
conditions and the equations Hyapc = 0, Higog = 0 imply for the left hand side

1
D Hppap = 0y Hiiap + " {Hi1aB + Hiroa ep) "}

L . .
- <ﬂ Oy + € 01@&) Hioas — 20100 Hi1aB — o104 Hi10B

— o108 Hi104 + To114 Hioos + Do118 Hi00a + L1100 Hi0B -
(5.13)

Equations (5.7), (5.8), (5.9), (5.10), (5.11), and equation (5.12) with (5.13)
observed on the left hand side provide the system of subsidiary equations. Note
that the right hand side of this system is a linear function of the zero quantities.
It implies with Lemma 5.4 that all zero quantities vanish on S. O

If the series considered in Lemma 5.1 are absolutely convergent it thus follows
from Lemma 5.5 that they define in fact a solution to the complete set of static
conformal vacuum field equations on S.

6. Convergence of the formal expansion

Let there be given a sequence

Dy, = {¥4,B,41B15s WA3BsAsB2A1Bys VA4ByiAsBsAsBaA1Bys -+ s

of totally symmetric spinors as in Lemma 3.1 and set in the expansion (4.16) of
SO(Ua U)

* * * .
D(A131 DAmBm SABCD)(Z) =YA,B,...A,BnABCD, m >0.

Observing the estimates (3.11), one finds as a necessary condition for the function
sp on Wy to determine an analytic solution to the conformal static vacuum field
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equations that its non-vanishing Taylor coefficients at the point O satisfy estimates
of the form

2 4
|0 01 50(0)| = m!'n! [thy.n| < < mt ) min! Mr™,
n
m>0, 0<n<2m+4. (6.1)
A slightly different type of estimate will be more convenient for us.

Lemma 6.1. Let e denote the Euler number. For given py € R, 0 < py < €2, there
exist positive constants ro, co so that (6.1) implies estimates of the form

m!nlr® pg
om on 0)| < 0 Mo
|u vSO( )|—CO(1+m)2(1+n)2’

Proof. With 79 = 4e®r ! pg? and cg = 16 M €% py *, the estimate 1 < (2 ":1"’4) <

m>0, 0<n<2m+4. (6.2)

22m+4 which follows from the binomial law (1 4x)2™+4 = S22 (2mH4) g and
the estimate e® > 1 4+ x, which holds for = > 0, we get
<2m +4

)m!n!Mrlm <16 Mm!n! (4r7H™
n

716”' pg' (@)2m+4—n
e2

m>0, 0<n<2m+4. O
The following lemma provides our main estimates.

Lemma 6.2. Suppose sop = so(u,v) is a holomorphic function defined on some open
neighbourhood U of O = {u = 0,v = 0,w = 0} in Wy = {w = 0} which has an
expansion of the form
oo 2m-+44
so(u,v) = Z Z Y™ V",

m=0 n=0
so that its Taylor coefficients at the point O satisfy estimates of the type (6.2) with
some positive constants ¢, ro, and po < 1/2. Then there exist positive constants
T 270, P5 Ce4 s Cpy oo CCo CCis Css Cl SO that the expansion coefficients determined
from sq in Lemma 5.1 satisfy for myn,p=0,1,2,...

™ (m + p)! p™ n!
(m+1)2(n+1)2(p+1)?’

|0 0y O, 51 (0)] < cx (6.3)

and
rmTP=L (m 4 p)! p™ !
(m+1)2(n+1)?(p+1)*’

where f stands for any of the functions é% g, Tapep, ¢, G, S.

10, 0, 0y, F(O)| < ¢ (6.4)
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Remark 6.3. Observing the v-finite expansion types discussed in Lemma 5.2, we
can replace the right hand sides in the estimates above by zero if n is large enough
relative to m. This will not be pointed out at each step and for convenience the
estimates will be written as above. The expansion types obtained in Lemma 5.2 will
become important and will be observed, however, when we derive the estimates.

We shall make use of arguments discussed in [24]. The following four lemmas
are essentially given in that article.

Lemma 6.4. For any non-negative integer n there is a positive constant C inde-
pendent of n so that

P (k+1)2n—-k+1)2~  (n+1)2
Proof. Denoting by [n/2] the largest integer < n/2, we get with C' =>"7 ﬁ
[n/2]

g(k+1>2(n—k+1)2 = ;) CEDECEVEE
[n/2] 9 .
< <c . .
N kgo (k+1)2(n/2]+ 1)~ (n+1)?

In the following C' will always denote the constant above.

Lemma 6.5. For any integers m, n, k, j with 0 < k < m, and 0 < j < n resp.
0<j<n-—1 holds

(1)) =Gg) e ()05 = ()
] < . TeSp. ) < .
k) \J k+j k J k+j
Proof. This follows by induction, using the general formula (”jl) = (?) + ( jfl),
or by expanding (z+y)""™" = (x+y)™ (z+y)", using the binomial law (x+y)P =
Lo (B)adyr=a. d
=01y
If f is holomorphic on the polydisk P = {(u,v,w,) € C3¥| |u| < 1/ry,|v| <
1/rq, |w| < 1/rs}, with some r1, 79,73 > 0, one has the Cauchy estimates

|05 0 08 f(O)| < ri* vy rf m! n! p! sup|f], m,n,p=20,1,2,... (6.5)
P
where O denotes the origin u = 0, v = 0, w = 0. We need a slight modification of

this.

Lemma 6.6. If f is holomorphic near O, there exist positive constants c, o, po SO
that

m—+p (O |
o o an, £(O)] < ¢ —r m ) p

=0,1,2,...
= (m+1)2(n+1)2(p+1)25 m,n,p )y e
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for any r > ro, p > po. If in addition f(0,v,0) = 0, the constants can be chosen
such that

TPl (m 4 p)! p" !
omoror f(O)] < ,
104" 00 9% 1 )|*c(m+1)2(n+1)2(p+1)2

m,n,p=0,1,2,...

for anyr > ro, p > po.

Proof. Let a be a positive number for which precise values will be considered
below. Choosing an estimate of the type (6.5) with r; = r3 and setting ¢ =
a supp |f|, ro = €2 r1 = €213, po = €1y, one gets from (6.5)
|om o o8, f(O)] < ca™trg™P (m + p)! pg nl e~ 20mFntp)
+
ro " (

1 o)
<cat m + p)! pj n! .
(m+1)2Mn+1)2((p+1)2
With a = 1 the monotonicity of x — x9, ¢ > 0, x > 0 implies the first estimate.
With a = ro the estimate above implies
m+p—1 n
T (m+ p)! pg n!
amonoP f(0)] < ¢ —2 .
10" 0 94, FO)] < (m+1)2(n+1)2(p+1)2
If £(0,v,0) =0, then 929" 8° f(O) = 0 for n € Ny and the last relation remains
true for m +p =0, i.e., m = 0 and p = 0, if ry and py are replaced by r > ry and
p > po. If m+p > 0 the result follows as above. O

Lemma 6.7. Let m, n, p be non-negative integers and f;, i =1,..., N, be smooth
complex valued functions of u, v, w on some neighbourhood U of O whose deriva-
tives satisfy on U (resp. at a given point p € U) estimates of the form

it (G4 1)1 ph k!

G+D2(k+1)2(1+1)2
for 0<j<m, 0<k<n, 0<l<p,

104,05 03, fil < e

with some positive constants c;, r, p and some fized integers q; (independent of
J,k,1). Then one has on U (resp. at p) the estimates

pmtptat...tan (m + p) ! pn n!

m an Qp < 3(N-1)
|0 0y I8, (f1 m)l<c €1 N T )2+ 1) (p+1)2
6

Remark 6.8.

(i) Lemma 6.7 remains obviously true if m, n, p are replaced in (6.6) by integers
m,n,p with0<m' <m,0<n <n,0<p <p.

