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Static Vacuum Solutions from Convergent
Null Data Expansions at Space-Like Infinity

Helmut Friedrich

Abstract. We study formal expansions of asymptotically flat solutions to the
static vacuum field equations which are determined by minimal sets of freely
specifyable data referred to as ‘null data’. These are given by sequences of
symmetric trace free tensors at space-like infinity of increasing order. They are
1 : 1 related to the sequences of Geroch multipoles. Necessary and sufficient
growth estimates on the null data are obtained for the formal expansions
to be absolutely convergent. This provides a complete characterization of all
asymptotically flat solutions to the static vacuum field equations.

1. Introduction

In this article will be given a characterization of asymptotically flat, static solutions
to Einstein’s vacuum field equations Ric[g̃] = 0. We thus consider Lorentz metrics
which take in coordinates suitably adapted to a hypersurface orthogonal, time-like
Killing field K the form

g̃ = v2 d t2 + h̃ , v = v(xc) > 0 , h̃ = h̃ab(xc) dxa dxb , (1.1)

where h̃ denotes a negative definite metric on the time slices S̃c = {t = c = const.}
and the Killing field is given by K = ∂t. In this representation Einstein’s vacuum
field equations reduce to the static vacuum field equations

Rab[h̃] =
1
v
D̃a D̃b v , Δh̃ v = 0 on S̃ ≡ S̃0 . (1.2)

It will be assumed that S̃ is diffeomorphic to the complement of a closed ball BR(0)
in R

3 with a diffeomorphism whose components define coordinates xa, a = 1, 2, 3,
on S̃ in which the asymptotic flatness condition1

h̃ac =
(

1 +
2m
|x|
)
δac +Ok(|x|−(1+ε)) , v = 1− m

|x| +Ok(|x|−(1+ε)) as |x| → ∞ ,

(1.3)

1The terms Ok(|x|−(1+ε)) behave like O(|x|−(1+ε+j)) under differentiations of order j ≤ k.
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is realized with some ε > 0 and k ≥ 2, where | . | denotes the standard Euclidean
norm.

Solutions to (1.2) satisfying the fall-off conditions (1.3) have been character-
ized by Reula [23] and Miao [18] in terms of boundary value problems for the static
field equations where the data are prescribed on the sphere ∂S̃, which encompasses
the asymptotic end.

Our interest in static solutions comes, however, from the observation that
for vacuum solutions arising from asymptotically flat, time symmetric initial data
asymptotic smoothness at null infinity appears to be related to asymptotic staticity
of the data at space-like infinity [14,25]. To analyse this situation we wish to control
the static vacuum solutions in terms of quantities defined at space-like infinity.

Another reason for giving such a characterization results from the work by
Corvino [5, 6], Corvino and Schoen [7], and Chruściel and Delay [3, 4]. These au-
thors deform given asymptotically flat vacuum data outside prescribed compact
sets to vacuum data which are exactly static or stationary near or asymptotically
static or stationary at space-like infinity and use such data to discuss the existence
of null geodesically complete solutions which have a smooth asymptotic structure
at null infinity. To assess the scope of these results it is desirable to have a com-
plete description of the asymptotically flat static vacuum solutions in terms of
asymptotic quantities.

A characterization of this type has been suggested by Geroch by giving a
definition of multipole moments for static solutions [16]. He assumes the metric h̃
to admit a smooth conformal extension in the following sense. With an additional
point i, which is to represent space-like infinity, the set S = S̃ ∪ {i} is assumed to
acquire a smooth differential structure which induces on S̃ the given one, which
makes S diffeomorphic to an open ball in R

3 with the center representing i, and
which admits a function Ω ∈ C2(S) ∩ C∞(S̃) with the properties

Ω > 0 on S̃ , (1.4)

hab = Ω2 h̃ab extends to a smooth negative definite metric on S, (1.5)
Ω = 0 , DaΩ = 0 , DaDbΩ = −2 hab at i , (1.6)

where D denotes the covariant derivative operator defined by h. We note that
these conditions are preserved under rescalings h → ϑ4 h, Ω → ϑ2 Ω with smooth
positive functions ϑ satisfying ϑ(i) = 1.

With these assumptions Geroch defines a sequence of tensor fields P , Pa,
Pa2a1 , . . . near i by setting2

P = Ω−1/2 (1 − v) , Pa = Da P , Pa2a1 = C
(
Da2Pa1 −

1
2
P Ra2a1

)
,

Pap+1...a1 = C(Dap+1Pap...a1 − cp Pap+1...a3 Ra2a1) ,

with cp =
p (2 p− 1)

2
, p = 2, 3, . . . ,

2We depart from the convention of [16] by changing the sign of P .
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where Rab denotes the Ricci tensor of hab and C the projector onto the symmetric,
trace free part of the respective tensor fields. The multipole moments are then
defined as the tensors

ν = P (i) , νap...a1 = Pap...a1(i) , p = 1, 2, 3, . . . ,

at i. Setting aside the monopole ν, we will denote the remaining series of multipoles
by

Dmp = {νa1 , νa2a1 , νa3a2a1 , . . .} . (1.7)

The problem of characterizing solutions to a quasi-linear, gauge-elliptic sys-
tem of equations of the type (1.2) by a minimal set of data given at an ideal point
representing space-like infinity is unusual and certainly quite different from a stan-
dard boundary value problem for (1.2). There are available some results which go
into this direction but little has been done on the general question of existence.

Müller zum Hagen has shown that solutions v, h̃ab to (1.2) are real analytic
in h̃-harmonic coordinates [20]. The question to what extent the multipoles in-
troduced above determine the metric hab and the function v raises the question
whether this metric is real analytic even at i in suitable coordinates and confor-
mal scalings. Beig and Simon [2] have shown (under assumptions which have been
relaxed later by Kennefick and O’Murchadha [17]) that the rescaled metric does
indeed extend in a suitable gauge as a real analytic metric to i if it is assumed
that the ADM mass satisfies

m 	= 0 . (1.8)

We shall assume this result in the following and shall not go through the argument
again, though its structural basis will be pointed out in passing. Beig and Simon
also provide an argument which essentially shows that a given sequence of mul-
tipoles determines a unique formal expansion of a ‘formal solution’ to the static
vacuum field equations.

For axisymmetric static vacuum solutions, which are special in admitting
explicit descriptions [26], the question under which assumptions a sequence of
multipoles does indeed determine a converging expansion of a static solution has
been studied by Bäckdahl and Herberthson [1]. For the general case, for which the
freedom to prescribe data is much larger, this problem has never been analyzed.
For this reason the results referred to above remained essentially of heuristic value.

It is the purpose of this article to derive, under the assumption (1.8), neces-
sary and sufficient conditions for certain minimal sets of asymptotic data, denoted
collectively by Dn and referred to as null data, to determine (unique) real analytic
solutions and thus to provide a complete characterization of all possible asymptot-
ically flat solutions to the static vacuum field equations. The behaviour of these
solutions in the large will not be studied here. We shall only be interested in what
could be called ‘germs of static solutions at space-like infinity’, for which S may
comprise only a neighbourhood of the point i which is quite small in terms of h
(in terms of h̃ they cover infinite domains extending to space-like infinity).
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While the multipoles above are defined for any conformal gauge, it will be
convenient for our analysis to remove the conformal gauge freedom. As shown
below, the metric h = Ω2 h̃ defined with the preferred gauge

Ω =
(

1 − v

m

)2

,

on a suitable neighbourhood S̃ of space-like infinity, can be extended with (1.4)–
(1.6) in suitable coordinates to a real analytic metric at i. The metric so obtained
satisfies R[h] = 0 on S. In this gauge we get with the notation above

P = m, Pa = 0 , Pa2a1 = −m
2
sa2a1 , (1.9)

Pap+1...a1 = C(Dap+1Pap...a1 − cp Pap+1...a3 sa2a1) , p = 2, 3, . . . , (1.10)

where sab denotes the trace free part of the Ricci tensor of h. In the given gauge
we consider now the set

Dn =
{
sa2a1(i), C(Da3sa2a1)(i), C(Da4Da3sa2a1)(i),

C(Da5Da4Da3sa2a1)(i), . . . . . .
}
.

Given m 	= 0 and the sequence Dn associated with h, one calculate the multipoles
Dmp of h and vice versa. The sets Dn and Dmp thus carry the same information,
but Dn is easier to work with because the expressions are linear in the curvature.

Let now ca, a = 1, 2, 3, be an h-orthonormal frame field near i which is
h-parallelly propagated along the geodesics through i and denote the covariant
derivative in the direction of ca by Da. We express the tensors in Dn in terms of
this frame and write

D∗
n =

{
sa2a1(i), C(Da3sa2a1)(i), C(Da4Da3sa2a1)(i),

C(Da5Da4Da3sa2a1)(i), . . .
}
. (1.11)

We note that these tensors are defined uniquely up to a rigid rotation ca → sc a cc
with (sc a) ∈ O(3,R). These data will be referred to as the null data of h in the
frame ca.

It will be shown that if these data are derived from a real analytic metric h
near i there exist constants M, r > 0 so that the components of these tensors
satisfy the Cauchy estimates

|C(Dap . . . Da1sbc)(i)| ≤ M p!
rp

, ap, . . . ,a1,b, c = 1, 2, 3 , p = 0, 1, 2, . . . .

Conversely, we get the following existence result.

Theorem 1.1. Suppose m 	= 0 and

D̂n = {ψa2a1 , ψa3a2a1 , ψa4a3a2a1 , . . . } , (1.12)
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is a infinite sequence of symmetric, trace free tensors given in an orthonormal
frame at the origin of a 3-dimensional Euclidean space. If there exist constants
M, r > 0 such that the components of these tensors satisfy the estimates

|ψap ... a1bc| ≤ M p!
rp

, ap, . . . ,a1,b, c = 1, 2, 3 , p = 0, 1, 2, . . . ,

then there exists an analytic, asymptotically flat, static vacuum solution (h̃, v)
with ADM mass m, unique up to isometries, so that the null data implied by

h =
(

m
1−v

)4

h̃ in a suitable frame ca as described above satisfy

C(Daq . . . Da3sa2a1)(i) = ψaq ... a1 , q = 2, 3, 4, . . . .

A sequence of data of the form (1.12) (not necessarily satisfying any esti-
mates) will in the following be referred to as abstract null data. The type of esti-
mate imposed here on the abstract null data does not depend on the orthonormal
frame in which they are given (cf. the discussion leading to (7.30)). Since these es-
timates are necessary as well as sufficient, all possible ends near space-like infinity
of asymptotically flat static vacuum solutions are characterized by this result.

The proof of the result above will be given in terms of the conformal met-
ric hab. For this purpose (1.2) are reexpressed in Chapter 2 as ‘conformal static
vacuum field equations’ for hab and fields derived from hab and v. In Chapter 3 it
is shown by a direct argument that in a certain setting a set of abstract null data
defines the expansion coefficients of a formal expansion of a solution to these equa-
tions uniquely. Showing the convergence of the series so obtained appears difficult,
however. Using the analyticity of the solutions to the conformal static vacuum
field equations at the point i, we study in Chapter 4 their analytic extensions into
the complex domain. Denote by Ni the ‘cone’ with vertex at i generated by the
complex null geodesics through the point i. The null data are then represented by
a function on Ni, the component of the Ricci tensor obtained by contracting it
with the null vector tangent to Ni. In this setting the original problem assumes
the form of a characteristic initial value problem with data prescribed on Ni.

We wish to obtain the equations in a form which allows us to derive from
prescribed estimates on the null data appropriate estimates on the expansion co-
efficients. This requires a choice of gauge which is suitably adapted to Ni. Because
of the vertex, any such gauge will necessarily be singular at a certain subset of
the manifold. The manifold Ŝ considered in Chapter 4 organizes the singularity
in a geometric way. In Chapter 5 the conformal static vaccum field equations are
considered on Ŝ, and it is shown how to determine a formal solution to the com-
plete set of conformal field equations from a given set of abstract null data. The
convergence of the series so obtained is shown in Chapter 6. Making use of the
lemmas proven in the previous chapters, this result is translated in Chapter 7 into
a gauge which is regular near i and allows us to prove Theorem 1.1. A transla-
tion of the estimates on the null data into equivalent estimates on the multipoles
and a generalization of the present result to stationary solutions will be discussed
elsewhere.



822 H. Friedrich Ann. Henri Poincaré

2. The static field equations in the conformal setting

The existence problem will be analyzed completely in terms of the conformally
rescaled metric. We begin by describing the conformal gauge and then express
the static field equations in terms of the conformal fields. This discussion follows
essentially that of [12] and [14].

2.1. The choice of the conformal gauge

Consider a situation as described by conditions (1.4)–(1.6). If the metric h̃ is
asymptotically flat and has vanishing Ricci scalarR[h̃] on S̃ the function Ω satisfies
(cf. [14])(

Δh − 1
8
R[h]

)
(Ω−1/2) = 0 on S̃ and r Ω−1/2 → 1 as r → 0 ,

where r denotes the h-distance from i. Sufficiently close to i one obtains the rep-
resentation

Ω−1/2 = ζ−1/2 +W ,

with smooth functions ζ and W satisfying(
Δh − 1

8
R[h]

)
W = 0 , (2.1)

and
ζ(i) = 0 , Daζ(i) = 0 , DaDbζ(i) = −2 hab . (2.2)

The functions ζ and W are real analytic if the metric h is real analytic. In [2] Beig
and Simon consider static vacuum metrics of the form

g̃ = e2 U dt2 + e−2 U ĥab dx
a dxb ,

related to (1.1) by v = eU and ĥab = v2 h̃ab, and show that the function ω =
(U/m)2 and the metric

h′ab = ω2 ĥab = Ω
′2 h̃ab with Ω′ = ω eU , (2.3)

extend in h′-harmonic coordinates near i to real analytic fields at i so that Ω′

satisfies requirements (1.4)–(1.6) with the h′-covariant derivative operator D′.
It follows [12] that Ω

′−1/2 = ζ
′−1/2 + W ′ with ζ′ = ω

cosh2(U/2)
and W ′ =

m
2

sinh(U/2)
U/2 . Assume S to be chosen so that U 	= 0 on S̃. Rescaling with ϑ =

W ′/W ′(i) > 0 on S gives

h = ϑ4 h′ = Ω2 h̃ with Ω = ϑ2 Ω′ ,

where the conformal factor can be written

Ω =
(

1 − v

m

)2

on S . (2.4)

Because of (2.1) the metric h has then vanishing Ricci scalar

R[h] = 0 on S , (2.5)
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and it follows that
Ω−1/2 = ζ−1/2 +W , (2.6)

where

W =
m

2
, ζ =

1
μ

(
1 − v

1 + v

)2

with μ =
m2

4
. (2.7)

The fields h and ζ are real analytic on S and the functions W and ζ satisfy (2.1),
(2.2). In the following the gauge (2.4) and thus (2.5)–(2.7) will be assumed.

2.2. The conformal static vacuum field equations

The function ζ satisfies on S the equation

Δh (ζ−1/2) = 4 π δi , (2.8)

where δi denotes the Dirac distribution with weight 1 at i. This equation implies

2 ζ s = Daζ D
aζ on S with s =

1
3

Δh ζ , (2.9)

which, together with (2.2), implies in turn the equation above. The function ζ−1/2

can be characterized as a fundamental solution of Δh with pole at i so that ζ is
real analytic on S and satisfies (2.2). It is uniquely determined by h because the
expansion coefficients of ζ in h-normal coordinates centered at i are recursively
determined by (2.2), (2.9).

We derive now a representation of the static vacuum field equations (1.2) in
terms of the conformal metric h and fields derived from it. With (2.5) follows

Rab[h] = sab , (2.10)

where sab is a trace free symmetric tensor field. The first of (1.2) implies in the
gauge (2.4)

0 = Σab ≡ DaDb ζ − s hab + ζ (1 − μ ζ) sab , (2.11)

with s as in (2.9). With the Bianchi identity Dasab = 0 the integrability conditions

0 =
1
2
Dc Σca , 0 =

1
ζ

(
D[c Σa]b +

1
2
Dd Σd[c ha]b

)

for the overdetermined system (2.11) take the form

0 = Sa ≡ Da s+ (1 − μ ζ) sab D
b ζ , (2.12)

and

0 = Hcab ≡ (1 − μ ζ)D[csa]b − μ
(
2D[cζ sa]b +Dd ζ sd[c ha]b

)
. (2.13)

We note that this can be read as an expression of the Cotton tensor Bbca =
D[cRa]b− 1

4 D[cRha]b in terms of the undifferentiated curvature. Its dualized version
reads by (2.13)

Bab =
1
2
Bacd εb

cd =
μ

1 − μ ζ

(
sda εb

cdDcζ − 1
2
sde εba

dDeζ

)
. (2.14)
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Equations (2.10), (2.11), (2.12), (2.13) together with conditions (2.2), which
imply

s(i) = −2 , (2.15)

will be referred to as the conformal static vacuum field equations for the unknown
fields

h , ζ , s , sab . (2.16)

The second of (1.2) implies that R[h̃] = 0 and can thus also be read as the
conformally covariant Laplace equation for v. With the conformal covariance of the
latter and (2.4), (2.5), (2.7), its conformal version reduces to (2.8). The identity

Da(2 ζ s−Dc ζ D
c σ) = 2 ζ Sa − 2 ΣacD

cζ ,

shows that (2.9), whence (2.8), is a consequence of equations (2.2) and (2.11). It
follows that for given m 	= 0, which defines W and μ, a solution of the conformal
static vacuum field equations provides a unique solution to the static vacuum field
equations (1.2).

The system (2.10), (2.11), (2.12), (2.13) represents a quasi-linear, overde-
termined system of PDE’s which implies elliptic equations for all unknowns in a
suitable gauge. The Ricci operator becomes elliptic in harmonic coordinates and
the elliptic character of the remaining equations can be seen by taking the trace
of (2.11), by contracting (2.12) with Da, and by contracting (2.13) with Dc and
using the Bianchi identity and (2.11) again so that in all three cases one obtains
an equation with the Laplacian acting on the respective unknown. By deducing
from the fall-off behaviour of the physical solution at space-like infinity a certain
minimal smoothness of the conformal fields at i and invoking a general theorem of
Morrey [19] on elliptic systems of this type, Beig and Simon [2] concluded that the
solutions are in fact real analytic at i. To avoid introducing additional constraints
by taking derivatives, we shall deal with the system of first order above.

3. The exact sets of equations argument

Constructing solutions from minimal sets of data prescribed at i poses quite an
unusual problem for a system of the type of the static conformal field equations. To
see how it might be done, we study expansions of the fields in normal coordinates.

For convenience assume in the following S to coincide with a convex h-normal
neighbourhood of i. Let ca, a = 1, 2, 3, be an h-orthonormal frame field on S
which is parallelly transported along the h-geodesics through i and let xa denote
normal coordinates centered at i so that cb a ≡ 〈dxb, ca〉 = δb

a at i. We refer to
such a frame as normal frame centered at i. Its dual frame will be denoted by
χc = χc

b dx
b.

At the point with coordinates xa the coefficients of the frame then satisfy

cb a x
a = δb

a x
a , xb c

b
a = xb δ

b
a ,
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(where we set xa = xb δba and assume, as in the following, that the summation
rule does not distinguish between bold face and other indices). Equivalently, the
coefficients of the dual frame satisfy

χa
b x

b = δa b x
b , xa χ

a
b = xa δ

a
b , (3.1)

which implies with the coordinate expression hab = −δac χa
b χ

c
d of the metric the

well known characterization xa hab = −xa δab of the xa as h-normal coordinates
centered at i. In the following all tensor fields, except the frame field ca and the
coframe field χc, will be expressed in terms of this frame field, so that the metric
is given by hab ≡ h(ca, cc) = −δab. With Da ≡ Dca the connection coefficients
with respect to ca are defined by Da cc = Γa

b
c cb.

An analytic tensor field Ta1...ak
on S has in the normal coordinates xa a

normal expansion at i, which can be written (cf. [13])

Ta1...ak
(x) =

∑
p≥0

1
p !
xcp . . . xc1 Dcp . . .Dc1 Ta1...ak

(i) . (3.2)

(This is a convenient short version of the correct expression; more precisely, the xa

should be replaced here by the components of the vector field X which has in
normal coordinates the expansionX(x) = xb δa b ca and which can be characterized
as the non-identically vanishing vector field near i which satisfies DX X = X ,
X(i) = 0.) In the following it will be shown how normal expansions can be obtained
for solutions

hab , ζ , s , sab , (3.3)

to the conformal static vacuum field equations. In 3 dimensions the curvature
tensor satisfies

Rabcd[h] = 2
{
ha[cLd]b + hb[dLc]a

}
with Lab[h] = Rab[h] − 1

4
R[h]hab ,

and can be expressed because of (2.5) completely in terms of sab. Once the latter
is known, the connection coefficients Γa

b
c and the coefficients of the 1-forms χa

can be obtained, order by order, from the structural equations in polar coordinates
cf. [8],

d

d s

(
s χa

b(s xf )
)

= δa b + Γc
a

d(s xf ) s χc
b(s xf ) xd ,

d

d s

(
Γa

c
e(s xf ) s χa

b(s xf )
)

= Rc
eda(s xf )xd s χa

b

(
s xf
)
,

where s denotes along the h-geodesics through i with unit tangent vectors an affine
parameter which vanishes at i, so that s2 = δab x

a xb.
By formally taking covariant derivatives, the expansion coefficients of ζ and s

up to order m + 2 resp. m + 1 can be obtained from equations (2.11) and (2.12)
once sab is known up to order m. Calculating the expansion coefficients for sab
by means of equation (2.13) leads, however, to some complicated algebra. It turns
out that the latter simplifies considerably in the space spinor formalism.
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To achieve the transition to the space-spinor formalism we introduce the
constant van der Waerden symbols

αAB
a , αa

AB , a = 1, 2, 3 , A,B = 0, 1 ,

which map one-index objects onto two-index objects which are symmetric in the
two indices. If the latter are read as matrices, the symbols are given by

ξa → ξAB = αAB
a ξ

a =
1√
2

( −ξ1 − iξ2 ξ3

ξ3 ξ1 − iξ2

)
,

ξa → ξAB = ξa α
a

AB =
1√
2

( −ξ1 + iξ2 ξ3
ξ3 ξ1 + iξ2

)
.

