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Abstract

We study formal expansions of asymptotically flat solutions to the static
vacuum field equations which are determined by minimal sets of freely spec-
ifyable data referred to as ‘null data’. These are given by sequences of sym-
metric trace free tensors at space-like infinity of increasing order. They are
1:1 related to the sequences of Geroch multipoles. Necessary and sufficient
growth estimates on the null data are obtained for the formal expansions to
be absolutely convergent. This provides a complete characterization of all
asymptotically flat solutions to the static vacuum field equations.

PACS: 04.20.Ex, 04.20.Ha
1 Introduction

In this article will be given a characterization of the asymptotically flat, static solutions
to Einstein’s vacuum field equations Ric[g] = 0. We thus consider Lorentz metrics which
take in coordinates suitably adapted to a hypersurface orthogonal, time-like Killing field
K the form

g=v2dt> +h, v =v(z°), h = hap(2€) dz® da®, (1.1)

where h denotes a negative definite metric on the time slices S, = {t = ¢ = const.} and the
Killing field is given by K = J;. In this representation Einstein’s vacuum field equations



reduce to the static vacuum field equations

Rab [h] =

S
~ Dy Dy, Ajv=0 on S=5. (1.2)
v

It will be assumed that S is diffeomorphic to the complement of a closed ball B r(0) in R?

with a diffeomorphism whose components define coordinates %, a = 1,2, 3, on .S in which
the asymptotic flatness condition®

. 2
hae = (1 + —m) bac + Ok(|2]70F9), v =1- "+ Ox(lz] ) as |a| — o0,

|| ||
(1.3)
is realized with some € > 0 and k > 2, where | .| denotes the standard Euclidean norm.

Solutions to equations () satisfying the fall-off conditions ([[3)) have been charac-
terized by Reula ([23]) and Miao ([I8]) in terms of boundary value problems for the static
field equations where the data are prescribed on the sphere dS, which encompasses the
asymptotic end.

Our interest in static solutions comes, however, from the observation that for vac-
uum solutions arising from asymptotically flat, time symmetric initial data asymptotic
smoothness at null infinity appears to be related to asymptotic staticity of the data at
space-like infinity ([T4], [25]). To analyse this situtation we wish to control the static
vacuum solutions in terms of quantities defined at space-like infinity.

Another reason for giving such a characterization results from the work by Corvino
(El, []), Corvino and Schoen ([7]), and Chrusciel and Delay ([8], H]). These authors
deform given asymptotically flat vacuum data outside prescribed compact sets to vacuum
data which are exactly static or stationary near or asymptotically static or stationary at
space-like infinity and use such data to discuss the existence of null geodesically complete
solutions which have a smooth asymptotic structure at null infinity. To assess the scope of
these results it is desirable to have a complete description of the asymptotically flat static
vacuum solutions in terms of asymptotic quantities.

A characterization of this type has been suggested by Geroch by giving a definition
of multipole moments for static solutions ([I6]). He assumes the metric h to admit a
smooth conformal extension in the following sense. With an additional point ¢, which is to
represent space-like infinity, the set S = SU {i} is assumed to acquire a smooth differential
structure which induces on S the given one, which makes S diffeomorphic to an open ball
in R® with the center representing 4, and which admits a function Q € C?(S) N C>(S)
with the properties

Q>0 on S, (1.4)
hap = Q% hap,  extends to a smooth negative definite metric on S, (1.5)
Q=0, D=0, DaDyQ=—2hy at i, (1.6)

IThe terms Ok (|z|~(1+9)) behave like O(|z|~(+<t7)) under differentiations of order
J<k



where D denotes the covariant derivative operator defined by h. We note that these
conditions are preserved under rescalings h — 9*h, Q — 92 Q with smooth positive
functions ¥ satisfying ¥(i) = 1.

With these assumptions Geroch defines a sequence of tensor fields P, P,, Pa,a,, - --
near i by setting?

_ 1
P=QY21—-v), P,=D,P, P =C(DsP, — 5 PRa,a,).

2p—1
Payiroar =C(Dayo i Parav—Cp Pay v a5 Rayay),  With CPZM, pP=2.3, ...,

a 1 a
p+ P 2

where R,;, denotes the Ricci tensor of hyp, and C the projector onto the symmetric, trace
free part of the respective tensor fields. The multipole moments are then defined as the
tensors

v = P(i), Vay..as = Pay.a (i), p=1,2,3,...,

at 1. Setting aside the monopole v, we will denote the remaining series of multipoles by

Dinp = {Vay1s Vasars Vagasars - - - }- (1.7)

The problem of characterizing solutions to a quasi-linear, gauge-elliptic system of
equations of the type (L) by a minimal set of data given at an ideal point representing
space-like infinity is unusual and certainly quite different from a standard boundary value
problem for (LZ). There are available some results which go into this direction but little
has been done on the general question of existence.

Miiller zum Hagen has shown that solutions v, Ay to [C2) are real analytic in h-
harmonic coordinates ([20]). The question to what extent the multipoles introduced above
determine the metric hyp, and the function v raises the question whether this metric is real
analytic even at 4 in suitable coordinates and conformal scalings. Beig and Simon ([2]) have
shown (under assumptions which have been relaxed later by Kennefick and O’Murchadha
[I7) that the rescaled metric does indeed extend in a suitable gauge as a real analytic
metric to ¢ if it is assumed that the ADM mass satisfies

m % 0. (1.8)

We shall assume this result in the following and shall not go through the argument again,
though its structural basis will be pointed out in passing. Beig and Simon also provide an
argument which esssentially shows that given sets of multipoles determine unique formal
expansions of ‘formal solutions’ to the static vacuum field equations.

For axisymmetric static vacuum solutions, which are special in admitting explicit
descriptions ([26]), the question under which assumptions a sequences of multipoles does
indeed determine a converging expansion of a static solution has been studied by Backdahl
and Herberthson ([I]). For the general case, for which the freedom to prescribe data is
much larger, this problem has never been analysed. For this reason the results referred to
above remained essentially of heuristic value.

2We depart from the convention of [I6] by changing the sign of P.



It is the purpose of this article to derive, under the assumption ([LJ), necessary and
sufficient conditions for certain minimal sets of asymptotic data, denoted collectively by
D,, and referred to as null data, to determine (unique) real analytic solutions and thus
to provide a complete characterization of all possible asymptotically flat solutions to the
static vacuum field equations. The behaviour of these solutions in the large will not be
studied here. We shall only be interested in what could be called ‘germs of static solutions
at space-like infinity’, for which S may comprise only a neighbourhood of the point ¢ which
is quite small in terms of A (in terms of h they cover still infinite domains extending to
space-like infinity).

While the multipoles above are defined for any conformal gauge, it will be concenient
for our analysis to remove the conformal gauge freedom. As shown below, the metric
h = Q2 defined with the preferred gauge

0_ <1 - v>2 |
m
on a suitable neighbourhood S of space-like infinity, can be extended with () - (CH)

in suitable coordinates to a real analytic metric at i. The metric so obtained satisfies
R[h] =0 on S. In this gauge we get with the notation above

P=m, P,=0 Pa = —% Sazar, (1.9)
Pap+1~»¢l1 = C(Dap+1Pap...a1 - Cp Pap+1...a3 SG.QG.I)) p = 25 37 Tt (1]‘0)

where s,; denotes the trace free part of the Ricci tensor of h. In the given gauge we
consider now the set

Dy = {5aza,(1); C(DaySaza;)(1); C(DayDasSazar)(i), C(DayDayDasSazar)(i); --- - }-

Given m # 0 and the sequence D,, associated with h, one calculate the multipoles D, of
h and vice versa. The sets D,, and D, thus carry the same information, but D,, is easier
to work with because the expressions are linear in the curvature.

Let now c,, a = 1,2,3, be an h-orthonormal frame field near ¢ which is h-parallely
propagate along the geodesics through ¢ and denote the covariant derivative in the direction
of ca by D,. We express the tensors in D,, in terms of this frame and write

D;, = {sasai (1), C(DagSasa;)(i), C(Da,Da;Saza,)(i), C(DasDa,Da;Saza,) (i), (} )
1.11
We note that these tensors are defined uniquely up to a rigid rotation ¢, — s 4 cc with
(s®a) € O(3,R). These data will be referred to as the null data of h in the frame ca.

It will be shown that if these data are derived from an real analytic metric h near 4
there exist constants M, r > 0 so that the components of these tensors satisfy the Cauchy
estimates

M p!

rpP

|C(Da, ... Da,spe)(i)] < , ap,...,a;,b,c=1,23, p=0,1,2,....

Conversely, we get the following existence result.
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Theorem 1.1 Suppose m # 0 and

ﬁn = {1/}a2a15 1/}a3a2a1a 1/}a4a3a2a17 }a (112>

i a infinite sequence of symmetric, trace free tensors given in an orthonormal frame at
the origin of a 3-dimensional Euclidean space. If there exist constants M,r > 0 such that
the components of these tensors satisfy the estimates

M p!
rpP

|wap...a1b0|§ ) apa"'7alab7C:172737 p:071727"'7
then there exists a germ (iL, v) of an analytic, asymptotically flat, static vacuum solution
at space-like infinity with ADM mass m, unique up to isometries, so that the null data

1—v

4 _
implied by h = (L> h in a suitable frame ca as described above satisfy

C(Daq "'Da3sa2al)(i):¢aq ..oap q=2,3,4,... .

A series of data of the form ([[CIZ) (not necessarily satisfying any estimates) will in the
following be referred to as abstract null data. The type of estimate imposed here on the
abstract null data does not depend on the orthonormal frame in which they are given (cf.
the discussion leading to [Z30)). Since these estimates are necessary as well as sufficient,
all possible germs of asymptotically flat static vacuum solutions at space-like infinity are
characterized by this result.

The proof of the result above will be given in terms of the conformal metric hqp.
For this purpose equations () are reexpressed in chapter Bl as ‘conformal static vacuum
field equations’ for hy, and fields derived from hy, and v. In chapter Bl it is shown by a
direct argument that in a certain setting a set of abstract null data defines the expansion
coeflicients of a formal expansion of a solution to these equations uniquely. Showing the
convergence of the series so obtained appears difficult, however. Using the analyticity of
the solutions to the conformal static vacuum field equations at the point i, we study in
chapter B their analytic extensions into the complex domain. Denote by N; the ‘cone’
with vertex at ¢ generated by the complex null geodesics through the point i. The null
data are then represented by a function on N, the component of the Ricci tensor obtained
by contracting it with the null vector tangent to ;. In this setting the original problem
assumes the form of a characteristic initial value problem with data prescribed on Nj;.

We wish to obtain the equations in a form which allows us to derive from prescribed es-
timates on the null data appropriate estimates on the expansion coefficients. This requires
a choice of gauge which is suitably adapted to A;. Because of the vertex, any such gauge
will necessarily be singular at a certain subset of the manifold. The manifold S considered
in chapter @l organizes the singularity in a geometric way. In chapter Bl the conformal static
vaccum field equations are considered on S , and it is shown how to determine a formal
solution to the complete set of conformal field equations from a given set of abstract null
data. The convergence of the series so obtained is shown in chapter Bl Making use of the
Lemmas proven in the previous chapters, this result is translated in chapter [into a gauge
which is regular near ¢ and allows us to prove Theorem [Tl A translation of the estimates
on the null data into equivalent estimates on the multipoles and a generalization of the
present result to stationary solutions will be discussed elsewhere.



2 The static field equations in the conformal
setting

The existence problem will be analysed completely in terms of the conformally rescaled
metric. We begin by describing the conformal gauge and then express the static field
equations in terms of the conformal fields. This discussion follows essentially that of [I2]
and [T4].

2.1 The choice of the conformal gauge

Consider a situation as described by conditions (L) - (LH). If the metric h is asymptot-
ically flat and has vanishing Ricci scalar R[h] on S the function () satisfies (cf. [T4])

(Ah—%R[h])(Q_l/Q):O on S and rQ Y251 as r—0,

where r denotes the h-distance from ¢. Sufficiently close to ¢ one obtains the representation
Q_1/2 _ C_1/2 4 VV,

with smooth functions ¢ and W satisfying

(Ap— %R[h]) W =0, (2.1)

and
C(Z) = 07 Da<(l) = 07 DanC(l) =-2 hab- (22)

The functions ¢ and W are real analytic if the metric h is real analytic. In [2] Beig and
Simon consider static vacuum metrics in the form

g= 2V at? + 72U,y da® da?,

related to () by v = eV and hqp = v2 hap, and show that the function w = (U/m)? and
the metric R L
By =w?hay = Q2% hey with Q' =weY, (2.3)

extend in h’-harmonic coordinates near i to real analytic fields at ¢ so that Q' satisfies
requirements () - ([CH) with the h'-covariant derivative operator D’.

It follows that € ~1/2 = ¢'~1/2 4 W with ¢/ = s and W' = 12 S0/ (g,

Assume S to be chosen so that U # 0 on S. Rescaling with ¢ = W’/W’(i) > 0 on S gives

h=9*K =Q?h with Q=02

where the conformal factor can be written

Q_<1_U>2 on 8. (2.4)

m
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Because of equations 1)) the metric h has then vanishing Ricci scalar

R[h|=0 on S, (2.5)
and it follows that
Q=12 4w, (2.6)
where )
m 1/1—w m?2
= — = — i h - —. 2
W 27 ¢ ] <1 + v> with 4 27)

The fields h and ¢ are real analytic on S and the functions W and ¢ satisfy &), 2.
In the following the gauge ) and thus @3) - Z7) will be assumed.

2.2 The conformal static vacuum field equations

The function ¢ satisfies on S the equation
Ay (TP =4rs;, (2.8)

where §; denotes the Dirac distribution with weight 1 at ¢. This equation implies

2(s=D,(D* on S with s:%AhC, (2.9)

which, together with ([Z3), implies in turn the equation above. The function ¢~'/? can be
characterized as a fundamental solution of A, with pole at i so that ( is real analytic on
S and satisfies (Z2). It is uniquely determined by h because the expansion coefficients of
¢ in h-normal coordinates centered at ¢ are recursively determined by 22, &3).

We derive now a representation of the static vacuum field equations (C2) in terms of

the conformal metric h and fields derived from it. With () follows
Rab[h] = Sab, (2.10)
where s, is a trace free symmetric tensor field. The first of equations [[C2) implies in the

gauge (27)
0=34p =Dy Dy —shap+ (1 — 1C) Saps (2.11)

with s as in ([Z3). With the Bianchi identity D®s,, = 0 the integrability conditions

1 1 1
O:§D Ecau O:Z(D[Cza]b—i_ED Ed[ch‘l]b)

for the overdetermined system (ZI1I) take the form
0=2S,=Dgs+ (1 —p)saDC, (2.12)

and
0= Heap = (1= p1¢) Diesapp — 1 (2 D€ Sajp + D€ sae hagy)- (2.13)



We note that this can be read as an expression of the Cotton tensor Bpea = D Rapp —
% DR hg)p in terms of the undifferentiated curvature. Its dualized version reads by (ZT3])

o 1 cd __ H cd 1 d e
Bab - 2 Bacd €p - 1_ HC(Sda €p DCC - 2 Sde €ba D C) (214)
Equations (Z10), Z1I), @&T2), ZI3) together with conditions ZZ), which imply
s(i) = =2, (2.15)

will be referred to as the conformal static vacuum field equations for the unknown fields

h, ¢, s, Sab- (2.16)

The second of equations (L) implies that R[h] = 0 and can thus also be read as the
conformally covariant Laplace equation for v. With the conformal covariance of the latter
and (Z4), ZH), @), its conformal version reduces to ([ZJ). The identity

Da(2¢s—D.(D0) =2¢ 8y — 2540 DC,

shows that ([Z)), whence [ZF), is a consequence of equations Z2) and EII). It follows
that for given m # 0, which defines W and p, a solution of the conformal static vacuum
field equations provides a unique solution to the static vacuum field equations (C2).

The system ([ZI0), &II), &I2), ZI3) represents a quasi-linear, overdetermined,
gauge-elliptic system of PDE’s. The Ricci operator becomes elliptic in a suitable gauge
and the elliptic character of the remaining equations can be seen by taking the trace of
&1I), by contracting ZIZ) with D, and by contracting [ZI3) with D¢ and using the
Bianchi identity and (ZI1I) again so that in all three cases one obtains an equation with the
Laplacian acting on the respective unknown. By deducing from the fall-off behaviour of
the physical solution at space-like infinity a certain minimal smoothness of the conformal
fields at ¢ and invoking a general theorem of Morrey ([T9]) on elliptic systems of this type,
Beig and Simon ([2]) concluded that the solutions are in fact real analytic at i. To avoid
introducing additional constraints by taking derivatives, we shall deal with the system of
first order above.

3 The exact sets of equations argument

Constructing solutions from minimal sets of data prescribed at i poses quite an unusual
problem for a system of the type of the static conformal field equations. To see how it
might be done, we study expansions of the fields in normal coordinates.

For convenience assume in the following S to coincide with a convex h-normal neigh-
bourhood of i. Let ¢, a = 1,2, 3, be an h-orthonormal frame field on S which is parallely
transported along the h-geodesics through ¢ and let x* denote normal coordinates cen-
tered at 7 so that ¢® 5 = < dz?, ca > = 6% 4 at i. We refer to such a frame as normal frame
centered at i. Its dual frame will be denoted by x© = x©; dz®.