(ii) By the argument given below the factor C3 =1 in (6.6) can be replaced by
CG=r) (N=1) if 1 of the integers m, n, p vanish.
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Proof. We prove the case N = 2. The general case then follows with the first of
Remarks 6.8 by an induction argument. With the estimates above and Lemmas 6.4
and 6.5 we get on U (resp. at p)

oo <3305 () (1) (Dot o s oot s

7=0 k=0 1=0
S () () e

corMTItPlte (m — G4 p— 1) p"F (n — k)|
m—j+1)2Mn—-k+1)2(p-1+1)2
e ()
m+
=0 1=0 (]+lp)
c1Co pmtptaitaz (m+p)lpnnl

GH12R+1204+1)2(m—-j+1)2(n—k+1)2(p—1+1)2
pmrPtata (m4p)lptnl
(m+1)2(n+1)2(p+1)2

We are now able to prove our main estimates.

j=0

<.
k‘

S 03 C1 Co

Proof of Lemma 6.2. Following the procedure which led to Lemma 5.1, the proof
will be given by induction with respect to m and p. It is easy to see that the con-
stants can be chosen to satisfy the estimates at lowest order. Leaving the choice of
the constants open, we will derive from the induction hypothesis for the derivatives
of the next order estimates of the form
P (m + p)! p™ !
(m+1)>(n+1)*(p+1)°
rmtP=L (m 4 p)! p" n!

S+ 12+ 2+ 12
with certain constants A, , Ay which depend on m, n, p and the constants c,
cy, 7, and p. Sometimes superscripts will indicate to which order of differentiability
particular constants A, , Ay refer. Occasionally we will have to make assumptions
on r to proceed with the induction step. We shall collect these conditions and the
constants A, , Ay, or estimates for them, and at the end it will be shown that the
constants ci, ¢y, r, and p can be adjusted so that all conditions are satisfied and
A, <1, Ay < 1. This will complete the induction proof.

In the following it is understood that, as above, a function in a modulus sign
is evaluated at the origin O. The symbol = will stand for any of the fields

|0y 0y 08 51, (0)] < ¢k

Sk

10, 0, 05, F(O)] <

e“aB, T'aep, ¢, Co, 1, G2, 5, 81, S2, 83, S4.

For the quantities which are known to vanish at I the estimates are correct
for m = 0, p = 0. Since we consider § as an unknown and s(0) = —2 as part of the
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equations, we thus only need to discuss the s;. They are given on I by

(4 —k)!

41 85 S0 -

S =

It thus follows by our assumptions

— ntk !
|80 81180 Sk| _ ‘(4_k)'ak+n S0 < (44!k)! Co p(n+l§+—i_)k2)‘ for Tl§4—l€
veroe 4! Y N 0 for n>4—k&
_ p" n! m=0,p=0
with
Azz:(),p:O = =l pk hkm < “« pk )
Ck CL

because

I (k) ()2
him = <44,’<>! ( :!k)l (,ff;gﬂ)? for n<4—k | 4
) 0 for n>4—k =

We should study now under which conditions on the constants it can be
shown by induction with respect to m that the quantities [0 97 8% z|, n € Ny,
satisfy the estimates given in the lemma. We shall skip the details of this step,
because the arguments used here are similar to those used to discuss the quantities
|0 9 OF x| for general p and the requirements obtained in that case are in fact
stronger that those obtained for p = 0.

It will be assumed now that p > 1, that the estimates for |9 97 9!, x| given in
the lemma hold true for m,n € Ny, 0 <1 < p—1, and try to determine conditions
so that the induction step p — 1 — p can be performed.

By taking formal derivatives of the equation

0 = Ho1o0 + Hio00 ,
we get with our assumptions
|00 03 08, so| < (070 05 so| + 17 Oy 987 (€' 11 84 50))
+ |67T ({93 85)71 (é2 11 Oy So)| +4 |57T ({93 85)71 (f1101 So + fllOO 81)|

1
1—u(¢

For the first term on the right hand side follows immediately

+

o o on! ( {50<2+281<1—382¢0}> '

r™FP (m + p)! p" n!
(m+2)2(n+1)2p2 "~

0+ 9r 9P 55| <
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A slight variation of the calculations in the proof Lemma 6.7 gives

01 00 OB (&' 11 0w s0)|

m n p—1

>y —1\ ) o

) (7> <Z> (pl )'83‘8587{08111”3“ It o=k gp=i=1 g4
k=

cer,, co TP (m+p) " n!
GH+D2E+120+1)2m—-37+2)2n—-k+1)2(p—1)?
rm TP (m 4+ p)lpn!

(m—+2)2(n+1)2p2

<C%ca,, co ,
where the sum over j has been extended in the last step to m + 1.
Similarly one gets

01 0 OB (62 11 0y s0)|

m n p—1
Z (m> <n> (p — 1) |85L 85 351) é2 11”331—]' 3:}1—k+1 85_1_1 s
j J k l
=0 k=0 I=0
m+p—1) (n+l
=0 k= 1m0 (M) ()
Ce2,, €O pmtp—2 (m +p— 1) !pn+1 (7’L 4 1) |
G+1D2k+1)20+1)2(m—5+1)2(n—-k+2)2(p—1)2
pmtp—2 (m +p— 1) !pn+1 (TL + 1) |
(m+ 1)2 (n + 2)2 p2

IN

(]

<
~

n

IN
S

<C%cs,, o

)

where the sum over k£ has been extended in the last step to n + 1.

We emphasize here again an observation which is important for us. By
Lemma 5.2 the terms 97 0F 9%, é2 11 and 9™—7 9n—*+19r=I=1 54 in the second line
vanish if £ > 2j+1and n—k+1 > 2 (m— j)+4 respectively. This implies that the
term on the left hand side vanishes if n > 2m + 4, consistently with Lemma 5.2.
When we estimate the expression in the last line above we can thus assume that
n<2m+4.

Lemma 6.7 implies immediately

410 0y 0~ (T1101 S0 + L1100 51)|
P2 (m4p—1)!1p"n!
(m+1)2(n+1)2p?

)

3 A A
<40 (CO CF1101 +a cFuoo)
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and, observing that ((O) =0,

1
1—p¢

<uY|aronen (0 s+ 20 G -350})|
=0

u‘%”@ﬁﬁﬁl ( {80<2+251<1—352<o})\

rmAP=l=2 (m 4 p— 1)1 pn!

Ul 3 (41
S/‘;M CCC ( )(COCC2+2010C1 +3020C0) (m+1)2(n+1)2p2
m+p—2 —1D!'pn!
B I 3 T (m+p—1)1p"n!
T emer O e R Bl ) TG T

T

where it is assumed that

r>peeC?.
Together this gives

P (m + p)! p" n!
(m+2)%2(n +1)%p?
Pl (m 4 p)!lpn!
(m+2)2(n+1)2p?
rmIP=2 (m4p— 1)1 p" L (n 4 1)!
(m+1)2(n+2)2p?
P2 (m4p—1)!p"n!
(m+1)2(n+1)2p?
rmIP=2 (m4p—1)!p"n!

|05 Oy OF so| < ca

3
+C%ca, o

3
+C%ce2,, o

3
+4C (cocp,,, Hacp,,,)

K 3
1_LCSC (coce, +2c1ce, +3cace,) CESICENT:
r™ P (m + p)! p" n! .

<cy

(m+ D2+ D217

with a factor

(m+1)%(p+ 1)
(m +2)? p?

1)? 12 1
A: :C_Q(m+ ) (p+ ) +_O3Cé111
° g (m+2)? p? r

p(n+1)%(p+1)°
(n+2)2p%(m +p)

4 4 ¢ (p+1)2
+ ,,«_2 C (cfuol + a cfuoo) p2 (m +p)

1
+ T—203 Ce2 4,

(p+1)?