With the summation rule also applying to capital indices one gets

δc
a = αc

AB αAB
a , − δab α

a
AB α

b
CD = −εA(C εD)B ≡ hABCD ,

a, b = 1, 2, 3 , A,B,C,D = 0, 1 ,
where the constant ε-spinor is antisymmetric, εAB = −εBA, and satisfies ε01 = 1.
It is used to move indices according to the rules ιB = ιA εAB, ιA = εAB ιB, so
that εA B corresponds to the Kronecker delta. We shall denote the ‘scalar product’
κA ι

A of two spinors κA and ιA occasionally also by ε(κ, ι). It is important here to
observe the order in which the spinors occur.

Given the van der Waerden symbols, we associate with a tensor field
T a1...ap

b1...bq given in the frame ca the space spinor field

TA1B1...ApBp
C1D1...CqDq = T a1...ap

b1...bqα
A1B1

a1 . . . . . . α
bq

CqDq

= T (A1B1)...(ApBp)
(C1D1)...(CqDq) .

In the following we shall employ tensor or spinor notation as it appears convenient.
Consider the spinor field

τAA′
= ε0

A ε0
A′

+ ε1
A ε1

A′
.

We assume that primed indices take values 0 and 1 and the summation rule applies,
use a bar to denote complex conjugation, and take from SL(2,C) two-index spinor
theory the conventions that indices acquire a prime under complex conjugation and
that the complex conjugate of εAB is denoted by εA′B′ . Setting

ξ+AB...H = τA
A′
τB

B′
. . . τH

H′
ξ̄A′B′...H′ ,

one finds that a space spinor field

TA1B1...ApBp = T(A1B1)...(ApBp) ,

arises from a real tensor field Ta1...ap if and only if it satisfies the reality condition

TA1B1...ApBp = (−1)p T+
A1B1...ApBp

. (3.4)

It follows in particular

ξAB ξ
AB = 2 (ξ00 ξ11 − ξ01 ξ01) = 2 det(ξAB) = −δab ξ

a ξb ,
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and we can have ξAB ξ
AB = 0 for vectors ξAB 	= 0 only if ξa is complex. Since

ξAB = ξ(AB), the relations ξAB ξ
AB = 0, ξAB 	= 0 imply by the equation above

that ξAB = κA κB for some κA 	= 0. This fact will allow us to interpret the
data (1.11) as ‘null data’.

Any spinor field TABC...GH , symmetric or not, admits a decomposition into
products of totally symmetric spinor fields and epsilon spinors which can be written
schematically in the form (cf. [21])

TABC...GH = T(ABC...GH) +
∑

ε′s× symmetrized contractions of T . (3.5)

Later on it will be important for us that spinor fields TA1B1...ApBp arising
from tensor fields Ta1...ap satisfy

T(A1B1...ApBp) = C(Ta1...ap)αa1
A1B1 . . . α

ap
ApBp ,

i.e., the projectors C onto the trace free symmetric part of tensors is represented in
the space spinor notation simply by symmetrization. If convenient, we shall denote
the latter also by the symbol sym.

To discuss vector analysis in terms of spinors, a complex frame field and its
dual 1-form field are defined by

cAB = αa
AB ca , χAB = αAB

a χ
a ,

so that h(cAB, cAB) = hABCD. If the derivative of a function f in the direction of
cAB is denoted by cAB(f) = f,a c

a
AB and the spinor connection coefficients are

defined by

ΓAB
C

D =
1
2

Γa
b

c α
a

AB α
CH

b α
c

DH , so that ΓABCD = Γ(AB)(CD) ,

the covariant derivative of a spinor field ιA is given by

DAB ι
C = eAB(ιC) + ΓAB

C
B ι

B .

If it is required to satisfies the Leibniz rule with respect to tensor products, it
follows that covariant derivatives in the ca-frame formalism translate under con-
tractions with the van der Waerden symbols into spinor covariant derivatives and
vice versa.

The commutator of covariant spinor derivatives satisfies

(DCD DEF −DEF DCD) ιA = RA
BCDEF ι

B , (3.6)

with the curvature spinor

RABCDEF =
1
2

{(
sABCE − R[h]

6
hABCE

)
εDF +

(
sABDF − R[h]

6
hABDF

)
εCE

}
,

where R[h] is the Ricci scalar and sABCD = sab α
a

AB α
b

CD represents the trace
free part of the Ricci tensor of h, which is completely symmetric, sABCD =
s(ABCD). The gauge condition (2.5) implies

RABCDEF =
1
2

(sABCE εDF + sABDF εCE) . (3.7)
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In the space-spinor formalism equations (2.13) acquire the concise form

DA
EsBCDE =

2μ
1 − μ ζ

sE(BCD DA)
Eζ . (3.8)

Applying to this equation and to the spinor versions of (2.11) and (2.12) the theory
of ‘exact sets of fields’ discussed in [21], we get the following result.

Lemma 3.1. Let there be given a sequence

D̂n = {ψA2B2A1B1 , ψA3B3A2B2A1B1 , ψA4B4A3B3A2B2A1B1 , . . .} ,
of totally symmetric spinors satisfying the reality condition (3.4). Assume that
there exists a solution h, ζ, s, sABCD to the conformal static field equations (2.2),
(2.10), (2.11), (2.12), (2.13) so that the spinors given by D̂n coincide with the null
data D∗

n given by (1.11) of the metric h in terms of an h-orthonormal normal
frame centered at i, i.e.,

ψApBp...A3B3A2B2A1B1 = D(ApBp
. . . DA3B3 sA2B2A1B1)(i) , p ≥ 2 . (3.9)

Then the coefficients of the normal expansions (3.2) of the fields (2.16), in
particular of

sABCD(x) =
∑
p≥0

1
p!
xApBp . . . xA1B1 DApBp . . . DA1B1 sABCD(i) , (3.10)

with xAB = αAB
a x

a, are uniquely determined by the data D̂n and satisfy the
reality conditions.

Proof. It holds sABCD(i) = ψABCD by assumption and the expansion coefficients
for ζ, s of lowest order are given by (2.2), (2.15). The induction steps for ζ and s
being obvious by (2.11) and (2.12), we only need to consider sABCD and (3.8).
Assume m ≥ 0. If spinors DApBp . . . DA1B1 sCDEF (i), p ≤ m, have been obtained
which satisfy (3.9) and, up to that order, (3.8), the totally symmetric part of

DAm+1Bm+1 . . . DA1B1 sCDEF (i) ,

is given by the prescribed data while its contractions, which define the remaining
terms in the decomposition corresponding to (3.5), are determined as follows.
Observing the symmetries involved, essentially two cases can occur:

i) If one of the indices Bj is contracted with F , say, the operator DAjBj can be
commuted with other covariant derivatives, generating by (3.6), (3.7) only
terms of lower order, until it applies directly to sCDEF . Equation (3.8) then
shows how to express the resulting term by quantities of lower order.

ii) If the index Bj is contracted with Bk, k 	= j, the operators DAjBj and
DAkBk

can be commuted with other covariant derivatives, until the oper-
ator DAjH DAk

H applies directly to sCDEF . If the corresponding term is
symmetrized in Aj and Ak the general identity

DH(AD
H

B) sCDEF = −2 sH(CDE sF )AB
H ,
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implied by (3.6), (3.7) shows that this term is in fact of lower order. If a
contraction of Aj and Ak is involved, the general identity

DAB D
AB sCDEF = −2DF

GDG
H sCDEH + 3 sGH(CD sE)F

GH ,

shows together with (3.8) that the corresponding term can again be ex-
pressed in terms of quantities of lower order, showing that DAm+1Bm+1 . . .
DA1B1 sCDEF (i) is determined by our data and terms of order ≤ m. That
the expansion coefficients satisfy the reality condition is a consequence of the
formalism and the fact that they are satisfied by the data D̂n. �
To achieve our goal, we have to show the convergence of the formal series

determined in Lemma 3.1. This requires us to impose estimates on the free coeffi-
cients given by Dn. We get the following result.

Lemma 3.2. A necessary condition for the formal series (3.10) determined in
Lemma 3.1 to be absolutely convergent near the origin is that the data given by D̂n

satisfy estimates of the type

|ψApBp...A1B1CDEF | ≤ p!M
rp

, p = 0, 1, 2, . . . , (3.11)

with some constants M, r > 0.

Proof. If f is a real analytic function defined on some neighbourhood of the origin
in R

n, it can be analytically extended to a function which is defined, holomorphic,
and bounded on a polydisc P (0, r) = {x ∈ C

n| |xj | < r, 1 ≤ j ≤ n} with some
r > 0. Its Taylor expansion f =

∑
|α|≥0

1
α ! ∂

αf(0)xα is absolutely convergent
on P (0, r) with supx∈P (0,r) |f(x)| ≤ M < ∞ so that its derivatives satisfy the
estimates

|∂αf(0)| ≤ α ! M
r|α| ≤ |α| ! M

r|α| . (3.12)

The first of these estimates are known as Cauchy inequalities. Here α ∈ N
n denotes

a multi-index and we use the notation |α| = α1 + · · · + αn, α ! = α1! · · · · · αn!,
∂α = ∂α1

1 · · · · · ∂αn
n , and xα = (x1)α1 · · · · · (xn)αn .

If the series (3.10) and thus

sab(x) =
∑
p≥0

1
p!
xcp . . . xc1 Dcp . . .Dc1 sab(i) , (3.13)

is absolutely convergent near the origin, there exist therefore by the second of the
estimates (3.12) constants M∗, r∗ > 0 with

|Dcp . . . Dc1 sab(i)| ≤ p !M∗
rp
∗

, cp, . . . , c1, a,b = 1, 2, 3 , p = 0, 1, 2, . . . .

Observing the transition rule from tensor to spinor quantities, one gets from this
the estimates

|DApBp . . . DA1B1 sCDEF (i)| ≤ p !M
rp

, Ap, Bp, . . . E, F = 0, 1 , p = 0, 1, 2, . . .

(3.14)



830 H. Friedrich Ann. Henri Poincaré

with M = 9 c2M∗ and r = r∗/3 c, where c = maxa=1,2,3; A,B=0,1 |αa
AB|. To derive

from these estimates the estimates (3.11) we consider instead of (3.5) directly the
symmetrization operator to get

|ψApBp...A1B1CDEF | = |D(ApBp
. . . DA1B1 sCDEF )(i)|

≤ 1
(2p+ 4)!

∑
π∈S2p+4

|Dπ(ApBp
. . . DA1B1 sCDEF )(i)|

≤ p!M
rp

,

where Sm denotes the group of permutations of m elements. �

We note for later use that if the derivatives of a smooth function f satisfy
estimates of the type (3.12) with some constants M, r > 0 then the function f is
real analytic near the origin because its Taylor series is majorized by

∑
α

M r−|α| xα =
M rn

(r − x1) · . . . · (r − xn)
, |xa| < 1 , (3.15)

and
∑

α

|α| !
α !

M r−|α| xα =
M r

(r − x1 − · · · − xn)
,

n∑
j=1

|xj | < 1 . (3.16)

3.1. Relations between null data and multipoles

We express the relation between the sequences D∗
n of null data and the sequences

D∗
mp of multipoles of h (in the same normal frame centered at i) in terms of

space-spinor notation.

Lemma 3.3. The spinor fields PApBp ... A1B1 near i, given by (1.9), (1.10), are of
the form

PApBp ... A1B1 = −m
2
{
D(ApBp

. . . DA3B3 sA2B2A1B1) + FApBp ... A1B1

}
, (3.17)

with symmetric spinor-valued functions

Fp ≡ FApBp ... A1B1

= FApBp ... A1B1

[{D(AqBq
. . . DA3B3 sA2B2A1B1)}q≤p−2

]
, p ≥ 2 ,

which satisfy
FA2B2A1B1 = 0 , FA3B3A2B2A1B1 = 0 ,

and which are real linear combinations of symmetrized tensor products of

sA2B2A1B1 , D(A3B3 sA2B2A1B1), . . . , D(Ap−2Bp−2 . . . DA3B3 sA2B2A1B1) ,

for p ≥ 4.
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Proof. The first two results on F follow by direct calculations from (1.9), (1.10).
Inserting (3.17) into the recursion relation (1.10) gives for p ≥ 3 the recursion
relations

FAp+1Bp+1 ... A1B1 = D(Ap+1Bp+1 FApBp ... A1B1) (3.18)

− cp
{
s(Ap+1Bp+1ApBp

DAp−1Bp−1 . . . sA2B2A1B1)

+ s(Ap+1Bp+1 FAp−1Bp−1 ... A1B1)

}
.

With the induction hypothesis which assumes the properties of the F ’s stated
above for FAqBq ... A1B1 , q ≤ p, the relations (3.18) imply these properties for
FAp+1Bp+1 ... A1B1 . �

A further calculation gives

F4 = −c3 s(A4B4A3B3 sA2B2A1B1) ,

F5 = −(2 c3 + c4) s(A5B5A4B4 DA3B3sA2B2A1B1) ,

and by induction the recursion law above implies the general expressions

F2p = α2p sym(s⊗D2p−4s) + · · · + ω2p sym(⊗ps) , p ≥ 3 ,

F2p+1 = α2p+1 sym(s⊗D2p−3s) + · · · + ω2p+1 sym(⊗p−1s⊗Ds) , p ≥ 3 ,

with real coefficients α2p, α2p+1, . . . , ω2p, ω2p+1. The first terms on the right hand
sides denote the term with the highest power of D occurring in the respective
expression. The sum of the powers of D occurring in each term is even in the case
of F2p and odd in the case of F2p+1. The sum of the powers of D occurring in each
of the terms indicated by dots lies between 2 and 2 p − 4 in the case of F2p and
between 3 and 2 p − 3 in the case of F2p+1. The coefficients indicated above are
determined by

α6 = −(2 c3 + c4 + c5) , α7 = −(2 c3 + c4 + c5 + c6) ,

ω5 = −(2 c3 + c4) , ω6 = c3 c5 ,

and, for p ≥ 3, by

α2p+1 = α2p − c2p , α2p+2 = α2p+1 − c2p+1 ,

ω2p+1 = p ω2p − c2p ω2p−1 , ω2p+2 = −c2p+1 ω2p ,

which implies in particular

ω2p = (−1)p+1 Πp−1
l=1 c2l+1 , p ≥ 3 . (3.19)

Restricting the relation (3.17) to i defines with the identification (3.9) a non-
linear map which can be read as a map

Ψ : { D̂n } → { D̂mp } ,
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of the set of abstract null data into the set of abstract multipoles (i.e., sequences of
symmetric spinors not necessarily derived from a metric) satisfying

νApBp ... A1B1 = −m
2

(
ψApBp ... A1B1 + FApBp ... A1B1

[{ψAqBq ... A1B1}q≤p−2

])
,

p ≥ 2 . (3.20)

Corollary 3.4. For given m the map Ψ which maps sequences D̂n of abstract null
data onto sequences D̂mp of abstract multipoles is bijective.

Proof. An inverse of Ψ can be constructed because F2 = 0, F3 = 0, and the Fp

depend only on the ψAqBq ... A1B1 with q ≤ p − 2. The relations (3.20) therefore
determine for a given sequence D̂mp recursively a unique sequence D̂n. �

It follows that for a given metric h the sequences of multipoles and the se-
quences of null data in a given standard frame carry the same information on h.
The relation is not simple, however. It can happen that a sequence D̂n with
only a finite number of non-vanishing members is mapped onto an sequence D̂mp

with an infinite number of non-vanishing members and vice versa. For instance,
the relations given above show that the sequence D̂n = {ψ2, 0, 0, 0, . . .} with
ψ2 ≡ ψA2B2A1B1 	= 0 is mapped onto the sequence D̂mp = {ν2, 0, ν4, 0, ν6, . . .}
with νq = νAqBq ... A1B1 , where

ν2 = ψ2 , ν2p = (−1)p+1 (Πp−1
l=1 c2l+1) sym(⊗pψ2) 	= 0 , p ≥ 2 .

4. The characteristic initial value problem

To complete the analysis one would have to show that the estimates (3.11) imply
estimates of the type (3.14) for the coefficients of (3.10). The induction argument
used in the proof of Lemma 3.1 leads, however, to complicated algebraic consid-
erations. The commutation of covariant derivatives generates with the subsequent
derivative operations more and more non-linear terms of lower order. Formalizing
this procedure to derive estimates does not look very attractive. To arrive at a for-
mulation of our question which looks more similar to a boundary value problem to
which Cauchy–Kowalevskaya type arguments apply, we make use of the inherent
geometric nature of the problem and the geometric meaning of the null data.

The fields h, ζ, s, sABCD are necessarily real analytic in the normal coor-
dinates xa and a standard frame cAB centered at i. They can thus be extended
near i by analyticity into the complex domain and considered as holomorphic fields
on a complex analytic manifold Sc. Choosing Sc to be a sufficiently small neigh-
bourhood of i, we can assume the extended coordinates, again denoted by xa, to
define a holomorphic coordinate system on Sc which identifies the latter with an
open neighbourhood of the origin in C

3. The original manifold S is then a real,
3-dimensional, real analytic submanifold of the real, 6-dimensional, real analytic
manifold underlying Sc. If αa, βa, a = 1, 2, 3, define real local coordinates on the
real 6-dimensional manifold underlying Sc so that the holomorphic coordinates xa
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can be written xa = αa + i βa, we use the standard notation ∂xa = 1
2 (∂αa − i ∂βa)

and ∂x̄a = 1
2 (∂αa + i ∂βa). The assumption that the complex-valued function

f = f(xa) be holomorphic is then equivalent to the requirement that ∂x̄af = 0 so
that we will only have to deal with the operators ∂xa . Under the analytic extension
the main differential geometric concepts and formulas remain valid. The coordi-
nates xa and the extended frame, again denoted by cAB, satisfy the same defining
equations and the extended fields, denoted again by h, ζ, s, sABCD, satisfy the
conformal static vacuum field equations as before.

The analytic function Γ = δab x
a xb on S extends to a holomorphic function

on Sc which satisfies again the eikonal equation habDaΓDbΓ = −4 Γ. On S it
vanishes only at i, but the set

Ni = {p ∈ Sc| Γ(p) = 0} ,
is an irreducible analytical set (cf. [22]) such that Ni\{i} is 2-dimensional complex
submanifold of Sc. It is the cone swept out by the complex null geodesics through i
and we will refer to it shortly as the null cone at i. While some of the following
considerations may be reminiscent of considerations concerning cones swept out
by real null geodesics through given points of 4-dimensional Lorentz spaces, there
are basic differences. In the present case there do not exist splittings into future
and past cones. The set Ni \ {i} is connected and its set of of complex null gener-
ators is diffeomorphic to P 1(C) ∼ S2. If Ni \ {i} is considered as a 4-dimensional
submanifold of the 6-dimensional real manifold underlying Sc, the set of real null
generators is not simply connected but diffeomorphic to SO(3,R).

The set Ni will be important for geometrizing our problem. Let u → xa(u)
be a null geodesic through i so that xa(0) = 0. Its tangent vector is then of the
form ẋAB = ιA ιB with a spinor field ιA = ιA(u) satisfying Dẋι

A = 0 along the
geodesic. Then

s0(u) = ẋa ẋb sab

(
x(u)

)
= ιA ιB ιC ιD sABCD

(
x(u)

)
, (4.1)

is an analytic function of u with Taylor expansion

s0 =
∞∑

p=0

1
p!
up dp

dup
s0(0) ,

where
dp

dup
s0(0) = ιAp ιBp . . . ιC ιD DApBp . . . DA1B1sABCD(i)

= ιAp ιBp . . . ιC ιD D(ApBp
. . . DA1B1sABCD)(i) .

Knowing these expansion coefficients for initial null vectors ιA ιB covering an open
subset of the null directions at i is equivalent to knowing the null data D∗

n of the
metric h.

Our problem can thus be formulated as the boundary value problem for the
conformal static vacuum equations with data given by the function (4.1) on Ni,
where the ιAιB are parallely propagated null vectors tangent to Ni. The set Ni can
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be regarded as a (complex) characteristic of the (extended) operator Δh and also
to the conformal static equations. Therefore we shall refer to this problem as the
characteristic initial value problem for the conformal static vacuum field equations
with data on the null cone at space-like infinity.

The conformal static vacuum field equations (2.10), (2.11), (2.12), (2.13) form
a 3-dimensional analogue of the 4-dimensional conformal Einstein equations [9].
Characteristic initial value problems for these two type of systems are therefore
quite similar in character.