At the point with coordinates x® the coefficients of the frame then satisfy

&z =629, 2o a =20 a,



(where we set x, = 2P 0, and assume, as in the following, that the summation rule does
not distinguish between bold face and other indices). Equivalently, the coefficients of the
dual frame satisfy

X2yt =02, b, Ta X2y = Tq 0%y, (3.1)
which implies with the coordinate expression hgp = —0ac X® b X€ ¢ Of the metric the well
known characterization 2% hgp, = —x% d4p of the 2% as h-normal coordinates centered at .

In the following all tensor fields, except the frame field ¢, and the coframe field x©, will
be expressed in terms of this frame field, so that the metric is given by hap = h(ca,cc) =
—dab. With D, = D, the connection coefficients with respect to c, are defined by
Dace =TaPecch.

An analytic tensor field Ta,.. a, on S has in the normal coordinates z® a normal
expansion at i, which can be written (cf. [I3])

1 C. C .
Tay.oap (1) =) .2 De, ... De, Tay...ap (4). (3.2)

Eap
p=o P

(This is a convenient short version of the correct expression; more precisely, the 2% should
be replaced here by the components of the vector field X which has in normal coordinates
the expansion X (z) = a2 62} ca and which is characterized by the conditions Dy V = 0,
V(i) = 0.) In the following will be shown how normal expansions can be obtained for
solutions

hab; C, S, Sab, (33)

to the conformal static vacuum field equations. In 3 dimensions the curvature tensor
satisfies

. 1
Rapedlh] = Q{ha[ch]b + hb[ch]a} with  Lgp[h] = Rap[h] — 1 R[A] hap,

and can be expressed because of ([ZH) completely in terms of sap. Once the latter is
known, the connection coefficients I'a P ¢ and the coefficients of the 1-forms x® can thus
be obtained, order by order, from the structural equations in polar coordinates (cf. [|]),

d . .
o= (sx*(s27)) = 6% + Te* alsal) sxa(s 2f) af,
d
P (Ta®e(sz!)sx*(s27)) = R®cqa(s z¥) 2% sx* (s 27),

where s denotes an affine parameter along the h-geodesics through ¢ with unit tangent
vectors which vanishes at 4, so that s2 = §,5 z® z°.

By formally taking covariant derivatives, the expansion coefficients of ¢ and s up to
order m + 2 resp. m + 1 can be obtained from equations [ZII)) and @IZA) once Sap is
known up to order m. Calculating the expansion coefficients for s, by means of equation
[Z13)) leads, however, to some complicated algebra. It turns out that the latter simplifies
considerably in the space spinor formalism.

To achieve the transition to the space-spinor formalism we introduce the constant van
der Waerden symbols

aABa; aaABv a:172537 A,B:O,l,



which map one-index objects onto two-index objects which are symmetric in the two
indices. If the latter are read as matrices, the symbols are given by

ol 2 3
gaﬁgAB:aABaga:i( 3 i§ §1§i€2 )7

V2 &
— a 7i _§1+if2 53
o —ap = Ca AB—\/Q( & §1+i§2)'

With the summation rule also applying to capital indices one gets

AB b _
0°a=0aap a”" —0ab 0" A" ¢D = —€A(c €D)B = haBCD,

a,b=1,2,3, A,B,C,D =0,1,

where the constant e-spinor is antisymmetric, e4p = —€pa, and satisfies ¢g; = 1. It is used
to pull indices according to the rules tp = tAeap, 14 = €8 g, so that €4 B corresponds
to the Kronecker delta. We shall denote the ‘scalar product’ k4 ¢ of two spinors k% and
14 occasionally also by €(k,t). It is important here to observe the order in which the
spinors occur.

Given the van der Waerden symbols, we associate with an tensor field T2y,
given in the frame c, the space spinor field

A1B;...A,B aj...a
TP PP oipy gDy = T0 P by b, ag e a’l c,p,

— 7(A1B1)...(A,By) (C1D1)..(CyDy)-

In the following we shall employ tensor or spinor notation as it appears convenient. With
the spinor field

4 ’ ’
A A A b A A

3

and the notation

’

ng...H =5 ? m ap
where the bar denotes complex conjugation, one finds that a space spinor field
TayBy...AB, = T(A,B))..(A,B,)>
arises from a real tensor field Ty, .. .a, if and only if it satisfies the reality condition
TayB,..a,B, = (=1)" T;\rlBl...Apo' (3.4)
It follows in particular

Eap €8 = 2(E0 &1 — €1 €01) = 2 det(Eap) = —0ap E7 Y,

and we can have 45 €48 = 0 for vectors €48 #£ 0 only if €% is complex. Since 48 = ¢(AB),
the relations &45 48 = 0, €48 #£ 0 imply by the equation above that ¢4% = x4 x® for
some x4 # 0. This fact will allow us to interprete the data ([CII) as ‘null data’.
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Any spinor field Thpc...gH, symmetric or not, admits a decomposition into products
of totally symmetric spinor fields and epsilon spinors which can be written schematically
in the form (cf. [21])

Tapc..cu = Tape..cm) + Z €'s x symmetrized contractions of T. (3.5)

Later on it will be important for us that spinor fields T'a, B, ...a, B, arising from tensor
fields Tk, ...a, satisfy

a a
Ta,B,..4,8,) = C(Tay..a,) @™ 4,5, --- A" A,B,,

i.e. the projectors C onto the trace free symmetric part of tensors is represented in the
space spinor notation simply by symmetrization. If convenient we shall denote the latter
also by the symbol sym.

To discuss vector analysis in terms of spinors, a complex frame field and its dual 1-form
field are defined by

cap=a"apca, X" =aP .,

so that h(cap,cap) = hapep. If the derivative of a function f in the direction of c4p is
denoted by cap(f) = foc® ap and the spinor connection coeflicients are defined by

1
Tap“p= 3 TaPea®apa® o py, sothat Tapep =T(apycn),

the covariant derivative of a spinor field ¢* is given by
Dagp LC =e? AB(LC) +T'aB c B LB.

If it is required to satisfies the Leibniz rule with respect to tensor products, it follows that
covariant derivatives in the cy-frame formalism translate under contractions with the van
der Waerden symbols into spinor covariant derivatives and vice versa.

The commutator of covariant spinor derivatives satisfies

(Dcp Der — Der Deop) v = R poprr P, (3.6)

with the curvature spinor

1 Rlh h
RapcpEF = 3 {(SABCE -5 hapce)€epr + (SaBDF — & haBpF) 6CE} )
where R[h] is the Ricci scalar and sapcp = sab a® ap @ ¢p represents the trace free part
of the Ricci tensor of h, which is completely symmetric, sapcp = sapcp). The gauge
condition (ZH) implies

1
RapcpEF = 5 (SABCE €DF + SABDF €CE) - (3.7)
In the space-spinor formalism equations ZI3) acquire the concise form
E _2p E
Da”spepE = T ¢ SEmeD D4y ~¢. (3.8)

Applying to this equation and to the spinor versions of equations ([ZIIl) and ZIZ) the
theory of ‘exact sets of fields’ discussed in [21], we get the following result.
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Lemma 3.1 Let there be given a sequence

Dy, = {14,B,41B1s YA3BsA43B2A41B1> VA4BiAsBsAsBaA1Bys -+

of totally symmetric spinors satisfying the reality condition [5-f} Assume that there exists
a solution h, , s, sapcp to the conformal static field equations (Z3), (ZI0), (ZI1),
[@13), [@I3) so that the spinors given by D, coincide with the null data D¥ given by
LIA) of the metric h in terms of an h-orthonormal normal frame centered at i, i.e.

VA, B,.. AsBsAsByA By = Da,B, - DayBy Sa,B,4,8,)(1), P> 2. (3.9)

Then the coefficients of the normal expansions {ZA) of the fields (ZI4), in particular
of

1 .
sapep(x) = E H:EAPBT’...:EAIBI Da,B,---Da; B, sapop(i), (3.10)
p>0""

with £4B = oAB 2%, are uniquely determined by the data D, and satisfy the reality
conditions.

PROOF. It holds sapcp(i) = Yapcp by assumption and the expansion coefficients
for ¢, s of lowest order are given by ([Z2), IH). The induction steps for ¢ and s being
obvious by [Tl and ZI2), we only need to consider spspcp and BF). Assume m > 0.
If spinors D, B, ... Da,B, scper(i), p < m, have been obtained which satisfy ([E3) and,
up to that order, equation ([BF]), the totally symmetric part of

DA7n+len+1 crt DAlBl SCDEF(Z)a

is given by the prescribed data while its contractions, which define the remaining terms
in the decomposition corresponding to [BX]), are determined as follows. Observing the
symmetries involved, essentially two cases can occcur:

i) If one of the indices B; is contracted with F', say, the operator Dy, p; can be
commuted with other covariant derivatives, generating by B.8), ) only terms of lower
order, until it applies directly to scpgpr. Equation B8) then shows how to express the
resulting term by quantities of lower order.

ii) If the index Bj; is contracted with By, k # j, the operators Da;p;, and Da, B,
can be commuted with other covariant derivatives, until the operator D A;H Da, H applies
directly to scprp. If the corresponding term is symmetrized in A; and A the general
identity

Dya D" pyscper = —2spcpr sras ™,

implied by @5, @) shows that this term is in fact of lower order. If a contraction of
Aj and Ay, is involved, the general identity

AB G H GH
Dap D*" scppr = —2Dr 7 Dg ™ scpen +3ScH(CD SE)F 5

shows together with ([BF) that the corresponding term can again be expressed in terms
of quantities of lower order, showing that D, . B,.., --- Da,B, Scper(i) is determined
by our data and terms of order < m. That the expansion coefficients satisfy the reality
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condition is a consequence of the formalism and the fact that they are satisfied by the
data ﬁn [ ]

To achieve our goal, we have to show the convergence of the formal series determined
in Lemma Bl This requires us to impose estimates on the free coefficients given by D,,.
We get the following result.

Lemma 3.2 A necessary condition for the formal series (Z10) determined in LemmaZ]l
to be absolutely convergent near the origin is that the data given by D, satisfy estimates

of the type
|

'M
|1/}APBP...A1310DEF| S pT—p; p:05172a"' ) (311)

with some constants M,r > 0.

Proor. If f is a real analytic function defined on some neighbourhood of the origin
in R™, it can be analytically extended to a function which is defined, holomorphic, and
bounded on a polydisc P(0,7) = {z € C"| |2/| < r,1 < j < n} with some r > 0.
Its Taylor expansion f = 2\0420 % 0%f(0) z* is absolutly convergent on P(0,r) with
SUPgep(o,r) [/ ()] £ M < oo so that its derivatives satisfy the estimates

al M |o|!' M

<
T‘O‘| r|0“

107 (0)] <

(3.12)

The first of these estimates are known as Cauchy inequalities. Here a € N™ denotes a multi-
index and we use the notation |a| = a1 +...+ap, al=ai!l ... !, 0¥ =07"-...- 0,
and 2% = (z1)* ... . (z")*n.

If the series (BI0) and thus

1 .
Sab(T) = Z —x ... 1% De, ... De, 8ab(i), (3.13)

is absolutely convergent near the origin, there exist therefore by the second of the estimates
BI2) constants M., r, > 0 with

p! M,

b
rh

De, ... De, san(i)| <

Cp, -..,C1,a,b=1,2,3, p=0,1,2,... .

Observing the transition rule from tensor to spinor quantities, one gets from this the
estimates

p!M

rp

. Ay B,,..E.F=0,1 p=0,1,2,...

(3.14)
with M = 9¢? M, and r = r,/3 ¢, where ¢ = max,—1.23. 4.5—0.1 |@® ap|.- To derive from
these estimates the estimates (BII]) we consider instead of B3 directly the symmetriza-
tion operator to get

|Da,B, - Da,B, scoer(i)| <

[Ya,B,..A,B,cDEF| = |D(a,B, - Da,B, ScpEF)(i)] <
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1
(2p+4)!

p! M
rpP

3

> IDxa,s, - Dayp, scopr)(i)] <

TES2p 44

where S,,, denotes the group of permutations of m elements. m

We note for later use that if the derivatives of a smooth function f satisfy estimates
of the type (BIZ) with some constants M,r > 0 then the function f is real analytic near
the origin because its Taylor series is majorized by

M n
ZM’F—W‘;Z;OZ: r , |:Ea|<17 (315>
= (r—al)-...-(r—am)
and
o] ! “la] e Mr n )
2 G Mt sy Lt (3.16)

3.1 Relations between null data and multipoles

We express the relation between the sequences D;, of null data and the sequences Dy, of
multipoles of h (in the same normal frame centered at i) in terms of space-spinor notation.

Lemma 3.3 The spinor fields Pa, B, ... A, B, neari, given by (L3), (LI0), are of the form

m
Pa,B, .. A4B = -5 {D,B, - DasBs SasBya,B,) + Fa,B, .. 4B} » (3.17)
with symmetric spinor-valued functions
Fy=Fa,p,. a8 =Fa,p,  a48{Dwu,B, - DasBs S4,B,4,B1) Ya<p—2], P> 2,

which satisfy
Fa;B,4,B, =0, FagBsa,B,4,8, =0,

and which are real linear combinations of symmetrized tensor products of
SA3B2A1 By s D(ASBS SA3BsA1By)s - - 7D(Ap72Bp72 s DA3B3 SA3B2A1B1)s

forp>4.

PROOF. The first two results on F follow by direct calculations from ([C3), ([CI0).
Inserting ([BI1) into the recursion relation (CI) gives for p > 3 the recursion relations

FAp+1Bp+1 ...A1B; — D(Ap+1Bp+1 FAPBp ... A1B1) (318>

—Cp {S(Ap+1Bp+1Apo DAp,pr,l “++ 8A3B3A1B1) T S(Aps1Bpia FAp—pr—l AlBl)} :

With the induction hypothesis which assumes the properties of the F’s stated above for
Fu,B, .. 4B, ¢ < p, the relations [BI8) imply these properties for Fa,,,B,,,...A,5,- ®
A further calculation gives

Fy = —C35(4,B4A3Bs 543B24,B1), F5 = —(2¢3+ 1) 5(asBs4,B, DAsB3SA,B, A By )
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and by induction the recursion law above implies the general expressions
Fyp = gy sym(s @ D*P74s) + ... + woy sym(®Fs), p >3,

Fopi1 = aopr1 sym(s @ D2p735) + . Fwopt sym(@pfls ® Ds), p >3,

with real coefficients asp, ®apt1, ..., wap, wapy1. The first terms on the right hand sides
denote the term with the highest power of D occuring in the respective expression. The
sum of the powers of D occuring in each term is even in the case of F3, and odd in the
case of Fypy1. The sum of the powers of D occuring in each of the terms indicated by
dots lies between 2 and 2p — 4 in the case of F, and between 3 and 2p — 3 in the case of
F5p1. The coefficients indicated above are determined by

ag=—(2c3+catcs), ar=—(2csteatestog), ws=—(2c3+cs), we=cscs,
and, for p > 3, by
Q2p41 = Q2p — C2p,  Q2p42 = Q2p41 — C2p+1,
Wop41 = PW2p — C2pWap—1, W2pt2 = —C2pt1 W2p,
which implies in particular
wap = (—1)PH Hf:_ll Ca41, P = 3. (3.19)

Restricting the relation (BIT) to ¢ defines with the identification ([B) a non-linear
map which can be read as a map

q}:{ﬁn}_’{@mp}v

of the set of abstract null data into the set of abstract multipoles (i.e. sequences of sym-
metric spinors not necessarily derived from a metric) satisfying

(Va,By...A B, + Fa,B, .. a8, {¥a,B, ... 0,8, Ya<p—2]), P >2.
(3.20)

m
VAPBP ...A1By — _5

Corollary 3.4 For given m the map VU which maps sequences D, of abstract null data
onto sequences Dy, of abstract multipoles is bijective.

PROOF. An inverse of ¥ can be constructed because Fo = 0, F3 = 0, and the F,
depend only on the 4, B, ... o, B, With ¢ < p—2. The relations (B20) therefore determine

for a given sequence D,,, recursively a unique sequence D,. m

It follows that for a given metric h the sequences of multipoles and the sequences
of null data in a given standard frame carry the same information on h. The relation
is not simple, however. It can happen that a sequence D, with only a finite number of
non-vanishing members is mapped onto an sequence @mp with an infinite number of non-
vanishing members and vice versa. For instance, the relations given above show that the
sequence D, = {12, 0, 0, 0,...} with ¢b2 = a,B,4,8, # 0 is mapped onto the sequence
ﬁmp = {2, 0, v4, 0, vg, ...} with vy =va B, ... A, B,, Where

vy = o, vop = (—1)PT (I 1) sym(@Pea) #0, p > 2.
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4 The characteristic initial value problem

To complete the analysis one would have to show that the estimates ([BIl) imply estimates
of the type ([BI4) for the coefficients of BI0). The induction argument used in the proof of
Lemma Bl leads, however, to complicated algebraic considerations. The commutation of
covariant derivatives generates with the subsequent derivative operations more and more
non-linear terms of lower order. Formalising this procedure to derive estimates does not
look very attractive. To arrive at a formulation of our question which looks more similar
to a boundary value problem to which Cauchy-Kowalevskaya type arguments apply, we
make use of the inherent geometric nature of the problem and the geometric meaning of
the null data.