1 I C1 C2
- C® 2— 3— —_.
+ (CC2 + % ce, + o CCO> 2 m+p)

r2 1— pee C3
T
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Recalling that we can assume n < 2m + 4 in the third term on the right hand
side, this finally gives

. c2 4 3 20p 3 16 4 c1
ASO S 4 a + ; C Cél 11 + 7,—2 C 052 11 + ,,,,_2 C cfllol + a cflloo
1 m

3 C1 C2
+ﬁwc (CC2+250C1+350C0>'

We have the relations

(4—-k)!
4!

the equation 0 = Hy100 + H1000 reduces to

Sk = 3550 on Uy,

8w5028u52+3,u52<0 on UO;

and we have seen that
8v CO =0 on UO .
This implies for p > 1 the estimates
4 —k)!
0007 0f el < L oL ot o ol 4 31010007 7 (52 )

{(4_k)! cp TR (k)L <4-k

4! 2 4p2 (nt+k+1)2
0 for n>4—-k

<

. 3 (4Z!k)! Y (P N)ontR ol so| |07 Go| for m<2—k
0 for n>2-k
rP pl p™ nl =0,p>1
e TP im=0p>
S Ck (7’L+ 1)2(p+ 1)2 Sk )
with

)

- c2 3 cac &) 12 cac
AT=Or=t = 2k p L S0 2 gy, < 2 b g S0 20 ph
Ck T CL CL T CL

because

41 n! (n+k+1)24p? <1

=R (n+k) (4D (0 D)? g <y g
fk,n = -
0 for n>4—k

4! n! (n+k+1)2 p3 <4.

AR (k) (nd 1) 4 1)* g o g
Jkn = for n>2-k%k

From the equation 1199 = 0, which reads
8w<0 =—-24§ on UQ,

it follows

0 an _|an o\ — n P n! m=0,p=1
|0, 0y 0w Col = 103 (=2 + 8)| = 25 S%m“‘co ;
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with
—0 e 2
m=0,p=1 __
AC0 =
Co

Furthermore, for p > 2,

P=1 (5 — 1)l o™ !
0 an qp —1n Ap—1 5 — AT (p )IO n:
|au, av aw <0| |av aw S| Cs (7’L+ 1)2 p2

<e P pl p" n! m=0,p>2
S )2 (pr 1) ’

with
gm=opz2 _ L ¢ (p+1)? 2 ¢
@ re Pt T T g
The equation S7; = 0, which reads
Ows=—54¢ on Up,
implies
. P n!
0" 0,5 =0<c; ——,
| u v S| >c (n+1)2
and for p > 2
-2 — 1) o n!
0 an g9p 4 — |90 gn gp—1 2 P (p—D!p"nl
|au av 85;S| - |8u av 85} (84 <0)| < ¢ C4 C¢y (7’L+ 1)2p2
< oo P~ plp" nl m=0,p>2
T (412 p+1)2 ’
with

gm=opz2 _ L opcacey P+ 1?2 peaacq
s r Cs p3 ~r Cs

Having studied the quantities |9/* 91 9 x| for m = 0, we shall now derive
the conditions which arise from the requirement that we can obtain the desired
estimates for these quantities inductively for all positive integers m. We shall
provide detailed arguments only for some representative 0,-equations and just
state the analogues results for the remaining equations.

Multiplication of the equation

1 1. A
A2 A2 A2
0u€” 01 + L= aromo +2T0100 €% 01,
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with v and formal differentiation gives with Lemma 6.6 for m > 1

1
m+1
1 rmtP=1 (m 4 p)! p" n!
m+1 ( (m+1)2(n+1)2(p+1)?2
rmIP=3 (m 4 p—1)! p"n!
o1 Cfomo m2 (TL + 1)2 (p + 1)2 >
P (mp)lptnl s
* G AP D2 12

|0 0 % € 0| < (|or oy or Totoo| +2m [0 ~1 87 9P (Dorgp €2 01)])

<

+2m C3 e

= Cg2

with
1 1 2(m+1)

-
ARt = Towo g S 08, L
m+1 72 Towo gy (m 4 p)

2
€% 01 N
Ce2 o,

Proceeding in a similar way with the equations for the other frame coefficients one
gets for the factors which need to be controlled the estimates

m>1 - o100 + i 3¢ Azl < ‘1100 é o3 “T1i00 ©€3
1 = 9 72 o100’ e = e r2 oo )
€01 11 11
Am21<ém ic3 . m21<§6f1¢ §C3M
el = + 3 Fo100 ? e, — +3
01 T Cg1 T 11 T Cg1 T Csl
€01 €11 €11

The same inequalities, with C? replaced by C?, are obtained in the case p = 0. In
the last two inequalities the occurrence of 1/r in both terms reflects the fact that
¢, and é1; are both of the order O(u?) near O.

Multiplication of the equation

N 2 4 N 1
Ou o100 + . Lo100 = 2 (To100)* + 5 50,

with v and formal differentiation gives for m > 1

. m
oy oy o T < —
104 0y 0y Lowoo| < =

2m 5 5 TP (m4+p—1)!ptn!

Smrz Tow 2 (n+1)2(p+1)2

A 1
<2 |01 0 9 To100] + 3 lom=ton or 30|)

L_m rm TPl (m 4 p— 1) p"n!
C

2(m+2) " m2(n+1)Z(p+1)2
rt Pl (m 4 p)pt !l s

< ecs .
= Cpoioo (m+1)2(n+1)2(p+1)2 Towo )
with
qmzt L os 2(m+1)° o (m+ 1)

To100 r2 o100 m (m + 2) (m + p) CPo100 2m(m+2) (m+ p) .
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Proceeding in a similar way with the equations for the other connection coefficients
one gets for the factors which need to be controlled the estimates

C 4 C1 4
mal o 0 e m=t < + 5 C%Cpy gy
Toi00 — cn r2 0100 Toio1 — ¢n r2 0100

To100 To1o1

c 4 2c 4
2l 24 2P ATt < 2L OB

— b i )

To111 Ca r2 o100 T1100 ce 2 To100

To111 T'1100
m21 dcp +§C3w A2l < des +§C3m
r — ca 2 . ’ r — ca 2 . ’

o Cfim r Cfim . Cfiin r P

The same inequalities, with C?3 replaced by C?, are obtained in the case p = 0.
Being slightly more generous, one gets inequalities which can be written in the
concise form

qmzl o CA+B +i03 )

N C

Toias — Co1as 72 o100’

m>1 4CA+B+1 8 3 Cf11oocf01AB

(P LEER S e e ST NPT R
INEVY:]

CfllAB CfllAB
where the ca1 5, cayrpy1 denote for suitable numerical values of the indices A, B

the constants cq, ..., c4.
An analogous discussion of the equations

8u<:<05
0y Co=—C(1—p()so,
0y G =—C(1—p() s,

OuCe=-2+58—-C(1—p()s2,
08— (1— ) (soCi1 — 281 €01+ s2¢00),

does not require new considerations. For the factors which need to be controlled
we get the estimates

APELP0 o 4

e’
2
amztez0 o 4 o Coce iucﬁ Co &
Co —r Cco r2 cco
2
ATE1p>0 ECB Ge iucﬁ o &
< T C¢ 7 C¢ ’
2
8 4 4 cs 3 c2¢¢ 4 6 €2 S¢ _ _ _
Am=iez0 ) g + = (ch +C o )+ = uC < form=1,n=0,p=0,
= 2 ,
42 %(%4—03% —l—%ucﬁ% otherwise

T T

Cs Cs Cs
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We consider the 0,-equations for the curvature component s;. Multiplication
with 2u gives

2udy s1+ 451 =0, 80+ 2ué' 910450 + 21 é2 910y S0
~ ~ 4u
—8u (T'o101 50 = To10081) =t ———= 150C1 — 510}
(1—u<){ J

which implies for m > 1

10 0y Oy 51| < |0 0 9% s

2m+4
2m m—1 gn ~1 m—1 an 2
g (19000 00 (81 0n 0y so)| + 10071 9 05 (¢ 01 0y s0))
4m m—1 gn ap (T e
+ 2m + 4 <2 10, 0y 94, (T'o101 S0 — Loroo 51))

1
-1
+ |0y a:}ag{l_uc
The terms arising here are estimated in a similar way as the terms in the curvature
equation above. Again the expansion types allows one to assume that 0 < n <
2m+ 4 — k. Again r is restricted to values with

(s0C1 — 81 Co)}D :

> pLce c3.
Proceeding similarly with the other d,-equations for the curvature, the following
estimates are obtained for the factors which need to be controlled.