The existence of analytic solutions to characteristic initial value problems
for the conformal Einstein equations has been shown in [10] by using Cauchy–
Kowalevskaya type arguments. In the present case we shall employ somewhat
different techniques for the following reason.

The remaining and in fact the main difficulty in our problem arises from fact
that Ni is not a smooth hypersurface but an analytic set with a vertex at the
point i. A characteristic initial value problem for the conformal Einstein equations
with data on a cone has been studied in [11] and some of the techniques introduced
there and further developed in [13] will be used in the following. The method we
use to derive estimates on the expansion coefficients has apparently not been used
before in the context of Einstein’s field equations.

4.1. The geometric gauge

To obtain a setting in which the mechanism of calculating the expansion coefficients
allows one to derive estimates on the coefficients from the conditions imposed on
the data, a gauge needs to be chosen which is suitably adapted to the singular
set Ni. The coordinates and the frame field will then necessarily be singular and
the frame will no longer define a smooth lift to the bundle of frames but a subset
which becomes tangent to the fibres over some points. The setting described in
the following will organize this situation in a geometric way and provide control
on the singularity and the smoothness of the fields.

Let SU(2) be the group of complex 2 × 2 matrices (sA
B)A,B=0,1 satisfying

εAB s
A

C s
B

D = εCD , τAB′ sA
C s̄

B′
D′ = τCD′ , (4.2)

where sB
D → s̄B′

D′ denotes complex conjugation. The map

SU(2) � sA
B → s(A (C s

B)
D) → sa

b = αa
AB s

A
C s

B
D αCD

b ∈ SO(3, R) ,
(4.3)

realizes the 2 : 1 covering homomorphism of SU(2) onto the group SO(3,R). Under
holomorphic extension the map above extends to a 2 : 1 covering homomorphism
of the group SL(2,C) onto the group SO(3,C), where SL(2,C) denotes the group
of complex 2 × 2 matrices satisfying only the first of conditions (4.2).

We will make use of the principal bundle of normalized spin frames SU(S) π→
S with structure group SU(2). A point δ ∈ SU(S) is given by a pair of spinors
δ = (δA

0 , δ
A
1 ) at a given point of S which satisfies

ε(δA, δB) = εAB , ε(δA, δ+ B′) = τAB′ , (4.4)
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where the lower index, which labels the members of the spin frame, is assumed
to acquire a prime under the “+”-operation. The action of the structure group is
given for s ∈ SU(2) by

δ → δ · s where (δ · s)A = sB
A δB .

The projection π maps a frame δ onto its base point in S. The bundle of spin
frames is mapped by a 2 : 1 bundle morphism SU(S)

p→ SO(S) onto the bundle

SO(S) π′→ S of oriented, orthonormal frames on S so that π′ ◦ p = π. For any spin
frame δ we can identify by (4.4) the matrix (δA

B)A,A,B=0,1 with an element of the
group SU(2). With this reading the map p will be assumed to be realized by

SU(S) � δ → p(δ)AB = δE
A δ

F
B cEF ∈ SO(S) ,

where cAB denotes the normal frame field on S introduced before. We refer to p(δ)
as the frame associated with the spin frame δ.

Under holomorphic extension the bundle SU(S) → S is extended to the
principal bundle SL(Sc)

π→ Sc of spin frames δ = (δA
0 , δ

A
1 ) at given points of Sc

which satisfy only the first of conditions (4.4). Its structure group is SL(2,C). The
bundle SU(S) π→ S is embedded into SL(Sc)

π→ Sc as a real analytic subbundle.
The bundle morphism p extends to a 2 : 1 bundle morphism, again denoted by

p, of SL(Sc)
π→ Sc onto the bundle S0(Sc)

π′→ Sc of oriented, normalized frames
of Sc with structure group SO(3,C). We shall make use of several structures on
SM(Sc).

With each α ∈ sl(2,C), i.e., α = (αA
B) with αAB = αBA, is associated

a vertical vector field Zα tangent to the fibres, which is given at δ ∈ SL(Sc) by
Zα(δ) = d

dv (δ · exp(v α))|v=0, where v ∈ C and exp denotes the exponential map
sl(2,C) → SL(2,C).

The C
3-valued soldering form σAB = σ(AB) maps a tangent vector X ∈

TδSL(Sc) onto the components of its projection Tδ(π)X ∈ Tπ(δ)Sc in the frame p(δ)
associated with δ so that Tδ(π)X = 〈σAB, X〉p(δ)AB. It follows that 〈σAB, Zα〉 = 0
for any vertical vector field Zα.

The sl(2,C)-valued connection form ωA
B on SL(Sc) transforms with the

adjoint transformation under the action of SL(2,C) and maps any vertical vector
field Zα onto its generator so that 〈ωA

B, Zα〉 = αA
B .

With xAB = x(AB) ∈ C
3 is associated the horizontal vector field Hx on

SL(Sc) which is horizontal in the sense that 〈ωA
B, Hx〉 = 0 and which satisfies

〈σAB , Hx〉 = xAB. Denoting by HAB, A,B = 0, 1, the horizontal vector fields
satisfying 〈σAB , HCD〉 = hAB

CD, it follows that Hx = xAB HAB. An integral
curve of a horizontal vector field projects onto an h-geodesic and represents a spin
frame field which is parallelly transported along this geodesic.

A holomorphic spinor field ψ on Sc is represented on SL(Sc) by a holomorphic
spinor-valued function ψA1...Aj (δ) on SL(Sc), given by the components of ψ in the
frame δ. We shall use the notation ψk = ψ(A1...Aj)k

, k = 0, . . . , j, where (. . . . . .)k
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denotes the operation ‘symmetrize and set k indices equal to 1 the rest equal to 0’.
These functions completely specify ψ if ψ is symmetric. They are then referred to
as the essential components of ψ.

4.2. The submanifold Ŝ of SL(Sc)
We combine the construction of a coordinate system and a frame field with the
definition of an analytic submanifold M of SL(Sc) which is obtained as follows.
We choose a spin frame δ∗ in the fibre of SL(Sc) over i which is projected by π′

onto the frame cAB at considered i before. The curve

C � v → δ(v) = δ∗ · s(v) ∈ SL(Sc) ,

with

s(v) = exp(v α) =
(

1 0
v 1

)
, α =

(
0 0
1 0

)
∈ sl(2,C) , (4.5)

in the fibre of SL(Sc) over i defines a vertical, 1-dimensional, holomorphic sub-
manifold I through δ∗ on which v defines a coordinate. The associated family of
frames eAB = eAB(v) at i is given explicitly by

e00(v) = c00 + 2 v c01 + v2 c11 , e01(v) = c01 + v c11 , e11(v) = c11 .

The following construction is carried out in some neighbourhood of I. If the latter
is chosen small enough all the following statements will be correct.

The set I is moved with the flow ofH11 to obtain a holomorphic 2-manifold U0

of SL(Sc) containing I. The parameter on the integral curves ofH11 which vanishes
on I will be denoted by w and v is extended to U0 by assuming it to be constant
on the integral curves of H11. All these integral curves are mapped by π onto the
null geodesics γ(w) with affine parameter w and tangent vector γ′(0) = c11 at
γ(0) = i. The parameter v specifies frame fields which are parallelly propagated
along γ.

The set U0 is moved with the flow of H00 to obtain a holomorphic
3-submanifold Ŝ of SL(Sc) containing U0. We denote by u the parameter on the
integral curves of H00 which vanishes on U0 and extend v and w to Ŝ by assuming
them to be constant along the integral curves of H00. The functions z1 = u, z2 = v,
z3 = w define holomorphic coordinates on Ŝ. The restriction the projection to Ŝ
will be again denoted by π.

The projections of the integral curves of H00 with a fixed value of w sweep
out, together with γ, the cone Nγ(w) near γ(w) which is generated by the null
geodesics through the point γ(w). On the null geodesics u is an affine parameter
which vanishes at γ(w) while v parametrizes the different generators. In terms of
the base space Sc our gauge is based on the nested family of cones Nγ(w) which
share the generator γ. The set W0 = {w = 0}, which projects onto Ni \ γ, will
define the initial data set for our problem. The map π induces a biholomorphic
diffeomorphism of Ŝ′ ≡ Ŝ \U0 onto π(Ŝ′). The singularity of the gauge at points of
U0 (resp. over γ) consists in π dropping rank on U0 because the curves w = const.
on U0 are tangent to the fibres over γ(w) where ∂v = Zα. The null curve γ(w) will



Vol. 8 (2007) Static Null Data 837

be referred to as the singular generator of Ni in the gauge determined by the spin
frame δ∗ resp. the corresponding frame cAB at i.

The soldering and the connection form pull back to holomorphic 1-forms on Ŝ,
which will be denoted again by σAB and ωA

B. Corresponding to the behaviour
of π the 1-forms σ00, σ01, σ11 are linearly independent on Ŝ′ while the rank of
this system drops to 2 on U0 because 〈σAB, ∂v〉 = 〈σAB, Zα〉 = 0. If the pull back
of the curvature form ΩA

B = 1
2 r

A
BCDEF σ

CD ∧ σEF to Ŝ is denoted again by
ΩA

B, the soldering and the connection form satisfy the structural equations

d σAB = −ωA
C ∧ σCB − ωB

C ∧ σAC , d ωA
B = −ωA

C ∧ ωC
B + ΩA

B .

By construction of Ŝ we have

〈σAB, ∂v〉 = 0 , 〈σAB , ∂w〉 = ε1
A ε1

B on U0 ,

〈ωA
B, ∂w〉 = 0 , 〈ωA

B, ∂v〉 = 〈ωA
B, Zα〉 = ε1

A εB
0 on U0 ,

〈σAB, ∂u〉 = ε0
A ε0

B and 〈ωA
B, ∂u〉 = 0 on Ŝ

while 〈σAB , ∂v〉 	= 0 on Ŝ′ .

To obtain more precise information on σAB and ωA
B we note the following

general properties (cf. [11] and [13] for more details). If, for given xAB ∈ C
3, the

Lie derivative with respect to Hx is denoted by Lx, then

Lxσ
AB = 2 xC(A ωB)

C , 〈Lxω
A

B, .〉 = 〈ΩA
B, Hx ∧ .〉.

Since 0 = [∂u, ∂v] = [H00, ∂v] on Ŝ and ΩA
B is horizontal, it follows that

∂u〈σAB , ∂v〉 = 2 ε0 (A〈ωB)
0, ∂v〉 ,

∂u〈ωA
B, ∂v〉|u=0 = 〈ΩA

B, Hx ∧ Zα〉|u=0 = 0 .

This gives with the previous relations

〈ωA
B, ∂v〉 = ε1

A εB
0 +O(u2)

whence 〈ωA
B, ∂v〉 = 2 u ε0 (Aε1

B) +O(u3) as u→ 0 .

Similarly we obtain with 0 = [∂u, ∂w] = [H00, ∂w] on Ŝ

∂u〈σAB , ∂w〉 = 2 ε0 (A〈ωB)
0, ∂w〉 , ∂u〈ωA

B, ∂w〉|u=0 =
1
2
rA

B0011 .

In terms of the coordinates za we thus get σAB = σAB
a dz

a on S̃′ with a co-frame
matrix

(σAB
a) =

⎛
⎝ 1 σ00

2 σ00
3

0 σ01
2 σ01

3

0 0 1

⎞
⎠ =

⎛
⎝ 1 O(u3) O(u2)

0 u+O(u3) O(u2)
0 0 1

⎞
⎠ as u→ 0 .

(4.6)
On Ŝ′ there exist unique, holomorphic vector fields eAB which satisfy

〈σAB , eEF 〉 = hAB
EF .
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If we write eAB = ea
AB ∂za , the properties noted above imply for the frame

coefficients

(ea
AB) =

⎛
⎝ 1 e1 01 e1 11

0 e2 01 e2 11

0 0 1

⎞
⎠ =

⎛
⎝ 1 O(u2) O(u2)

0 1
2 u +O(u) O(u)

0 0 1

⎞
⎠ as u→ 0 .

(4.7)
In the following we shall write

ea
AB = e∗a

AB + êa
AB , (4.8)

with singular part

e∗a
AB = δa

1 εA
0 εB

0 + δa
2

1
u
ε(A

0 εB)
1 + δa

3 εA
1 εB

1 , (4.9)

and holomorphic functions êa
AB on Ŝ which satisfy

êa
AB = O(u) as u→ 0 . (4.10)

We define connections coefficients on Ŝ′ by writing ωA
B = ΓCD

A
B σ

CD

with

ΓCD AB ≡ 〈ωAB, eCD〉 ,
so that ΓCD AB = Γ(CD) (AB). The definition of the frame then implies

Γ00 AB = 0 on Ŝ and Γ11 AB = 0 on U0 ,

and it follows from the discussion above that

ΓABCD = Γ∗
ABCD + Γ̂ABCD , (4.11)

with singular part

Γ∗
AB CD = − 1

u
ε(A

0 εB)
1 εC

0 εD
0 , (4.12)

and holomorphic functions Γ̂ABCD on Ŝ which satisfy

Γ̂ABCD = O(u) as u→ 0 . (4.13)

The singular parts are ‘universal’ in the sense that their expressions only
depend on the construction of Ŝ and not on properties of the metric. If the latter
is flat the functions êa

AB and Γ̂ABCD vanish on Ŝ. With the frame and the
connection coefficients so defined we have the spin frame calculus in its standard
form. The expressions above imply for any holomorphic spinor valued function
ψA...C that D00 ψA...C and D11 ψA...C extend to Ŝ as holomorphic functions so
that

D00 ψA...C = ∂u ψA...C on Ŝ and D11 ψA...C = ∂w ψA...C on U0 .
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4.3. Tensoriality and expansion type

A holomorphic function on SL(Sc) induces a holomorphic function on Ŝ which
can be considered as a holomorphic function of the coordinates za. While these
coordinates are holomorphic on the submanifold Ŝ of SL(Sc), the induced map π
of Ŝ into Sc is singular on U0. As a consequence, not every holomorphic function
of the za can arise as a pull-back to Ŝ of a holomorphic function on SL(Sc). The
latter must have a special type of expansion in terms of the za which reflects the
particular relation between the ‘angular’ coordinate v the ‘radial’ coordinate u.
The following notion will be important for our discussion.

Definition. A holomorphic function f on Ŝ will be said to be of v-finite expansion
type kf , with kf an integer, if it has in terms of the coordinates u, v, and w a
Taylor expansion at the origin of the form

f =
∞∑

p=0

∞∑
m=0

2 m+kf∑
n=0

fm,n,p u
m vn wp ,

where it is assumed that fm,n,p = 0 if 2m+ kf < 0.

We note that the construction of Ŝ does not distinguish the set I = π−1(i)
from the sets π−1(γ(w)). Correspondingly, the Taylor expansions of the function f
above at points (0, 0, w0) with w0 close to 0 have the same structure with respect
to u and v.

Lemma 4.1. Let φA1...Aj be a holomorphic, symmetric, spinor-valued function on
SL(Sc). Then the restrictions of its essential components φk = φ(A1...Aj)k

, 0 ≤
k ≤ j, to Ŝ satisfy

∂v φk = (j − k)φk+1 , k = 0, . . . , j , on U0 , (4.14)

(where we set φj+1 = 0) and φk is of expansion type j − k.

Proof. In the following we consider Ŝ as a submanifold of SL(Sc). The tensorial
transformation law of φ under the action of the 1-parameter subgroup (4.5) with
generator αA

B = ε1
A εB

0 implies

Zα φk = (j − k)φk+1 for 0 ≤ k ≤ j on SL(Sc) ,

and thus (4.14) because Zα = ∂v on U0. From the relations above follows in
particular that

Zj−k+1
α φk = 0 on SL(Sc) . (4.15)

A general horizontal vector field Hx has with Zα the commutator

[Zα, Hx] = Hα·x ,

where α acts on xAB = x(AB) according to the induced action by

xAB → (α · x)AB = αA
C x

CB + αB
C x

AC = 2 ε(A1 xB)0 .



840 H. Friedrich Ann. Henri Poincaré

With xAB = ε0
A ε0

B, so that Hx = H00, it follows

[Zα, H00] = 2H01 , [Zα, H01] = H11 , [Zα, H11] = 0 .

By induction this gives the operator equations

Zn
α H00 = n (n− 1)H11 Z

n−2
α + 2nH01Z

n−1
α +H00 Z

n
α , n ≥ 1 ,

and, more generally,

Zn
α H

m
00 = an,mHm

11 Z
n−2m
α +

2 m−1∑
l=0

An,m,l Z
n−l
α +Hm

00 Z
n
α , m, n ≥ 1 ,

where the an,m are real coefficients, the An,m,l denote operators which are sums of
products of horizontal vector fields, and the terms in which Zα formally appears
with negative exponent are assumed to vanish. With (4.15) this implies

Zn
α H

m
00 φk = 0 for n > 2m+ j − k on SL(Sc) .

The results follows because Zn
α H

m
00 φk = ∂n

v ∂
m
u φk at points of U0. �

4.4. The null data on W0

We shall derive an expansion of the restriction of the essential component s0 of
the Ricci spinor to the hypersurface W0, i.e.,

s0(u, v) = s(ABCD)0 |W0 ,

in terms of quantities on the base space Sc. Consider the normal frame cAB on Sc

near i which agrees at i with the frame associated with δ∗ and denote by

D∗
n ≡ {D∗

(A1B1
. . . D∗

ApBp
s∗ABCD)(i) , p = 0, 1, 2, . . .} ,

the corresponding null data of h in the frame cAB. Choose a fixed value of v and
consider s = s(v) as in (4.5). The vector H00(δ∗ · s) then projects onto the null
vector sA

0 s
B

0 cAB at i. Since cAB is a normal frame near i, the null vector field
sA

0 s
B

0 cAB is tangent to a null geodesic η = η(u, v) on Ni with affine parameter u
with u = 0 at i and the integral curve of H00 through δ∗ · s projects onto this null
geodesic. It follows from this with the explicit expression for s = s(v) that

s0(u, v) = sA
0(v) sB

0(v) sC
0(v) sD

0(v) s∗ABCD|η(u,v)

=
∞∑

m=0

1
m !

um sA1
0(v) sB1

0(v) . . . sD
0(v)D∗

(A1B1
. . . D∗

AmBm
s∗ABCD)(i)

=
∞∑

m=0

2 m+4∑
n=0

ψm,n u
m vn , (4.16)

with

ψm,n =
1
m !

(
2m+ 4

n

)
D∗

(A1B1
. . .D∗

AmBm
s∗ABCD)n

(i) , 0 ≤ n ≤ 2m+ 4 .

This formula shows how to determine the function s0(u, v) from the null data D∗
n

and vice versa. We note that the expansion above is consistent with s0 being of
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v-finite expansion type 4. We shall refer to (4.16) as the null data on W0 in our
gauge.

5. The conformal static vacuum field equations on Ŝ

With the frame eAB and the connection coefficients ΓABCD on Ŝ we have the
standard frame calculus available. Given the fields ζ, s, sABCD, we define on Ŝ
the quantities

tAB
EF

CD ea
EF ≡ 2 ΓAB

E
(C e

a
D)E − 2 ΓCD

E
(A e

a
B)E

− ea
CD,b e

b
AB + ea

AB,b e
b

CD ,

RABCDEF ≡ rABCDEF − 1
2
{sABCE εDF + sABDF εCE} ,

with

rABCDEF ≡ eCD(ΓEFAB) − eEF (ΓCDAB)

+ ΓEF
K

C ΓKDAB + ΓEF
K

D ΓCKAB − ΓCD
K

E ΓKFAB

− ΓCD
K

F ΓEKAB + ΓEF
K

B ΓCDAK − ΓCD
K

B ΓEFAK

− tCD
GH

EF ΓGHAB ,

%endalign∗ΣAB ≡ DAB ζ − ζAB ,

ΣABCD ≡ DAB ζCD − s hABCD + ζ (1 − μ ζ) sABCD ,

SAB ≡ DAB s+ (1 − μ ζ) sABCD ζCD ,

HABCD ≡ DA
EsBCDE − 2μ

1 − μ ζ
sE(BCD ζA)

E .

In terms of the tensor fields on the left hand side, which have been introduced
as labels for the equations as well as for discussing the interdependencies of the
equations, the conformal static vacuum equations read

tAB
EF

CD ea
EF = 0 , RABCDEF = 0 , ΣAB = 0 ,

ΣABCD = 0 , SAB = 0 , HABCD = 0 .

The first equation is Cartan’s first structural equation with the requirement that
the (metric) connection be torsion free (tAB

EF
CD being the torsion tensor). The

second equation is Cartan’s second structural equation with the requirement that
the Ricci tensor coincides with the trace free tensor sab. The third equation de-
fines ζAB , the remaining equations have been considered before.

To discuss these equations in detail we need to write them out in our gauge,
observing in particular the nature of the singularities in (4.8) and (4.11).
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The equations tAB
EF

00 e
a

EF = 0:

∂uê
1

01 +
1
u
ê1 01 = −2 Γ̂0101 + 2 Γ̂0100 ê

1
01 ,

∂uê
2

01 +
1
u
ê2 01 =

1
u

Γ̂0100 + 2 Γ̂0100 ê
2

01 ,

∂uê
1

11 = −2 Γ̂1101 + 2 Γ̂1100 ê
1

01 ,

∂uê
2

11 =
1
u

Γ̂1100 + 2 Γ̂1100 ê
2

01 .