The fields h, (, s, sapcp are necessarily real analytic in the normal coordinates x® and
a standard frame cap centered at i. They can thus be extended near i by analyticity into
the complex domain and considered as holomorphic fields on a complex analytic manifold
S.. Choosing S, to be a sufficiently small neighbourhood of 7, we can assume the extended
coordinates, again denoted by x®, to define a holomorphic coordinate system on S, which
identifies the latter with an open neighbourhood of the origin in C3. The original manifold
S is then a real, 3-dimensional, real analytic submanifold of the real, 6-dimensional, real
analytic manifold underlying S.. If a%, 8%, a = 1,2,3, define real local coordinates on
the real 6-dimensional manifold underlying S. so that the holomorphic coordinates x“
can be written z* = a® + i 3%, we use the standard notation 9y« = 3(8ae — i 93s) and
Oze = 3(Dao + 19gs). The assumption that the complex-valued function f = f(z*) be
holomorphic is then equivalent to the requirement that Oz« f = 0 so that we will only
have to deal with the operators d,.. Under the analytic extension the main differential
geometric concepts and formulas remain valid. The coordinates x® and the extended
frame, again denoted by ca4p, satisfy the same defining equations and the extended fields,
denoted again by h, {, s, sapcp, satisfy the conformal static vacuum field equations as
before.

The analytic function T' = 64 2% 2® on S extends to a holomorphic function on S.
which satsifies again the eikonal equation h% D,I' D;I' = —4T. On S it vanishes only at
i, but the set

Ni = {pe 8. T(p) = 0},

is an irreducible analytical set (cf. [22]) such that N; \ {i} is 2-dimensional complex
submanifold of S.. It is the cone swept out by the complex null geodesics through 7 and
we will refer to it shortly as the null cone at <. While some of the following considerations
may be reminiscent of considerations concerning cones swept out by real null geodesics
through given points of 4-dimensional Lorentz spaces, there are basic differences. In the
present case there do not exist splittings into future and past cones. The set A; \ {i}
is connected and its set of of complex null generators is diffeomorph to P*(C) ~ S2. If
N\ {i} is considered as a 4-dimensional submanifold of the 6-dimensional real manifold
underlying S., the set of real null generators is not simply connected but diffeomorphic to
SO(3,R).

The set A; will be important for geometrizing our problem. Let u — z%(u) be a null
geodesic through i so that 2%(0) = 0. Its tangent vector is then of the form 48 = 4,8
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with a spinor field 14 = 14 (u) satisfying Dzt = 0 along the geodesic . Then

so(u) = 12 P19 P sapep(x(u)), (4.1)

is an analytic function of u with Taylor expansion

oo

1 dr
S0 = Z H uP Tup s0(0),
p=0

where
dv A, B C D
ur 50(0) = 7177 ...1% 17 Da,p, ... Da,B,saBcp(i)

A, B c,D :
=177 %" Deayp, - Da, B, sapep)(i)-

Knowing these expansion coefficients for initial null vectors 14 +® covering an open subset
of the null directions at ¢ is equivalent to knowing the null data D}, of the metric h.

Our problem can thus be formulated as the boundary value problem for the conformal
static vacuum equations with data given by the function (Bl on A, where the :4.Z are
parallely propagated null vectors tangent to NV;. The set NV; can be regarded as a (complex)
characteristic of the (extended) operator Ap and also to the conformal static equations.
Therefore we shall refer to this problem as the characteristic initial value problem for the
conformal static vacuum field equations with data on the null cone at space-like infinity.

The conformal static vacuum field equations 1), 1), 1), ZIF) form a 3-
dimensional analogue of the 4-dimensional conformal Einstein equations ([9]). Charac-
teristic initial value problems for these two type of systems are therefore quite similar in
character.

The existence of analytic solutions to characteristic initial value problems for the
conformal Einstein equations has been shown in [I0] by using Cauchy-Kowalevskaya type
arguments. In the present case we shall employ somewhat different techniques for the
following reason.

The remaining and in fact the main difficulty in our problem arises from fact that
N; is not a smooth hypersurface but an analytic set with a vertex at the point i. A
characteristic initial value problem for the conformal Einstein equations with data on a
cone has been studied in [I1] and some of the techniques introduced there and further
developed in [I3] will be used in the following. The method we use to derive estimates on
the expansion coefficients has apparently not been used before in the context of Einstein’s
field equations.

4.1 The geometric gauge

To obtain a setting in which the mechanism of calculating the expansion coeflicients allows
one to derive estimates on the coeflicients from the conditions imposed on the data, a gauge
needs to be chosen which is suitably adapted to the singular set N;. The coordinates and
the frame field will then necessarily be singular and the frame will no longer define a
smooth lift to the bundle of frames but a subset which becomes tangent to the fibres
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over some points. The setting described in the following will organize this situation in a
geometric way and provide control on the singularity and the smoothness of the fields.
Let SU(2) be the group of complex 2 x 2 matrices (s4 g)a -0, satisfying

eaps® csPp=ecp, Taps*cs® p=1cp, (4.2)
where sB , — 58’ denotes complex conjugation. The map
SU(2) > shp— s (c sB) py — 8%y =a" ap sAesBpatPy e SO(3, R), (4.3)

realizes the 2 : 1 covering homomorphism of SU(2) onto the group SO(3,R). Under
holomorphic extension the map above extends to a 2 : 1 covering homomorphism of the
group SL(2,C) onto the group SO(3,C), where SL(2,C) denotes the group of complex
2 x 2 matrices satisfying only the first of conditions {2).

We will make use of the principal bundle of normalized spin frames SU(S) = S with
structure group SU(2). A point § € SU(S) is given by a pair of spinors § = (&3, 67') at a
given point of S which satisfies

€04, 0p) = €ap, €(0a, 0" B)=Tap, (4.4)

where the lower index, which labels the members of the spin frame, is assumed to acquire
a prime under the “4”-operation. The action of the structure group is given for s € SU(2)
by

d—0d-s where (0-s)a= sB 465.

The projection 7 maps a frame § onto its base point in S. The bundle of spin frames is

mapped by a 2 : 1 bundle morphism SU(S) £ SO(S) onto the bundle SO(S) ™S of
oriented, orthonormal frames on S so that 7’ op = 7. For any spin frame § we can identify
by (B2 the matrix (54)4,4,5—0,1 With an element of the group SU(2). With this reading
the map p will be assumed to be realized by

SU(S) 26 — p(8)ap = 65 65 cpr € SO(S),

where c4p denotes the normal frame field on S introduced before. We refer to p(d) as the
frame associated with the spin frame 4.

Under holomorphic extension the bundle SU(S) — S is extended to the principal
bundle SL(S.) = S, of spin frames § = (J3',01') at given points of S. which satisfy only
the first of conditions @Z). Tts structure group is SL(2,C). The bundle SU(S) & S
is embedded into SL(S.) = S. as a real analytic subbundle. The bundle morphism p
extends to a 2 : 1 bundle morphism, again denoted by p, of SL(S.) = S, onto the bundle

S0(S.) it S, of oriented, normalized frames of S, with structure group SO(3,C). We shall
make use of several structures on SM(S,).

With each o € s1(2,C),i.e. @ = (a? ) with auap = apa, is associated a vertical vector
field Z,, tangent to the fibres, which is given at § € SL(S.) by Za(8) = 2L (5-exp(v a))|v=0,
where v € C and exp denotes the exponential map sl(2,C) — SL(2,C).

The C3-valued solder form o4B = o(AB) maps a tangent vector X € TsSL(S.) onto
the components of its projection T5(m)X € Tr(s5)Se in the frame p(d) associated with &
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so that T5(m)X =< 048, X > p(6)ap. It follows that < 048 Z, >= 0 for any vertical
vector field Z,,.

The si(2,C)-valued connection form w? g on SL(S.) transforms with the adjoint
transformation under the action of SL(2,C) and maps any vertical vector field Z, onto
its generator so that < wA By Lo >= at p.

With 248 = 2(4B) ¢ C? is associated the horizontal vector field H, on SL(S.) which
is horizontal in the sense that < w4 B, H; > =0 and which satisfies < UAB, H, >=21"B.
Denoting by Hap, A, B = 0,1, the horizontal vector fields satisfying < ¢4Z, Hop >
= hAB ¢ p, it follows that H, = 24 Hap. An integral curve of a horizontal vector field
projects onto an h-geodesic and represents a spin frame field which is parallely transported
along this geodesic.

A holomorphic spinor field ¢ on S, is represented on SL(S.) by a holomorphic spinor-
valued function 14,.. 4,(d) on SL(S.), given by the components of ¢ in the frame §. We
shall use the notation ¢¥x = (4,...a;),, K =0,...,j, where (conen. )i denotes the operation
‘symmetrize and set k indices equal to 1 the rest equal to 0°. If 1 is symmetric, these
functions completely specify 1. They are referred to as the esssential components of .

4.2 The submanifold S of SL(S,)

We combine the construction of a coordinate system and a frame field with the definition
of an analytic submanifold M of SL(S.) which is obtained as follows. We choose a spin
frame 6* in the fibre of SL(S.) over ¢ which is projected by 7’ onto the frame cap at
considered ¢ before. The curve

Cov—dv)=76 - s(v)eSL(S.),

with

10 0 0
s(v) = exp(va) = ( v 1 ), o= ( 1 0 ) € sl(2,0), (4.5)
in the fibre of SL(S.) over ¢ defines a vertical, 1-dimensional, holomorphic submanifold I
through §* on which v defines a coordinate. The associated family of frames eap = eap(v)
at ¢ is given explicitly by

eoo(v) = coo +2veor +v2err,  eor(v) =cor +ven, en(v) = e

The following construction is carried out in some neighbourhood of I. If the latter is
chosen small enough all the following statements will be correct.

The set I is moved with the flow of Hy; to obtain a holomorphic 2-manifold Uy of
SL(S.) containing I. The parameter on the integral curves of Hy; which vanishes on I
will be denoted by w and v is extended to Uy by assuming it to be constant on the integral
curves of Hyp. All these integral curves are mapped by 7 onto the null geodesics v(w) with
affine parameter w and tangent vector 4'(0) = ¢11 at v(0) = i. The parameter v specifies
frame fields which are parallely propagted along ~.

The set Uy is moved with the flow of Hyg to obtain a holomorphic 3-submanifold S of
SL(S.) containing Uy. We denote by u the parameter on the integral curves of Hypg which
vanishes on Up, extend v and w to S by assuming them to be constant on the integral
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curves of Hyg. The functions z' = u, 22 = v, 22 = w define holomorphic coordinates on

S. The restriction the projection to S will be again denoted by 7.

The projections of the integral curves of Hyg with a fixed value of w sweep out, together
with «, the cone N,Y(w) near y(w) which is generated by the null geodesics through the
point y(w). On the null geodesics u is an affine parameter which vanishes at v(w) while
v parametrizes the different generators. In terms of the base space S, our gauge is based
on the nested family of cones N, (,,) which share the generator v. The set Wy = {w = 0},
which projects onto A; \ 7, will define the intial data set for our problem. The map 7
induces a biholomorphic diffeomorphism of §' = S\ Uy onto 7(S’). The singularity of the
gauge at points of Uy (resp. over «y) consists in 7 dropping rank on Uy because the curves
w = const. on Uy are tangent to the fibres over v(w) where 9, = Z,. The null curve v(w)
will be referred to as the singular generator of N; in the gauge determined by the spin
frame 0* resp. the corresponding frame c4p at .

The solder and the connection form pull back to holomorphic 1-forms on S , which
will be denoted again by ¢4% and w? g. Corresponding to the behaviour of 7 the 1-
forms 6%, ¢%1, o1 are linearly independent on S’ while the rank of this system drops
to 2 on Uy because < 048, 0, >=< 048, Z, >= 0. If the pull back of the curvature
form Q4 5 = 174 geprr 0P A dEF to S is denoted again by 04 B, the solder and the

2
connection form satisfy the structural equations

dUAB:—wAc/\UCB—wBC/\UAC, dwop = —-wrc AW’ 5+ 0% 5.
By construction of S we have

<UAB,6U>:O, <UAB,6w>=€1AelB on Uy,

<whp,0p,>=0, <wilp,dy>=<w?p Zo>=cep’ on Uy,

<o 9, >=ee? and <w? 5,0, >=0 on S while <048 8, >+0 on s’

To obtain more precise information on 42 and w? g we note the following general

properties (cf. [IT] and [T3] for more details). If, for given 248 € C3, the Lie derivative
with respective H, is denoted by L., then

EzJAB:2:EC(AwB)c, <EzwAB,.>:<QAB,Hz/\.>.
Since 0 = [0y, Oy] = [Hoo, O] on S and Q4 g is horizontal, it follows that
Oy <0 0, >=2¢g <wP(,0, >, 0y <w B,y > lumo =< Q' B, HiAZy > |u—o = 0,
which gives with the relations above
<wlp, 0, >=eep Y4+0(u?) whence < wA B, 0, >= 2uen e B)+O(u3) as u— 0.

Similarly we obtain with 0 = [0y, 8] = [Hoo, ] on S

1
O <080, >=260W <wP 0, >, 0y <w B, 0w > |umo = 57“4 B0011-
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In terms of the coordinates z* we thus get 048 = ¢48 , dz® on S’ with a co-frame matrix

1 0%, o609, 1 OW®)  O®?
(@*P)=(0 0% o5 | =[ 0 u+0@®) O(u?) as u—0. (4.6)
0 0 1 0 0 1

On S’ there exist unique, holomorphic vector fields e 45 which satisfy
< O'AB,GEF >= hAB EF-

If we write eap = €® op O.a, the properties noted above imply for the frame coefficients

1 61 01 61 11 1 O(uQ) O(uz)
(e®ap)=| 0 €01 €11 |=[ 0 £+01 O) as u—0. (4.7
0 0 1 0 0 1
In the following we shall write
e ap =€" ap + €% aB, (4.8)
with singular part
1
e*aAB:5?6AOEBO+5SEG(AOGB)1—|—5§6A1€Bl, (4.9)

and holomorphic functions é* 4p on S which satisfy
é*ap=0(u) as u—0. (4.10)
We define connections coefficients on S’ by writing wA g =Tep? goCP with
I'epap =<wap,ecp >,
so that 'cp ap = I'(¢p) (ap)- The definition of the frame then implies
Tooap =0 on S and Ty1a=0 on U,
and it follows from the discussion above that
Tapep =ipep + Lasep, (4.11)
with singular part
Capep = _%E(AOEB)IECOEDO, (4.12)
and holomorphic functions r ABCD On S which satisfy
Papep =O(u) as u— 0. (4.13)

The singular parts are ‘universal’ in the sense that their expressions only depend on
the construction of S and not on properties of the metric. If the latter is flat the functions
é* ap and r ABCD vanish on S. With the frame and the connection coefficients so defined
we have the spin frame calculus in its standard form. The expressions above imply for any
holomorphic spinor valued function ¥ 4. ¢ that Dogva..c and D11 ¥ 4. ¢ extend to S as
holomorphic functions so that

Dooha..c =0utha.c on S and Diytha. o =dwiha o on Uy.
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4.3 Tensoriality and expansion type

A holomorphic function on SL(S,) induces a holomorphic function on S which can be
considered as a holomorphic function of the coordinates z*. While these coordinates are
holomorphic on the submanifold S of S L(S.), the induced map 7 of S into S, is singular on
Up. As a consequence, not every holomorphic function of the z* can arise as a pull-back to
Sofa holomorphic function on SL(S.). The latter must have a special type of expansion
in terms of the z* which reflects the particular relation between the ‘angular’ coordinate
v the ‘radial’ coordinate u. The following notion will be important for our discussion.

Definition: A holomorphic function f on S will be said to be of v-finite expansion
type k¢, with k¢ an integer, if it has in terms of the coordinates u, v, and w a Taylor
expansion at the origin of the form

oo oo 2mtky

f:ZZ Z fm,n,pumvnwpa

p=0m=0 n=0

where it is assumed that fp np =04 2m+ Ky <O0.

We note that the construction of S does not distinguish the set I = 7~ 1(i) from the
sets 71 (y(w)). Correspondingly, the Taylor expansions of the function f above at points
(0,0, wo) with wp close to 0 have the same structure with respect to u and v.

Lemma 4.1 Let ¢a,.. a; be a holomorphic, symmetric, spinor-valued function on SL(S.).
Then the restrictions of its essential components ¢ = d(a,...a;),, 0 <k < j, to S satisfy

av¢k:(j_k)¢k+1a kZO,...,j, on UO) (414)

(where we set ¢;41 =0) and ¢ is of expansion type j — k.

PROOF. : In the following we consider S as a submanifold of SL(S.). The tensorial

transformation law of ¢ under the action of the 1-parameter subgroup (EH) with generator

a? g = ¢ A eg? implies

Zatdr=(—k)épp1 for 0<k<j on SL(S.),

and thus I4) because Z, = 9, on Uy. From the relations above follows in particular
that _
ZI7F g =0 on  SL(S,). (4.15)

A general horizontal vector field H, has with Z, the commutator
[Zou Hw] = Hoz-wu

AB _ ,(AB)

where a acts on z according to the induced action by

AB A

A
24P = (- 2)4B =« CZCCB+QBC,TAC=2€§ B0,

With 248 = ¢y 4 ¢y B, so that H, = Hy, it follows

[Za,Ho) =2Ho1, [Za,Ho)=Hui, [Za,Hi1]=0.
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By induction this gives the operator equations
Z(’;Hoo:n(n—1)H11Zg_2+2nH01Zg_1—i—HooZg, nZl,

and, more generally,
2m—1
ZLHG = anm HL Z2" + > Apma 207 + Hig 27, myn > 1,
1=0
where the a,, ,,, are real coefficients, the A,, ,,, ; denote operators which are sums of products
of horizontal vector fields, and the terms in which Z, formally appears with negative
exponent are assumed to vanish. With @IH) this implies

ZLVHg ¢, =0 for n>2m+j—k on SL(S.).