Co €o

1 C 8p C 8
m>1 3 C0 3 ©0 3
Asli < — P + ; C c_l Cel + ﬁ C a Cg2 + ﬁ C (— cfoml + cfomo)

c1 01 01 c1
1 3 4u Co
+ T—20 W <a C¢y +CC0 y
r
1 8
Arzt <D s e, 2P,
r Co r Co

€01 €01

4 3 Co C1
+5C <_ Cf0111 +2 g Cfolol +3 Cfomo

1 5 2 Co c1
+7‘_QC W(;CCQ+2C—CC1+3CCO s
1 = 2 2
m>1 _ C2 1 _sc2 8p 5 C2
A53 Sap—F;O g65é1+r—20 aCégl
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r2 1 _ BecC®

This gives all the needed information.

To arrange now the constants so that the induction argument can successfully
be carried out, we proceed as follows. The estimates for the decisive factors which
have been obtained above are of the general form

1 1
ASOZ+—B+—2"/7
T T

with «, §, and v depending on all the constants except r. If 3 =0 and v =0 it
suffices to ensure a < 1. In the other cases we require a < a where a is a given
constant, a < 1, and then choose r large enough so that A < 1. A first set of
conditions arising this way reads

Ck

c c c
p<a, 2ph<1, Z2ph<a, 42 <a.

Ck+1 Ck; Ck Co

These conditions can be satisfied simultaneously. The first equation implies ¢ >

(p/a)* co. With
PR .
= (g)

where 0 < p, a < 1, the first two relations hold true, the fourth relation implies
p? < a3/4 and with this restriction the third relation holds as well. We choose

1/3

p=po. a=(4p3)"".

The conditions

are met by setting
Co =2, ¢, = .

The conditions

CA+B deiyats
—Jrga, Lga, A,B=0,1,
Toran Prian
are then dealt with by setting
1 1
Cf()lAB = E CA+Bs  Cpy,p = 7 C14+A4B
The conditions
I Cp
0100 < 1100 < a
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are satisfied by setting

After this we choose some positive constants
A1 41 X
€o1» €115 €¢» €Ly Cae

That these constants are not further restricted by the procedure reflects the fact
that the corresponding functions vanish to higher order at O. Their choice affects,
however, the value of the constant r. After all constants except r have been fixed
we can choose r so large that

r > max{ro, Hee CB},

and that all the A’s are < 1. This finishes the induction proof. O

The following statement of the convergence result, obtained by using the
v-finite expansion types of the various functions, emphasizes the role of v as an
angular coordinate.

Lemma 6.9. The estimates (6.3) and (6.4) for the derivatives of the functions sy
and f and the expansion types given in Lemma 5.2 imply that the associated Taylor
series are absolutely convergent in the domain |v| < aip, lu| + |w| < 0‘72, for any
real number o, 0 < a < 1. It follows that the formal expansion determined in
Lemma 5.1 defines indeed a (unique) holomorphic solution to the conformal static

vacuum field equations which induces the datum so on Wy.
Proof. The estimates (6.3) and (6.4) imply

Ck (T/a2)m+p (m + p)' (O[ p)n TL' 4—k+2m+2p—n

m an Qp <
19700 9% 5Ol < Camk (A D (e ¥ 12 (o + 12
ek (/@)™ P (m +p)! (ap)" n!
“ ot (m+1)2(n+1)2(p+1)2
for n<2m+4—-k, m,p=0,1,2,...
ey (r/a®)" P (m 4 p) (ap)tnl oo
m an ap < r+2m+42p—n
|8u 81; aw f(0)| = Oékf72 (m+1)2 (7’L+1)2 (p+1)2 @
)" nl

oo ()" (m 4 p)(ap)”
T ok (m+1)2(n41)2 (p+1)2
for n<2m+ky, m,p=0,1,2,....

Since the other derivatives vanish because of the respective expansion types, the
first assertion is an immediate consequence of the majorizations (3.15), (3.16). The
second assertion then follows with Lemma 5.5. (]
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7. Analyticity at space-like infinity

Due to our singular gauge the holomorphic solution of the conformal static field
equations obtained in Lemma 6.9 does not cover a full neighbourhood of the point .
To analyse the situation we study the part of the solution which we have obtained
by the convergence proof in terms of a normal frame based on the frame cap at i
and associated normal coordinates. We write the geodesic equation D % = 0 for
2%(s) = (u(s), v, (s),w(s)) in the form

2a AB _a AB [ _x*a ~a
2 =m""ehp =m"" (eis + €4p),
mAB = —2mCPT e Ay mBE

— _9 mCDF*CD (A o mBIE _9mCPp o (A L BIE

With the explicit expressions for the singular parts, the system takes the form

i =m0 4 ;AB Ly, % = —2mCPlep © pmOB
o1 R ) 1 .
b= = mo 4 mAB 25, 0 = — 2 0 00 _ 9 CP O o VB
U U
. ) 2 .
W =m't il = — 2 00t 9Ol gl
U

These equations have to be solved with the initial conditions
uls=0 =0, wls=0 =0, (7.1)
for the curves to start at ¢. An arbitrary value
Vo = V|s=0 , (7.2)

can be prescribed to determine the 0,-0,-plane over ¢ in which the tangent vector
is lying, and an arbitrary choice of

AB AB AB__ A_ B AB_ A_ B .
m* %m0 =miT =miT e e +myT e e, g #0,

can be prescribed to specify the tangent vector in the 0,-0,-plane. Regularity and
the equations require

m80 = 1|s=0 = 1o, mgl =0, m(l)l = s=0 = o . (7.3)

If the frame e4p at a point of I is identified with its projection into 7;S., then

AB AB _C D *AB
my - eap =my 8- a(vo) s© B(vo) cop =M cap,
holds at ¢ with
m*OO:uO, m*()l:?l()l}(), m*llzibol}g—I—ﬂ)o, UO%O

For arbitrarily given m*4B ¢ C3 with m*00 2 0 this relation determines g, vg, o
uniquely. Using cap = a® 4p ca, the tangent vectors can be written m*48 cap



Vol. 8 (2007) Static Null Data 869

% cq with
1 i
1 . 2 . 2 . 2 . 3 .
a::—w+v—1u),x:—(w+v+1u),a::\/§vu
\/5( 0 (O ) 0 V2 0 (0 ) 0 00
o #0, (74)
or, equivalently,
bt + i a2 3 . Sop 2% b

to(z?®) = — vo(z®) = wo () =

V2(2! +ia?)’
2t +ia® £0. (7.5)

xl +iz2’

\/5 3

The vectors x%c, cover all directions at ¢ except those tangent to the complex null
hyperplane (¢ +ic2)* = {a(c1 +ica) +bes| a,b € C}.