The equations RAB00EF = 0:

∂uΓ̂0100 +
2
u

Γ̂0100 − 2 Γ̂2
0100 =

1
2
s0 ,

∂uΓ̂0101 +
1
u

Γ̂0101 − 2 Γ̂0100 Γ̂0101 =
1
2
s1 ,

∂uΓ̂0111 +
1
u

Γ̂0111 − 2 Γ̂0100 Γ̂0111 =
1
2
s2 ,

∂uΓ̂1100 +
1
u

Γ̂1100 − 2 Γ̂1100 Γ̂0100 = s1 ,

∂uΓ̂1101 − 2 Γ̂1100 Γ̂0101 = s2 ,

∂uΓ̂1111 − 2 Γ̂1100 Γ̂0111 = s3 .

The equations Σ00 = 0, Σ00CD = 0, S00 = 0:

0 = ∂uζ − ζ00 ,

0 = ∂u ζ00 + ζ (1 − μ ζ) s0 ,

0 = ∂u ζ01 + ζ (1 − μ ζ) s1 ,

0 = ∂u ζ11 − s+ ζ (1 − μ ζ) s2 ,

0 = ∂us+ (1 − μ ζ) (s0 ζ11 − 2 s1 ζ01 + s2 ζ00) .

The equations −H0(BCD)k
= 0 in the order k = 0, 1, 2, 3:

∂u s1 − 1
2 u

(∂v s0 − 4 s1) − ê1 01∂u s0 − ê2 01∂v s0

= −4 Γ̂0101 s0 + 4 Γ̂0100 s1 − 2μ
(1 − μ ζ)

{s0 ζ01 − s1 ζ00} ,

∂u s2 − 1
2 u

(∂v s1 − 3 s2) − ê1 01∂u s1 − ê2 01∂v s1

= −Γ̂0111 s0−2 Γ̂0101 s1 + 3 Γ̂0100 s2− μ

2 (1−μ ζ) {s0 ζ11 + 2 s1 ζ01 + 3 s2 ζ00} ,

∂u s3 − 1
2 u

(∂v s2 − 2 s3) − ê1 01∂u s2 − ê2 01∂v s2

= −2Γ̂0111 s1 + 2 Γ̂0100 s3 − μ

(1 − μ ζ)
{s1 ζ11 + s3 ζ00} ,
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∂u s4 − 1
2 u

(∂v s3 − s4) − ê1 01∂u s3 − ê2 01∂v s3

= −3 Γ̂0111 s2 + 2 Γ̂0101 s3 + Γ̂0100 s4− μ

2 (1−μ ζ) {3 s2 ζ11−2 s3 ζ01−s4 ζ00} .

These equations, referred to as the ∂u-equations, will be read as a system of
PDE’s for the set of functions

ê1 01 , ê
2

01 , ê
1

11 , ê
2

11 , Γ̂01AB , Γ̂11AB , ζ , ζAB , s , s1 , s2 , s3 , s4 ,

which comprises all the unknowns with the exception of s0. The following features
of them will be important.

All ∂u-equations are interior equations on the hypersurfaces {w = w0} in the
sense that only derivatives in the directions of u and v are involved.

The equations are singular with terms u−1 occurring in various places. It
will be seen later that these terms come with the ‘right’ signs to possess (unique)
solutions which are holomorphic in u, v andw. Remarkably, the equations for the sk

ensure regular solution to have the correct tensorial behaviour by the occurrence
of terms u−1 with factors ∂v sk − (4 − k) sk+1. By Lemma 4.1 we know that they
have to vanish U0.

The system splits into a hierarchy of subsystems, with

t01
EF

00 e
2

EF = 0 , R000001 = 0 ,

being the first subsystem,

t01
EF

00 e
1

EF = 0 , R010001 = 0 , Σ00 = 0 ,
Σ0000 = 0 , Σ0001 = 0 , H0000 = 0 ,

being the second subsystem, and so on. The hierarchy has the following property.
If s0 is given on {w = w0}, the first subsystem reduces to singular system of ODE’s.
Given its solution, the second subsystem also reduces to a system of ODE’s (with
coefficients which are calculated from the functions known so far by operation
interior to {w = w0}), and so on. Thus, given s0 and the appropriate initial data
on U0 ∩ {w = w0}, all unknowns can be determined on {w = w0} by solving a
sequence of systems of ODE’s in the independent variable u.

The functions êa
AB and Γ̂ABCD vanish on U0 by our gauge conditions. There-

fore only initial data for ζ, ζAB, s, and sk need to be determined on U0 and the
function s0 needs to be provided on {w = w0}. While s0 will be prescribed on W0

as our initial datum, an equation is needed to determine its evolution off W0. For
this purpose we will consider the following equations.

The equations H1(BCD)k
= 0 in the order k = 0, 1, 2, 3:

∂w s0 − 1
2 u

(∂v s1 − 3 s2) + ê1 11∂u s0 + ê2 11∂v s0 − ê1 01∂u s1 − ê2 01∂v s1

= −(Γ̂0111 − 4 Γ̂1101) s0 − (2 Γ̂0101 + 4 Γ̂1100) s1 + 3 Γ̂0100 s2

+
2μ

(1 − μ ζ)
1
4
{s0 ζ11 + 2 s1 ζ01 − 3 s2 ζ00} , (5.1)
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∂w s1 − 1
2 u

(∂v s2 − 2 s3) + ê1 11∂u s1 + ê2 11∂v s1 − ê1 01∂u s2 − ê2 01∂v s2

= Γ̂1111 s0 − (2 Γ̂0111 − 2 Γ̂1101) s1 − 3 Γ̂1100 s2 + 2 Γ̂0100 s3

+
2μ

(1 − μ ζ)
1
2
{s1 ζ11 − s3 ζ00} ,

∂w s2 − 1
2 u

(∂v s3 − 2 s4) + ê1 11∂u s2 + ê2 11∂v s2 − ê1 01∂u s3 − ê2 01∂v s3

= 2 Γ̂1111 s1 − 3 Γ̂0111 s2 − (2 Γ̂1100 − 2 Γ̂0101) s3 + Γ̂0100 s4

+
2μ

(1 − μ ζ)
1
4
{3 s2 ζ11 − 2 s3 ζ01 − s4 ζ00} ,

∂w s3 − 1
2 u

∂v s4 + ê1 11∂u s3 + ê2 11∂v s3 − ê1 01∂u s4 − ê2 01∂v s4

= 3 Γ̂1111 s2 − (4 Γ̂0111 + 2 Γ̂1101) s3 − (Γ̂1100 − 4 Γ̂0101) s4

+
2μ

(1 − μ ζ)
{s3 ζ11 − s4 ζ01} .

All singular terms cancel in the equations 0 = H0(BCD)k+1 +H1(BCD)k
, which

are given in the order k = 0, 1, 2 by

∂w s0 − ∂u s2 + ê1 11∂u s0 + ê2 11∂v s0 (5.2)

= 4 Γ̂1101 s0 − 4 Γ̂1100 s1 +
μ

(1 − μ ζ)
{s0 ζ11 + 2 s1 ζ01 − 3 s2 ζ00} ,

∂w s1 − ∂u s3 + ê1 11∂u s1 + ê2 11∂v s1

= Γ̂1111 s0 + 2 Γ̂1101 s1 − 3 Γ̂1100 s2 − 2μ
(1 − μ ζ)

{s1 ζ11 − s3 ζ00} ,

∂w s2 − ∂u s4 + ê1 11∂u s2 + ê2 11∂v s2

= 2 Γ̂1111 s1 − 2 Γ̂1100 s3 +
μ

(1 − μ ζ)
{3 s2 ζ11 − 2 s3 ζ01 − s4 ζ00} .

We can consider (5.1) or (5.2) as equation prescribing the propagation of s0
transverse to the hypersurfaces {w = const.}.

Because Γ11CD = 0 on U0, the equations Σ11 = 0, Σ11CD = 0, S11 = 0 reduce
on U0 to the ODE’s

∂w ζ = ζ11 , ∂w ζCD = s h11CD−ζ (1−μ ζ) s11CD , ∂w s = −(1−μ ζ) s11CD ζCD .

By (2.2), (2.15) we must impose

ζ = 0 , ζAB = 0 , s(i) = −2 on I = {u = 0, w = 0} .
This implies with the equations above

ζ = 0 , ζ01 = 0 , ζ11 = 0 on U0 = {u = 0} . (5.3)

To determine ζ, ζAB, and s on U0 it remains to solve on U0 the equations

∂w ζ00 = s , ∂w s = −s4 ζ00 . (5.4)
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The tensorial properties of ζAB and s imply with (5.3) that

∂n
v ζ00 = 0 , ∂n

v ŝ = 0 on U0 for n ≥ 1 . (5.5)

Later it will be important that these relations can in fact be deduced from (5.3),
(5.4), (5.6), and the initial conditions on I.

To ensure the tensor relations for the sk and thus the existence of regular
solutions to the equation for the sk, we determine the initial data for s1, . . . , s4
on U0 by imposing the conditions

∂v sk = (4 − k) sk+1 , k = 0 , . . . , 3 , on U0 . (5.6)

They imply recursively the expressions

∂n
v ∂

p
w sk =

(4 − k)!
4!

∂k+n
v ∂p

w s0 ,

k = 0 , . . . 4 , n, p ≥ 0 at {u = 0, v = 0, w = 0} .
5.1. Calculating the formal expansion

The system of equations is overdetermined. We choose from it a subset of equations
to define a systematic way of calculating a formal expansion of the solution. It will
then follow from Lemma 5.5 that the expansion obtained by this procedure will
lead to a formal solution of the full system of equations. A solution obtained by
any other procedure will thus have to coincide with the present one.

It will be convenient to replace s by the unknown

ŝ = 2 + s ,

and it will also be useful to write

sk = s∗k + ŝk with ∂us
∗
k = 0 and s∗k|u=0 = sk|u=0

so that ŝk = O(u) as u→ 0 .

By (5.6) we can then assume that

∂v s
∗
k = (4 − k) s∗k+1 ,

and the ∂u-equations for the ŝk can be written in the form

0 = −H0 (BCD)k
= ∂u ŝk+1 +

4 − k

2 u
ŝk+1 − 1

2 u
∂v ŝk + êa

01 ∂a(s∗k + ŝk)

+ terms of zeroth order ,

so that the coefficient (4 − k)/2 of the singular term u−1 ŝk+1 is positive and the
term u−1 ∂v ŝk, which involves the unknown ŝk determined in an earlier step of
the integration procedure, creates no problem because ŝk = 0 on U0. Writing

x =
(
êa

AB, Γ̂ABCD, ζ, ζAB , ŝ, s1, s2, s3, s4
)
,

so that the full set of unknowns are given by x and s0, we proceed as follows.
On W0 we prescribe s0 as given in (4.16) with the null data D∗

n satisfying
the reality conditions and the estimates (3.11). By (5.6) all components of x can
be determined on I.
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We successively integrate the subsystems in the hierarchy of ∂u-equations to
determine all components of x on W0. These will be holomorphic in u and v and
unique, because the relevant operators in the singular equations are of the form
∂uf+c u−1 f with non-negative constants c (a proof of this statement follows from
the derivation of the estimates discussed below).

The equation H0100 +H1000 = 0 is used to determine ∂ws0 from the fields x
and s0 on W0 as a holomorphic function of u and v.

Applying the operator ∂w formally to the ∂u-equations, one obtains equations
for ∂wx on W0 which can be solved with the initial data on {w = 0, u = 0} which
are obtained by using (5.4) and by applying ∂w to (5.6). Applying ∂w to the
equation H0100 +H1000 = 0, one obtains ∂2s0 on W0.

Repeating these steps by applying successively the operator ∂p
w, p = 2, 3, . . .,

one gets an sequence of functions ∂p
wx, ∂p

ws0 on W0, which are holomorphic in u
and v.

Expanding the functions so obtained at u = 0, v = 0 we get the following
result.

Lemma 5.1. The procedure described above determines at the point O = (u = 0, v =
0, w = 0) from the data s0, given on W0 according to (4.16), a unique sequence of
expansion coefficients

∂m
u ∂n

v ∂
p
w f(O) , m, n, p = 0, 1, 2, . . . ,

where f stands for any of the functions

êa
AB , Γ̂ABCD , ζ , ζAB , ŝ , sj .

If the corresponding Taylor series are absolutely convergent in some neighbour-
hood P of O, they define a solution to the ∂u-equations and to the equation
H1000 = 0 on P which satisfies on P ∩U0 equations (5.6) and Σ11 = 0, Σ11CD = 0,
S11 = 0.

By Lemma 4.1 all spinor-valued functions should have a specific v-finite ex-
pansion type. The following result will be important for our convergence proof.

Lemma 5.2. If the data s0 are given on W0 as in (4.16), the formal expansions
of the fields obtained in Lemma 5.1 correspond to ones of functions of v-finite
expansion types given by

ksj = 4 − j , kζi = 2 − i , kζ = 0 , ks = kŝ ≤ 2 ,
kê1

AB
= −A−B , kê2

AB
= 3 −A−B for AB = 01, 10 or 11 .

kΓ̂01AB
= 2 − A−B , kΓ̂11AB

= 1 −A−B for A,B = 0 or 1 .

Remark 5.3. The scalar functions s, ŝ must have expansion type ks = kŝ = 0. As
pointed out below, this does not follow with the simple arguments used here. Since
it will not be important for the following discussions, we shall make no effort to
retrieve this information from the equations.
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Proof. We note the following properties of v-finite expansion types:
For given integer k the functions of expansion type k form a complex vector

space which comprises the functions of expansion type ≤ k.
If the functions f and g have expansion type kf and kg respectively, their

product f g has expansion type kfg = kf + kg.
If f has expansion type kf , the function ∂uf has expansion type kf + 2.

Conversely, if ∂uf has expansion type kf + 2 and if the function independent of
u which agrees on U0 with f has expansion type kf (for instance if f |u=0 = 0),
then f has expansion type kf .

If f has expansion type kf and f |u=0 = 0 then 1
u f has expansion type kf +2.

If f has expansion type kf , the function ∂vf has expansion type kf − 1.
If f has an expansion type, the function ∂wf has the same expansion type.
Applying these rules one can check that the expansion types listed above are

consistent with the ∂u-equations, the equationH1000+H0100 = 0 and the equations
S11 = 0, Σ1100 = 0 used on U0 in the sense that all terms in the equations have
the same expansion types.

Assuming the given expansion types for the sk, the ∂u-equations for the
Γ̂ABCD imply at lowest order in u that in general the kΓ̂ABCD

must take the values
given above. It follows then from the ∂u-equations for the êa

AB at lowest order in u
that the kêa

AB
must take in general the values above. The remaining ∂u-equations

then imply at lowest order the other expansion types.
With these observations the Lemma follows from our procedure by a straight-

forward though lengthy induction argument. We do not write out the details. �

The equation

0 = S00 = ∂u s+ (1 − μ ζ) s00CD ζCD ,

should imply more precisely ks = 0, because the expansion type of the tensorial
component s00CD ζCD should be 2. The contraction of the spinor fields on the right
hand side implies cancellations which lower the expansion types of the contracted
quantities on the right hand side. These cancellations cannot be controlled in the
explicit expression

0 = ∂us+ (1 − μ ζ) (s0 ζ11 − 2 s1 ζ01 + s2 ζ00) ,

by the simple rules given above, they only suggest an expansion type ks ≤ 2.
Fortunately, this does not prevent us from determining the other expansion types.
In the equation

0 = Σ0011 = ∂u ζ11 − s+ ζ (1 − μ ζ) s0011 ,

s is added to a field of expansion type 2 and the equation

0 = S11 = ∂w s+ s11CD ζCD = ∂w s+ s1111 ζ00 on U0 ,

is consistent with ks ≤ 2. No further equation involving s is needed in the conver-
gence proof.
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5.2. The complete set of equations on Ŝ

Because only a certain subset of the system of equations has been used to deter-
mine the formal expansions of the fields, it remains to be shown that the latter
define in fact a formal solution to the complete system of conformal static vacuum
field equations. To simplify stating the following result it will be assumed in this
subsection that the formal expansions for

êa
AB , Γ̂ABCD , ζ , ζAB , ŝ , sj ,

determined in Lemma 5.1 define in fact absolutely convergent series on an open
neighbourhood of the point O, which we assume to coincide with Ŝ. There will
arise no problem from this assumption because the following two lemmas will not
be used in the derivation of the estimates in the next section.

Lemma 5.4. With the assumptions above the corresponding functions

ea
AB , ΓABCD , ζ , ζAB , s , sj ,

satisfy the complete set of the conformal vacuum field equations on the set U0 in
the sense that the fields

tAB
EF

CD , RABCDEF , ΣAB , ΣABCD , SAB , HABCD ,

calculated from these functions on Ŝ \ U0 have vanishing limit as u→ 0.

Proof. Because of the equations solved already and the symmetries involved, we
only need to examine the behaviour of the fields

t11
EF

01 , RAB0111 , Σ01 , Σ01CD , S01 , H1(BCD)k
, k = 1, 2, 3 ,

near U0.
With (4.8), (4.9), (4.11), (4.12) the ∂u-equations imply for the frame and the

dual frame coefficients the slightly stronger results (4.6), (4.7). A direct calculation
gives then

t01
EF

11 = 2 Γ01
(E

1 ε1
F ) − Γ11

(E
0 ε1

F ) − Γ11
(E

1 ε0
F )

− σEF
a (ea

11,c e
c

01 − ea
01,c e

c
11) = O(u) ,

as u→ 0.
With the particular result

t01
01

11 = Γ0111 − 1
2
e2 11,2 − 1

2 u
e1 11 +O(u2) = O(u) ,

follows

R000111 = Γ1100,1 e
1

01 + Γ1100,2 e
2

01 − Γ0100,1 e
1

11 − Γ0100,2 e
2

11 − Γ0100,3

− Γ1100 Γ1100 + 2 Γ0100 (Γ1101 − Γ0111) − t01
01

11 Γ0100

− t01
11

11 Γ1100 − 1
2
s0011

=
1

2 u

(
Γ1100,2 − 2 Γ1101 + 3 Γ0111 − 1

2
e2 11,2 − 3

2 u
e1 11

)
− 1

2
s0011 +O(u)
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→ 1
2

(
∂v∂u Γ1100−2 ∂u Γ1101+3 ∂u Γ0111− 1

2
∂v ∂u e

2
11− 3

4
∂2

u e
1

11−s0011
)

= 0 as u→ 0 ,

where the ∂u-equations and the relation ∂v s1 = 3 s2 on U0 are used to calculate
the limit. Similarly,

R010111 =
1

2 u
Γ1101,2 − 1

2 u
Γ1111 − 1

2
s0111 +O(u)

→ 1
2

(∂v ∂u Γ1101 − ∂u Γ1111 − s0111) = 0 as u→ 0 ,

where the ∂u-equations and the relation ∂v s2 = 2 s3 on U0 are used,

R110111 =
1

2 u
Γ1111,2 − 1

2
s1111 +O(u) → 1

2
(∂v ∂u Γ1111 − s1111) = 0 as u→ 0 ,

where the ∂u-equations and the relation ∂v s3 = s4 on U0 are used.
By (5.3) and the remark following (5.5) we know that ζ = 0, ζ01 = 0, ζ11 = 0,

∂v ζ00 = 0, ∂v s = 0 on U0. The ∂u-equations and (5.6) imply

Σ01 =
1

2 u
∂v ζ − ζ01 +O(u) → 1

2
∂v ζ00 − ζ01 = 0 ,

Σ0100 =
1

2 u
(∂v ζ00 − 2 ζ01) +O(u) → 1

2
(∂v ∂u ζ00 − 2 ∂u ζ01) = 0 ,

Σ0101 =
1

2 u
(∂v ζ01 − ζ11) +

1
2
s+O(u) → 1

2
(∂v ∂u ζ01 − ∂u ζ11 + s) = 0 ,

Σ0111 =
1

2 u
∂v ζ11 +O(u) → 1

2
∂v ∂u ζ11 = 0 .

S01 =
1

2 u
∂v s+ s0111 ζ00 +O(u) → 1

2
(∂v ∂u s+ 2 s0111 ζ00)

=
1
2
∂v (∂u s+ s0011 ζ00) = 0 , as u→ 0 .

With our assumptions (and formally setting s5 = 0) we get for k = 0, . . . , 3

γk ≡ lim
u→0

(−2H0(ABC)k
) = (6 − k) ∂u sk+1 − ∂v ∂u sk − (4 − k)μ sk+1 ζ00 ,

βk ≡ lim
u→0

(−2H1(ABC)k
) = 2 ∂w sk − ∂v ∂u sk+1 + (3 − k) ∂u sk+2

− (3 − k)μ sk+2 ζ00 .

The expected tensorial nature of sABCD and HABCD (cf. Lemma 4.1) would
imply

4 β1 = ∂v β0 − ∂v γ1 + 2 γ2 ,

12 β2 = ∂2
v β0 − ∂2

v γ1 − 2 ∂v γ2 + 4 γ3 ,

24 β3 = ∂3
v β0 − ∂3

v γ1 − 2 ∂2
v γ2 − 8 ∂v γ3 on U0 .

It turns out that these relations can in fact be verified by a direct calculation with
the expressions for γk, βk obtained above. Because the equations used to establish
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Lemma 5.1 imply γk = 0, β0 = 0, it follows that β1 = β2 = β3 = 0 so that in fact
HABCD → 0 as u→ 0. �

We can now prove the desired result.