The results follows because Z}} Hi} ¢ = 0y 05" ¢x at points of Up. m

4.4 The null data on W,

We shall derive an expansion of the restriction of the essential component s of the Ricci
spinor to the hypersurface Wy, i.e.

s0(u,v) = s(aBcD)o | Wo

in terms of quantities on the base space S.. Consider the normal frame c4p on S, near ¢
which agrees at i with the frame associated with ¢* and denote by

D) = {chAlBl ) ..DZPBPSZBCD)(Z'), p=0,1,2,...},

the corresponding null data of & in the frame cgap. Choose a fixed value of v and consider
s = s(v) as in ([@EH). The vector Hoo(d* - s) then projects onto the null vector s ¢ s% g cap
at i. Since cap is a normal frame near 4, the null vector field s4 g sZ gcap is tangent to
a null geodesic n = n(u,v) on N; with affine parameter v with v = 0 at 7 and the integral
curve of Hyg through §* - s projects onto this null geodesic. It follows from this with the

explicit expression for s = s(v) that

so(u,v) = 5% o(v) % o(v) s 0(v) s” 0(v) SaBCD ln(uw) (4.16)

= 1 . . . ,
= Z U 541 o(v) sB1 o(v) ... 5P o(v) Diag, DB, Sapcp)(?)
m=0 ’

oo 2m+4

=" > Ymnu™ ",

m=0 n=0

with

1 (2m+4) ., L _
wm,n - W ( n ) D(A1B1 t DAmBm SABCD)n (7’)5 0<n<2m+4.

This formula shows us how to determine the function sg(u,v) from the null data D
and vice versa. We note that the expansion above is consistent with s¢ being of v-finite
expansion type 4. We shall refer to ([I0) as the null data on Wy in our gauge.
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5 The conformal static vacuum field equa-
tions on S

With the frame e4p and the connection coefficients yapcp on S we have the standard
frame calculus available. Given the fields (, s, sapcp, we define on S the quantities

EF _ EF EF b b
tap™ cpe®er =Tup ™ cp—Tep ™ aB)e* 5r — e cppe’ ap+€* aBpe’ cp,
. 1
RABCDEF =TABCDEF — 3 {saBcE€pF + SaBDF €CE},
with

rapcper = ecp(lerap) —epr(Tepan)
TerXcl Tegr¥pl —Tep B gl
+ler” clkpaB+1EFr DlcokaB cD  ElKFAB
K K K
—I'cp” rFTExkaB+TEF" Blcpak —T'cp ™ BUEFAK

~tep “? prTaras,
Y4B =Dap(—CaB,
YaBcp =Daplcp —shapep +¢ (1 — p¢)sapcep,

Sap=Daps+ (1 —pu)sascp P,

2p
1—p¢
In terms of the fields on the left hand side, which have been introduced as labels for

the equations as well as for the discussion of their interdependencies, the conformal static
vacuum equations read

_n E E
Hapep = Da " speDE — sE(BcD Ca) -

tap ®F cpe® pr =0, Rapcper =0,
EAB = 07
Yapep =0, Sap =0, Hypep = 0.

The first equation is Cartan’s first structural equation with the requirement that the
(metric) connection be torsion free (tap Z¥ cp being the torsion tensor). The second
equation is Cartan’s second structural equation with the requirement that the Ricci tensor
coincides with the trace free tensor sq,. The third equation defines (45, the remaining
equations have been considered before.

To discuss these equations in detail we need to write them out in our gauge, observing
in particular the nature of the singularities in @) and EIT).
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The equations tag Z¥ g0 €* g = 0:
A1 14 - - A1
Oub 01 + L= —2T0101 +2T0100 € 01,

1 1 . .
A2 52 A2
Ou€” 01+ — €01 = — L'o100 + 20100 €7 01,
u u
~1 Al - ~1
Oue 11 = —2T1101 + 2T 1100 € 01,

14 ~
A2 A2
Oul’ 11 = Eruoo +2T'1100 €% 01-

The equations Rapoopr = 0:
. 2 N 1
Oul’0100 + " Lot00 — 213150 = 3 50;

N 1 R . R 1
Oul'0101 + E T'oi01 — 2T 01000101 = 5 51,
A 1 . R R 1
Oul'o111 + a T'o111 — 2T 01000111 = 5 S9,

Oul'1100 + " I'1100 — 211100 Fo100 = 51,

dul1101 — 2 1:‘1100 1:‘0101 = 82,
dul 1111 — 21:‘1100 1:‘0111 = S3.
The equations g9 = 0, Xgocp = 0, Spg = 0:

0 = 9uC — oo,
0 = 0 Goo + ¢ (1 — () so,
0= 0y o1 + ¢ (1 — pQ) s,
0=0u,¢1—5+C(1—pud) s,
0= 0ys + (1 = () (s0 C11 — 251 o1 + 52 Coo)-
The equations —Hy(pcp), = 0 in the order £ =0, 1,2, 3:

1 . R
Ou 51 — ﬂ(av so—4s1) — &' 0104 50 — €% 010y S0

R A 2
= —4T0101 50 + 4T 0100 51 — ﬁ {s0 o1 —s1¢oo},

1 . R
Ou 52 — ﬂ(av s1—382) — &' 010, 51 — €% 010, 51

A . . 1
= —T'9111 50 — 2T 0101 81 + 30100 52 — 77— {50 C11 + 251 (o1 + 3 52C00} ,
2(1—puq) { J

1 . A
Ou 53 — ﬂ(av so —2583) — &' 010, 52 — €% 010, S2
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= —2T0111 81 + 20100 83 — K {s1¢11 +s3C00},

(1—pQ)
1
Ousa — — (0y 53 — 84) — € 010y 53 — €2 010 53
2u
. . . 1
= —3T0111 52 + 20101 83 + L0100 54 — === {352C11 —253C01 — 54Coo} -
-0 | J

These equations, referred to as the 9, -equations, will be read as a system of PDE’s

for the set of functions

e'or, %01, ¢'11, €11, Totam, Tiias, ¢ Cap, s, s1, S2, s3, sa,
which comprises all the unknowns with the exception of sg. The following features of them
will be important.

All 9,-equations are interior equations on the hypersurfaces {w = wp} in the sense
that only derivatives in the directions of u and v are involved.

The equations are singular with terms u~! occuring in various places. It will be seen
later that these terms come with the ‘right’ signs to possess (unique) solutions which
are holomorphic in u, v and w. Remarkably, the equations for the s; ensure regular
solution to have the correct tensorial behaviour by the occurrence of terms u~! with
factors 9, s — (4 — k) sg+1. By Lemma BTl we know that they have to vanish U.

The system splits into a hierarchy of subsystems, with

EF 2
tor " o0e” Br =0, Rooooo1 = 0,

being the first subsystem,

tor " g0e' pr =0, Rowoo1 =0, ¥oo=0, o000 =0, ooo1 =0, Hoooo =0,

being the second subsystem, and so on. The hierarchy has the following property. If sg
is given on {w = wp}, the first subsystem reduces to singular system of ODE’s. Given its
solution, the second subsystem also reduces to a system of ODE’s (with coefficients which
are calculated from the functions known so far by operation interior to {w = wg}), and so
on. Thus, given sy and the appropriate initial data on Uy N {w = wp}, all unknowns can
be determined on {w = wq} by solving a sequence of systems of ODE’s in the independent
variable w.

The functions é* 4g and f‘ABCD vanish on Uy by our gauge conditions. Therefore
only initial data for (, (ap, s, and s need to be determined on Uy and the function sg
needs to be provided on {w = wp}. Since so will be prescribed on Wy as our initial datum,
an equation is needed to determine its evolution off Wy. For this purpose we will consider
the following equations.

The equations Hypopy, = 0 in the order k =0,1,2,3:

1 . . . .
Ow So — ﬂ(av S1 — 382) + el 1104 So + &2 1100 So — el 018u S1 — &2 Olav S1 (51)
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N A N A A 1
= —(T0111—4T1101) S0—(2T0101+4T'1100) 51+3 To100 S2+ 1 {s0C11 +2s1¢01 —352C00},

2p
(1—pQ)

Ow 51 — 2—(31; So —283) 4+ €' 110, 51 + €% 110, 51 — €' 0104 52 — €% 010, S2
u
. . . . . 2p 1
=T111180 — (20111 — 2T1101) $1 — 311100 82 + 20100 53 + m 3 {s1¢i1 —s3C00},

1 . R . R
Ow 52 — ﬁ(av s3—284) + ' 110 52 + 2110y 52 — €' 0104 53 — €% 010, 53

N N . . A 2 1
=2T111151—-3T 0111 $2—(2T1100—2T0101) $3+T 0100 S4+(1_7[;Q 1 {3s2¢i1 —253C01 — 5400}
1
Ow S3 — 2—3v s4+ e 1104 83 + 62110, 83 — €' 010y 84 — €% 010y 54
u
N N N N N 2
=3T1111 82 — (4T0111 + 2T1101) 83 — (T'1100 — 4 T0101) 84 + (1_7% {s3Ci1 —s4Co1}-

All singular terms cancel in the equations 0 = Hypcpy,,, + Hi(Bcp),, which are
given in the order £ =0,1,2 by

Ow S0 — Oy 82+é1 1104 So+é2 110y S0 (52)
. . 1
=4T1101 50 — 41100851 + —— {s0 i1 + 251 o1 — 3 52¢00},
(1—pQ)
Ow 51 — Oy 53 + €1 110y 51 + €2 110, 51
. . . 2p
=T"1111 50 + 201101 81 — 3T 1100 52 — —— {5111 — s3Coo}
(1—pQ)

Ow 52 — Ou sa+ &' 110, 52+ €2 110, s2
. . [
=2T"111181 — 2T 110083 + = {35211 — 25301 — 54 o0} -
(1—pQ)
We can consider (&) or (B2 as equation prescribing the propagation of sg transverse
to the hypersurfaces {w = const.}.

Because I'11¢p = 0 on Uy, the equations X117 = 0, X110p = 0, S11 = 0 reduce on Uy
to the ODE’s

9w ¢ = Qu1, 9w Ccp = shiicp — ¢ (1 — pC) suiep, Qs = —(1—p¢)snen¢P.
By 232), I3) we must impose

(=0, Cap=0, s(i))=-2 on I={u=0w=0}
This implies with the equations above

(=0, ¢1=0, i1 =0 on U= {u=0}. (5.3)
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To determine (, (ap, and s on Uj it remains to solve on Uy the equations
OwCoo =8, Ow s = —54Coo- (5.4)
The tensorial properties of (45 and s imply with (B3)) that
0y Co=0, 9;§=0 on Uy for n>1. (5.5)

Later it will be important for that these relations can in fact be deduced from E3), (B,
(E5), and the initial conditions on I.
To ensure the tensor relations for the s, and thus the existence of regular solutions to

the equation for the si, we determine the initial data for si,...,s4 on Uy by imposing the
conditions
Op s, =4 —k)sky1, k=0,...,3, on Up. (5.6)
They imply recursively the expressions
n (4 - k)' k+n
oy oF s = Tav o sy, k=0,...4, n,p>0 at {u=0,v=0,w=0}

5.1 Calculating the formal expansion

Since the equations are overdetermined there are various ways to determine a formal
expansion of the solution. It will follow from Lemma 28 that the expansion obtained by
the following procedure will lead to a formal solution of the full system of equations. A
solution obtained by any other procedure with this property will thus have to coincide
with the present one. It will be convenient to replace s by the unknown

§=2+s.
For certain discussions it is useful to write
sk =55+ 8 with 0Ousf =0 and $}|u=0 = Sklu=o sothat 3§ =O(u) as u—0.
By (B8) we can then assume that
Oy sy, = (4—k)sj,1,
and the 9,-equations for the §; can be written in the form

4—k 1
2 §k+1 — ﬁ&, S+ ée%o1 8(1(5; +§k)

0= —HoyBcp), = Oudk+1 +

+terms of zeroth order,

so that the coefficient (4 — k)/2 of the singular term u ™! 8541 is positive and the term
u~1 0, 8, which involves the unknown §; determined in an earlier step of the integration
procedure, creates no problem because §; = 0 on Uy. Writing

r = (" aB, 'aBcDp, ¢, CaB, 8, 51, 52, 83, 54),
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so that the full set of unknowns are given by = and sg, we proceed as follows.

On Wy we prescribe sg as given in ([EI0) with the null data D} satisfying the reality
conditions and the estimates (BI1). By (&0l all components of  can be determined on
1.

We successivly integrate the subsystems in the hierachy of d,-equations to determine
all components of x on Wj. These will be holomorphic in 4 and v and unique, because
the relevant operators in the singular equations are of the form 9, f + cu™! f with non-
negative constants ¢ (a proof of this statement follows from the derivation of the estimates
discussed below).

The equation Hyi19o + H1goo = 0 is used to determine 0,89 from the fields z and sg
on Wy as a holomorphic function of v and v.

Applying the operator 9, formally to the J,-equations, one obtains equations for 0,x
on Wy which can be solved with the initial data on {w = 0,u = 0} which are obtained by
using (B4l and by applying 9, to (BH). Applying 9y, to the equation Hoioo + H1p00 = 0,
one obtains 9%sy on Wj.

Repeating these steps by applying successively the operator oF, p = 2,3,. .., one gets
an sequence of functions 9% x, 08 sy on Wy, which are holomorphic in u and v.

Expanding the functions so obtained at u = 0, v = 0 we get the following result.

Lemma 5.1 The procedure described above determines at the point O = (u = 0,v =
0,w = 0) from the data so, given on Wy according to {{18), a unique sequence of expansion
coefficients

95" 0,y 0y, f(O),  m,n,p=0,1,2,...,

where f stands for any of the functions

e 4B, 'aBcp, ¢, CaB, 8, 55.

If the corresponding Taylor series are absolutly convergent in some neighbourhood P of
O, they define a solution to the O, -equations and to the equation Higoo = 0 on P which
satisfies on PN Uy equations () and X117 =0, Z110p =0, S11 = 0.

By Lemma BTl all spinor-valued functions should have a specific v-finite expansion
type. The following result will be important for our convergence proof.

Lemma 5.2 If the data so are given on Wy as in [{-10), the formal expansions of the
fields obtained in Lemma [l correspond to ones of functions of v-finite expansion types
given by

ks, =4—3, k¢ =2—1, ke=0, ky=ks <2,

ke, =—A—-B, kg =3-A-B for AB=01,10 or 11.
k =2—A—-B, k- =1-A—-B for A/ B=0 or 1.

To1aB INEVY:]

Remark 5.3 The scalar functions s, § should have expansion type ks = ks = 0. As
pointed out below, this does not follow with the simple arguments used here. Since it will
not be important for the following discussions, we shall make no effort to retrieve this
information from the equations.
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PRrROOF. We note the following properties of v-finite expansion types:

For given integer k the functions of expansion type k form a complex vector space
which comprises the functions of expansion type < k.

If the functions f and g have expansion type k¢ and k4 respectively, their product f g
has expansion type kry = ky + k.

If f has expansion type k¢, the function 9, f has expansion type ky + 2. Conversely,
if 0, f has expansion type ks + 2 and if the function independent of u which agrees on Up
with f has expansion type k; (for instance if f|,—¢ = 0), then f has expansion type k;.

If f has expansion type ky and f|,—¢ = 0 then % f has expansion type k¢ + 2.

If f has expansion type kg, the function 0, f has expansion type ky — 1.

If f has an expansion type, the function 0, f has the same expansion type.

Applying these rules one can check that the expansion types listed above are consistent
with the 0,-equations, the equation Hyggo+ Ho100 = 0 and the equations S11 = 0, 1190 =
0 used on Uy in the sense that all terms in the equations have the same expansion types.

Assuming the given expansion types for the s, the d,-equations for the I' s gcp imply
at lowest order in w that in general the kp, — must take the values given above. It
follows then from the J,-equations for the €%, at lowest order in u that the kéiB must
take in general the values above. The remaining 0,-equations then imply at lowest order
the other expansion types.

With these observations the Lemma follows from our procedure by a straightforward
though lengthy induction argument. We do not write out the details. m

The equation

0= So0 = s+ (1 —pu¢)socn P,

should imply more precisely ks = 0, because the expansion type of the tensorial component
soocp C¢P should be 2. The contraction of the spinor fields on the right hand side implies
cancellations which lower the expansion types of the contracted quantities on the right
hand side. These cancellations cannot be controlled in the explicit expression

0=0us+ (1 — Q) (soCi1—2s1 o1+ 52C00),

by the simple rules given above, they only suggest an expansion type ks < 2. Fortunately,
this does not prevent us from determining the other expansion types. In the equation

0 = Yo011 = 0u C11 — 5+ ¢ (1 — pC) s0011,
s is added to a field of expansion type 2 and the equation
0=511=0ws+s11c0¢” =0us+s111160 on Uy,

is consistent with ks < 2. No further equation involving s is needed in the convergence
proof.

~

5.2 The complete set of equations on S

Because only a certain subset of the system of equations has been used to determine the
formal expansions of the fields, it remains to be shown that the latter define in fact a
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formal solution to the complete system of conformal static vacuum field equations. To
simplify stating the following result it will be assumed in this subsection that the formal
expansions for

€* 4B, 'aBcp, ¢, CaB, 5, 55,

determined in Lemma BTl define in fact absolutely convergent series on an open neighbour-
hood of the point O, which we assume to coincide with S. There will arise no problem
from this assumption because the following two Lemmas will not be used in the derivation
of the estimates in the next section.