To determine the normal frame centered at ¢ and based on the frame cap
at i, we write the equation Dzcap = 0 for the normal frame as an equation for
the transformation t4 g € SL(2,C), which relates the frame esp to the normal
frame cap = t€ 4 tP g ecp. The resulting equation

d
0= E( CatP g) +mCH Loy ©P prtf 4t g,
can be written in the form 4 g = —mPET g4 o t€ 5. Taking into account the

structure of the connection coefficients, this gives
. 1 A
tAB:——m0161AtOB—mDEFDEActCB. (76)
U

This equation has to be solved along z(s) with the initial condition
t4 Ble—o = ™ B(—w0). (7.7)

The initial value problems above make sense because the functions é* 4p and
f‘ABCD are, by Lemma 6.9, holomorphic near the point ©u = 0, v = vy, w = 0 for
any prescribed value of vy. The singularity of the system at that particular point
requires, however, some attention.

We prepare the statement and the proof of the existence result, to be given
in Lemma 7.2, by casting the system of ODE’s into a suitable form. It will be
convenient to make use of the replacements resp. change of notation

v—uvg+v, miB - miP L mAB (7.8)
so that all unknowns vanish at s = 0. Furthermore, by setting

éaAB(u7U7w) = é?{B(ua vo + an) ) fABCD(U, v, ’U}) = f‘ABC'D(’UHUO + an) )
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we define functions €9 5, T apcp of the new unknowns which are holomorphic near
u = v = w = 0. The regular equations read with this notation

@ = 1o +m® g e}y + 260 m"t + &1 mtt
W=y +m't,
% = -2 {ito g D111 + o (2 To101 MO + Tyyor m'?)
+ wo (f1101 m® + T m01) + 2T 0101 Mm% m®t + 20113 mOt m®!
+ Ty00 m® m!t 4 Fyyqq mOt mll}

The singular equations take the form

- 01 .52 52 01 52 11
ub=m +u(ig+2é;m +eém)

u7'n01 = —1uUgp mOl — mOO mOl +u {UQ wo fllOO — wg fllll

+ 19 (2 D100 m®* 4 T1100 m1Y)

+ 1y (D100 m®° — 2T 9111 m® — 2T11; m't)

+ 2Tg100 M Mm% — 20111 m® m™ 4 T1100 m® m!t — Tyqpy mt? mll} )
winl = —92 01 01

+2u {wS L1101 4 o (2T0101 Mt 4 Ti100 m°t 4+ 21101 mtY)
+2T0100 Mt m®t + 200100 Mt m*t 4 D100 mO m!t 4 Ty101 m*t 11} .

Finally, (7.6) reads

. 1 N S N
tAB = —am(JlélAtOB—(2m01F01AC+w0F11Ac+m11F11Ac)tCB. (79)

After applying 05 resp. 2 to the geodesic equations and restricting all equa-
tions to s = 0 one obtains with the initial conditions (7.1), (7.2), (7.3) the relations

Osmo =0, mAB|eo =0, ii|s—o=0, (7.10)

and, by taking a further derivative,

A2u(0) = ug1ip {53 et —20, fuol}

u=0,v=v9,w=0 '
This gives with the 0,-equations

1

8§’u(0) =—4 u% ’Lb() (Sz)uzo)v:vo)wzo = —gug ﬂ)o (812)50) (7.11)

u=0,v=v9,w=0"

which can be determined from the null data.
Because of Lemma 6.9 and the behaviour (4.7), (4.13) of the metric and the
connection coefficients, which follows from the J,-equations, there exist functions
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f, g, h, k, I which are holomorphic on a polycylinder P = {z € C°| |z;| < €'}
with some ¢’ > 0 so that the equations above can be written

=19 +m” +u?f, (7.12)

uv =m’ +ug, (7.13)

W = g +m't, (7.14)
m" =uh, (7.15)
um® = —igm® —m®m" + 2k, (7.16)
umnt = —2mP mO 4?1, (7.17)

with f, g, h, k, | depending on the C®-valued function z(s) comprising our un-
knowns in the form

z(s) = (zj(s))j:l’__,6 = (u(s), v(s), w(s), moo(s), mOl(s), mll(s)) ,

(which agrees after the replacement v — v —vg in the first 3 components with the
notation introduced earlier).

If F stands for any of the functions f, g, h, k, I, then it has on P, an
absolutely convergent expansion

F=> F,z%,

a€eENS

at 27 = 0, where again the multi-index notation is used. If 0 < € < ¢/, there exists
thus an M > 0 so that

sup Z'FO‘| [z%] < M.

zelPe

Lemma 7.1. Let p > 0 be an integer and ¢ and t real numbers which satisfy with
the constant C' of Lemma 6.4

M
¢z, t>max {1%} (7.18)
If the derivatives of the functions z7(s) at s = 0 exist and satisfy the estimates
: th=1k!
| <e——r, k=1,...,6, k<
|SZ|—C(]€+1)27 ) ) ) —p7
then p]
p!
OYF <ec——.
|O8F (2(s)) |,y < ¢ (p+ 1)
If, in addition, u satisfies u(0) = 0, u(0) = @y and
a tk—Q k[ k.
s=0 < ) <k<p,
| su($)| O_C(k+1)2 p
then

t p! !
s=0 p2 (p+1)27
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for p > 1, where the second term on the right hand side is to be dropped if p < 2,
and
3p(u2F(z(8))) < 2lupl?c 7 p +c¢C
: N (+1)? (p+ 1?2

for p > 2, where the second term on the right hand side is to be dropped if p < 3
and the third term is to be dropped if p < 4.

- tr=3p! trp!
+4lig| 2 C P’ 32 P

s=

On the left hand sides of the following equations will be considered the mod-
ulus of the values of the functions at the point s = 0.

Proof. Observing Lemma 6.7 and the subsequent remark, one gets

|a\—1c\o¢|tp_|a‘p!

OPF(2)| < Y |Fallob=®| < Y |FalC TEIE

lol<p ll<p

1 co\ll wpl M p! 2 p!
< — F. (= <= < ,
<o 2| '(t) COIIE S0 HrIr = rIp

la|<p

by the choice of ¢ and ¢t. With Lemma 6.4 this gives

oz (ur ()| < plial 02 £ )|+ 3 (7) 04l 020 o)

ot =1 & p\ H2() I (p— )
Spluolc#+z e (])26 (. 1)2
P =\ G+ -+
tP=1ip! tP=2p!
< Jitg| e 5 + 2 C 20
P (p+1)

and similarly

e re) <3 (1) S (1) o o

Jj=0

Il
N

p
1 (5) 1l 0z 2r @1+ Y (1) 2tliol 10 ul 21 o)
=3

p -2
P l ; _ -
= (1) S () ezl ot jor v
1=2 j=2
tP=2p! tP=3p! tP=4p!
< 2 Jig|? 4 Jitg) 2 32 .
< 2| c(p_1)2+ [to] ¢ C(p+1)2+cC TESIE

Lemma 7.2. The requirement that z(s) be a holomorphic solution of equations
(7.12)—(7.17) near s = 0 satisfying x(0) = 0 and 0su(0) = @y # 0 determines
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a unique formal expansion of z(s) at s = 0. There exist real constants ¢ and t
satisfying

. . . , M cC
e 2 o fa ol 4 ol ol ]| @250)a-omrswcols 7 o ¢ mae {1, 22
(7.19)

with C' the constant of Lemma 6.4, so that the Taylor coefficients of z(s) at s =0
satisfy the estimates

a—1g!