Lemma 5.5. The functions

ea
AB , ΓABCD , ζ , ζAB , s , sj ,

corresponding to the expansions determined in Lemma 5.1 satisfy the complete set
of conformal vacuum field equations on the set Ŝ.

Proof. It needs to be shown that the zero quantities

t01
EF

11 , RAB0111 , Σ01 , Σ11 , Σ01CD , Σ11CD , S01 , S11 , H1ABCD ,

vanish on Ŝ. For this purpose we shall derive a system of subsidiary equations for
these fields.

Given the fields

ea
AB , ΓABCD , ζ , ζAB , s , sABCD ,

we have the 1-forms σAB dual to eAB and the connection form ωA
B = ΓCD

A
Bσ

CD.
To derive the subsidiary system we consider the torsion form

ΘAB =
1
2
tCD

AB
EF σ

CD ∧ σEF ,

and the form

Ω∗A
B ≡ ΩA

B − Ω̂A
B =

1
2
RA

BCDEF σ
CD ∧ σEF ,

obtained as difference of the curvature form

ΩA
B =

1
2
rA

BCDEF σ
CD ∧ σEF ,

and the form
Ω̂A

B =
1
2
sA

BCE σ
C

F ∧ σEF .

The following general relations will be used: The identity σa ∧ σb ∧ σc = εabc ν
with ν = 1

3! εdef σ
d ∧σe ∧σf , which holds in 3-dimensional spaces. In space spinor

form it takes the form

σAB ∧ σCD ∧ σEF = εAB CD EF ν

with εAB CD EF =
i√
2

(
εAC εBF εDE − εAE εBD εFC

)
,

which implies

σAB ∧ σC
D ∧ σED = −i

√
2 εA(C εE)B ν = i

√
2hAB CE ν ,

and thus
Ω̂A

B ∧ σBD =
1
2
sA

BCE σ
BD ∧ σC

F ∧ σEF = 0 .



Vol. 8 (2007) Static Null Data 851

The equations

iH (α ∧ β) = iH α ∧ β + (−1)kα ∧ iH β , LH α = (d ◦ iH + iH ◦ d)α ,
which holds for arbitrary vector field H , k-form α, and j-form β. Finally, we note
that in the presence of torsion the Ricci identity for a spinor field ιE...H of degreem
reads

(DAB DCD −DCD DAB) ιEF...H = − ιLF...H rL
E AB CD − ιEL...H rL

F AB CD

− · · · − ιEF...L rL
H AB CD

− tAB
KL

CD DKL ιEF...H .

We shall derive now the subsidiary equations. The fields ΘAB and ΩA
B

satisfy the first structural equation

d σAB = −ωA
C ∧ σCB − ωB

C ∧ σAC + ΘAB ,

and the second structural equation

dωA
B = −ωA

C ∧ ωC
B + ΩA

B ,

respectively. These equations imply

dΘAB = 2 Ω(A
C ∧ σB)C − 2ω(A

C ∧ ΘB)C = 2 Ω∗(A
C ∧ σB)C − 2ω(A

C ∧ ΘB)C .

We set H = e00 and observe that the gauge conditions and the ∂u-equations imply

iH σAB = ε0
A ε0

B = h00
AB , iH ωA

B = 0 , iH ΘAB = 0 , iH Ω∗A
B = 0 .

It follows that

LH ΘAB = (d ◦ iH + iH ◦ d)ΘAB = 2 Ω∗(A
0 ε0

B) ,

and thus

LH〈ΘAB, e01 ∧ e11〉 = 2〈Ω∗(A
0, e01 ∧ e11〉ε0 B)

+
〈
ΘAB, [H, e01] ∧ e11

〉
+
〈
ΘAB, e01 ∧ [H, e11]

〉
.

The first structural equation, the gauge conditions, and the ∂u-equations
imply

0 = 〈ΘEF , H ∧ eCD〉eEF = −ΓCD
EF

00 eEF − [H, eCD] ,

whence
[H, eCD] = −2 ΓCD01 e00 + 2 ΓCD00 e01 .

This implies

LH〈ΘAB, e01 ∧ e11〉 = 2 Γ0100〈ΘAB, e01 ∧ e11〉 + 2
〈
Ω∗(A

0, e01 ∧ e11
〉
ε0

B) ,

i.e., (
∂u +

1
u

)
t01

AB
11 = 2 Γ̂0100 t01

AB
11 + 2R(A

0 01 11 ε0
B) . (5.7)
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With the first structural equation we obtain

d Ω̂AB − ωH
A ∧ Ω̂HB − ωH

B ∧ Ω̂AH =
1
2
DGH sABCD σGH ∧ σC

F ∧ σDF

=
i√
2
HE

ABE ν ,

and from the second structural equation we get

dΩAB − ωH
A ∧ ΩHB − ωH

B ∧ ΩAH = 0 ,

which give together

dΩ∗
AB − ωH

A ∧ Ω∗
HB − ωH

B ∧ Ω∗
AH = − i√

2
HE

ABE ν ,

and thus, with the equations above,(
∂u +

1
u

)
RAB 01 11 = 2 Γ̂0100RAB 01 11 +

1
2
H1AB0 . (5.8)

The identity

DAB ΣCD −DCD ΣAB = tAB
EF

CD DEF ζ + ΣCDAB − ΣABCD ,

gives with the gauge conditions and the ∂u-equations

∂u ΣCD +
2
u
ε(C

0 εD)
1 Σ01 = 2 Γ̂CD00 Σ01 + ΣCD00 . (5.9)

The identity

DAB ΣCDEF −DCD ΣABEF = −2 ζK(E R
K

F )ABCD + tAB
GH

CD DGHζEF

+ SCD hABEF − SAB hCDEF

+ (1 − 2μ ζ)(ΣAB sCDEF − ΣCD sABEF )

+ ζ (1 − μ ζ) (εCAHBDEF + εDB HCAEF ) ,

implies with the gauge conditions and the ∂u-equations

∂u ΣCDEF +
2
u
ε(C

0 εD)
1 Σ01EF = 2 Γ̂CD00 Σ01EF + SCD h00EF

− (1 − 2μ ζ)ΣCD s00EF

+ ζ (1 − μ ζ) εD0HC0EF . (5.10)

The identity

DAB SCD −DCD SAB = tAB
EF

CD DEF s

− μ {ΣAB sCDEF − ΣCD sABEF } ζEF (1 − μ ζ)

× {ΣAB
EF sCDEF − ΣCD

EF sABEF

+ (εCAHBDEF + εDB HCAEF ) ζEF
}
,
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implies with the gauge conditions and the ∂u-equations

∂u SCD +
2
u
ε(C

0 εD)
1 S01 = 2 Γ̂CD00 S01 + μ ΣCD s00EF ζ

EF

− (1−μ ζ){ΣCD
EF s00EF − εD0HC0EF ζ

EF
}
.

(5.11)

Finally we have the identity

2DEF HEFAB = −4 sK(BGH RK
A)

EG
E

H + tE F
KL

EH DKL sAB
FH (5.12)

− 4μ
1 − μ ζ

sH(ABF ΣEF
G)

H − 2μ2

(1 − 2μ)2
ΣEF sH(ABF ζE)

H

+
μ

1 − μ ζ

{
2HEHAB ζ

EH − 2HE
EH(A ζB)

H
}
,

where the right hand side is a linear function of the zero quantities. The gauge
conditions and the equations H0ABC = 0, H1000 = 0 imply for the left hand side

DEF HEFAB = ∂uH11AB +
1
u

{
H11AB +H110(A εB)

0
}

−
(

1
2 u

∂v + êa
01∂za

)
H10AB − 2 Γ̂0100H11AB − Γ̂010AH110B

− Γ̂010B H110A + Γ̂011AH100B + Γ̂011B H100A + Γ̂1100H10AB .
(5.13)

Equations (5.7), (5.8), (5.9), (5.10), (5.11), and equation (5.12) with (5.13)
observed on the left hand side provide the system of subsidiary equations. Note
that the right hand side of this system is a linear function of the zero quantities.
It implies with Lemma 5.4 that all zero quantities vanish on Ŝ. �

If the series considered in Lemma 5.1 are absolutely convergent it thus follows
from Lemma 5.5 that they define in fact a solution to the complete set of static
conformal vacuum field equations on Ŝ.

6. Convergence of the formal expansion

Let there be given a sequence

D̂n = {ψA2B2A1B1 , ψA3B3A2B2A1B1 , ψA4B4A3B3A2B2A1B1 , . . .} ,
of totally symmetric spinors as in Lemma 3.1 and set in the expansion (4.16) of
s0(u, v)

D∗
(A1B1

. . . D∗
AmBm

s∗ABCD)(i) = ψA1B1...AmBmABCD , m ≥ 0 .

Observing the estimates (3.11), one finds as a necessary condition for the function
s0 on W0 to determine an analytic solution to the conformal static vacuum field



854 H. Friedrich Ann. Henri Poincaré

equations that its non-vanishing Taylor coefficients at the point O satisfy estimates
of the form

|∂m
u ∂n

v s0(O)| = m!n! |ψm,n| ≤
(

2m+ 4
n

)
m!n!M r−m

1 ,

m ≥ 0 , 0 ≤ n ≤ 2m+ 4 . (6.1)

A slightly different type of estimate will be more convenient for us.

Lemma 6.1. Let e denote the Euler number. For given ρ0 ∈ R, 0 < ρ0 ≤ e2, there
exist positive constants r0, c0 so that (6.1) implies estimates of the form

|∂m
u ∂n

v s0(O)| ≤ c0
m!n! rm

0 ρn
0

(1 +m)2 (1 + n)2
, m ≥ 0 , 0 ≤ n ≤ 2m+ 4 . (6.2)

Proof. With r0 = 4 e6 r−1
1 ρ−2

0 and c0 = 16M e8 ρ−4
0 , the estimate 1 ≤ (2 m+4

n

) ≤
22m+4, which follows from the binomial law (1+x)2m+4 =

∑2m+4
n=0

(
2 m+4

n

)
xn, and

the estimate ex ≥ 1 + x, which holds for x ≥ 0, we get(
2m+ 4
n

)
m!n!M r−m

1 ≤ 16Mm!n! (4 r−1
1 )m

= c0m!n!
rm
0

(em)2
ρn
0

(en)2
(ρ0

e2

)2 m+4−n

≤ c0m!n!
rm
0

(1 +m)2
ρn
0

(1 + n)2
,

m ≥ 0 , 0 ≤ n ≤ 2m+ 4 . �

The following lemma provides our main estimates.

Lemma 6.2. Suppose s0 = s0(u, v) is a holomorphic function defined on some open
neighbourhood U of O = {u = 0, v = 0, w = 0} in W0 = {w = 0} which has an
expansion of the form

s0(u, v) =
∞∑

m=0

2m+4∑
n=0

ψm,n u
m vn ,

so that its Taylor coefficients at the point O satisfy estimates of the type (6.2) with
some positive constants c∗0, r0, and ρ0 < 1/2. Then there exist positive constants
r ≥ r0, ρ, cêa

AB
, cΓ̂ABCD

, cζ , cζi , cŝ, ck so that the expansion coefficients determined
from s0 in Lemma 5.1 satisfy for m,n, p = 0, 1, 2, . . .

|∂m
u ∂n

v ∂
p
w sk(O)| ≤ ck

rm+p (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

, (6.3)

and

|∂m
u ∂n

v ∂
p
w f(O)| ≤ cf

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

, (6.4)

where f stands for any of the functions êa
AB, Γ̂ABCD, ζ, ζi, ŝ.
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Remark 6.3. Observing the v-finite expansion types discussed in Lemma 5.2, we
can replace the right hand sides in the estimates above by zero if n is large enough
relative to m. This will not be pointed out at each step and for convenience the
estimates will be written as above. The expansion types obtained in Lemma 5.2 will
become important and will be observed, however, when we derive the estimates.

We shall make use of arguments discussed in [24]. The following four lemmas
are essentially given in that article.

Lemma 6.4. For any non-negative integer n there is a positive constant C inde-
pendent of n so that

n∑
k=0

1
(k + 1)2(n− k + 1)2

≤ C
1

(n+ 1)2
.

Proof. Denoting by [n/2] the largest integer ≤ n/2, we get with C =
∑∞

k=0
8

(k+1)2

n∑
k=0

1
(k + 1)2(n− k + 1)2

≤
[n/2]∑
k=0

2
(k + 1)2(n− k + 1)2

≤
[n/2]∑
k=0

2

(k + 1)2
(
[n/2] + 1

)2 ≤ C
1

(n+ 1)2
. �

In the following C will always denote the constant above.

Lemma 6.5. For any integers m, n, k, j with 0 ≤ k ≤ m, and 0 ≤ j ≤ n resp.
0 ≤ j ≤ n− 1 holds(

m

k

)(
n

j

)
≤
(
m+ n

k + j

)
resp.

(
m

k

)(
n− 1
j

)
≤
(
m+ n

k + j

)
.

Proof. This follows by induction, using the general formula
(
n+1

j

)
=
(
n
j

)
+
(

n
j−1

)
,

or by expanding (x+y)m+n = (x+y)m (x+y)n, using the binomial law (x+y)p =∑p
j=0

(
p
j

)
xj yp−j . �

If f is holomorphic on the polydisk P = {(u, v, w, ) ∈ C
3| |u| ≤ 1/r1, |v| ≤

1/r2, |w| ≤ 1/r3}, with some r1, r2, r3 > 0, one has the Cauchy estimates

|∂m
u ∂n

v ∂
p
w f(O)| ≤ rm

1 rn
2 rp

3 m! n! p! sup
P

|f | , m, n, p = 0, 1, 2, . . . (6.5)

where O denotes the origin u = 0, v = 0, w = 0. We need a slight modification of
this.

Lemma 6.6. If f is holomorphic near O, there exist positive constants c, r0, ρ0 so
that

|∂m
u ∂n

v ∂
p
w f(O)| ≤ c

rm+p (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

, m, n, p = 0, 1, 2, . . .
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for any r ≥ r0, ρ ≥ ρ0. If in addition f(0, v, 0) = 0, the constants can be chosen
such that

|∂m
u ∂n

v ∂
p
w f(O)| ≤ c

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

, m, n, p = 0, 1, 2, . . .

for any r ≥ r0, ρ ≥ ρ0.

Proof. Let α be a positive number for which precise values will be considered
below. Choosing an estimate of the type (6.5) with r1 = r3 and setting c =
α supP |f |, r0 = e2 r1 = e2 r3, ρ0 = e2 r2, one gets from (6.5)

|∂m
u ∂n

v ∂
p
w f(O)| ≤ c α−1rm+p

0 (m+ p)! ρn
0 n! e−2(m+n+p)

≤ c α−1 rm+p
0 (m+ p)! ρn

0 n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

.

With α = 1 the monotonicity of x → xq, q ≥ 0, x > 0 implies the first estimate.
With α = r0 the estimate above implies

|∂m
u ∂n

v ∂
p
w f(O)| ≤ c

rm+p−1
0 (m+ p)! ρn

0 n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

.

If f(0, v, 0) = 0, then ∂0
u ∂

n
v ∂

0
w f(O) = 0 for n ∈ N0 and the last relation remains

true for m+ p = 0, i.e., m = 0 and p = 0, if r0 and ρ0 are replaced by r ≥ r0 and
ρ ≥ ρ0. If m+ p > 0 the result follows as above. �

Lemma 6.7. Let m, n, p be non-negative integers and fi, i = 1, . . . , N , be smooth
complex valued functions of u, v, w on some neighbourhood U of O whose deriva-
tives satisfy on U (resp. at a given point p ∈ U) estimates of the form

|∂j
u ∂

k
v ∂

l
w fi| ≤ ci

rj+l+qi (j + l) ! ρk k !
(j + 1)2 (k + 1)2 (l + 1)2

for 0 ≤ j ≤ m, 0 ≤ k ≤ n , 0 ≤ l ≤ p ,

with some positive constants ci, r, ρ and some fixed integers qi (independent of
j, k, l). Then one has on U (resp. at p) the estimates

|∂m
u ∂n

v ∂
p
w (f1 · . . . · fN )| ≤ C3 (N−1) c1 · . . . · cN rm+p+q1+...+qN (m+ p) ! ρn n !

(m+ 1)2 (n+ 1)2 (p+ 1)2
.

(6.6)

Remark 6.8.

(i) Lemma 6.7 remains obviously true if m, n, p are replaced in (6.6) by integers
m′, n′, p′ with 0 ≤ m′ ≤ m, 0 ≤ n′ ≤ n, 0 ≤ p′ ≤ p.

(ii) By the argument given below the factor C3 (N−1) in (6.6) can be replaced by
C(3−r) (N−1) if r of the integers m, n, p vanish.
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Proof. We prove the case N = 2. The general case then follows with the first of
Remarks 6.8 by an induction argument. With the estimates above and Lemmas 6.4
and 6.5 we get on U (resp. at p)

|∂m
u ∂n

v ∂
p
w (f1 f2)| ≤

m∑
j=0

n∑
k=0

p∑
l=0

(
m

j

)(
n

k

)(
p

l

)
|∂j

u ∂
k
v ∂

l
w f1||∂m−j

u ∂n−k
v ∂p−l

w f2|

≤
m∑

j=0

n∑
k=0

p∑
l=0

(
m

j

)(
n

k

)(
p

l

)
c1 r

j+l+q1 (j + l) ! ρk k !
(j + 1)2 (k + 1)2 (l + 1)2

× c2 r
m−j+p−l+q2 (m− j + p− l) ! ρn−k (n− k) !
(m− j + 1)2 (n− k + 1)2 (p− l + 1)2

≤
m∑

j=0

n∑
k=0

p∑
l=0

(
m
j

) (
p
l

)
(
m+p
j+l

)

× c1 c2 r
m+p+q1+q2 (m+ p) ! ρn n !

(j + 1)2 (k + 1)2 (l + 1)2 (m− j + 1)2 (n− k + 1)2 (p− l + 1)2

≤ C3 c1 c2
rm+p+q1+q2 (m+ p) ! ρn n !
(m+ 1)2 (n+ 1)2 (p+ 1)2

. �

We are now able to prove our main estimates.

Proof of Lemma 6.2. Following the procedure which led to Lemma 5.1, the proof
will be given by induction with respect to m and p. It is easy to see that the con-
stants can be chosen to satisfy the estimates at lowest order. Leaving the choice of
the constants open, we will derive from the induction hypothesis for the derivatives
of the next order estimates of the form

|∂m
u ∂n

v ∂
p
w sk(O)| ≤ ck

rm+p (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

Ask
,

|∂m
u ∂n

v ∂
p
w f(O)| ≤ cf

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

Af ,

with certain constants Ask
, Af which depend on m, n, p and the constants ck,

cf , r, and ρ. Sometimes superscripts will indicate to which order of differentiability
particular constants Ask

, Af refer. Occasionally we will have to make assumptions
on r to proceed with the induction step. We shall collect these conditions and the
constants Ask

, Af , or estimates for them, and at the end it will be shown that the
constants ck, cf , r, and ρ can be adjusted so that all conditions are satisfied and
Ask

≤ 1, Af ≤ 1. This will complete the induction proof.
In the following it is understood that, as above, a function in a modulus sign

is evaluated at the origin O. The symbol x will stand for any of the fields

êa
AB , Γ̂ABCD , ζ , ζ0 , ζ1 , ζ2 , ŝ , s1 , s2 , s3 , s4 .

For the quantities which are known to vanish at I the estimates are correct
for m = 0, p = 0. Since we consider ŝ as an unknown and s(0) = −2 as part of the
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equations, we thus only need to discuss the sk. They are given on I by

sk =
(4 − k)!

4!
∂k

v s0 .

It thus follows by our assumptions

|∂0
u ∂

n
v ∂

0
w sk| =

∣∣∣∣ (4 − k)!
4!

∂k+n
v s0

∣∣∣∣ ≤
{

(4−k)!
4! c0

ρn+k (n+k)!
(n+k+1)2 for n ≤ 4 − k

0 for n > 4 − k

}

= ck
ρn n!

(n+ 1)2
Am=0,p=0

sk
,

with

Am=0,p=0
sk

=
c0
ck
ρk hk,n ≤ c0

ck
ρk ,

because

hk,n ≡
{

(4−k)!
4!

(n+k)!
n!

(n+1)2

(n+k+1)2 for n ≤ 4 − k

0 for n > 4 − k

}
≤ 1 .

We should study now under which conditions on the constants it can be
shown by induction with respect to m that the quantities |∂m

u ∂n
v ∂

0
w x|, n ∈ N0,

satisfy the estimates given in the lemma. We shall skip the details of this step,
because the arguments used here are similar to those used to discuss the quantities
|∂m

u ∂n
v ∂

p
w x| for general p and the requirements obtained in that case are in fact

stronger that those obtained for p = 0.
It will be assumed now that p ≥ 1, that the estimates for |∂m

u ∂n
v ∂

l
w x| given in

the lemma hold true for m,n ∈ N0, 0 ≤ l ≤ p− 1, and try to determine conditions
so that the induction step p− 1 → p can be performed.