Lemma 5.4 With the assumptions above the corresponding functions

e’ 4B, 'aBcp, ¢, CaB, s, 55,

satisfy the complete set of the conformal vacuum field equations on the set Uy in the sense

that the fields

EF
ta ™" ¢p, Rapcper, XaB, YaBcp, Sap, Hapcp,

calculated from these functions on S \ Uy have vanishing limit as u — 0.

PROOF. Because of the equations solved already and the symmetries involved, we
only need to examine the behaviour of the fields

t11 ¥ 01, Rapor, o1, Zoiep, Sot. Higepy, k=1,2,3,

near Up.

With [@F), EJ), @), EI2A) the d,-equations imply for the frame and the dual
frame coefficients the slightly stronger results @), ). A direct calculation gives then

EF E _F E _F E _ F)__EF
tn EF 11 =200 e T B e )T B g ) —0BF | (e 110 e 01— 01,0 €5 11) = O(u),

as u — 0.
With the particular result

1 1
tor ' 11 = To111 — 3 e* 110 — 24 e' 11+ O(u?) = O(u),

follows

1 2 1 2
Rooo111 = I'100,1 € 01 +T'1100,2 € 01 — To10o,1 € 11 — Tot00,2 € 11 — To100,3

01 11
—T1100T1100 + 2T 0100 (T1101 — To111) — o1 11 To100 — to1 ~ 11 1100 — 5 So011

1 , 3 1
—2U(F1100,2 2T1101 + 30111 5€ 112~ 5 € 11) 280011+O(U)—>

1 3
<3v OuT1100 — 204 T1101 + 304 To111 — 3 Dy Oy 11 — 1 02et g — 50011) =0 as u—0,

N =
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where the d,,-equations and the relation 9, s1 = 3 s3 on Uy are used to calculate the limit.

Similarly,

1 1 1
R =_—T7T - —7T - = O
oto111 = 5o L1012 = 5o Lt < g so111 + O(w)

1
-3 (Ov OuT1101 — Ou T1111 — S0111) =0 as u— 0,

where the 0,-equations and the relation d, ss = 2 s3 on Uy are used,

1
Ri10111 = Tu Ti111,2 — 5 Sun +O(u) — 3 (Op OuT1111 — $51111) =0 as u— 0,

where the d,-equations and the relation 9, s3 = s4 on Uy are used.
By E&3) and the remark following (&) we know that ¢ = 0, (o1 = 0, (11 = 0,
Oy Coo =0, 9y s = 0 on Uy. The d,-equations and (EH) imply

1 1
Yo1 = ﬁﬁvc —¢o1 + O(u) — §8U Goo — Go1 = 0,

1 1
Yo100 = 54 (0w oo — 2 Co1) + O(u) — 3 (v Ou Coo — 20y Co1) =0,
1 1 1
o101 = 0 (Ov Co1 — C11) + 5 +O(u) — 3 (Ov Oy Go1 — Ou C11 +5) =0,
1 1
Yo111 = 24 Oy C11 +O(u) — 3 0y Oy 11 = 0.

1 1 1
So1 = 54 Oy 5+ 50111 Goo + O(u) — 3 (O Ou s + 2 50111 Co0) = 3 Oy (Ou s + s0011 oo) = 0,

as u — 0.
With our assumptions (and formally setting s; = 0) we get for k=0,...,3

Yk = il_)nlo (—2 HO(ABC)k) = (6 — k) 8u Sk+1 — 8v 8u Sk — (4 - k) M Sk+1 COOv

B = lim (=2 Hy(aBc),) = 20w Sk — 0y Oy Sk1 + (3 — k) Ou Sky2 — (3 — k) 1 5k42 Coo-
The expected tensorial nature of sapcp and Hapep (cf. Lemma El) would imply
451 =0y Po— Ovy1+ 27, 1282 = 82 Bo — 021 —20p 72 + 473,

2485 =05 By — 0o y1 — 20572 —80yv3 on  Up.

It turns out that these relations can in fact be verified by a direct calculation with the
expressions for 7, [ obtained above. Because the equations used to establish Lemma
ET imply v = 0, Bp = 0, it follows that 51 = B2 = 83 = 0 so that in fact Hapcp — 0 as
u—0. m

We can now prove the desired result.
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Lemma 5.5 The functions

a
e 4B, 'aBcp, ¢, CaB, s, 55,

corresponding to the expansions determined in Lemma [ satisfy the complete set of con-
formal vacuum field equations on the set S.

PROOF. It needs to be shown that the zero quantities

EF
tor " 11, Rapoirr, o1, 11, Xoicp, X1icp, Sois S, Hiasep,

vanish on S. For this purpose we shall derive a system of subsidiary equations for these
fields.
Given the fields
e aB, 'aBcop, ¢, ¢aB, 8, sABCD,

A CD

we have the 1-forms 048 dual to e4p and the connection form w? g =Tep 4 5oL,

To derive the subsidiary system we consider the torsion form

=c-tecp” " EF

@AB 1 AB O_CD A O'EF
2 )

and the form 1
Op=0%p-0"p = ERA peppro“P Aot

obtained as difference of the curvature form

1
QA L = 5 " poppr oCP A oFF,
and the form )
QAB = §SABCEUCF/\O'EF.
The following general relations will be used: The identity ¢® A 6® A 6¢ = € v with

V= % €def o?Ao® Ao, which holds in 3-dimensional spaces. In space spinor form it takes
the form

O'AB /\O'CD A O’EF _ 6ABCDEF ABCDEF _

v with € ,

)
(eAC ¢BF (DE _ (AE (BD [FC)
V2
which implies

dABNGC p AP = —iﬂeA(CeE)BuziﬁhABCEu,

and thus 1
QAB/\O'BD = §SABCEO'BD/\O'CF/\O'EF =0.

The equations

ig(aAB) =igaAhB+(—1)*aniyp, Lra=(doig+igod)a,
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which holds for arbitrary vector field H, k-form «, and j-form (. Finally, we note that in
the presence of torsion the Ricci identity for a spinor field ¢g. g of degree m reads

L L
(DapDcp —DepDaB)ter..H=—LLF.. . HT EABCD — LEL.HT FABCD — ...

L KL
— LEF..L T HABCD —tAB CcD DKL LEF..H-

We shall derive now the subsidiary equations. The fields @47 and Q4 g satisfy the
first structural equation

doB = —wA c ANo®B —wB o A cAC + 048,
and the second structural equation
dw?p=—-wrc A5+ 045,
respectively. These equations imply
dOAB =20U L A oPIC 204 L AOPIC =20 A L AGBIC — 2, L ABPC.
We set H = egp and observe that the gauge conditions and the d,-equations imply
in o =ey e B = hoo AP, inwd g =0, ig ©48 =0, in Vg =0.

It follows that
EH@AB = (dO’LH —|—ZH Od)@AB = QQ*(A()EOB),

and thus
L < @AB,E()l Neip >=

2 < Q*(Ao,e()l ANe1r > € B)+ < @AB, [H, 601] Nepr >+ < @AB,eol A [H,ell] > .

The first structural equation, the gauge conditions, and the d,-equations imply
0=<O0FF HAecp >epr=-Top P  goepr — [H,ecp),

whence
[H,ecp] = —2Tcpo1 €oo + 2T ¢ poo €o1-

This implies
Ly < GAB,em Nerr >= 210100 < GAB,em Nepr > +2< Q*(Ao,e()l ANe1r > € B),

ie.
1 R
(Ou + a) tor *% 11 = 20100 to1 P 11 +2RM go111 €0 ). (5.7)

With the first structural equation we obtain

A A A 1 7
dQap—w? ANQup -0 pAQan = §DGH5ABCD o N pAoPT = %HEABE v,
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and from the second structural equation we get
dQap —w? ANQrp —w? B AQag =0,

which give together

* * * ¢
AV —wT ANQp — W B AQY, = —EHEABE v,
and thus, with the equations above,
1 . 1
(Ou + 5) Rapoi11 =2T0100 Rapoi11 + B Hiago. (5:8)

The identity
DapYep — Dep¥ap =tas " ¢p Dpr(+ Scpas — Saseb,
gives with the gauge conditions and the 0,-equations
OuXcp + % e’ epy ' So1 = 2T cpoo Zo1 + Scpoo. (5.9)
The identity
DapScper — Dep Saper = —2 ke R® papep +tas ™ cp DauCer

+ScphaBer — SaB hcpEF
+(1=2u¢)(Zap scper —Xcp saper) +C(1 —p) (ecca Heprr + €epp HoAEF),

implies with the gauge conditions and the 0,-equations
Ou S 1 2eeVep's = 5.10
w 24CDEF u €(C  €D) Z0lEF = (5.10)

2T cpoo So1er + Scp hoosr — (1= 24¢) Sep soorr + ¢ (1= 1¢) epo Hoopp-

The identity

DapScp — Dep Sap =tap P ¢p Dprs — n{Sas scoer — Scp saper} (FF
(1= p¢) {Zas " scper — Scp PF saper + (eca Hpper + epp Hoapr) (PF},

implies with the gauge conditions and the d,-equations
2
6uSCD+E€(COGD)1SOI = (5.11)

2T¢poo So1 + 1 Xep soorr (78 — (1= 1€) {Sep PF soopr — epo Hoorr CFF Y
Finally we have the identity

2DFF Hppap = —4 SK(BGH RK A) EG pH 4B p KL oy D sap ™ (5.12)
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4p EF _H 2° EF H
= ¢ SH(ABE Yo" - A=zu? Y*" sgpaBr CE)

+1 —MMC {2Hguap (" —2H" prap ™},

where the right hand side is a linear function of the zero quantities. The gauge conditions
and the equations Hoapc = 0, Higoo = 0 imply for the left hand side

1

1
DY Hgpap = 0, HllAB‘f’a {Hi1aB + Hiroa ep) "} —(2u

8U—|—é“ 018Za) HioaB (5.13)

—2T0100 H114B —T'0104 H110B — L0108 H1104 +T0114 H100B +To118 H1004 +T'1100 H104B-

Equations (£1), &), @3), @I0), @&II), and equation (EI2) with (EI3) observed

on the left hand side provide the system of subsidiary equations. Note that the right hand
side of this system is a linear function of the zero quantities. It implies with Lemma Ea
that all zero quantities vanish on S. m

If the series considered in Lemma Bl are absolutely convergent it thus follows from
Lemma that they define in fact a solution to the complete set of static conformal
vacuum field equations on S.

6 Convergence of the formal expansion
Let there be given a given sequence

D’ﬂ = {Q/JAngAlBl7 Q/JASBSAQBQA1317 ¢A4B4A383A232A1817 . '}7

of totally symmetric spinors as in Lemma Bl and set in the expansion [EIH) of s (u,v)

* * * .
D(A1B1 DAmBm SABCD)(Z) = 7/}AlBl...AmBmABCD7 m > 0.

Observing the estimates ([BITl), one finds as a necessary condition for the function sg on
Wo to determine an analytic solution to the conformal static vacuum field equations that
its non-vanishing Taylor coeflicients at the point O satisfy estimates of the form

2 4
|07 0 s0(O)] = m! n! |t n| < < mn—l— )m!n!Mrlm, m>0, 0<n<2m+4.
(6.1)

A slightly different type of estimate will be more convenient for us.

Lemma 6.1 For given pg € R, 0 < po < €2, there exist positive constants g, ¢y so that
(&) implies estimates of the form

| | o 1
min: P
0 "0 m >0

m 3 <

0<n<2m+4. (6.2)
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PROOF. With 7o = 4eSr7" pg® and ¢g = 16 M e® py*, the estimate 1 < (") <

22+ which follows from the binomial law (1 4 z)?"+4 = S22+ (*"*%) 2", and the
estimate e” > 1 + x, which holds for x > 0, we get

<2m+4

2m+4—n
" )

—m —1\m o —pn po

) min! Mry™ <16 Mm!n! (417)™ = com!n! ﬁ (67?)2 (6_2
g o

(1+m)? (1+n)?’

< com!n! m>0, 0<n<2m+4.

]
The following Lemma provides our main estimates.

Lemma 6.2 Suppose sop = so(u,v) is a holomorphic function defined on some open neigh-
bourhood U of O = {u = 0,v=0,w =0} in Wy = {w = 0} which has an expansion of the

form
oo 2m—+4

SO(uav) = Z Z 1Z)ﬂ’b,n um vna
m=0 n=0
so that its Taylor coefficients at the point O satisfy estimates of the type {GA) with some
positive constants ¢, ro, and po < 1/2. Then there exist positive constantsr > rg, p, Cea s
Ch s pop? CCs CCis Cs5 Cl SO that the expansion coefficients determined from so in Lemma [l
satisfy for m,n,p=20,1,2,...

™ (m + p)! p™ n!
(m+1)%(n+1)? (p+ 1)*

07" 7 8, 51(0)] < (6.3)

and

TPl (m 4 p)! p" !
a0y dF f(O)] < )
|u v wf( )l—cf(m+1)2(n+1)2(p+1)2

where f stands for any of the functions é% g, IaBep, ¢, G, 8.

Remark 6.3 Observing the v-finite expansion types discussed in Lemma L3, we can re-
place the right hand sides in the estimates above by zero if n is large enough relative to m.
This will not be pointed out at each step and for convenience the estimates will be written
as above. The expansion types obtained in Lemma [Z4 will become important and will be
observed, however, when we derive the estimates.

We shall make use of arguments discussed in [24]. The following four Lemmas are
essentially given in that article.

Lemma 6.4 For any non-negative integer n there is a positive constant C' independent
of n so that

- 1 1
l;)(k—i—l)?(n—k—i—l)? RCESEA
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PROOF. Denoting by [n/2] the largest integer < n/2, we get with C' = >"72 (%)2

k+
n 1 [n/2] 9
<
SR S L
[n/2] 9 1

< kg Gr 22 w12 = mre

]
In the following C will always denote the constant above.

Lemma 6.5 For any integers m, n, k, j withO <k <m, and 0 < j <n resp. 0 <j <

R0 - O

PrOOF. This follows by induction, using the general formula ("j‘l) = (?) + ( jfl),
or by expanding (x + y)™*" = (z + y)™ (z + y)", using the binomial law (z + y)? =
P o(P)aiyr=i. m
J=0 \j
If f is holomorphic on the polydisk P = {(u,v,w,) € C3| |u| < 1/r1,|v| < 1/rq, |w| <
1/rs}, with some 71, 79,73 > 0, one has the Cauchy estimates

|0 0y 92 f(O)| < ri* vy 8 m! nl p! sup|f], m,n,p=0,1,2,... (6.5)
P
where O denotes the origin uw = 0, v =0, w = 0. We need a slight modification of this.
Lemma 6.6 If f is holomorphic near O, there exist positive constants c, ro, po so that

™ (m 4 p)! p" n!
0, 0y OF f(O)] <
|u v wf( )|—C(m+1)2(n+1)2(p+1)25

m,n,p=0,1,2,...

for anyr >rg, p > po. If in addition f(0,v,0) =0, the constants can be chosen such that

m qn ,r.m-l-p—l (m+p)'p"n'
|au au 85f(0)| Sc(m—f—l)?(n—i—l)?(p—i-l)?’ m,n,p=0,1,2,...
for anyr =ro, p= po.

PRrROOF. Choosing an estimate of the type @X) with r1 = r3 and setting ¢ =

a supp | f[, ro = e2ry =e?rs, po = €2 ry with some o > 0, one gets from E3)

g P (m + p)! pi n!

omon o 0)| < —1,.m+p I o" —2(m+n+p)< -1 .
|0y 05 03, f(O)] < ca™"rg ™" (m+p)lpgnle sca (m+1)2(n+1)2(p+1)2
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With a = 1 the monotonicity of x — x?, ¢ > 0, z > 0 implies the first estimate. With
a = 1o the estimate above implies

ra P (m 4 p)! !
o, a0y ob f(O)] < 0 0 .
10 95 9 1 )|_C(m+1)2(n—|—1)2(p+1)2

If £(0,v,0) =0, then 8297 8 f(O) =0 for n € Ny and the last relation remains true for
m-+p=20,1ie. m=0and p =0, if rg and py are replaced by r > rg and p > po. If
m + p > 0 the result follows as above. ®m

Lemma 6.7 Let m, n, p be non-negative integers and f;, i = 1,..., N, be smooth complex
valued functions of u, v, w on some neighbourhood U of O whose derivatives satisfy on U
(resp. at a given point p € U) estimates of the form

pIHl+a (G +1) !pk k!
G+1)2(k+1)2(1+1)2

|03, 05 0., fil < ¢ Jor 0<j<m, 0<k<n, 0<I<p,

with some positive constants c;, v, p and some fized integers q; (independent of j, k,l).

Then one has on U (resp. at p) the estimates

pmtptat...tan (m + p) !pn n!
(m+1)>(n+1)*(p+1)?

0 Ar AP (fr-...- fan)] <C3WN=D e ey (6.6)

Remark 6.8 (i) Lemma [0_] remains obviously true if m, n, p are replaced in (E4) by
imtegersm/, n', p' with 0 <m/ <m,0<n’"<n,0<p <p.

(ii) By the argument given below the factor C*N=1 in [GA) can be replaced by
CG=)(N=1) if r of the integers m, n, p vanish.