, t
0127 <e¢ , =0,1,2,..., 7.20
o2 <o 4 (7.20)
and the Taylor coefficients of u(s) at s = 0 satisfy in addition the estimates
t2(q +2)!
o2yl <e——F, ¢=0,1,2,.... 7.21
ot < e TR g (7.21)

It follows that for any given initial data g, vy, wo with 4y # 0 there ex-
ists a number t = t(1g,vo, o) and a unique holomorphic solutions z7(s) = 27
(8,0, v0,Wo) of the initial value problem for the geodesic equations with initial data
as described above which is defined for |s| < 1/t. The functions 27 (s, 1, vo, 1) are
in fact holomorphic functions of all four variables in a certain domain.

Proof. The existence of a unique formal expansion follows immediately by apply-
ing O for p=1,2,3,... formally to equations (7.12)—(7.17), restricting to s = 0,
and observing 1 # 0 and the initial data.

That the estimates (7.20) hold for ¢ = 0,1 follows from the initial condition
x(0) = 0, the equations at s = 0 and our conditions on ¢ and ¢. That the esti-
mates (7.21) hold for ¢ = 0,1 follows from (7.10), (7.11), and our conditions on ¢
and ¢.

Let p > 1 be an integer. We show that ¢ and ¢ can be chosen such that
the estimates (7.20), (7.21) for ¢ < p imply with the equations the corresponding
estimates for p+ 1. From (7.15) and Lemma 7.1 (with the provisos given there not
repeated here) follows

tP=1p! tP=2p! (p+1)!
P MmO = |97 (wh)| < || ¢ +c32C _—
|s | |s( )|—|0| p2 (p+1)2— 00 (p+2)2
with
1., plp+2?* 1 p! (»+2)? 5 . 2
Ago = - - ——+=cC < - —cC
00 t|u0|p2(p+1)!+t2c (p+1)2(p+1)!7t|uo|+t20
Similarly one gets from (7.12)
0772wl < |07 m™| + |08 (u? f)|
P (p+1)! o tPTHp+1)! e P2 (p+ 1)
< A0 ¢ ———— + 20| ¢c —————— + 4 || ¢ C ———=—
=T T prep [l p? [l (p+2)?
p—3 ! P !
Lrae2t ! _ tr(p+2)!

p+2? ~ s
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with

P+ (P+3)?> 2. 5 (P+3)?
(p+2)? (p+2)! - ?|u0| p2(p+2)
lcz 2 (p+3)?

t? (p+2)3

(p+3)°
(p+2)?

4 .
Au = Ago + o) mge

_|_

3 1 1
< ;|1lo|(1+4|1lo|)+t—ch(1+4|ﬂo|)+t—30202,
and from (7.14)
tP=1ip! tP 1)!
|02 w| = |oF m'| < ¢ p2§ wc@;g,
(p+1) (p+2)
with
_1+2? _2
Yoot (p+ 1) Tt

Applying 9?*! to (7.16) and observing the initial conditions, gives at s = 0 for
p=1

p+1
1 . .
(p+2) i 0P m® = =3 (p * ) &7 u oP+2=Im0
j=2
" p+1
-3 <p , ) 99 m® 9ri=ImOt 4 P+ (u? k)
. ] S S S k)
Jj=1
whence
+1 o . i .
|8”+1m01|<—1 pz:<19+1)62 25 P (p+ 2 — )
° ~ (p+2)fuol |\ G+12  (p+3-7)?

p i—1 - 5 .
p+1> o VTG T (p+1—)! t1g2
+ , — , + |02 (u” k
;( J G+ (+2-j) o5 (k)

1 N 1 1 o tPTH(p4+1)!
S,—C2Ctpl -l—l!{ + }+2u c——————
o] PN GTeE T oraes PRl Tm Ty

P2 (p+1)! 1 5 L, tP3(p+1)!

+42C +—c3C
(p+2)3 |10 (p+2)3
tP(p+1)!
= Agy c 2T
T2
with
1 (eC (p+2)2 . (p—|—2)} 4¢C 1 2C? 1
Api = { —=(1+ + 2] +
ot t{|u0|( (p+3)2) ol p2 2 p+2 t3ug| p+2
<1 2cC+4|,| +2cC 2 C?
=t ol o 2 B
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Similarly we get from (7.13)

=

P+
1
02410l < oy 4 00 (77 ) 10kl 020l o+ 4 jog a2 )
0
Jj=2

= p+1 2 B2 (py2— )
p+1 (p+ 1) Jio] G+1)2  (p+3-7)?

Jj=
+|0FH M| + 07 (u? B }

tP(p+1)!
(p+2)?

v I

with
Ao 12¢C(p+2)* 2ol (p+2)*  4cC 1 2?1
(p+1) liol ¢ [o| (p+3)2 t plp+1) 2 p+1  t3ugl p+1

{9|u|+2+2cc+CC}+£{2+L}+0202 {LJF : }
0 ol Taol2S o] 2 aol  Juol S~

and finally from (7.17)

v =

p+1 P . .
|51"+1m11|<71 . Z(p4.—1>02 t,j 2l oett j(p+2.—J)!
) ~ (Dol |\ g G+1)?  (@+3-7)?

p i—1 - i .
pH1\ o, g P (p+1—j)! +1g,2
+ . . ~— +10% !
( J >c G+1?* (p+2-j)? 1627 w0

ctp (p+ 1)
(p+2)2 7
with

1 2 2 202
A11§¥{18|110|—|— CO} cC c2C

|U0| t2 t3 |UQ| ’

From the estimates for the A’s it follows that given a choice of ¢ which satisfies
the first of the estimates (7.19), we can determine ¢ large enough such that the
second of the estimates (7.19) and the conditions

Au, Ay, Ay, Avo, Ao1, Al <1,

are satisfied. With this choice the induction step can be carried out.

It follows immediately from estimates (7.20) that the Taylor expansions of
the functions 27 at s =0, 27(s) = Y7 2J s” with 2] = 1! dPz7(0), are absolutely
convergent for |s| < 1/t.

The coefficients 2] = zJ (o, vo, o) depend on vy via the expansion coef-

p=

ficients of the functions €%, T apcp. This implies a polynomial dependence of
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the zg; on vy due to the v-finite expansion types of the functions €%, f‘ABCD.
The explicit dependence of the right hand sides of equations (7.12)—(7.17) on g
and g alone would lead to a polynomial dependence of the zg; on ug and wg. The
occurrence of the factors u on the left hand sides of equations (7.15)—(7.17) im-
plies, however, that the zg are polynomials in g, vg, Wy divided by certain powers
of Qo.

The number ¢ which restricts the domain of convergence ensured by our
argument depends via e and M on vy, and via ¢ and the A’s on g, 1/ and wg
with the effect that ¢ — oo as @4y — 0. It follows, however, from the form of
the estimates (7.20) and the way they have been obtained that for (g, vg, )
in a compactly embedded subset U of (C\ {0}) x C x C a common number ¢
can be determined so that the Taylor series will be absolutely convergent for
(S,Qlo,vo,u'}o) S Pl/t(O) xU.

If K is compact in Py /4(0) x U, there exists t' >t with K C Py, (0) x U and
it follows from (7.20) that the sequence of holomorphic functions fi = >"

p=0 sz; sP
on P;/4(0) x U satisfies

oo
S tr—1 1\* ¢ (t/t)"
w12 3 g (5) Sf it -0 m o

so that the fJ converge uniformly to 27 on K. Standard results on compactly
converging sequences of holomorphic functions [22] then imply that the z7 =
27 (s, 10, vo, o) are holomorphic function of all four variables on P, /,(0) x U. O

Lemma 7.3. Along the geodesic corresponding to s —  29(s,1g,v0,0)
equations (7.9) have a unique holomorphic solution t* g(s) = t* g(s, 1, vo, W)
satisfying the initial conditions (7.7). The functions t* p(s, o, vo, W) are holo-
morphic in all four variables in the domain where the 27 (s, g, vo, o) are holo-
morphic.