By taking formal derivatives of the equation

0 = H0100 +H1000 ,

we get with our assumptions

|∂m
u ∂n

v ∂
p
w s0| ≤ |∂m+1

u ∂n
v ∂

p−1
w s2| + |∂m

u ∂n
v ∂

p−1
w (ê1 11 ∂u s0)|

+ |∂m
u ∂n

v ∂
p−1
w (ê2 11 ∂v s0)| + 4 |∂m

u ∂n
v ∂

p−1
w (Γ̂1101 s0 + Γ̂1100 s1)|

+ μ

∣∣∣∣ ∂m
u ∂n

v ∂
p−1
w

(
1

1 − μ ζ

{
s0 ζ2 + 2 s1 ζ1 − 3 s2 ζ0

}) ∣∣∣∣ .
For the first term on the right hand side follows immediately

|∂m+1
u ∂n

v ∂
p−1
w s2| ≤ c2

rm+p (m+ p)! ρn n!
(m+ 2)2(n+ 1)2p2

.
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A slight variation of the calculations in the proof Lemma 6.7 gives

|∂m
u ∂n

v ∂
p−1
w (ê1 11 ∂u s0)|

≤
m∑

j=0

n∑
k=0

p−1∑
l=0

(
m

j

)(
n

k

)(
p− 1
l

)
|∂j

u ∂
k
v ∂

l
w ê

1
11||∂m−j+1

u ∂n−k
v ∂p−l−1

w s0|

≤
m∑

j=0

n∑
k=0

p−1∑
l=0

(
m
j

) (
p−1

l

)
(
m+p
j+l

)

× cê1 11 c0 r
m+p−1 (m+ p) ! ρn n !

(j + 1)2 (k + 1)2 (l + 1)2 (m− j + 2)2 (n− k + 1)2 (p− l)2

≤ C3 cê1 11 c0
rm+p−1 (m+ p) ! ρn n !
(m+ 2)2 (n+ 1)2 p2

,

where the sum over j has been extended in the last step to m+ 1.
Similarly one gets

|∂m
u ∂n

v ∂
p−1
w (ê2 11 ∂v s0)|

≤
m∑

j=0

n∑
k=0

p−1∑
l=0

(
m

j

)(
n

k

)(
p− 1
l

)
|∂j

u ∂
k
v ∂

l
w ê

2
11||∂m−j

u ∂n−k+1
v ∂p−l−1

w s0|

≤
m∑

j=0

n∑
k=0

p−1∑
l=0

(
m
j

) (
n
k

) (
p−1

l

)
(
m+p−1

j+l

) (
n+1

k

)

× cê2 11 c0 r
m+p−2 (m+ p− 1) ! ρn+1 (n+ 1) !

(j + 1)2 (k + 1)2 (l + 1)2 (m− j + 1)2 (n− k + 2)2 (p− l)2

≤ C3 cê2 11 c0
rm+p−2 (m+ p− 1) ! ρn+1 (n+ 1) !

(m+ 1)2 (n+ 2)2 p2
,

where the sum over k has been extended in the last step to n+ 1.
We emphasize here again an observation which is important for us. By

Lemma 5.2 the terms ∂j
u ∂

k
v ∂

l
w ê

2
11 and ∂m−j

u ∂n−k+1
v ∂p−l−1

w s0 in the second line
vanish if k > 2 j+1 and n−k+1 > 2 (m−j)+4 respectively. This implies that the
term on the left hand side vanishes if n > 2m+ 4, consistently with Lemma 5.2.
When we estimate the expression in the last line above we can thus assume that
n ≤ 2m+ 4.

Lemma 6.7 implies immediately

4 |∂m
u ∂n

v ∂
p−1
w (Γ̂1101 s0 + Γ̂1100 s1)|

≤ 4C3
(
c0 cΓ̂1101

+ c1 cΓ̂1100

) rm+p−2 (m+ p− 1) ! ρn n !
(m+ 1)2 (n+ 1)2 p2

,
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and, observing that ζ(O) = 0,

μ

∣∣∣∣ ∂m
u ∂n

v ∂
p−1
w

(
1

1 − μ ζ

{
s0 ζ2 + 2 s1 ζ1 − 3 s2 ζ0

}) ∣∣∣∣
≤ μ

∞∑
l=0

∣∣∣ ∂m
u ∂n

v ∂
p−1
w

(
(μ ζ)l

{
s0 ζ2 + 2 s1 ζ1 − 3 s2 ζ0

})∣∣∣

≤ μ
∞∑
l=0

μl clζ C
3 (l+1) (c0 cζ2 + 2 c1 cζ1 + 3 c2 cζ0)

rm+p−l−2 (m+ p− 1) ! ρn n !
(m+ 1)2 (n+ 1)2 p2

=
μ

1 − μ cζ C3

r

C3 (c0 cζ2 + 2 c1 cζ1 + 3 c2 cζ0)
rm+p−2 (m+ p− 1) ! ρn n !

(m+ 1)2 (n+ 1)2 p2
,

where it is assumed that

r > μ cζ C
3 .

Together this gives

|∂m
u ∂n

v ∂
p
w s0| ≤ c2

rm+p (m+ p)! ρn n!
(m+ 2)2(n+ 1)2p2

+ C3 cê1 11 c0
rm+p−1 (m+ p) ! ρn n !
(m+ 2)2 (n+ 1)2 p2

+ C3 cê2 11 c0
rm+p−2 (m+ p− 1) ! ρn+1 (n+ 1) !

(m+ 1)2 (n+ 2)2 p2

+ 4C3 (c0 cΓ̂1101
+ c1 cΓ̂1100

)
rm+p−2 (m+ p− 1) ! ρn n !

(m+ 1)2 (n+ 1)2 p2

+
μ

1 − μ cζ C3

r

C3 (c0 cζ2 + 2 c1 cζ1 + 3 c2 cζ0)
rm+p−2 (m+ p− 1) ! ρn n !

(m+ 1)2 (n+ 1)2 p2

≤ c0
rm+p (m+ p)! ρn n!

(m+ 1)2(n+ 1)2(p+ 1)2
A∗

s0
,

with a factor

A∗
s0

=
c2
c0

(m+ 1)2 (p+ 1)2

(m+ 2)2 p2
+

1
r
C3 cê1 11

(m+ 1)2 (p+ 1)2

(m+ 2)2 p2

+
1
r2
C3 cê2 11

ρ (n+ 1)3 (p+ 1)2

(n+ 2)2 p2 (m+ p)

+
4
r2

C3

(
cΓ̂1101

+
c1
c0
cΓ̂1100

)
(p+ 1)2

p2 (m+ p)

+
1
r2

μ

1 − μ cζ C3

r

C3

(
cζ2 + 2

c1
c0
cζ1 + 3

c2
c0
cζ0

)
(p+ 1)2

p2 (m+ p)
.
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Recalling that we can assume n ≤ 2m + 4 in the third term on the right hand
side, this finally gives

A∗
s0

≤ 4
c2
c0

+
4
r
C3 cê1 11 +

20 ρ
r2

C3 cê2 11 +
16
r2

C3

(
cΓ̂1101

+
c1
c0
cΓ̂1100

)

+
1
r2

4μ

1 − μ cζ C3

r

C3

(
cζ2 + 2

c1
c0
cζ1 + 3

c2
c0
cζ0

)
.

We have the relations

sk =
(4 − k)!

4 !
∂k

v s0 on U0 ,

the equation 0 = H0100 +H1000 reduces to

∂w s0 = ∂u s2 + 3μ s2 ζ0 on U0 ,

and we have seen that
∂v ζ0 = 0 on U0 .

This implies for p ≥ 1 the estimates

|∂0
u ∂

n
v ∂

p
w sk| ≤ (4 − k)!

4 !
(|∂1

u ∂
n+k
v ∂p−1

w s2| + 3μ |∂0
u ∂

n+k
v ∂p−1

w (s2 ζ0)|)

≤
{

(4−k)!
4! c2

rp p! ρn+k (n+k)!
4 p2 (n+k+1)2 for n ≤ 4 − k

0 for n > 4 − k

+

{
3μ (4−k)!

4!

∑p−1
l=0

(
p−1

l

)|∂n+k
v ∂l

w s2| |∂p−1−l
w ζ0| for n ≤ 2 − k

0 for n > 2 − k

≤ ck
rp p! ρn n!

(n+ 1)2(p+ 1)2
Am=0,p≥1

sk
,

with

Am=0,p≥1
sk

=
c2
ck
ρk fk,n +

3
r
μC

c2 cζ0

ck
ρk gk,n ≤ c2

ck
ρk +

12
r
μC

c2 cζ0

ck
ρk ,

because

fk,n ≡
{

(4−k)!
4!

(n+k)! (n+1)2 (p+1)2

n! (n+k+1)2 4 p2 for n ≤ 4 − k

0 for n > 4 − k
≤ 1 ,

gk,n ≡
{

(4−k)!
4!

(n+k)! (n+1)2 (p+1)2

n! (n+k+1)2 p3 for n ≤ 2 − k

0 for n > 2 − k
≤ 4 .

From the equation Σ1100 = 0, which reads

∂w ζ0 = −2 + ŝ on U0 ,

it follows

|∂0
u ∂

n
v ∂w ζ0| = |∂n

v (−2 + ŝ)| = 2 δn
0 ≤ cζ0

ρn n!
(n+ 1)2

Am=0,p=1
ζ0

,
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with

Am=0,p=1
ζ0

=
2
cζ0

.

Furthermore, for p ≥ 2,

|∂0
u ∂

n
v ∂

p
w ζ0| = |∂n

v ∂
p−1
w ŝ| = cŝ

rp−1 (p− 1)! ρn n!
(n+ 1)2 p2

≤ cζ0

rp p! ρn n!
(n+ 1)2 (p+ 1)2

Am=0,p≥2
ζ0

,

with

Am=0,p≥2
ζ0

=
1
r

cŝ
cζ0

(p+ 1)2

p3
≤ 2
r

cŝ
cζ0

.

The equation S11 = 0, which reads

∂w ŝ = −s4 ζ0 on U0 ,

implies

|∂0
u ∂

n
v ∂w ŝ| = 0 ≤ cŝ

ρn n!
(n+ 1)2

,

and for p ≥ 2

|∂0
u ∂

n
v ∂

p
w ŝ| = |∂0

u ∂
n
v ∂

p−1
w (s4 ζ0)| ≤ C2 c4 cζ0

rp−2 (p− 1)! ρn n!
(n+ 1)2 p2

≤ cŝ
rp−1 p! ρn n!

(n+ 1)2 (p+ 1)2
Am=0,p≥2

ŝ ,

with

Am=0,p≥2
ŝ =

1
r
C2 c4 cζ0

cŝ

(p+ 1)2

p3
≤ 2
r
C2 c4 cζ0

cŝ
.

Having studied the quantities |∂m
u ∂n

v ∂
p
w x| for m = 0, we shall now derive

the conditions which arise from the requirement that we can obtain the desired
estimates for these quantities inductively for all positive integers m. We shall
provide detailed arguments only for some representative ∂u-equations and just
state the analogues results for the remaining equations.

Multiplication of the equation

∂uê
2

01 +
1
u
ê2 01 =

1
u

Γ̂0100 + 2 Γ̂0100 ê
2

01 ,
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with u and formal differentiation gives with Lemma 6.6 for m ≥ 1

|∂m
u ∂n

v ∂
p
w ê

2
01| ≤ 1

m+ 1
(|∂m

u ∂n
v ∂

p
w Γ̂0100| + 2m |∂m−1

u ∂n
v ∂

p
w (Γ̂0100 ê

2
01)|
)

≤ 1
m+ 1

(
cΓ̂0100

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

+2mC3 cê2 01 cΓ̂0100

rm+p−3 (m+ p− 1)! ρn n!
m2 (n+ 1)2 (p+ 1)2

)

= cê2 01

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

Am≥1
ê2 01

,

with

Am≥1
ê2 01

=
cΓ̂0100

cê2 01

1
m+ 1

+
1
r2
C3 cΓ̂0100

2 (m+ 1)
m (m+ p)

.

Proceeding in a similar way with the equations for the other frame coefficients one
gets for the factors which need to be controlled the estimates

Am≥1
ê2
01

≤ cΓ̂0100

2 cê2
01

+
4
r2
C3 cΓ̂0100

, Am≥1
ê2
11

≤ cΓ̂1100

cê2
11

+
8
r2
C3

cΓ̂1100
cê2

01

cê2
11

,

Am≥1
ê1
01

≤ 4
r

cΓ̂0101

cê1
01

+
4
r2
C3 cΓ̂0100

, Am≥1
ê1
11

≤ 8
r

cΓ̂1101

cê1
11

+
8
r2
C3

cΓ̂1100
cê1

01

cê1
11

.

The same inequalities, with C3 replaced by C2, are obtained in the case p = 0. In
the last two inequalities the occurrence of 1/r in both terms reflects the fact that
ê101 and ê111 are both of the order O(u2) near O.

Multiplication of the equation

∂u Γ̂0100 +
2
u

Γ̂0100 = 2 (Γ̂0100)2 +
1
2
s0 ,

with u and formal differentiation gives for m ≥ 1

|∂m
u ∂n

v ∂
p
w Γ̂0100| ≤ m

m+ 2

(
2 |∂m−1

u ∂n
v ∂

p
w Γ̂0100| + 1

2
|∂m−1

u ∂n
v ∂

p
w s0|

)

≤ 2m
m+ 2

C3 c2
Γ̂0100

rm+p−3 (m+ p− 1)! ρn n!
m2 (n+ 1)2 (p+ 1)2

+
m

2 (m+ 2)
c0
rm+p−1 (m+ p− 1)! ρn n!
m2 (n+ 1)2 (p+ 1)2

≤ cΓ̂0100

rm+p−1 (m+ p)! ρn n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

Am≥1

Γ̂0100
,

with

Am≥1

Γ̂0100
=

1
r2
C3 cΓ̂0100

2 (m+ 1)2

m (m+ 2) (m+ p)
+

c0
cΓ̂0100

(m+ 1)2

2m (m+ 2) (m+ p)
.
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Proceeding in a similar way with the equations for the other connection coefficients
one gets for the factors which need to be controlled the estimates

Am≥1

Γ̂0100
≤ c0
cΓ̂0100

+
4
r2
C3 cΓ̂0100

, Am≥1

Γ̂0101
≤ c1
cΓ̂0101

+
4
r2
C3 cΓ̂0100

,

Am≥1

Γ̂0111
≤ c2
cΓ̂0111

+
4
r2
C3 cΓ̂0100

, Am≥1

Γ̂1100
≤ 2 c1
cΓ̂1100

+
4
r2
C3 cΓ̂0100

,

Am≥1

Γ̂1101
≤ 4 c2
cΓ̂1101

+
8
r2
C3

cΓ̂1100
cΓ̂0101

cΓ̂1101

, Am≥1

Γ̂1111
≤ 4 c3
cΓ̂1111

+
8
r2
C3

cΓ̂1100
cΓ̂0111

cΓ̂1111

,

The same inequalities, with C3 replaced by C2, are obtained in the case p = 0.
Being slightly more generous, one gets inequalities which can be written in the
concise form

Am≥1

Γ̂01AB
≤ cA+B

cΓ̂01AB

+
4
r2
C3 cΓ̂0100

,

Am≥1

Γ̂11AB
≤ 4 cA+B+1

cΓ̂11AB

+
8
r2
C3

cΓ̂1100
cΓ̂01AB

cΓ̂11AB

, A,B = 0, 1 ,

where the cA+B, cA+B+1 denote for suitable numerical values of the indices A, B
the constants c0, . . . , c4.

An analogous discussion of the equations

∂uζ = ζ0 ,

∂u ζ0 = −ζ (1 − μ ζ) s0 ,

∂u ζ1 = −ζ (1 − μ ζ) s1 ,

∂u ζ2 = −2 + ŝ− ζ (1 − μ ζ) s2 ,

∂u ŝ− (1 − μ ζ) (s0 ζ11 − 2 s1 ζ01 + s2 ζ00) ,

does not require new considerations. For the factors which need to be controlled
we get the estimates

Am≥1,p≥0
ζ ≤ 4

r

cζ0

cζ
,

Am≥1,p≥0
ζ0

≤ 4
r
C3 c0 cζ

cζ0

+
4
r2
μC6

c0 c
2
ζ

cζ0

,

Am≥1,p≥0
ζ1

≤ 4
r
C3 c1 cζ

cζ1

+
4
r2
μC6

c0 c
2
ζ

cζ1

,

Am≥1,p≥0
ζ2

≤
⎧⎨
⎩

8
cζ2

+ 4
r

(
cŝ

cζ2
+ C3 c2 cζ

cζ2

)
+ 4

r2 μC
6 c2 c2

ζ

cζ2
for m = 1 , n = 0 , p = 0 ,

4
r

(
cŝ

cζ2
+ C3 c2 cζ

cζ2

)
+ 4

r2 μC
6 c2 c2

ζ

cζ2
otherwise

,

Am≥1
ŝ ≤

(
4
r
C3 +

4
r2
μC6 cζ

)(
c0 cζ2

cŝ
+ 2

c1 cζ1

cŝ
+
c2 cζ0

cŝ

)
.
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We consider the ∂u-equations for the curvature component s1. Multiplication
with 2 u gives

2 u ∂u s1 + 4 s1 = ∂v s0 + 2 u ê1 01∂us0 + 2 u ê2 01∂vs0

− 8 u (Γ̂0101 s0 − Γ̂0100 s1) − u
4μ

(1 − μ ζ)
{
s0 ζ1 − s1 ζ0

}
,

which implies for m ≥ 1

|∂m
u ∂n

v ∂
p
w s1| ≤

1
2m+ 4

|∂m
u ∂n+1

v ∂p
w s0|

+
2m

2m+ 4
(|∂m−1

u ∂n
v ∂

p
w (ê1 01 ∂u s0)| + |∂m−1

u ∂n
v ∂

p
w (ê2 01 ∂v s0)|

)

+
4m

2m+ 4

(
2 |∂m−1

u ∂n
v ∂

p
w (Γ̂0101 s0 − Γ̂0100 s1)|

+ μ
∣∣∣ ∂m−1

u ∂n
v ∂

p
w

{ 1
1 − μ ζ

(s0 ζ1 − s1 ζ0)
}∣∣∣
)
.

The terms arising here are estimated in a similar way as the terms in the curvature
equation above. Again the expansion types allows one to assume that 0 ≤ n ≤
2m+ 4 − k. Again r is restricted to values with

r > μ cζ C
3 .

Proceeding similarly with the other ∂u-equations for the curvature, the following
estimates are obtained for the factors which need to be controlled.

Am≥1
s1

≤ c0
c1
ρ+

1
r
C3 c0

c1
cê1

01
+

8 ρ
r2

C3 c0
c1
cê2

01
+

8
r2
C3

(
c0
c1
cΓ̂0101

+ cΓ̂0100

)

+
1
r2
C3 4μ

1 − μ cζ C3

r

(
c0
c1
cζ1 + cζ0

)
,

Am≥1
s2

≤ c1
c2
ρ+

1
r
C3 c1

c2
cê1

01
+

8 ρ
r2

C3 c1
c2
cê2

01

+
4
r2
C3

(
c0
c2
cΓ̂0111

+ 2
c1
c2
cΓ̂0101

+ 3 cΓ̂0100

)

+
1
r2
C3 2μ

1 − μ cζ C3

r

(
c0
c2
cζ2 + 2

c1
c2
cζ1 + 3 cζ0

)
,

Am≥1
s3

≤ c2
c3
ρ+

1
r
C3 c2

c3
cê1

01
+

8 ρ
r2

C3 c2
c3
cê2

01

+
8
r2
C3

(
c1
c3
cΓ̂0111

+ cΓ̂0100

)
+

1
r2
C3 4μ

1 − μ cζ C3

r

(
c1
c3
cζ2 + cζ0

)
,
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Am≥1
s3

≤ c3
c4
ρ+

1
r
C3 c3

c4
cê1

01
+

8 ρ
r2

C3 c3
c4
cê2

01

+
4
r2
C3

(
3
c2
c4
cΓ̂0111

+ 2
c3
c4
cΓ̂0101

+ cΓ̂0100

)

+
1
r2
C3 2μ

1 − μ cζ C3

r

(
3
c2
c4
cζ2 + 2

c3
c4
cζ1 + cζ0

)
.

This gives all the needed information.
To arrange now the constants so that the induction argument can successfully

be carried out, we proceed as follows. The estimates for the decisive factors which
have been obtained above are of the general form

A ≤ α+
1
r
β +

1
r2
γ ,

with α, β, and γ depending on all the constants except r. If β = 0 and γ = 0 it
suffices to ensure α ≤ 1. In the other cases we require α ≤ a where a is a given
constant, a < 1, and then choose r large enough so that A ≤ 1. A first set of
conditions arising this way reads

ck
ck+1

ρ ≤ a ,
c0
ck
ρk ≤ 1 ,

c2
ck
ρk ≤ a , 4

c2
c0

≤ a .

These conditions can be satisfied simultaneously. The first equation implies ck ≥
(ρ/a)k c0. With

ck =
(ρ
a

)k

c∗0 ,

where 0 < ρ, a < 1, the first two relations hold true, the fourth relation implies
ρ2 ≤ a3/4 and with this restriction the third relation holds as well. We choose

ρ = ρ0 , a =
(
4 ρ2

0

)1/3
.

The conditions
2
cζ0

≤ 1 ,
8
cζ2

≤ a ,

are met by setting

cζ0 ≡ 2 , cζ2 ≡ 8
a
.

The conditions
cA+B

cΓ̂01AB

≤ a ,
4 c1+A+B

cΓ̂11AB

≤ a , A,B = 0, 1 ,

are then dealt with by setting

cΓ̂01AB
≡ 1
a
cA+B , cΓ̂11AB

≡ 1
a
c1+A+B .