PROOF. We prove the case N = 2. The general case then follows with the first of
Remarks by an induction argument. With the estimates above and Lemmas (@2l and

X)) we get on U (resp. at p)

n

m P
CACEAUSDIED DI (7;‘) (Z) (fj) 03 0% 0L, |0 oy an o

7=0 k=0 =0

o= =m0 [P\ eIt (G D) Rk e rmeiteelte (o — g — 1) R (n — k)
SZZZ<])<I€ (l)(j+1)2(k+1)2(l+1)2 m—j+1)2Mn—-k+1)2(p-1+1)

& (7)) c1crM POt (m 4 p) "
22>

() G2+ 2@+ (m—j+ D2 (n—k+ )Z(p— 1+ 1)

PPt (m 4 p)lptin

< B )
SO T T 1R (p 1 1

We are now able to proof our main estimates.
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Proof of Lemma The proof will essentially be given by induction with respect
to m and p, following the procedure which led to Lemma Bl It is easy to see that the
constants can be chosen to satisfy the estimates at lowest order. Leaving the choice of
the constants open, we will derive from the induction hypothesis for the derivatives of the
next order estimates of the form

™ (m + p)! p™ n! A
(m+1)2(n+1)2(p+1)2 "

o ar 9%, 51.(0)] < e

TPl (m 4 p)! p™ !
(m+12m+1)2p+1)2 "7

with certain constants A, , Ay which depend on m, n, p and the constants cg, cs, 7,
and p. Sometimes superscripts will indicate to which order of differentiability particular
constants Ay, , Ay refer. Occasionally we will have to make assumptions on r to proceed
with the induction step. We shall collect these conditions and the constants A, , A¢, or
estimates for them, and at the end it will be shown that the constants ¢y, c¢, r, and p can
be adjusted so that all conditions are satisfied and A,, <1, Ay < 1. This will complete
the induction proof.

In the following it is understood that as above a function in a modulus sign is evaluated
at the origin O. The symbol x will stand for any of the fields

10" 0, 07, f(O)| < ¢

e aB, 'aBcep, ¢ o, C1, (2, 8, 51, S2, 53, S4.

For the quantities which are known to vanish at I the estimates are correct for m = 0,
p = 0. Since we consider § as an unknown and s(0) = —2 as part of the equations, we
thus only need to discuss the si. They are given on I by

4—k)!
Sk = (47') 85 S0-
It thus follows by our assumptions
4—Fk)!
I L
_ ntk (o, | n
- (44!k)! co p(n+]§+41r)k2)v for n<A—k . P nl Am=0.p=0
- 0 for n>4—k (n+1)2 " 7
with
AP=Op=0 = 20 ey < Ok
k ck )
because

o (k) (ma1)?
hin = <44!’€>! ( :!k): <,§+Zi)1>2 for n<4-k |
’ 0 for n>4—k <

We should study now under which conditions on the constants it can be shown by
induction with respect to m that the quantities |97 97 99 x|, n € Ny, satisfy the estimates
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given in the Lemma. We shall skip the details of this step, because the arguments used
here are similar to those used to discuss the quantities |9]* 9 0% x| for general p and the
requirements obtained in that case are in fact stronger that those obtained for p = 0.

It will be assumed now that p > 1, that the estimates for |0 9 O, x| given in the
Lemma hold true for m,n € Ny, 0 <1 < p—1, and try to determine conditions so that
the induction step p — 1 — p can be performed.

By taking formal derivatives of the equation
0 = Ho100 + H1o00,
we get with our assumptions
0 012 O, 0] < |0 01 OB o] + 1017 01 01 (61 11 01 o)
+]0m or 9P~ (6% 11 0, s0)| + 4 0™ O oP (T1101 50 + L1100 1)

{s0¢2+251C —3520})|-

0O O (=

For the first term on the right hand side follows immediately
r™FP (m + p)! p™ n!

om+l gn gp-1 < .
| u v Yw 52| > C2 (m+2)2(n+ 1)2p2

A slight variation of the calculations in the proof Lemma gives

07 9 95~ (' 11 0w s0)| <

m n p—1
S (M) () (7 enot ot oot or -l <

WA G (T) (p;l) Cel 4 Co ’I”m-"_p_1 (m +p) !pnn!
ZZ G+1)2(k+1)20+12(m—7+2)2Mn—-k+1)2(p—1)2

rmtP=L (m 4+ p) ! pnn!
(m+2)2(n+1)2p? °
where the sum over j has been extended in the last step to m + 1.
Similarly one gets

< C3ca 1 Co

|00 0y 0571 (€% 119y 50)| <

m n p—1
S (M) () (7)ot o et ullorior ol <

J

Zm: Zn: “ e Cezyy o™ P2 (mtp—1)!p" T (n41)!

Y (I G DRk DR+ 12 (m— T 02 (0~ kv 22 (p 0P ~

rmtP=2 (m4p—1)1p"  (n+1)!

C3ec;
ce (m+1)2 (n+2)2p? ’

11 €0
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where the sum over £ has been extended in the last step to n + 1.

We emphasis here again an observation which is important for us. By Lemma the
terms 07 9% 0!, €211 and 97 9n k1 9r—1=1 5 in the second line vanish if k& > 2j+1 and
n—k+1>2(m—j)+ 4 respectively. This implies, consistent with Lemma B2 that the
term on the left hand side vanishes if n > 2m + 4. When we estimate the expression in

the last line above we can thus assume without error that n < 2m + 4.
Lemma implies immediately

PP 2 (m4p—1)1p"n

4 |87T 8{;’ 85)71 (f1101 S0 —|—f‘1100 51)| < 403 (CO Cflwl +Cl Cflloo)

- (m+1)2(n+1)2p?

and, observing that (O) = 0,

1007 0 (—

R {s0C2+251¢1 —35200})]
Z |0 o 98 (€)' {s0 2 + 281G — 35260 })]
1=0

o PP =l=2 (i L 1)1y
<p Yy pt CPUY (coee, +2e1e, +3eacq,) i o g

1=0 (m+1)?(n +1)p?

rmIP=2 (m4p—1)!p"n!
(m+1)?(n+1)%p?

- ”%03 (coce, +2c1eq, +3cacq,)

)

where it is assumed that
r > pcc O3
Together this gives
P (m + p)! p" !
(7T 27+ 12
rmtP=l(m 4 p)lptn!
(m+2)2(n+1)2p2
e 1)1 (4 )!
(m+1)2(n+2)2p
rmIP2 (m4p—1)!p"n!
(m+1)2(n+1)2p?
rmtP=2 (m4p—1)!1p"n!
(m+1)2(n+1)2p2

|05 Oy AP so| < ca

3
+C%cer, o

+C%¢s2 | ¢

11

3
+4C (CO Cf‘uol +a CfllUU)

_r
_ peC?
1 r

+ C®(coce, +2c1cc, +3eace,)

< PP (m4p)lptal
C 3
=0 m 1) (n+ 1)2(p+ 1)2

with a factor
(m+1)2(p+1)2 1

% C2 3
A == ~C°cs
ey (m+2)2 p? + r cet

(m+1)%2(p+1)?
H 2R
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L pM+U3@+U2+ﬁiﬁ@A La, (p+1)°

T_2 Ce2 1y (n + 2)2 p2 (m + p) r2 T1101 o Fuoo) p2 (m + p)
1 H €1 C2 (p+1)?
Bal U S 2 — 3= _
T e (cc, + o a3 qu)pg )

Recalling that we can assume n < 2m + 4 in the third term on the right hand side, this
finally gives

20 p 16

* e 4 3 3 3 c1
As[) <4 a + ; C? ca Lt —T2 C” cp2 Lt ’I“_2 C (cf‘nm + a cfuoo)
1 4 3 c1 C2
+r—2wc (CC2+2ECC1+3ECC0)'
We have the relations
4 —k)!
sk:( 1 ) 8550 on Uy,

the equation 0 = Hg109 + H1p0o reduces to

Owso =0y 82 +3us2¢p on Uy,
and we have seen that
8U Co =0 on Uo.
This implies for p > 1 the estimates

_ |
b ap sl < CTEE (ol ot o sol 4 310 0 9 (52 o))

— rP pl n+k n |
< { Ot e e for n<d—k }

0 for n>4—k

L3S S () |on R oL sol |05 ol for n<2—k
0 for n>2-k

S Y R
= (n+ 1)2(p+ 1)2 Sk )
with
_ C 3 CoC c 192 o
Am=0p21 2 2 g 3 0@ ey 12 6020
Ck r Ck Ck, r Ck
because

3

(4—k)! (n+k)! (nJrl)2 (;oJrl)2
0 for n>4—-k

4! n! (n+k+1)24p? for n < 4 —k } < )

— n I'(n 2 2
Jhen = (44!k)! ( tf!)(|7§+2-1+)1)52§1) for m<2-k | _,
1 0 for n>2—-k -
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From the equation 31199 = 0, which reads

OwC=-24+5 on Uy,

follows |
. prnl m—op=1
9% 0" 0y Co| = |07 (—2 =24) < —_ P
| u “v <0| | v( +S)| 0 > C¢ (7’L+1)2 Co
with
0. 2
m=0,p=1 _
AC0 =
Co
Furthermore, for p > 2,
P=1(p—1)! p" n! P pl p™ n! —
808" AP (ol = |97 OPL 5| = s <o PP ym=0p>2
| u Yv w<0| | v Yw S| ¢ (7’L+1)2p2 > G (n+1)2(p+1)2 Co s
with
N 2
Am0r=2 _ le +31) 2o
0 T Cg D r Cg
The equation S1; = 0, which reads
Ows=—54G on U,
implies
R P n!
Oy, 5 =0< c; —,
| u Fv S| >C (n+1)2
and for p > 2
-2 — 1! pnl
0 9n gp & — (90 gn gp—1 2 P2 (p—1D!p"nl
07 9481 = 19597 04 (3460l < Ceaee, Bl
< e ! plp™ m=0,p>2
T 1)2(p+1)2 0 ’
with )
AT=0P22 _ 1oecac +31) <2l
r Cs p r Cs

Having studied the quantities |07 97 9 x| for m = 0, we shall now derive the condi-
tions which arise from the requirement that we can obtain the desired estimates for these
quantities inductively for all positive integers m. We shall provide detailed arguments only
for some representative d,,-equations and just state the analogues results for the remaining
equations.

Multiplication of the equation

1 - ~
A2 2 A2
O0u€” 01 + L= Lo100 + 20100 €7 01,
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with u and formal differentiation gives with Lemma form>1

|0 0 O, €% 1] < (|0 05 08, Toroo| + 2m |05~ 05 9%, (To100 €% 01)])

m+1

1 TPl (m 4 p)! p™ n!
= e
“m41 \ [ Towo (m4+1)2(n+1)2(p+1)2

P (m + p)! p" nl m>1

m+p—3 —D!p"n!
+2mC? r (m +p )'p n)

01 Tor00 47,2 (n+1)2(p+1)2

S R D D (1R e
with
A?;Zl _ o100 1 + i c3 cp 2 (m + 1) )
€% 01 Coz oy M+ 1 r2 0100 4 (m + p)

Proceeding in a similar way with the equations for the other frame coefficients one gets
for the factors which need to be controlled the estimates

Cr 4 Cr 8 Cr: Cg2
> e
Ain_l < Loioo 4+ = C3 e Atnzl < L1100 + = c3 T'1100 €01
ez, = 2 To100° 2, = 2 ’
o1 2ce2 r 0100 11 Ce2 T Ce2
01 11 11
Am21 < é ‘o101 i 3 .. Am21 < § ‘Ta é c3 P10 Ceds
él = 2 CF 9 él = + 2 .
01 T Cal r 0100 11 T Cpl r Cpt
01 11 11

The same inequalities, with C? replaced by C?, are obtained in the case p = 0. In the last
two inequalities the occurence of 1/r in both terms reflects the fact that é}; and é1, are
both of the order O(u?) near O.

Multiplication of the equation
. 2 4 ~o 1
Oy To100 + - To100 = 25100 + 5 50,

with v and formal differentiation gives for m > 1

~ m — n r~ 1 m— n
|0, 9y 0% T'o100] < oy 2(2 |00 9P To100| + 3 |01y O%, s0l)
2m 08 2 rmP=3 (m+p— 1) p ! L™ r P (m 4 p — 1)l p" !
- c2 C
“m+2 To100 m2 (n + 1)2 (p + 1)2 2 (m + 2) 0 m?2 (TL + 1)2 (p + 1)2
P (m )l ptnl s

< cn X
= oo (m + 1)2 (n + 1)2 (p + 1)2 To100’
with

m>1 _ 1 3 2(m+1)° o (m +1)?
A= == C Cp '
Lo100 r2 0100 9 (m +2) (m+p) Co100 2m (m +2) (m + p)

Proceeding in a similar way with the equations for the other connection coefficients one
gets for the factors which need to be controlled the estimates

Ale < Co . Am21 < C1
To100 — cp To100’ Toio1 —
0100

4 4
+ = C%¢ + = C%¢cp
r2 Ce r2 To100
T
0101
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> C2 4 > 2C1 4
ATt < +—=C% AT < + = C%c
To111 ce 2 To100 T1100 Ce r2 To100
To111 1100
A(nzl < 4y + § o3 1100 Toro1 A(nzl < des + é o 1100 “Pors
Citor = cp r2 Cr ’ Ti111 = ea r2 C= ’
Ti101 Ti101 Ti111 Ti111

The same inequalities, with C® replaced by C?, are obtained in the case p = 0. Being
slightly more generous, one gets inequalities which can be written in the concise form

CA+B +i C3 m>1 < 4CA+B+1 +§ 03 1100 To1an A,B =0,1,

>1
AT < _ :

Ca "
ToiaB — 2 Lo100’ TiiaB —

CfOIAB CfllAB

CfllAB
where the cayp, caypy1 denote for suitable numerical values of the indices A, B the
constants co, ..., cs.

The analogous discussion of the equations
3u< = CO)

A Go = —C (1 = p1¢) s0,
Ou G = —C(1—pnq) s,
OuGa=—2+35—((1—pq)ss,
Ou s — (1= 1 ¢) (50 11 — 251 Co1 + 82 Coo),

does not require new considerations. For the factors which need to be controlled we get
the estimates
AmM=1p20 é o

¢ e’
ciee 4 ¢ €O Cg
9% Dot 2

4 Co C 4 Co 02 4
m>1,p>0 < Cg 0 C¢ } CG C, 1g>1,p>0 < C3
1 C¢ L C¢

Co ¢o

C¢o

G2 4 ( cs 3c2cC 4 6 €2 i
d(es 4 o832y 4, 06 2% otherwise
p= (042 e ) 2z M e

2
i—k%(%—l—cgﬂ)—kéucﬁ% for m=1,n=0,p=0,

4 4 cocC cic cac

AT < (= CF 4 5 pCO ) (2 42 8 2,
r r Cs Cs Cs

We consider the d,-equations for the curvature component s;. Multiplication with 2«

gives
2u 0y, 51 +451 =0, 80+ 2qué! 010480 + 2ué20181,50

N N 4
—8u (o101 S0 — L0100 $1) — © LT L {s0¢1 —s1¢o},

(1—pQ)

which implies for m > 1

1
o o ok, 51| < ——— |9 ont on
|u v w51|—2m+4|u v w50|
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2m

g (001 05 04 (61 01 Duso)| + 10771 9 07, (¢ 01 0 50))

im . . 1
+— (29 oror (T so— I s1)| + plom=tor or s0C1— s .
2m+4< 10, 03 0, (Lo101 s0 — Lotoo s1)| + p [0, 9] w{l—uC(OCI 160)}
The terms arising here are estimated in a similar way as the terms in the curvature equation
above. Again the expansion types allows one assumed that 0 <n <2m+4 — k. Again r
is restricted to values with

r> ucCC’g.

Proceeding similarly with the other 0,-equations for the curvature, the following estimates
are obtained for the factors which need to be controlled.

m>1 Co 1 3 C() 3 C 3
A Sap—i—;c o Cel, —|——C 1cA2 —i— C (c_lcF°101+ Chyion)

1 5 4 co
+T_20 1_ #CCCS( CC1+CC0)
T
Amzt <2 +1036_10A +%030—16A —I—iC’B(C—OcA 1283 43¢ )
52T o P T Co e r2 Co e r2 ¢y Foim ¢y Foto1 To100
1 5 2p co
t5C w( C<2+2 C<1+3C<o)
T
m>1 Co 1 3 C2 3 C 3 R
ASS <gp+;0 ECAI +_C 36A2 +_C(30Fo111+cr‘0100)
1 5 4 a1
+T_QC 71 1o CF ( ce, + C(O)
Am21<03 +10363 +8p0303 +403(362A +2CSA L )
53 - a P ; a Céfl?l T_2 a Cégl T_2 o CF0111 a CF0101 CFOlOO
1 2n &)
2 31 Hcgcs(3c_CC2+2_cC1+CCo)

This gives all the needed information.