Proof. By the previous discussion we have m® = O(s?), u = O(s) with g # 0
so that m® /u = O(s) as s — 0. It follows that (7.9) is in fact a linear ODE with
holomorphic coefficients and the lemma follows from standard ODE theory. 0O

For later use we note that (7.7), (7.9) imply as an immediate consequence
that

t714 (s) = 5™ p(vo) + O(|s]*) as s—0. (7.22)
To discuss the transformation to normal coordinates the notation employed
before the transition (7.8) will be used again, so that
s — za(exp(s xaca)) = Za(sv aOv Vo, 'UJ()) )
2 3

denotes in the coordinates z' = u, 22 = v, 22 = w the geodesic which has at
s = 0 the tangent vector x%c, with ® = x*(ug, v, wo) at i. We note that by the
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discussion above
U(S,T:LO, UvaO) = ﬂo s+ O(|S|3) )
U(Sa ’l.j,o, vOawO) = v + O(|S|2) )
w(s, tig, vo, o) = o s + O(|s]*) . (7.23)
In terms of the map (7.5) the transformation of the normal coordinates ¢
centered at ¢ and based on the frame c, at ¢ into the coordinates z* is the given
by
2 — 2%(2%) = 2% (1,10 (z°), vo (x°), o (z°)) , (7.24)

for small enough |z?| with 2 + i2? # 0. The geodesics being given in normal
coordinates by the curves s — sz®, this implies

sz® — 2% (1,110(5 x), v (s %), wo(s xc)) =2z* (8, ﬂo(xc),vo(xc),wo(xc)) i

We use the relation on the right hand side to derive a convenient expression for
the map (7.24). Observing that

Uo(s ) = stuo(z¢), wvo(sx®) =vo(z%), wo(sz®) =swo(z®), seC,

by (7.5), we write * = sx¢ with s chosen so that g(x$) = 1, whence g (2°) = s,
and get with the relation above the map (7.24) in the form

2%(x%) = z“(l,dg(xc),vo(ajc),wo(xc)) = z“(s,ﬁo(xi),vo(xi),wg(xi))

_ <uo(xc), L v0(z%), Zg((;f))) '

With (7.23) this gives, as |z| = /6w 2¢2? — 0, 21 + 722 £ 0,

! +ix? z3
s e o) 3 ey v
\/i + (|ZE| ) ) ’U(ﬂf ) x]_ +ZCE2
1

c 1_ .2 (%) 3
w(x):ﬁ r —1x +m +O(|$|)
Sap 2% 2P 3
=——+0(|z|"). 7.26
V2 (2! +ia?) (laf") (7.26)
In the flat case the order symbols must be omitted in these expressions.
With (4.6), (7.22) and

u(z®) = +0(Jz]?), (7.25)

du = —%(dwl +ida”) + O(|z]?),
dz? v
dv = de! +idz?) + O ,
v \/§u+\/§u(x +idz?) 4+ O(|z|)
dw = % (dxl —ida® — 2vda® —v? (dz! —|—idx3)> +0(|z?),



878 H. Friedrich Ann. Henri Poincaré

one gets for the forms y*Z = yA8 . dz® dual to the normal frame cp indeed
XAB(xc) — t*lA thlB D (O'CD 1 du + O'CD 5 dv + O'CD 3d’LU)
— (O[AB ot )A(AB a) dz® ,

with some functions Y45 ,(x¢) which satisfy y4?, = O(|z|?) as |z| — 0. Corre-
spondingly, the coefficients ¢% 5 = (dz®, cap) of the normal frame in the normal
coordinates satisfy
c® ap(z®) = a® ap + ¢ ap(z°),

with holomorphic functions ¢% 45 (z¢) which satisfy ¢ 45 (z¢) = O(|z|?) as |z| — 0.

Since the three 1-forms a4® , dz® are linearly independent this shows that
for small || the coordinate transformation z® — 2%(z°), where defined, is non-
degenerate and the forms y4? behave as required by normal forms in normal coor-
dinates. The relations (3.1), which characterize coefficients of normal forms in nor-
mal coordinates, are a consequence of the equations satisfied by 2%(s) and t* g(s).
All the tensor fields which enter the conformal static vacuum field equations can
now be expressed in term of the coordinates x¢ and the frame field c4p.

All ingredients are now available to derive our main result.

Proof of Theorem 1.1. The coordinates ¢ cover a domain (i.e., a connected open
set) U in C3 on which the frame vector fields ¢® sp 0/0,. exist, are linearly inde-
pendent and holomorphic and where the other tensor fields expressed in terms of
the z* and cap are holomorphic. It follows from Lemmas 6.9, 7.2, and 7.3 that
given any initial data g, vg, o with @ # 0, there exists a solution z%(s, g, vo, o)
of the corresponding geodesic equations which is defined for |s| < 1/t with some
t > 0. The dicussion above shows, however, that ¢ will become large if |vg| be-
comes large or |4g| becomes very small. This implies that the U will not contain
the hypersurface z! + iz? = 0 but the boundary of U will become tangent to
this hypersurface at * = 0. From the estimates obtained so far it cannot be con-
cluded that the coordinates extend holomorphically to a domain containing an
open neighbourhood of the origin.

To analyse this question, we make use of the remaining gauge freedom to
perform with some t4 g € SU(2) a rotation 6* — §* - ¢ of the spin frame and the
associated rotation

¢ c D
cAB — Cap =1t At~ BCcD

of the frame c4p at ¢ on which the construction of the submanifold S and the
related gauge is based. Starting with these frames at ¢ all the previous constructions
and derivations can be repeated.

Let v/, v/, w’ and €'y ; denote the analogues in the new gauge of the coordi-
nates u, v, w and the frame e4 5. The sets {w = 0} and {w’ = 0} are then both to
be thought of as lift of the set A; to the bundle of spin frames, the coordinates u
and v’ can both be interpreted as affine parameters on the null generators of N;
which vanish at i, the coordinates v, v’ both label these null generators, and the
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frame vectors ego and ef, can be identified with auto-parallel vector fields tangent
to the null generators.

If v and v’ then label the same generator n of NV, a relation

s90(0") 8P (W) tE ottt pepr = ey = fPeqn = f25% o(v) 8P o(v) cop
must hold at i with some f # 0 and e}, = f?ego must hold in fact along 7,
with f constant along 7 because e, and egy are auto-parallel. Absorbing the
undetermined sign in f, this leads to

e SCO(U/) = fs"o(v).

With
W= (¢ ) whee acec P -lP-1, 2
this gives
,  —c+av 1 ctav i
- = esp. el — = - .
V= Gt T agae P VT gy ST

Moreover, the relations
(du,eqo) = 1 = (du',ely) = (du’, % eqo),
imply for the affine parameters along 7
w=f2u,
so that n(u’,v’) = n(u,v) holds with these relations. We note that choices of t4 g
with ¢ # 0 can supply new information, because then v — oo as v' — a/¢ so that
the singular generator of the cap-gauge, about whose neighbourhood we need

information, is then contained in the regular domain of the ¢!, 5-gauge.
For the null datum in the new gauge one gets with (4.16)

s/, v') = st o) . s o) tE 4t DSt plne vy = 1 s0(u,v)

= Z oo u'™ R g o (v) sP1 o (v). .. 8P o(v) Dia,p, - Da,.B,, Sapcp) (i)
m=0 '

o0
1 .
= Z — u'™ A A () sB () L sP o (v) DfAlB1 ...DY B S%BCD)(Z) ,

m!
m=0
and thus
oo 2m—+4
so@/ ) =D 3" gl um (7.28)
m=0 n=0
with

DfAlB1 . 'DixmBm SQBCD)(Z')

_ 4G H N * * * .
=t 1A1t 1B1 R # D.D(GlHl...DGmHmSLKMN)(Z),
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and
1 /2m+4 .
o = oo < " ) Dia,p, -+ D, b, shpopy, (i)
2m-+4
_ﬁ< n );J( j >t fatt Bt D),

* * * .
X Dig,u, ---Da,,u,, SLkMN); ()

2m-+4

2m+4 .