The conditions
cΓ̂0100

cê2
01

≤ a ,
cΓ̂1100

cê2
11

≤ a ,
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are satisfied by setting

cê2
01

≡ 1
a
cΓ̂0100

, cê2
11

≡ 1
a
cΓ̂1100

.

After this we choose some positive constants

ê101 , ê
1
11 , cζ , cζ1 , cŝ .

That these constants are not further restricted by the procedure reflects the fact
that the corresponding functions vanish to higher order at O. Their choice affects,
however, the value of the constant r. After all constants except r have been fixed
we can choose r so large that

r > max
{
r0, μ cζ C

3
}
,

and that all the A’s are ≤ 1. This finishes the induction proof. �

The following statement of the convergence result, obtained by using the
v-finite expansion types of the various functions, emphasizes the role of v as an
angular coordinate.

Lemma 6.9. The estimates (6.3) and (6.4) for the derivatives of the functions sk

and f and the expansion types given in Lemma 5.2 imply that the associated Taylor
series are absolutely convergent in the domain |v| < 1

α ρ , |u| + |w| < α2

r , for any
real number α, 0 < α ≤ 1. It follows that the formal expansion determined in
Lemma 5.1 defines indeed a (unique) holomorphic solution to the conformal static
vacuum field equations which induces the datum s0 on W0.

Proof. The estimates (6.3) and (6.4) imply

|∂m
u ∂n

v ∂
p
w sk(O)| ≤ ck

α4−k

(r/α2)m+p (m+ p)! (αρ)n n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

α4−k+2m+2p−n

≤ ck
α4−k

(r/α2)m+p (m+ p)! (αρ)n n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

for n ≤ 2m+ 4 − k, m, p = 0, 1, 2, . . .

|∂m
u ∂n

v ∂
p
w f(O)| ≤ cf

αkf−2

(r/α2)m+p−1 (m+ p)! (αρ)n n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

αkf +2m+2p−n

≤ cf
αkf−2

(r/α2)m+p−1 (m+ p)! (αρ)n n!
(m+ 1)2 (n+ 1)2 (p+ 1)2

for n ≤ 2m+ kf , m, p = 0, 1, 2, . . . .

Since the other derivatives vanish because of the respective expansion types, the
first assertion is an immediate consequence of the majorizations (3.15), (3.16). The
second assertion then follows with Lemma 5.5. �
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7. Analyticity at space-like infinity

Due to our singular gauge the holomorphic solution of the conformal static field
equations obtained in Lemma 6.9 does not cover a full neighbourhood of the point i.
To analyse the situation we study the part of the solution which we have obtained
by the convergence proof in terms of a normal frame based on the frame cAB at i
and associated normal coordinates. We write the geodesic equation Dż ż = 0 for
za(s) = (u(s), v, (s), w(s)) in the form

ża = mAB ea
AB = mAB (e∗a

AB + êa
AB) ,

ṁAB = −2mCDΓCD
(A

B m
B)E

= −2mCDΓ∗
CD

(A
B m

B)E − 2mCDΓ̂CD
(A

B m
B)E ,

With the explicit expressions for the singular parts, the system takes the form

u̇ = m00 +mAB ê1AB , ṁ00 = −2mCDΓ̂CD
0

B m
0B ,

v̇ =
1
u
m01 +mAB ê2AB , ṁ01 = − 1

u
m01m00 − 2mCDΓ̂CD

(0
B m

1)B ,

ẇ = m11 , ṁ11 = − 2
u
m01m01 − 2mCDΓ̂CD

1
B m

1B .

These equations have to be solved with the initial conditions

u|s=0 = 0 , w|s=0 = 0 , (7.1)

for the curves to start at i. An arbitrary value

v0 = v|s=0 , (7.2)

can be prescribed to determine the ∂u-∂w-plane over i in which the tangent vector
is lying, and an arbitrary choice of

mAB|s=0 = mAB
0 = mAB

0 ε0
A ε0

B +mAB
0 ε1

A ε1
B , u̇0 	= 0 ,

can be prescribed to specify the tangent vector in the ∂u-∂w-plane. Regularity and
the equations require

m00
0 = u̇|s=0 ≡ u̇0 , m01

0 = 0 , m11
0 = ẇ|s=0 ≡ ẇ0 . (7.3)

If the frame eAB at a point of I is identified with its projection into TiSc, then

mAB
0 eAB = mAB

0 sC
A(v0) sD

B(v0) cCD = m∗AB cAB ,

holds at i with

m∗00 = u̇0 , m∗01 = u̇0 v0 , m∗11 = u̇0 v
2
0 + ẇ0 , u̇0 	= 0 .

For arbitrarily given m∗AB ∈ C
3 with m∗00 	= 0 this relation determines u̇0, v0, ẇ0

uniquely. Using cAB = αa
AB ca, the tangent vectors can be written m∗AB cAB =
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xa ca with

x1 =
1√
2

(
ẇ0 +

(
v2
0 − 1

)
u̇0

)
, x2 =

i√
2

(
ẇ0 +

(
v2
0 + 1

)
u̇0

)
, x3 =

√
2 v0 u̇0

u̇0 	= 0 , (7.4)

or, equivalently,

u̇0(xa) = −x
1 + i x2

√
2

, v0(xa) = − x3

x1 + i x2
, ẇ0(xa) =

δab x
a xb

√
2(x1 + i x2)

,

x1 + i x2 	= 0 . (7.5)

The vectors xaca cover all directions at i except those tangent to the complex null
hyperplane (c1 + i c2)⊥ = {a(c1 + i c2) + b c3| a, b ∈ C}.

To determine the normal frame centered at i and based on the frame cAB

at i, we write the equation DẋcAB = 0 for the normal frame as an equation for
the transformation tA B ∈ SL(2,C), which relates the frame eAB to the normal
frame cAB = tC A t

D
B eCD. The resulting equation

0 =
d

ds
(tC A t

D
B) +mGH ΓGH

CD
EF t

E
A t

F
B ,

can be written in the form ṫA B = −mDEΓDE
A

C t
C

B. Taking into account the
structure of the connection coefficients, this gives

ṫA B = − 1
u
m01 ε1

A t0 B −mDE Γ̂DE
A

C t
C

B . (7.6)

This equation has to be solved along z(s) with the initial condition

tA B|s=0 = sA
B(−v0) . (7.7)

The initial value problems above make sense because the functions êa
AB and

Γ̂ABCD are, by Lemma 6.9, holomorphic near the point u = 0, v = v0, w = 0 for
any prescribed value of v0. The singularity of the system at that particular point
requires, however, some attention.

We prepare the statement and the proof of the existence result, to be given
in Lemma 7.2, by casting the system of ODE’s into a suitable form. It will be
convenient to make use of the replacements resp. change of notation

v → v0 + v , mAB → mAB
0 +mAB , (7.8)

so that all unknowns vanish at s = 0. Furthermore, by setting

ẽa
AB(u, v, w) = êa

AB(u, v0 + v, w) , Γ̃ABCD(u, v, w) = Γ̂ABCD(u, v0 + v, w) ,
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we define functions ẽa
AB, Γ̃ABCD of the new unknowns which are holomorphic near

u = v = w = 0. The regular equations read with this notation

u̇ = u̇0 +m00 + ẇ0 ẽ
1
11 + 2 ẽ101m

01 + ẽ111m
11 ,

ẇ = ẇ0 +m11 ,

ṁ00 = −2
{
u̇0 ẇ0 Γ̃1101 + u̇0 (2 Γ̃0101m

01 + Γ̃1101m
11)

+ ẇ0 (Γ̃1101m
00 + Γ̃1111m

01) + 2Γ̃0101m
00m01 + 2Γ̃0111m

01m01

+ Γ̃1101m
00m11 + Γ̃1111m

01m11
}

The singular equations take the form

u v̇ = m01 + u (ẇ0 ẽ
2
AB + 2 ẽ201m

01 + ẽ211m
11)

u ṁ01 = −u̇0m
01 −m00m01 + u

{
u̇0 ẇ0 Γ̃1100 − ẇ2

0 Γ̃1111

+ u̇0 (2 Γ̃0100m
01 + Γ̃1100m

11)

+ ẇ0 (Γ̃1100m
00 − 2 Γ̃0111m

01 − 2 Γ̃1111m
11)

+ 2 Γ̃0100m
00m01 − 2 Γ̃0111m

01m11 + Γ̃1100m
00m11 − Γ̃1111m

11m11
}
,

u ṁ11 = −2m01m01

+ 2 u
{
ẇ2

0 Γ̃1101 + ẇ0 (2 Γ̃0101m
01 + Γ̃1100m

01 + 2 Γ̃1101m
11)

+2 Γ̃0100m
01m01 + 2 Γ̃0101m

01m11 + Γ̃0100m
01m11 + Γ̃1101m

11m11
}
.

Finally, (7.6) reads

ṫA B = − 1
u
m01 ε1

A t0 B − (2m01 Γ̂01
A

C + ẇ0 Γ̂11
A

C +m11 Γ̂11
A

C) tC B . (7.9)

After applying ∂s resp. ∂2
s to the geodesic equations and restricting all equa-

tions to s = 0 one obtains with the initial conditions (7.1), (7.2), (7.3) the relations

v̇|s=0 = 0 , ṁAB|s=0 = 0 , ü|s=0 = 0 , (7.10)

and, by taking a further derivative,

∂3
su(0) = u̇2

0 ẇ0

{
∂2

u ê
1

11 − 2 ∂u Γ̂1101

}
u=0,v=v0,w=0

.

This gives with the ∂u-equations

∂3
su(0) = −4 u̇2

0 ẇ0 (s2)u=0,v=v0,w=0 = −1
3
u̇2

0 ẇ0

(
∂2

vs0
)
u=0,v=v0,w=0

, (7.11)

which can be determined from the null data.
Because of Lemma 6.9 and the behaviour (4.7), (4.13) of the metric and the

connection coefficients, which follows from the ∂u-equations, there exist functions



Vol. 8 (2007) Static Null Data 871

f , g, h, k, l which are holomorphic on a polycylinder Pε′ = {x ∈ C
6| |xj | < ε′}

with some ε′ > 0 so that the equations above can be written

u̇ = u̇0 +m00 + u2 f , (7.12)

u v̇ = m01 + u2 g , (7.13)

ẇ = ẇ0 +m11 , (7.14)

ṁ00 = u h , (7.15)

u ṁ01 = −u̇0m
01 −m00m01 + u2 k , (7.16)

u ṁ11 = −2m01m01 + u2 l , (7.17)

with f , g, h, k, l depending on the C
6-valued function z(s) comprising our un-

knowns in the form

z(s) =
(
zj(s)

)
j=1,...,6

=
(
u(s), v(s), w(s), m00(s), m01(s), m11(s)

)
,

(which agrees after the replacement v → v− v0 in the first 3 components with the
notation introduced earlier).

If F stands for any of the functions f , g, h, k, l, then it has on Pε′ an
absolutely convergent expansion

F =
∑

α∈N6

Fα z
α ,

at zj = 0, where again the multi-index notation is used. If 0 < ε < ε′, there exists
thus an M > 0 so that

sup
x∈Pε

∑
α

|Fα| |zα| ≤M .

Lemma 7.1. Let p ≥ 0 be an integer and c and t real numbers which satisfy with
the constant C of Lemma 6.4

c ≥ M

C
, t ≥ max

{
1,
c C

ε

}
. (7.18)

If the derivatives of the functions zj(s) at s = 0 exist and satisfy the estimates

|∂k
s z

j| ≤ c
tk−1 k !
(k + 1)2

, k = 1, . . . , 6 , k ≤ p ,

then ∣∣∂p
sF
(
z(s)
)∣∣

s=0
≤ c

tp p !
(p+ 1)2

.

If, in addition, u satisfies u(0) = 0, u̇(0) = u̇0 and

|∂k
su(s)|s=0 ≤ c

tk−2 k !
(k + 1)2

, 2 ≤ k ≤ p ,

then ∣∣∣∂p
s

(
uF
(
z(s)
))∣∣∣

s=0
≤ |u̇0| c t

p−1 p !
p2

+ c2 C
tp−2 p !
(p+ 1)2

,
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for p ≥ 1, where the second term on the right hand side is to be dropped if p < 2,
and∣∣∣∂p

s

(
u2 F

(
z(s)
))∣∣∣

s=0
≤ 2 |u̇0|2 c t

p−2 p !
(p− 1)2

+ 4 |u̇0| c2 C tp−3 p !
(p+ 1)2

+ c3 C2 tp−4 p !
(p+ 1)2

,

for p ≥ 2, where the second term on the right hand side is to be dropped if p < 3
and the third term is to be dropped if p < 4.

On the left hand sides of the following equations will be considered the mod-
ulus of the values of the functions at the point s = 0.

Proof. Observing Lemma 6.7 and the subsequent remark, one gets

|∂p
sF (z)| ≤

∑
|α|≤p

|Fα||∂p
s z

α| ≤
∑
|α|≤p

|Fα|C|α|−1 c|α| t
p−|α| p !
(p+ 1)2

≤ 1
cC

∑
|α|≤p

|Fα|
(
cC

t

)|α|
c

tp p !
(p+ 1)2

≤ M

cC
c

tp p !
(p+ 1)2

≤ c
tp p !

(p+ 1)2
,

by the choice of c and t. With Lemma 6.4 this gives

∣∣∂p
s

(
uF (z)

)∣∣ ≤ p |u̇0| |∂p−1
s F (z)| +

p∑
j=2

(
p

j

)
|∂j

su| |∂p−j
s F (z)|

≤ p |u̇0| c t
p−1 (p− 1)!

p2
+

p∑
j=2

(
p

j

)
c
tj−2 (j)!
(j + 1)2

c
tp−j (p− j)!
(p− j + 1)2

≤ |u̇0| c t
p−1 p !
p2

+ c2 C
tp−2 p !
(p+ 1)2

,

and similarly

∣∣∂p
s

(
u2 F (z)

)∣∣ ≤
p∑

l=0

(
p

l

) l∑
j=0

(
l

j

)
|∂j

su| |∂l−j
s u| |∂p−l

s F (z)|

= 4
(
p

2

)
|u̇0|2 |∂p−2

s F (z)| +
p∑

l=3

(
p

l

)
2 l |u̇0| |∂l−1

s u| |∂p−l
s F (z)|

+
p∑

l=2

(
p

l

) l−2∑
j=2

(
l

j

)
|∂j

su| |∂l−j
s u| |∂p−l

s F (z)|

≤ 2 |u̇0|2 c t
p−2 p !

(p− 1)2
+ 4 |u̇0| c2 C tp−3 p !

(p+ 1)2
+ c3 C2 tp−4 p !

(p+ 1)2
. �

Lemma 7.2. The requirement that z(s) be a holomorphic solution of equations
(7.12)–(7.17) near s = 0 satisfying x(0) = 0 and ∂su(0) = u̇0 	= 0 determines
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a unique formal expansion of z(s) at s = 0. There exist real constants c and t
satisfying

c ≥ max
{
4 |u̇0|, 4 |ẇ0|, |u̇0|2 | ẇ0| |(∂2

vs0)u=0,v=v0,w=0|, M
C

}
, t ≥ max

{
1,
c C

ε

}
,

(7.19)
with C the constant of Lemma 6.4, so that the Taylor coefficients of z(s) at s = 0
satisfy the estimates

|∂q
sz

j| ≤ c
tq−1 q !
(q + 1)2

, q = 0, 1, 2, . . . , (7.20)

and the Taylor coefficients of u(s) at s = 0 satisfy in addition the estimates

|∂q+2
s u| ≤ c

tq (q + 2)!
(q + 3)2

, q = 0, 1, 2, . . . . (7.21)

It follows that for any given initial data u̇0, v0, ẇ0 with u̇0 	= 0 there ex-
ists a number t = t(u̇0, v0, ẇ0) and a unique holomorphic solutions zj(s) = zj

(s, u̇0, v0, ẇ0) of the initial value problem for the geodesic equations with initial data
as described above which is defined for |s| ≤ 1/t. The functions zj(s, u̇0, v0, ẇ0) are
in fact holomorphic functions of all four variables in a certain domain.

Proof. The existence of a unique formal expansion follows immediately by apply-
ing ∂p

s for p = 1, 2, 3, . . . formally to equations (7.12)–(7.17), restricting to s = 0,
and observing u̇0 	= 0 and the initial data.

That the estimates (7.20) hold for q = 0, 1 follows from the initial condition
x(0) = 0, the equations at s = 0 and our conditions on c and t. That the esti-
mates (7.21) hold for q = 0, 1 follows from (7.10), (7.11), and our conditions on c
and t.

Let p ≥ 1 be an integer. We show that c and t can be chosen such that
the estimates (7.20), (7.21) for q ≤ p imply with the equations the corresponding
estimates for p+1. From (7.15) and Lemma 7.1 (with the provisos given there not
repeated here) follows

|∂p+1
s m00| = |∂p

s (u h)| ≤ |u̇0| c t
p−1 p !
p2

+ c2 C
tp−2 p !
(p+ 1)2

≤ A00 c
tp (p+ 1) !
(p+ 2)2

,

with

A00 =
1
t
|u̇0| p !

p2

(p+ 2)2

(p+ 1) !
+

1
t2
cC

p !
(p+ 1)2

(p+ 2)2

(p+ 1) !
≤ 5
t
|u̇0| + 2

t2
cC .

Similarly one gets from (7.12)

|∂p+2
s u| ≤ |∂p+1

s m00| + |∂p+1
s (u2 f)|

≤ Am00 c
tp (p+ 1) !
(p+ 2)2

+ 2 |u̇0|2 c t
p−1 (p+ 1) !

p2
+ 4 |u̇0| c2 C tp−2 (p+ 1) !

(p+ 2)2

+ c3 C2 t
p−3 (p+ 1) !
(p+ 2)2

≤ Au c
tp (p+ 2)!
(p+ 3)2

,
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with

Au = A00
(p+ 1) !
(p+ 2)2

(p+ 3)2

(p+ 2) !
+

2
t
|u̇0|2 (p+ 3)2

p2(p+ 2)
+

4
t2

|u̇0| cC (p+ 3)2

(p+ 2)3

+
1
t3
c2 C2 (p+ 3)2

(p+ 2)3

≤ 3
t
|u̇0|(1 + 4 |u̇0|) +

1
t2
cC (1 + 4 |u̇0|) +

1
t3
c2 C2 ,

and from (7.14)

|∂p+1
s w| = |∂p

s m
11| ≤ c

tp−1 p !
(p+ 1)2

≤ Aw c
tp (p+ 1) !
(p+ 2)2

,

with

Aw =
1
t

(p+ 2)2

(p+ 1)3
≤ 2
t
.

Applying ∂p+1
s to (7.16) and observing the initial conditions, gives at s = 0 for

p ≥ 1

(p+ 2) u̇0 ∂
p+1
s m01 = −

p+1∑
j=2

(
p+ 1
j

)
∂j

s u ∂
p+2−j
s m01

−
p∑

j=1

(
p+ 1
j

)
∂j

s m
00 ∂p+1−j

s m01 + ∂p+1
s (u2 k) ,

whence

|∂p+1
s m01| ≤ 1

(p+ 2) |u̇0|

⎧⎨
⎩

p+1∑
j=2

(
p+ 1
j

)
c2

tj−2 j !
(j + 1)2

tp+1−j (p+ 2 − j) !
(p+ 3 − j)2

+
p∑

j=1

(
p+ 1
j

)
c2

tj−1 j !
(j + 1)2

tp−j (p+ 1 − j) !
(p+ 2 − j)2

+ |∂p+1
s (u2 k)|

⎫⎬
⎭

≤ 1
|u̇0|c

2 C tp−1 (p+ 1) !
{

1
(p+ 3)2

+
1

(p+ 2)2

}
+ 2 |u̇0| c t

p−1 (p+ 1) !
p2 (p+ 2)

+ 4 c2C
tp−2 (p+ 1) !