To arrange now the constants so that the induction argument can successfully carried
out, we proceed as follows. The estimates for the decisive factors which have been obtained
above are of the general form

1
A<a+ - ﬁ+ 27

with «, 8, and v depending on all the constants except r. If 8 = 0 and v = 0 it suffices to
ensure o < 1. In the other cases we require o < a where a is a given constant, a < 1, and
then choose r large enough so that A < 1. A first set of conditions arising this way reads
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Ck Co C2 C2
p<a, —p°<1, —=p"<a, 4—<a.
Ck+1 Ck Ck Co

These conditions can be satisfied simultaneously. The first equation implies ¢ > (p/a)* co.
With p
k x

Cr = (5) Co,

where 0 < p, a < 1, the first two relations hold true, the forth relation implies p? < a®/4
and with this restriction the third relation holds as well. We choose

p=po, a=4p)">

The conditions

2 8
- S 17 - S a,
C¢o C¢o
are met by setting
Ceo = 2, Cey = —
The conditions 4
c c
ﬂga, ﬂga’ A B=0,1,
CfOlAB CfllAB
are then dealt with by setting
1 1
Toran = E CA+B; Priap = E C1+A+B-
The conditions R
To100 < P00 <a
— —_ )
cegl Cé?l
are satisfied by setting
1 1
Cégl = E Cfoloo’ cé%l = E Cflloo'

After this we choose some positive constants
A1 A1
€o1> €115 C¢ GGy Cae

That these constants are not further restricted by the procedure reflects the fact that the
corresponding functions vanish to higher order at O. Their choice affects, however, the
value of the constant r. After all constants except r have been fixed we can choose 7 so
large that

r > max{rg, pec C*},

and that all the A’s are < 1. This finishes the induction proof. [J

The following statement of the convergence result, obtained by using the v-finite ex-
pansion types of the various functions, emphasizes the role of v as an angular coordinate.
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Lemma 6.9 The estimates (3) and [0-4) for the derivatives of the functions si and f
and the expansion types giwen in Lemma BED imply that the associated Taylor series are
absolutely convergent in the domain |v| < a%w lu] + Jw] < 0‘72, for any real number «,
0 < a < 1. It follows that the formal expansion determined in Lemma[Bl defines indeed a
(unique) holomorphic solution to the conformal static vacuum field equations which induces

the datum sg on Wy.
PROOF. The estimates (B3] and Ed) imply

cp (r/a®)™ P (m+p) (ap)™n! 4 4 -
m an Qp < +2m+42p—n
19700 9% 5+ (O) < o T T TP nr 12 ot 12

ek (r/a®)™ P (m +p)! (ap)" n!
@ (mA D2 (n+ D2 (p+ 1)2

<

for n<2m+4—-k, m,p=0,1,2,...

2\m+p—1 | n o
|a;n a;z ag} f(0)| S ka,Q (r/a ) . (m—i_f) (ap)2 n: akf+2m+2p—n
aks (m+1)2?n+1)2(p+1)
s (r/a®)™ P (m +p)! (ap)" 0!
aki=2  (m+1)2(n+1)2(p+1)2
Since the other derivatives vanish because of the respective expansion types, the first

assertion is an immediate consequence of the majorizations (BIH), @BIG). The second
assertion then follows with Lemma ]

<

for n<2m+ky, mp=0,1,2,....

7 Analyticity at space-like infinity

Due to our singular gauge the holomorphic solution of the conformal static field equations
obtained in Lemma B9 does not cover a full neighbourhood of the point 7. To analyse the
situation we study the part of the solution which we have obtained by the convergence
proof in terms of a normal frame based on the frame cap at i and associated normal
coordinates. We write the geodesic equation Dz = 0 for z%(s) = (u(s), v, (s),w(s)) in the
form

2 =m"P e p =mP (el + &p),
mAB — _2 mCDI\CD (A B mB)E — _2 mCDFE‘D (A B mB)E _ 2mCD1'\CD (A B ,',’,LB)E7

With the explicit expressions for the singular parts, the system takes the form

= m®+mABél m® = —2mCPTop © pmOE,
b= - mOl 4 mAB &2 5, 0l — _% m® m® — 2mCPl oy © pmVB.
W =mll, it = —Z 00t 9P Lt gl B
u
These equations have to be solved with the initial conditions
uls=0 =0, wls=0 =0, (7.1)
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for the curves to start at . An arbitrary value
v = Vls=o0, (7.2)

can be prescribed to determine the d,-0,,-plane over ¢ in which the tangent vector is lying,
and an arbitrary choice of

mAB|s:0:m643:méBeeroB—l—méBelAelB, g # 0,
can be prescribed to specify the tangent vector in the 0,-0,-plane. Regularity and the
equations require

mY’ = ils=o = o, mY =0, my' = w|s=0 = tyo. (7.3)

If the frame e p at a point of I is identified with its projection into T;S., then

— mAB &€ A

myBeap A(vo) P p(vo) cop = m*™ P cap,

holds at 7 with

m*0 = o, m*0l = Uo Vo, m*t = i ’Ug + o, ug # 0.

For arbitrarily given m*48 € C3 with m**° £ 0 this relation determines g, vo, o
uniquely. Using cap = a® ap ca, the tangent vectors can be written m*AB e g = 2%¢,
with

1 i
ot = — (Wt (vi=1)ug), z°=— (o+Wi+1)1g), z°=V2uvou o £ 0, (7.4
ﬁ(O(o)O) \/5(0(0)0) 0 to 0#0, (7.4)

or, equivalently,

xl +ix? x3 . Sap 2 b

a a 1 - 2
o vo (@ )Z—ma o (x )Zma izt #0.
(7.5)
The vectors x%c, cover all directions at ¢ except those tangent to the complex null hyper-
plane (c1 +ic2)t = {a(cy +ica) +bes| a,b € C}.

To determine the normal frame centered at i and based on the frame cap at i, we
write the equation D;cap = 0 for the normal frame as an equation for the transformation
thpg € SL(2,C), which relates the frame esp to the normal frame cap = tC AtP gecn.
The resulting equation

’llo(xa) = —

d
0= E(tcAtD B) +m oy P prt? 4t p,

can be written in the form 4 5 = —mPET 4 o tC 5. Taking into account the structure
of the connection coefficients, this gives

. 1 A
tAB:—am(nelAtOB—mDEFDEActCB. (76)
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This equation has to be solved along z(s) with the initial condition
t* ls=o = 5™ B(—v0). (7.7)

The initial value problems above make sense because the functions é* 4 and r ABCD
are, by Lemma B9, holomorphic near the point u = 0, v = vy, w = 0 for any prescribed
value of vg. The singularity of the system at that particular point requires, however, some
attention.

We prepare the statement and the proof of the existence result, to be given in Lemma
[C2A by casting the system of ODE’s into a suitable form. It will be convenient to make
use of the replacements resp. change of notation

v — Vg + 0, mAB

— mi P + mAB, (7.8)
so that all unknowns vanish at s = 0. Furthermore, by setting

é%B(ua v, ’U}) = é%B(u7UO + v, ’U}), f‘ABCD(ua v, ’U}) = f‘ABCD(ua’UO + an)a

we define functions €%z, r Apcp of the new unknowns which are holomorphic near u =
v = w = 0. The regular equations read with this notation

11

)

Vo 251 51 1, 51
0 = 1g +m g é1y + 265 m™ +élym

w:wo—lel,

m% = -2 {110 o L1101 + o (2To101 M + Tr1o1 m'h) + g (T1101 m® + y111 mh)

= 00, 01 = 01, 01 , T 00, 11 , T 01, 11
+2I'gi01m ™ m”" +2lgi1im™ m™ +Tiioom™ m ™ +Tiinam™ m }

The singular equations take the form

. 01 ) =2 01, 52 . 11
ub=m" +u(woé4yp+2é;m  +é;m ")
. 01 .01 00, 01 S 9
um = —Uupm —m - m —l—u{uo wWo FllOO — Wy F1111
. = 01, T 11 - 00 = 01 = 11
+io (2T0100m™ + Tr100m ") + o (F'1100 m™ — 20111 m” — 2T 111m™)

= 00 01 = 0111 , T 00 11 7 11, 11
+2T0100m " m~ —2To11im” m~ +Tiepom m™ —Tinim m },

umtt = —2m MmOt +2u {w% f‘1101 + Wy (2 f0101 mOt + fllOO mOt +2 f‘1101 mll)

= 01, 01 = 01, 11 , T 01, 11 , T 11, 11
+2T0100m m™ +2T0100m™ m™~ +Toigom™ m ~ +Tii01m }
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Finally, equation (Z8) reads

. 1 A A A
tAB = ——mm €1 AtOB — (2m01 FOl AC +u';0F11 AC —|—m11F11 Ac)tCB. (79)
u
After applying 9, resp. 92 to the geodesic equations and restricting all equations to

s = 0 one obtains with the initial conditions (1), (Z2), [C3)) the relations
Blsmo =0, m*P|smg =0, iils—0 =0, (7.10)
and, by taking a further derivative,
O2u(0) = i iy {0211 - 20, qul}u:Om:UW:O .

This gives with the J,-equations

5§U(0) =—4 U% W (52)u:O,v:v0,w:O = —%Ug o (aSSO)uZO,'U:'UO,w:Ou (711)
which can be determined from the null data.

Because of LemmalE3 and the behaviour (), [E13) of the metric and the connection
coeflicients, which follows from the 9,-equations, there exist functions f, g, h, k, [ which
are holomorphic on a polycylinder P.r = {z € C%| |z;| < €’} with some ¢ > 0 so that the
equations above can be written

= do+m" +u’f, (7.12)
uv = mo +u?yg, (7.13)
W= g+ m', (7.14)
m® = wuh, (7.15)
um® = —iagm® —mOm 4 u?k, (7.16)
um = —2m"m 4421, (7.17)

with f, g, h, k, | depending on the C®-valued function z(s) comprising our unknowns in
the form

2(s) = (27(5))j=1...6 = (u(s), v(s), w(s), m™(s), m*'(s), m''(s)),

(which agrees after the replacement v — v —wvg in the first 3 components with the notation
introduced earlier).

If F stands for any of the functions f, g, h, k, [, then it has on P, an absolutely
convergent expansion

at 27 = 0, where again the multi-index notation is used. If 0 < € < €/, there exists thus an
M > 0 so that

sup Y |Fal[z%] < M.

z€Pe 7
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Lemma 7.1 Let p > 0 be an integer and ¢ and t real numbers which satisfy with the

constant C' of Lemma

SE

1> max {1, <51, (7.18)
€

If the derivatives of the functions z7(s) at s = 0 ewist and statisfy the estimates

th=1 L

I <e—T0) k=1,...,6 k<
|SZ|—c(k+1)27 ) ) ) —p7
then
O F(2(8))]smo < ¢ 2
9 B CE Ve
If, in addition, u satisfies u(0) = 0, u(0) = 4o and
th=2 k|
ak s= < 7, 4\0 2 < k < 9
| su(8)|70—c(k+1)2 SRESP

then

) tr~lpl 5 , P72l
02 P(5)) oo < fin] e 5 +02C T

for p > 1, where the second term on the right hand side is to be dropped if p < 2, and
tP—2 p! -3
(p—1)?

for p > 2, where the second term on the right hand side is to be dropped if p < 3 and the
third term is to be dropped if p < 4.

pl g, tPp!
+4 Ci—l— C ,
ol ¢ C oy + &

|02 (u® F(2(5)))]s=0 < 2 10]* ¢

In the following a function in the modulus sign has argument s = 0.

PRrOOF. Observing Lemma B and the subsequent remark, one gets

tp—lal )
rF(z) < S (Fallor=0 < Y |Fal et el T

1)2
jal<p jal<p (1)
1 c tPp! M tPp! tPpl
< — |Fy | (C ) PR AN S RPN AR P ,
cC et t (p+1)2 7~ cC  (p+1)2 (p+1)?

by the choice of ¢ and ¢. With Lemma B4 this gives

08 (u F())| < plio] |90~ F(2)] 4 (j)wﬂuuap iF()

j=2
Pt & 2 () T (p—j)! trtpl P2 p!
<plig|c ————— —|— c c +ccC—,
< pliol Z() J+1) (p —J+1)2_|0| p? (p+1)?

J=
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and similarly

oz <3 (1) S () 102ulletuloz-tr o)

l
J

p
= () ol o2-2P 1+ 3 (7) 211l 21l 021 F )
=3

p -2
N .
= (1) X)) lezuliortulior e o)
=2 Jj=2
tr=2p! tP=3p! tP=4pl
<2l e—2 4 ajig| 2oL L pcr P
ol e Gy + 4ol C Gy CESIE

Lemma 7.2 The requirement that z(s) be a holomorphic solution of equations (7.13) -
(7I7) near s = 0 satisfying £(0) = 0 and Osu(0) = g # 0 determines a unique formal

expansion of z(s) at s = 0. There exist real constants ¢ and t satisfying

¢ > max {4 io|, 4 [twol, [@o[* | o] (95 50)u=0,0=vp,w=0l, %}, t > max {1, %},
(7.19)
with C' the constant of Lemmal[64] so that the Taylor coefficients of z(s) at s = 0 satisfy
the estimates
|aqzj|<cqu! =0,1,2 (7.20)
s e q=0,1,2,..., .

and the Taylor coefficients of u(s) at s = 0 satisfy in addition the estimates

t9(q +2)!

99 2u| < ¢ ,
1037 ul < (g+3)2

¢=0,1,2,.... (7.21)

It follows that for any given initial data g, vy, Wo with ug # 0 there exists a number
t = t(tg, vo, o) and a unique holomorphic solutions 27 (s) = 27 (s, 1y, vo, o) of the initial
value problem for the geodesic equations with initial data as described above which is defined
for |s| < 1/t. The functions 27 (s, g, vo, o) are in fact holomorphic functions of all four
variables in a certain domain.

PROOF. The existence of a unique formal expansion follows immediately by applying
oP for p = 1,2,3,... formally to equations [LIA) - (ZI7), restricting to s = 0, and
observing o # 0 and the initial data.

That the estimates [Z20) hold for ¢ = 0, 1 follows from the initial condition z(0) = 0,
the equations at s = 0 and our conditions on ¢ and ¢. That the estimates (ZZII) hold for
g = 0,1 follows from ([LI0), (ZII), and our conditions on ¢ and t.

Let p > 1 be an integer. We show that ¢ and ¢ can be chosen such that the estimates
C20), [ZZ1) for ¢ < p imply with the equations the corresponding estimates for p + 1.

o4



From equation ([ZIH) and Lemma [l (with the provisos given there not repeated here)
follows

P~ lpl P2 pl tP(p+1)!
ap+1 00| _ oP < 14 20 < A Y LV
077" m™| =108 (uh)| < [to| c 7ty SAwe T
with X 2 ' ( 2
1. plp+2 1 p! p+2 5. 2
Ao = = |to| = + =cC < —ug|+ = cC
00 t|0|p2 p+D! 277 (p+1)2 (p+1)!_t|0| £
Similarly one gets from (ZI2)
P (p+1)!
oP+2 4| <[9P MO0 4 9P+ (42 < A0 ¢ ——
o2l < o7 ]+ 021 1 )] < Apon 7 2

p—2 | p—3 | P |
P (p+1)! t (p—|—1).<A tP (p+2)!

Pt (p+1)!
+2 Jig|* ¢ ——— + 4 ig| 2 C ——— + 2 C? “ :
ol e — 3 ol p+2? " ° (p+2)2 (p+3)2
with
1' 2 2 2 4 2 1 2
(p+2)?2 (p+2)! ¢ pi(p+2) ¢ (p+2)3 3 (p+2)3
3 y 1 - L 9
< T lin](1 -+ 4fio]) + 75 ¢ C (144 iol) + 5 & 2,
and from ([ZT4)
tr~1ipl P 1!
Pt | = Pl < ¢ Bl < g, @Y
(p+1)2 (p+2)?
with
_1p+2? 2
YTt (p4+1)3 Tt

Applying 92! to equation [ZIH) and observing the initial conditions, gives at s = 0 for
p=>1

p+1
1\ 4
(p + 2) 1o OPF1mOt = _Z (p+ ) 89 1 O 201

FECIN
P 1
-2 (”. ) oL m 91 + 9 (u? k),
=1
whence
+1 . s )
|ap+1m01|<41 Ijz(?+1>c2 251 gt T(p+2—7)!
° ~ (p+2) ol J G+1)*  (+3-7)?

=2

P i—1 - —4 .
p+1> o VTGP (p+1—)! 1,2
+E _ ¢ — _ + 0P (ut K
j_1< j GriP pr2—gp %R
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1 1 1 tp—1 H!
<—CQCtp1(p+1)!{( + }+2|u0|cﬁ
p

= ol p+3)%  (p+2)? 2(p+2)
tP=2(p+1)! 1 tP=3 (p+1)! P (p+1)!

g0 - B2l W Ty ,
T Tl Y T N o

with

1 C 2)2 2 4c¢C 1 20?1
Am—;{c—(l (p+2) )+ 24| (p+ )} ¢ c

|0 (p+3)2 p? 2 p+2 T |io| p + 2
1 2cC+4|, | +2cC 2 C?
- — U —_—
=\ ol 0 2 Bl
Similarly we get from [ZI3)
O] € f (p+ 1) [0l (0727 v] + |05 m™ | + |05 (u? h)
b+ Dl | 2
1 ptl 1 t3=2 41 yptl-j Y|
< . Z<p+ )02 : J: (p+ ._])- +|3p+1m01|+|3p+1(u2h)|
~ (Dol |\ G+12  (p+3-7)
tP(p+1)!
T o(p+2)2?
with
A()l 1 QCO (p—|—2)2 2|’UJO| (p—|—2)2 4CO 1 6202 1

v =

(p+1)Jao|  t luo| (p+3)2 t pp+1) 2 p+1l Blugl p+1
<1{9|ﬂ|+2+£+i}+£{2+L}+&{L+L}
e U ol Jaol? J T 2 ol J 7 U] Jaol? S

and finally from ([ZI7)

p+1 P o .
it < e S (P e St g)!
° ~ (Dol |\ G+12  (p+3-7)?

P i1 - i .
1 t7 I P 1—9)! tP 1)!
+Z<P+ )02 J (p+ 7) F1OPT 2D S < Ay e (p+1)

PN G+1)? (p+2-j)? pr22

with

2 2
A< % {18|a0|+200} 2¢cC  2C

|t 2 3ol
From the estimates for the A’s it follows that given a choice of ¢ which satisfies the first of

the estimates (IJ), we can determine ¢ large enough such that the second of the estimates
([CT3) and the conditions

Au; A'L}vA’wvAOOvAOla All < 17
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are satisfied. With this choice the induction step can be carried out.