( " > Z t(G1 (A tHl By - tN)J D) an,j .
=0

It is convenient to write this in the form

2m+4 1/2 ~1/2
2m+4 2m+4 ;
don= 2 ()T RO, G29)
Jj=0

where the numbers

. om+ 4\ % [2m + 4\ /2 _
Tomya? n(t) = ( n ) j (G (A tH By --- V)i D)

n ?

are so defined [11] that they represent the matrix elements of a unitary represen-
tation of SU(2) and thus satisfy

ITomia? n(t)] <1, m=01,2,..., 0<j, n<2m+4.

With the expressions above it is easy to see that the type of the estimate (3.11) and
the type of the resulting estimate (6.1) are preserved under the gauge transforma-
tion. With (7.28) and (7.29) follows from (6.1) at the point O’ = (u' = 0,v" = 0)

2m+4 1/2 —1/2
O 0, s(0)| = min! [9h, | < mint Y <2m+4) <2m_+4)

n
i=0 J

X T2 m4 J n(t)] |wﬂ1»j|

2m+4 1/2 1/2
2 4 2 4
< m!n! E ( me > < m.—i— > Mri™

=0~ " J
2m-+4
2m+ 4 2m + 4
<m!n!<m+) Z(m_+)Mrl_m
n = j
2m + 4
:m!n!< m ) M ™, (7.30)
n

with M’ =16 M and r; = 1 /4.
Assuming now that ¢ # 0 in (7.27), the resulting c!y 5-gauge can be studied
from two different points of view:
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i) The singular generator of N; in the ¢!y 5;-gauge will coincide with the regular
generator of A; on which v = —a/¢ in the c4p-gauge. By starting from the
solution in the c4p-gauge, we are thus able to directly determine near that
generator the transformation into the ¢4 z-gauge and to determine the ex-
pansion of the solution in the c4p-gauge in terms of the coordinates u’, v, w’
and the frame field e’ 5.

ii) Alternatively, with the null data s{(u/,v) at hand, one can go through the
discussions of the previous sections to show the existence of a solution to the
conformal static vacuum equations in the coordinates u’, v/, w’ pertaining
to the ¢!y 5-gauge. All the observations made above, in particular statements
about domains of convergence, apply to this solution as well. Important for
us is that this solution covers the generator v’ = a/¢ near ' = 0 and w’ = 0,
which corresponds to the singular generator in the c4p-gauge.

Because the formal expansions of the fields in terms of v/, v/, w’ are uniquely
determined by the data sf(u/,v’), the solutions obtained by the two methods are
holomorphically related to each other on certain domains by the gauge transforma-
tion obtained in (i). The solution obtained in (ii) can be expressed in terms of the
normal coordinates z{¢ and the normal frame field ¢!, 5 so that the z¢ cover an cer-
tain domain U; C C? and the frame field ¢!, ; is non-degenerate and all our tensor
fields expressed in terms of z¢ and ¢! 5 are holomorphic on U; as discussed above.
It follows then that the solution in the c4 p-gauge and the solution in the ¢!, ;-gauge
are related on certain domains by the simple transformation (cf. (4.3))

xf:tflabxb, c’AB =t ,tP geop.

Extending this as a coordinate and frame transformation to the solution obtained
in (ii) to express all field in terms z® and cap so that they are defined and holo-
morphic on ¢! Uy, one finds that the solution obtained in (i) and our original
solution define in fact genuine holomorphic extensions of each other because each
one covers the singular generator of the other one away from the origin in a regular
way.

By letting t* 5 go through SU(2) and observing the corresponding exten-
sions, one obtains in fact a holomorphic solution to the conformal static vacuum
field equations in the normal coordinates z® centered at i associated with the
frame 0* resp. cap at i on a domain which covers a full neighbourhood of space-like
infinity. Consider again the solution we obtained in the c4p-gauge. From the dis-
cussion above it follows that the domain U in C? on which the solution is holomor-
phic in the coordinates x® covers a connected open subset U’ of the hypersurface
{23 = 0} of C3 which has empty intersection with the line {z! +iz? =0, 2° = 0}
(corresponding to the singular generator of the c4p-gauge) and whose boundary
becomes tangent to this line at the origin 2 = 0. Under the transition

i0/2

Ug — Uy, Vg — € 0 , 11.}0—>619U'}0, HER,
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which leaves the quantities |tg|, |vo|, |wo| entering the estimates above invariant,
one gets by (7.4)

x4 i 22 —>a:1—|—ix2, zt —iz? — et (a:l —ixQ), 2 — ¥ 23,
Thus the set U’ can be assumed to be invariant under this transformation.

Consider now the c!; 5-gauge where the special transformation t*4 g is given
by (7.27) with a = 0, ¢ = 1. Let U/. denote a subset of the hypersurface {z3. = 0}
in C? analogous to U’. It has empty insection with the line {z}. +i 2% =0, z}. =0}
but its boundary becomes tangent to it at zf = 0. It holds

CBB =, 06*1 = —Co1, ctfl =copo at 1,
and the corresponding normal coordinates are related by
ry. = —x', zho=2%, zl =2
The holomorphic transformation {z3. = 0} 3 (zf.,22) — (—2t,2?) € {23 = 0}
maps U}. onto a subset of C2 ~ C? x {0}, denoted by t* ~! U/., which has non-
empty intersection with U’. After the transformation above the two solutions co-
incide on t* 1 UL NU’.

On the other hand, the image of the c%g-regular line {z}. —iz% = 0,
x}. = 0} N U/. under this transformation contains the intersection of a neigh-
bourhood of the origin with the singular line {z! —iz? = 0, 2 = 0, 2% # 0}
of the cap-gauge. In fact, the set t* 1 U/. U U’, which admits a holomorphic
extension of our solution in the coordinates x® and the frame csp, contains a
punctured neighbourhood of the origin. As we have seen above, the field cap on
this neighbourhood extends continously to the origin.

Let now z¢ # 0 be an arbitrary point in C3. We want to show that the
solution extends in the coordinates z* to a domain which covers the set sz? for
0 < |s| < € for some € > 0. Since z¢ = y® + i 2% with y¢, 2¢ € R? there is a
vector u® € R? of unit length and orthogonal to z® with respect to the standard
product u - & = 45 u® 2°. Consider the ¢ z-gauges with t4 5 € SU(2) so that
uty =t ub = §93. It follows then that 2%, = t~1%, 2% € {23 = 0} and by the
preceeding observation t4 g can in fact be chosen such that there exist an € > 0 so
that the points s z%, with 0 < |s| < € are covered by U;. Transforming back we find
that the set U € C3 covered by the coordinates z® can be extended so that the
points sz% with 0 < |s| < € are covered by U and all field are holomorphic on U
in the coordinates x®. It follows that we can assume U to contain a punctured
neighbourhood of the origin in which the solution is holomorphic in the normal
coordinates x® and the normal frame c4p. Since holomorphic functions in more
than one dimension cannot have isolated singularities [15] the solution is then in
fact holomorphic on a full neighbourhood of the origin ® = 0, which represents
the point 1.

By Lemma 3.1 the exact sets of equations argument determines from null data
satisfying the reality conditions a formal expansion of the solution with expansion
coeflicients satisfying the reality conditions. By the various uniqueness statements
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obtained in the lemmas this expansion must coincide with the expansion in normal
coordinates of the solution obtained above. This implies the existence of a 3-
dimensional real slice on which the tensor fields satisfy the reality conditions. It is
obtained by requiring the coordinates z® to assume values in R3. O
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