(p+ 2)3
+

1
|u̇0| c

3 C2 t
p−3 (p+ 1) !
(p+ 2)3

= A01 c
tp (p+ 1) !
(p+ 2)2

,

with

A01 =
1
t

{
cC

|u̇0| (1 +
(p+ 2)2

(p+ 3)2
) + 2 |u̇0| (p+ 2)

p2

}
+

4 cC
t2

1
p+ 2

+
c2 C2

t3 |u̇0|
1

p+ 2

≤ 1
t

{
2 cC
|u̇0| + 4 |u̇0|

}
+

2 cC
t2

+
c2 C2

t3 |u̇0| .
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Similarly we get from (7.13)

|∂p+1
s v| ≤ 1

(p+ 1) |u̇0|

⎧⎨
⎩

p+1∑
j=2

(
p+ 1
j

)
|∂j

su| |∂p+2−j
s v| + |∂p+1

s m01| + |∂p+1
s (u2 h)|

⎫⎬
⎭

≤ 1
(p+ 1) |u̇0|

{
p+1∑
j=2

(
p+ 1
j

)
c2

tj−2 j !
(j + 1)2

tp+1−j (p+ 2 − j) !
(p+ 3 − j)2

+ |∂p+1
s m01| + |∂p+1

s (u2 h)|
}

≤ Av c
tp (p+ 1) !
(p+ 2)2

,

with

Av =
A01

(p+ 1) |u̇0| +
1
t

2 cC
|u̇0|

(p+ 2)2

(p+ 3)2
+

2|u̇0|
t

(p+ 2)2

p(p+ 1)
+

4 cC
t2

1
p+ 1

+
c2 C2

t3 |u̇0|
1

p+ 1

≤ 1
t

{
9 |u̇0| + 2 +

2 cC
|u̇0| +

cC

|u̇0|2
}

+
cC

t2

{
2 +

1
|u̇0|
}

+
c2 C2

t3

{
1

|u̇0| +
1

|u̇0|2
}
,

and finally from (7.17)

|∂p+1
s m11| ≤ 1

(p+ 1) |u̇0|

⎧⎨
⎩

p+1∑
j=2

(
p+ 1
j

)
c2

tj−2 j !
(j + 1)2

tp+1−j (p+ 2 − j)!
(p+ 3 − j)2

+
p∑

j=1

(
p+ 1
j

)
c2

tj−1 j !
(j + 1)2

tp−j (p+ 1 − j)!
(p+ 2 − j)2

+ |∂p+1
s (u2 l)|

⎫⎬
⎭

≤ A11c
tp (p+ 1)!
(p+ 2)2

,

with

A11 ≤ 1
t

{
18 |u̇0| + 2 cC

|u̇0|
}

+
2 cC
t2

+
c2 C2

t3 |u̇0| .
From the estimates for the A’s it follows that given a choice of c which satisfies
the first of the estimates (7.19), we can determine t large enough such that the
second of the estimates (7.19) and the conditions

Au, Av, Aw, A00, A01, A11 ≤ 1 ,

are satisfied. With this choice the induction step can be carried out.
It follows immediately from estimates (7.20) that the Taylor expansions of

the functions zj at s = 0, zj(s) =
∑∞

p=0 z
j
p s

p with zj
p = 1

p! ∂
p
s z

j(0), are absolutely
convergent for |s| < 1/t.

The coefficients zj
p = zj

p(u̇0, v0, ẇ0) depend on v0 via the expansion coef-
ficients of the functions ẽa

AB, Γ̃ABCD. This implies a polynomial dependence of
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the zj
p on v0 due to the v-finite expansion types of the functions êa

AB, Γ̂ABCD.
The explicit dependence of the right hand sides of equations (7.12)–(7.17) on u̇0

and ẇ0 alone would lead to a polynomial dependence of the zj
p on u̇0 and ẇ0. The

occurrence of the factors u on the left hand sides of equations (7.15)–(7.17) im-
plies, however, that the zj

p are polynomials in u̇0, v0, ẇ0 divided by certain powers
of u̇0.

The number t which restricts the domain of convergence ensured by our
argument depends via ε and M on v0, and via c and the A’s on u̇0, 1/u̇0 and ẇ0

with the effect that t → ∞ as u̇0 → 0. It follows, however, from the form of
the estimates (7.20) and the way they have been obtained that for (u̇0, v0, ẇ0)
in a compactly embedded subset U of (C \ {0}) × C × C a common number t
can be determined so that the Taylor series will be absolutely convergent for
(s, u̇0, v0, ẇ0) ∈ P1/t(0) × U .

If K is compact in P1/t(0)×U , there exists t′ > t with K ⊂ P1/t′(0)×U and
it follows from (7.20) that the sequence of holomorphic functions f j

n =
∑n

p=0 z
j
p s

p

on P1/t(0) × U satisfies

sup
K

|f j
n − zj| ≤

∞∑
p=n+1

c
tp−1

(p+ 1)2

(
1
t′

)p

≤ c

t′
(t/t′)n

1 − t/t′
→ 0 as n→ ∞ ,

so that the f j
n converge uniformly to zj on K. Standard results on compactly

converging sequences of holomorphic functions [22] then imply that the zj =
zj(s, u̇0, v0, ẇ0) are holomorphic function of all four variables on P1/t(0) × U . �

Lemma 7.3. Along the geodesic corresponding to s → zj(s, u̇0, v0, ẇ0)
equations (7.9) have a unique holomorphic solution tA B(s) = tA B(s, u̇0, v0, ẇ0)
satisfying the initial conditions (7.7). The functions tA B(s, u̇0, v0, ẇ0) are holo-
morphic in all four variables in the domain where the zj(s, u̇0, v0, ẇ0) are holo-
morphic.

Proof. By the previous discussion we have m01 = O(s2), u = O(s) with u̇0 	= 0
so that m01/u = O(s) as s → 0. It follows that (7.9) is in fact a linear ODE with
holomorphic coefficients and the lemma follows from standard ODE theory. �

For later use we note that (7.7), (7.9) imply as an immediate consequence
that

t−1A
B(s) = sA

B(v0) +O
(|s|2) as s→ 0 . (7.22)

To discuss the transformation to normal coordinates the notation employed
before the transition (7.8) will be used again, so that

s→ za
(
exp(s xaca)

)
= za(s, u̇0, v0, ẇ0) ,

denotes in the coordinates z1 = u, z2 = v, z3 = w the geodesic which has at
s = 0 the tangent vector xaca with xa = xa(u̇0, v0, ẇ0) at i. We note that by the
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discussion above

u(s, u̇0, v0, ẇ0) = u̇0 s+O
(|s|3) ,

v(s, u̇0, v0, ẇ0) = v0 +O
(|s|2) ,

w(s, u̇0, v0, ẇ0) = ẇ0 s+O
(|s|3) . (7.23)

In terms of the map (7.5) the transformation of the normal coordinates xc

centered at i and based on the frame ca at i into the coordinates za is the given
by

xa → za(xc) = za
(
1, u̇0(xc), v0(xc), ẇ0(xc)

)
, (7.24)

for small enough |xa| with x1 + i x2 	= 0. The geodesics being given in normal
coordinates by the curves s→ s xa, this implies

s xa → za
(
1, u̇0(s xc), v0(s xc), ẇ0(s xc)

)
= za

(
s, u̇0(xc), v0(xc), ẇ0(xc)

)
.

We use the relation on the right hand side to derive a convenient expression for
the map (7.24). Observing that

u̇0(s xc) = s u̇0(xc) , v0(s xc) = v0(xc) , ẇ0(s xc) = s ẇ0(xc) , s ∈ C ,

by (7.5), we write xa = s xa
∗ with s chosen so that u̇0(xc

∗) = 1, whence u̇0(xc) = s,
and get with the relation above the map (7.24) in the form

za(xc) = za
(
1, u̇0(xc), v0(xc), ẇ0(xc)

)
= za

(
s, u̇0(xc

∗), v0(x
c
∗), ẇ0(xc

∗)
)

= za

(
u̇0(xc), 1, v0(xc),

ẇ0(xc)
u̇0(xc)

)
.

With (7.23) this gives, as |x| ≡
√
δab x̄a xb → 0, x1 + i x2 	= 0,

u(xc) = −x
1 + i x2

√
2

+O
(|x|3) , v(xc) = − x3

x1 + i x2
+O

(|x|2) , (7.25)

w(xc) =
1√
2

(
x1 − i x2 +

(x3)2

x1 + i x2

)
+O

(|x|3)

=
δab x

a xb

√
2 (x1 + i x2)

+O
(|x|3) . (7.26)

In the flat case the order symbols must be omitted in these expressions.
With (4.6), (7.22) and

du = − 1√
2

(
dx1 + i dx2

)
+O

(|x|2) ,
dv =

dx3

√
2 u

+
v√
2 u

(
dx1 + i dx2

)
+O

(|x|) ,
dw =

1√
2

(
dx1 − i dx2 − 2 v dx3 − v2

(
dx1 + i dx3

))
+O

(|x|2) ,
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one gets for the forms χAB = χAB
c dx

c dual to the normal frame cAB indeed

χAB(xc) = t−1A
C t

−1B
D

(
σCD

1 du+ σCD
2 dv + σCD

3 dw
)

=
(
αAB

a + χ̂AB
a

)
dxa ,

with some functions χ̂AB
a(xc) which satisfy χ̂AB

a = O(|x|2) as |x| → 0. Corre-
spondingly, the coefficients caAB = 〈dxa, cAB〉 of the normal frame in the normal
coordinates satisfy

ca AB(xc) = αa
AB + ĉa AB(xc) ,

with holomorphic functions ĉa AB(xc) which satisfy ĉa AB(xc) = O(|x|2) as |x| → 0.
Since the three 1-forms αAB

a dx
a are linearly independent this shows that

for small |xc| the coordinate transformation xa → za(xc), where defined, is non-
degenerate and the forms χAB behave as required by normal forms in normal coor-
dinates. The relations (3.1), which characterize coefficients of normal forms in nor-
mal coordinates, are a consequence of the equations satisfied by za(s) and tA B(s).
All the tensor fields which enter the conformal static vacuum field equations can
now be expressed in term of the coordinates xc and the frame field cAB.

All ingredients are now available to derive our main result.

Proof of Theorem 1.1. The coordinates xc cover a domain (i.e., a connected open
set) U in C

3 on which the frame vector fields ca AB ∂/∂xc exist, are linearly inde-
pendent and holomorphic and where the other tensor fields expressed in terms of
the xa and cAB are holomorphic. It follows from Lemmas 6.9, 7.2, and 7.3 that
given any initial data u̇0, v0, ẇ0 with u̇0 	= 0, there exists a solution za(s, u̇0, v0, ẇ0)
of the corresponding geodesic equations which is defined for |s| ≤ 1/t with some
t > 0. The dicussion above shows, however, that t will become large if |v0| be-
comes large or |u̇0| becomes very small. This implies that the U will not contain
the hypersurface x1 + i x2 = 0 but the boundary of U will become tangent to
this hypersurface at xa = 0. From the estimates obtained so far it cannot be con-
cluded that the coordinates extend holomorphically to a domain containing an
open neighbourhood of the origin.

To analyse this question, we make use of the remaining gauge freedom to
perform with some tA B ∈ SU(2) a rotation δ∗ → δ∗ · t of the spin frame and the
associated rotation

cAB → ctAB = tC A t
D

B cCD

of the frame cAB at i on which the construction of the submanifold Ŝ and the
related gauge is based. Starting with these frames at i all the previous constructions
and derivations can be repeated.

Let u′, v′, w′ and et
AB denote the analogues in the new gauge of the coordi-

nates u, v, w and the frame eAB. The sets {w = 0} and {w′ = 0} are then both to
be thought of as lift of the set Ni to the bundle of spin frames, the coordinates u
and u′ can both be interpreted as affine parameters on the null generators of Ni

which vanish at i, the coordinates v, v′ both label these null generators, and the
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frame vectors e00 and et
00 can be identified with auto-parallel vector fields tangent

to the null generators.
If v and v′ then label the same generator η of Ni, a relation

sC
0(v′) sD

0(v′) tE C t
F

D cEF = et
00 = f2 e00 = f2 sC

0(v) sD
0(v) cCD ,

must hold at i with some f 	= 0 and et
00 = f2 e00 must hold in fact along η,

with f constant along η because et
00 and e00 are auto-parallel. Absorbing the

undetermined sign in f , this leads to

tE C s
C

0(v′) = f sE
0(v) .

With

(tA B) =
(
a −c̄
c ā

)
where a, c ∈ C, |a|2 = |c|2 = 1 , (7.27)

this gives

v′ =
−c+ a v

ā+ c̄ v
, f =

1
ā+ c̄ v

, resp. v =
c+ ā v′

a− c̄ v′
, f = a− c̄ v′ .

Moreover, the relations

〈du, e00〉 = 1 = 〈du′, et
00〉 = 〈du′, f2 e00〉 ,

imply for the affine parameters along η

u = f2 u′ ,

so that η(u′, v′) = η(u, v) holds with these relations. We note that choices of tA B

with c 	= 0 can supply new information, because then v → ∞ as v′ → a/c̄ so that
the singular generator of the cAB-gauge, about whose neighbourhood we need
information, is then contained in the regular domain of the ctAB-gauge.

For the null datum in the new gauge one gets with (4.16)

st
0(u

′, v′) = sA
0(v′) . . . sC

0(v′) tE A . . . tH D s∗E ... H |η(u′,v′) = f4 s0(u, v)

=
∞∑

m=0

1
m !

u′m f2 m+4 sA1
0(v) sB1

0(v) . . . sD
0(v)D∗

(A1B1
. . . D∗

AmBm
s∗ABCD)(i)

=
∞∑

m=0

1
m !

u′m f2 m+4 sA1
0(v′) sB1

0(v′) . . . sD
0(v′)Dt

(A1B1
. . . Dt

AmBm
st

ABCD)(i) ,

and thus

st
0(u

′, v′) =
∞∑

m=0

2 m+4∑
n=0

ψt
m,n u′m v′n , (7.28)

with

Dt
(A1B1

. . . Dt
AmBm

st
ABCD)(i)

≡ tG1
A1 t

H1
B1 . . . t

N
D D∗

(G1H1
. . . D∗

GmHm
s∗LKMN)(i) ,
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and

ψt
m,n =

1
m !

(
2m+ 4

n

)
Dt

(A1B1
. . . Dt

AmBm
st

ABCD)n
(i)

=
1
m !

(
2m+ 4

n

) 2 m+4∑
j=0

(
2m+ 4

j

)
t(G1

(A1 t
H1

B1 . . . t
N)j

D)n

×D∗
(G1H1

. . .D∗
GmHm

s∗LKMN)j(i)

=
(

2m+ 4
n

) 2 m+4∑
j=0

t(G1
(A1 t

H1
B1 . . . t

N)j
D)n

ψm,j .

It is convenient to write this in the form

ψt
m,n =

2 m+4∑
j=0

(
2m+ 4

n

)1/2(2m+ 4
j

)−1/2

T2 m+4
j

n(t)ψm,j , (7.29)

where the numbers

T2 m+4
j

n(t) =
(

2m+ 4
n

)1/2(2m+ 4
j

)1/2

t(G1
(A1 t

H1
B1 . . . t

N)j
D)n

,

are so defined [11] that they represent the matrix elements of a unitary represen-
tation of SU(2) and thus satisfy

|T2 m+4
j

n(t)| ≤ 1 , m = 0, 1, 2, . . . , 0 ≤ j , n ≤ 2m+ 4 .

With the expressions above it is easy to see that the type of the estimate (3.11) and
the type of the resulting estimate (6.1) are preserved under the gauge transforma-
tion. With (7.28) and (7.29) follows from (6.1) at the point O′ = (u′ = 0, v′ = 0)

|∂m
u′ ∂n

v′ st
0(O

′)| = m!n! |ψt
m,n| ≤ m!n!

2 m+4∑
j=0

(
2m+ 4

n

)1/2 (2m+ 4
j

)−1/2

× |T2 m+4
j

n(t)| |ψm,j |

≤ m!n!
2 m+4∑
j=0

(
2m+ 4

n

)1/2(2m+ 4
j

)1/2

M r−m
1

≤ m!n!
(

2m+ 4
n

) 2 m+4∑
j=0

(
2m+ 4

j

)
M r−m

1

= m!n!
(

2m+ 4
n

)
M ′ r−m

t , (7.30)

with M ′ = 16M and rt = r1/4.
Assuming now that c 	= 0 in (7.27), the resulting ctAB-gauge can be studied

from two different points of view:
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i) The singular generator of Ni in the ctAB-gauge will coincide with the regular
generator of Ni on which v = −ā/c̄ in the cAB-gauge. By starting from the
solution in the cAB-gauge, we are thus able to directly determine near that
generator the transformation into the ctAB-gauge and to determine the ex-
pansion of the solution in the cAB-gauge in terms of the coordinates u′, v′, w′

and the frame field et
AB.

ii) Alternatively, with the null data st
0(u

′, v′) at hand, one can go through the
discussions of the previous sections to show the existence of a solution to the
conformal static vacuum equations in the coordinates u′, v′, w′ pertaining
to the ctAB-gauge. All the observations made above, in particular statements
about domains of convergence, apply to this solution as well. Important for
us is that this solution covers the generator v′ = a/c̄ near u′ = 0 and w′ = 0,
which corresponds to the singular generator in the cAB-gauge.

Because the formal expansions of the fields in terms of u′, v′, w′ are uniquely
determined by the data st

0(u
′, v′), the solutions obtained by the two methods are

holomorphically related to each other on certain domains by the gauge transforma-
tion obtained in (i). The solution obtained in (ii) can be expressed in terms of the
normal coordinates xa

t and the normal frame field ctAB so that the xa
t cover an cer-

tain domain Ut ⊂ C
3 and the frame field ctAB is non-degenerate and all our tensor

fields expressed in terms of xa
t and ctAB are holomorphic on Ut as discussed above.

It follows then that the solution in the cAB-gauge and the solution in the ctAB-gauge
are related on certain domains by the simple transformation (cf. (4.3))

xa
t = t−1 a

b x
b , ctAB = tC A t

D
B cCD .

Extending this as a coordinate and frame transformation to the solution obtained
in (ii) to express all field in terms xa and cAB so that they are defined and holo-
morphic on t−1 Ut, one finds that the solution obtained in (ii) and our original
solution define in fact genuine holomorphic extensions of each other because each
one covers the singular generator of the other one away from the origin in a regular
way.

By letting tA B go through SU(2) and observing the corresponding exten-
sions, one obtains in fact a holomorphic solution to the conformal static vacuum
field equations in the normal coordinates xa centered at i associated with the
frame δ∗ resp. cAB at i on a domain which covers a full neighbourhood of space-like
infinity. Consider again the solution we obtained in the cAB-gauge. From the dis-
cussion above it follows that the domain U in C

3 on which the solution is holomor-
phic in the coordinates xa covers a connected open subset U ′ of the hypersurface
{x3 = 0} of C

3 which has empty intersection with the line {x1 + i x2 = 0, x3 = 0}
(corresponding to the singular generator of the cAB-gauge) and whose boundary
becomes tangent to this line at the origin xa = 0. Under the transition

u̇0 → u̇0 , v0 → ei θ/2 v0 , ẇ0 → ei θ ẇ0 , θ ∈ R ,
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which leaves the quantities |u̇0|, |v0|, |ẇ0| entering the estimates above invariant,
one gets by (7.4)

x1 + i x2 → x1 + i x2 , x1 − i x2 → ei θ
(
x1 − i x2

)
, x3 → ei θ x3 .

Thus the set U ′ can be assumed to be invariant under this transformation.
Consider now the ct

∗
AB-gauge where the special transformation t∗A

B is given
by (7.27) with a = 0, c = 1. Let U ′

t∗ denote a subset of the hypersurface {x3
t∗ = 0}

in C
3 analogous to U ′. It has empty insection with the line {x1

t∗+i x2
t∗ = 0, x3

t∗ = 0}
but its boundary becomes tangent to it at xa

t∗ = 0. It holds

ct
∗

00 = c11 , ct
∗

01 = −c01 , ct
∗

11 = c00 at i ,

and the corresponding normal coordinates are related by

x1
t∗ = −x1 , x2

t∗ = x2 , x3
t∗ = −x3 .

The holomorphic transformation {x3
t∗ = 0} � (x1

t∗ , x
2
t∗) → (−x1, x2) ∈ {x3 = 0}

maps U ′
t∗ onto a subset of C

2 ∼ C
2 × {0}, denoted by t∗−1 U ′

t∗ , which has non-
empty intersection with U ′. After the transformation above the two solutions co-
incide on t∗−1 U ′

t∗ ∩ U ′.
On the other hand, the image of the ct

∗
AB-regular line {x1

t∗ − i x2
t∗ = 0,

x3
t∗ = 0} ∩ U ′

t∗ under this transformation contains the intersection of a neigh-
bourhood of the origin with the singular line {x1 − i x2 = 0, x3 = 0, xa 	= 0}
of the cAB-gauge. In fact, the set t∗−1 U ′

t∗ ∪ U ′, which admits a holomorphic
extension of our solution in the coordinates xa and the frame cAB, contains a
punctured neighbourhood of the origin. As we have seen above, the field cAB on
this neighbourhood extends continously to the origin.

Let now xa∗ 	= 0 be an arbitrary point in C
3. We want to show that the

solution extends in the coordinates xa to a domain which covers the set s xa
∗ for

0 < |s| < ε for some ε > 0. Since xa∗ = ya + i za with ya, za ∈ R
3 there is a

vector ua ∈ R
3 of unit length and orthogonal to xa with respect to the standard

product u · x = δab u
a xb. Consider the ctAB-gauges with tA B ∈ SU(2) so that

ua
t = t−1 a

b u
b = δa

3. It follows then that xa∗t = t−1 a
b x

b∗ ∈ {x3
t = 0} and by the

preceeding observation tA B can in fact be chosen such that there exist an ε > 0 so
that the points s xa

∗t with 0 < |s| < ε are covered by U ′
t. Transforming back we find

that the set U ∈ C
3 covered by the coordinates xa can be extended so that the

points s xa
∗ with 0 < |s| < ε are covered by U and all field are holomorphic on U

in the coordinates xa. It follows that we can assume U to contain a punctured
neighbourhood of the origin in which the solution is holomorphic in the normal
coordinates xa and the normal frame cAB. Since holomorphic functions in more
than one dimension cannot have isolated singularities [15] the solution is then in
fact holomorphic on a full neighbourhood of the origin xa = 0, which represents
the point i.

By Lemma 3.1 the exact sets of equations argument determines from null data
satisfying the reality conditions a formal expansion of the solution with expansion
coefficients satisfying the reality conditions. By the various uniqueness statements
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obtained in the lemmas this expansion must coincide with the expansion in normal
coordinates of the solution obtained above. This implies the existence of a 3-
dimensional real slice on which the tensor fields satisfy the reality conditions. It is
obtained by requiring the coordinates xa to assume values in R

3. �
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