It follows immediately from estimates ([ZZ0) that the Taylor expansions of the func-
tions 2/ at s = 0, 27(s) = 307 z) s* with 2 = -, 0227(0), are absolutely convergent for
|s| < 1/t. _ _

The coefficients z) = z{,(uo, vo, Wp) depend on vy via the expansion coefficients of the
functions €%z, I'apcp. This implies a polynomial dependence of the zfo on vy due to

the v-finite expansion types of the functions €% 5, Iapcp. The explicit dependence of the
right hand sides of equations ([LI2) - ([ZID) on 1o and w alone would lead to a polynomial
dependence of the zg on 1o and wg. The occurence of the factors u on the left hand sides
of equations (LIH) - (CID) implies, however, that the zg are polynomials in g, vg, Wo
divided by certain powers of .

The number ¢ which restricts the domain of convergence ensured by our argument
depends via ¢ and M on vy, and via ¢ and the A’s on g, 1/%o and wy with the effect
that t — oo as @y — 0. It follows, however, from the form of the estimates ([Z2) and the
way they have been obtained that for (ug,vo, W) in a compactly embedded subset U of
(C\{0}) x C x C a common number ¢ can be determined so that the Taylor series will be
absolutely convergent for (s, 0, vo,wo) € Py/¢(0) x U.

If K is compact in P; /4(0) x U, there exists t' > t with K C P;;;/(0) x U and it follow
from (ZZ) that the sequence of holomorphic functions f; = 37" 2} s? on Py ;,(0) x U
satisfies

S > =t 1 c (t/t)n
J LI < E VWP < =
o =2l _p:an (p+1)2 (t’) 1 —t/t

—0 as n— oo,

so that the fJ converge uniformly to z/ on K. Standard results on compactly converging
sequences of holomorphic functions ([22]) then imply that the 27 = 27(s, dg, vo, W) are
holomorphic function of all four variables on Py ¢(0) x U. =

Lemma 7.3 Along the geodesic corresponding to s — 2z9(s, g, vo, o) equations (7.9)
have a unique holomorphic solution t* g(s) =t (s, 1o, vo, o) satisfying the initial con-
ditions [71). The functions A B(8, g, vo,wo) are holomorphic in all four variables in the
domain where the 2 (s, g, vo, o) are holomorphic.

PROOF. By the previous discussion we have m® = O(s?), u = O(s) with 7y # 0 so
that m® /u = O(s) as s — 0. It follows that equation (Z) is in fact a linear ODE with
holomorphic coefficients and the Lemma follows from standard ODE theory. m

For later use we note that (1), (ZJ) imply as an immediate consequence that

t714 p(s) = s p(vo) + O(|s]*) as s—0. (7.22)

To discuss the transformation to normal coordinates the notation employed before the
transition () will be used again, so that

s — 2%exp(sxcy)) = 2%(s, g, vo, Wo),
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denotes in the coordinates z! = u, 22 = v, 22 = w the geodesic which has at s = 0 the

tangent vector z%c, with x® = z%(1g, vo, o) at i. We note that by the discussion above
u(s, o, vo, o) = tio s+0(|s]*), v(s, 10, vo, o) = vo+O0(|s[?), w(s, o, vo, tho) = 1y s+O(|s*).
(7.23)

In terms of the map (ZH) the transformation of the normal coordinates x¢ centered
at ¢ and based on the frame c, at 7 into the coordinates z® is the given by

x® — 2%(x) = 2%(1,ho(x), vo(x), we(x)), (7.24)

for small enough |2%| with ! +i 22 # 0. The geodesics being given in normal coordinates
by the curves s — s, this implies

sx® — 21, ag(s x¢), vo(s %), o (s %)) = 2%(s, U (z), vo(x), wo (z°)).

We use the relation on the right hand side to derive a convenient expression for the map
[Z3). Observing that

io(s2%) = siig(2°), vo(s2%) = vo(a®), ig(sa®) = sin(a®), s€C,

by ([C3), we write % = sx% with s chosen so that 4o(z$) = 1, whence 4o(z°) = s, and get
with the relation above the map [ZZ24)) in the form

2(a%) = 2*(1, o (2°), vo(a%), tho(a®)) = 2° (s, to(22), vo (2, o (a))

_afr c c u'}o(xc)
= 2%(to(x%), 1, v9(z°), o))
With ([ZZ3)) this gives, as |z| = \/0ap ¢ 2> — 0, 21 +i2% #0,
c xl +Z.’IJ2 3 c ‘TS 2
u(z®) = A +O(|z]), v(z9) = R + O(|z[%), (7.25)
32 a b
w(z®) = L (b —ix? + L) +O(|z)?) = dup 2 @ +O(|z)?). (7.26)

zl 4+ ¢ a2

V2 V2 (2 +i2?)
In the flat case the order symbols must be omitted in these expressions.

With @), (X)) and

1 dx? )
du = ———(da' +id2?) + O(|z]?), dv= + da' +idz?) + O(|z)),
\/5( )+ O(|=[%) T \/§u( )+ O(|z])
1
dw = — (da' —ida® — 2vda® — v? (da' + i da?)) + O(|z]?),

V2

one gets for the forms x*Z = y*8 . dz® dual to the normal frame c4p indeed

XAB(J:C) _ t_lA Ct_lB D (O'CD 1 du + O'CD 5 dv + O,CD de) _ (OéAB ot )A(AB a) d(Ea,
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with some functions Y4 ,(2¢) which satisfies X2, = O(|z|?) as |#| — 0. Correspond-
ingly, the coefficients c¢% 5 = < dxz®, cap > of the normal frame in the normal coordinates
satisfy

¢ ap(x°) = a” ap + ¢ ap (),
with holomorphic functions é* 4p(2¢) which satisfy é* ap(2¢) = O(|z|?) as |z| — 0

Since the three 1-forms aA® , dz® are linearly independent this shows that for small
|z¢| the coordinate transformation z* — z%(z¢), where defined, is non-degenerate and the
forms x“Z behave as required by normal forms in normal coordinates. The relations (B1]),
which characterize coefficients of normal forms in normal coordinates, are a consequence of
the equations satisfied by 2?(s) and t# 5(s). All the tensor fields which enter the conformal
static vacuum field equations can now be expressed in term of the coordinates ¢ and the
frame field cap.

All ingredients are now available to derive our main result.

Proof of Theorem [T The coordinates ¢ cover a certain (connected) domain U
in C3 on which the frame vector fields c® ap 3/0,c exist, are linearly independent and
holomorphic and where the other tensor fields expressed in terms of the z® and cap are
holomorphic. It follows from Lemmas B9 [[2 and that given any initial data wug,
vo, Wwo with g # 0, there exists a solution z%(s, ug, vo, wo) of the geodesics equations
on the solution provided by Lemma which is defined for |s| < 1/t with some ¢ > 0.
The dicussion above shows, however, that ¢ will become large if |vg| becomes large or |y
becomes very small. This implies that the domain U will not contain the hypersurface
2t +i2% = 0 but its boundary will become tangent to this hypersurface at z¢ = 0.
From the estimates obtained so far it cannot be concluded that the coordinates extend
holomorphically to a domain containing an open neighbourhood of the origin.

To analyse this question, we make use of the remaining gauge freedom to perform with
some t4 p € SU(2) a rotation §* — §* - ¢ of the spin frame and the associated rotation

t ¢ D
cAB — Cyp =1t At~ BceD

of the frame c4p at i on which the construction of the submanifold S and the related gauge
is based. Starting with these frames at ¢ all the previous constructions and derivations
can be repeated.

Let v/, v', w’ and €Y 5 denote the analogues in the new gauge of the coordinates u,
v, w and the frame esp. The sets {w = 0} and {w’ = 0} are then both to be thought
of as lift of the set A; to the bundle of spin frames, the coordinates u and u’ can both
be interpreted as affine parameters on the null generators of N; which vanish at 4, the
coordinates v, v' both label these null generators, and the frame vectors egy and efj, can
be identified with auto-parallel vector fields tangent to the null generators.

If v and v’ then label the same generator 1 of N, a relation

SCO(U/) sP o) tE ottt pepr = ehy = Peoo = f? SCO(U) sP o(v) cop,

must hold at ¢ with some f # 0 and e}, = f? ego must hold in fact along n, with f constant
along 7 because ef, and egy are auto-parallel. Absorbing the undetermined sign in f, this
leads to

t7 a5 o(v') = f5"o(v).
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With

(t ) = ( i _(_ZC ) where a,c € C, |af*>=|c]* =1, (7.27)
this gives
, —c+av 1 ct+av Ev'
v = =——, resp. v=——, f=a-cv.
a+cv a+cov a—cv

Moreover, the relations
<duyeqo >=1=<du ey >=<du, f*ep >,
imply for the affine parameters satisfy along n
uw= 2,

so that n(u’,v’) = n(u,v) holds with these relations. We note that choices of t4 g with
¢ # 0 can supply new information, because then v — oo as v" — a/¢ so that the singular
generator of the cap-gauge, about whose neighbourhood we need information, is then
contained in the regular domain of the ¢4 5-gauge.

For the null datum in the new gauge one gets with (EIH)

Sg(u/av/) = SAO(U/) s SCO(U/) tE A - tH D S*E...H|n(u’,'u’) = f4 So(’u,’U)

o0
1 * % .
= Z oo u'm f2m+4 A1 0(1}) gB1 0(1}) .. sDO(v) D(A131 .. 'DZmBm SABCD)(Z)
m=0 :
oo
= Z m u'm f2m+4 SAI 0(’0/) SBl 0(’0/) . SD 0(1)/) DEA131 A Df47nB7n SZBCD)(Z.%
m=0 '
and thus
oo 2m—+4
sh(u' ') = Z Z Yl 0™ 0T, (7.28)
m=0 n=0
with

t t t N Gy H, N x ¥ " )
Diag, D, Sapcp)(®) =t7" a t™ By ... " D Digym, - D&, Sprcvny (8,

and s )
m —+ _
mn = m! ( n > DEAIBI ...D}y,. B, SfﬁlBCD)n (4)
2m+4
=— ( ; ) > ( ; )t(G1 it B N9 by Doy - Do, St ()

Jj=0

2m-+4
2m+4 .
= ( n > E t(Gl (A tHl By --- tN)J D)n 1/)m,j-
Jj=0
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It is convenient to write this in the form

2m+4 1/2 —1/2
2m+4 2m+4 )
= JZ_O( n > ( j > Tomta” n(t) Ym,; (7.29)

where the numbers

. om—+ 4\ % (2m+ 4\ /2 .
T2m+4jn(t) = ( > ( . ) t(Gl (A tH1 By - tN)J D)

n J

n?

are so defined ([T1]) that they represent the matrix elements of a unitary representation
of SU(2) and thus satisfy

Tomasa? n()] <1, m=0,1,2,..., 0<j,n<2m+4

With the expressions above it is easy to see that the type of the estimate ([BIIl) and the
type of the resulting estimate ([E]) are preserved under the gauge transformation. With

[C2) and [ZZ9) follows from (G at the point O’ = (v’ = 0,v" = 0)

2m44 1/2
01 0% (0] = bt < bt 3 (27 FH) (2

i=0 " J
(7.30)
2m+4 1/2 1/2 2m+4
2 4 2 4 2 4 2 4
§m!n!2(m+) (m.—i—) Mrlmgm!n!(m+> Z(m,+>MT
: n J n ; J
Jj=0 Jj=0
2 4
_m'n'( me >M/Tt_mv
n

with M’ =16 M and r; = r1 /4.

Assuming now that ¢ # 0 in [ZZ7), the resulting ¢!, 5-gauge can be studied from two
different points of view:

i) The singular generator of N; in the ¢! z-gauge will coincide with the regular gen-
erator of NV; on which v = —a/c in the cap-gauge. By starting from the solution in the
cap-gauge, we are thus able to directly determine near that generator the transformation
into the ¢!y z-gauge and to determine the expansion of the solution in the cp-gauge in
terms of the coordinates u’, v’, w’ and the frame field e, 5.

ii) Alternatively, with the null data s{(u’,v") at hand, one can go through the discus-
sions of the previous sections to show the existence of a solution to the conformal static
vacuum equations in the coordinates u/, v’, w’ pertaining to the c!) 5-gauge. All the ob-
servations made above, in particular statements about domains of convergence, apply to
this solution as well. Important for us is that this solution covers the generator v = a/é
near v’ = 0 and w’ = 0, which corresponds to the singular generator in the c4p-gauge.

Because the formal expansions of the fields in terms of u/, v/, w’ are uniquely deter-
mined by the data sf(u’,v’), the solutions obtained by the two methods are holomorphi-
cally related to each other on certain domains by the gauge transformation obtained in
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(i). The solution obtained in (ii) can be expressed in terms of the normal coordinates z
and the normal frame field ¢!, 5 so that the z{ cover an certain domain U; C C? and the
frame field ¢!y 5 is non-degenerate and all our tensor fields expressed in terms of z{ and
¢ty 5 are holomorphic on U; as discussed above. It follows then that the solution in the
cap-gauge and the solution in the ¢4 z-gauge are related on certain domains by the simple
transformation (cf. (E3))

$?:t71ab$b, CfL‘B:tcAtDBCCD.

Extending this as a coordinate and frame transformation to the solution obtained in (ii) to
express all field in terms 2® and c4p so that they are defined and holomorphic on ¢t~ U,
one finds that the solution obtained in (ii) and our original solution define in fact genuine
holomorphic extensions of each other because each one covers the singular generator of
the other one away from the origin in a regular way.

By letting ¢4 g go through SU(2) and observing the corresponding extensions, one
obtains in fact a holomorphic solution to the conformal static vacuum field equations in
the normal coordinates x* centered at ¢ associated with the frame 0* resp. cap at i on a
domain which covers a full neighbourhood of space-like infinity. Consider again the solution
we obtained in the cap-gauge. From the discussion above it follows that the domain U
in C* on which the solution is holomorphic in the coordinates x% covers a (connected)
domain U’ of the hypersurface {z3 = 0} of C? which has empty intersection with the line
{2t +i23 = 0, 22 = 0} (corresponding to the singular generator of the cap-gauge) and
whose boundary becomes tangent to this line at the origin * = 0. Under the transition

i0/2

Uy — Ug, Vg — € vy, wo— €%y, 60€R,

which leaves the quantities |ig|, |vo|, |wo| entering the estimates above invariant, one gets
by )

1

:v1+ix2—>x1—|—i;102, ! —ia2?

— el (zt —ia?), 2% —etfad
Thus the set U’ can be assumed to be invariant under this transformation.

Consider now the cfg p-gauge where the special transformation ¢* 4 p is given by (ZZ17)
with @ = 0, ¢ = 1. Let U/. denote the subset of the hypersurface {z3. = 0} in C* analogous
to U’. It has empty insection with the line {x}. + iz = 0, x}. = 0} but its boundary
becomes tangent to it at xf. = 0. It holds

t* t* t* -
Cop = €11, Cpp = —Col, Cip = Coo at 1,

and the corresponding normal coordinates are related by

T = —at, i =27, 2d =23
The holomorphic transformation {z}. =0} > (xf.,z%) — (—z',2?) € {2® = 0} maps UJ.
onto a subset of C? ~ C? x {0}, denoted by ¢* ~* U}., which has non-empty intersection
with U’. After the transformation above the two solutions coincide on t* ~1 UL N U’.
On the other hand, the image of the ¢!, -regular line {x}. —i22 =0, 2. =0} N UL
under this transformation contains the intersection of a neighbourhood of the origin with
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the singular line {z' —iz? = 0, 2> = 0, 2% # 0} of the cap-gauge. In fact, the set
t*~1U/. U U’, which admits a holomorphic extension of our solution in the coordinates z*
and the frame c4p, contains a punctured neighbourhood of the origin. As we have seen
above, the field c4p on this neighbourhood extends continously to the origin.

Let now z¢ # 0 be an arbitrary point in C3. We want to show that the solution
extends in the coordinates z® to a domain which covers the set sz for 0 < [s| < € for
some € > 0. Since 2% = y® +i 2% with y%, 2% € R? there is a vector u® € R?® of unit length
and orthogonal to 2 with respect to the standard product u -z = 64 u® z®. Consider
the ¢4 g-gauges with t4 g € SU(2) so that u®, = t712,ub = §%3. Tt follows then that
23, =t71%, 2% € {2} = 0} and by the preceeding observation t4 5 can in fact be chosen
such that there exist an € > 0 so that the points sz¢, with 0 < |s| < € are covered by
U;. Transforming back we find that the set U € C? covered by the coordinates x% can
be extended so that the points sx? with 0 < |s| < € are covered by U and all field are
holomorphic on U in the coordinates z%. It follows that we can assume U to contain a
punctured neighbourhood of the origin in which the solution is holomorphic in the normal
coordinates % and the normal frame c4p. Since holomorphic functions in more than one
dimensions cannot have isolated singularities (JI5]) the solution is then in fact holomorphic
on a full neighbourhood of the origin % = 0, which represents the point 1.

By Lemma Bl the exact sets of equations argument determines from null data satis-
fying the reality conditions a formal expansion of the solution with expansion coefficients
satisfying the reality conditions. By the various uniqueness statements obtained in the
Lemmas this expansion must coincide with the expansion in normal coordinates of the
solution obtained above. This implies the existence of a 3-dimensional real slice on which
the tensor fields satisfy the reality conditions. It is obtained by requiring the coordinates
x® to assume values in R3. [J
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