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Abstract
We introduce a new top down approach to canonical quantum gravity, called
algebraic quantum gravity (AQG). The quantum kinematics of AQG is
determined by an abstract *-algebra generated by a countable set of elementary
operators labelled by an algebraic graph. The quantum dynamics of AQG is
governed by a single master constraint operator. While AQG is inspired by
loop quantum gravity (LQG), it differs drastically from it because in AQG there
is fundamentally no topology or differential structure. A natural Hilbert space
representation acquires the structure of an infinite tensor product (ITP) whose
separable strong equivalence class Hilbert subspaces (sectors) are left invariant
by the quantum dynamics. The missing information about the topology and
differential structure of the spacetime manifold as well as about the background
metric to be approximated is supplied by coherent states. Given such data,
the corresponding coherent state defines a sector in the ITP which can be
identified with a usual QFT on the given manifold and background. Thus, AQG
contains QFT on all curved spacetimes at once, possibly has something to say
about topology change and provides the contact with the familiar low energy
physics. In particular, in two companion papers we develop semiclassical
perturbation theory for AQG and LQG and thereby show that the theory
admits a semiclassical limit whose infinitesimal gauge symmetry agrees with
that of general relativity. In AQG everything is computable with sufficient
precision and no UV divergences arise due to the background independence
of the fundamental combinatorial structure. Hence, in contrast to lattice gauge
theory on a background metric, no continuum limit has to be taken. There
simply is no lattice regulator that must be sent to zero.
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1. Introduction

The present paper introduces a new conceptual framework for canonical quantum gravity
resulting in a novel top-to-bottom approach. To justify it, a rather complex reasoning is
required based on the current status of the quantum dynamics of loop quantum gravity (LQG).
Therefore we will devote quite some space in this introduction to make the motivations,
concepts and techniques clear and in order to show how this theory differs from the more
traditional framework.

1.1. Anomalies and the semiclassical analysis of LQG

Loop quantum gravity (LQG) has advanced in recent years to one of the major candidates
for a theory of quantum gravity. See [1] for books and [2] for recent reviews on the subject.
The theory has a mathematically rigorous basis of the quantum kinematics [3–5] and there
is a mathematically well-defined formulation of the quantum dynamics [6]. However, one
problem has remained unsettled so far within LQG: the demonstration that the theory has
general relativity as its semiclassical limit. Related to this, so far it has not been revealed that
the algebra of the quantum constraints, while free of anomalies, mimics the algebra of the
classical constraints.

The reason for this so far elusive evidence has a complicated but clear technical reason
and in what follows we will try to explain it in some detail.

In the current setup, LQG is formulated in terms of gauge field variables, that is,
non-Abelian electric fluxes and magnetic holonomies, just as in lattice gauge theory. The
corresponding surfaces and curves are embedded into a spatial manifold σ of given topology.
These define an abstract ∗-Poisson algebra. Using the physically well-motivated condition of
spatial diffeomorphism invariance, one can show that there is only one unitary equivalence
class of cyclic representations of this holonomy-flux algebra [7, 8]. Thus, the kinematical
framework of LQG is rather tight and well under control.

The unique (up to unitary equivalence) Hilbert space H can be realized as the closure of
the finite linear combinations of cylindrical functions. A cylindrical function is a complex
valued, square integrable (with respect to a certain measure) function of holonomies along the
edges of some finite graph and all finite graphs embedded into σ are allowed. Thus, in contrast
to lattice gauge theory, the lattice is not fixed; rather, all lattices (or graphs) are considered
simultaneously which is why LQG is a continuum rather than a lattice theory.

The problem with establishing the semiclassical limit of LQG has to do with the quantum
dynamics.

There is a natural action of the spatial diffeomorphism group Diff(σ ) on this Hilbert space
which simply consists in mapping graphs to their images under the given diffeomorphism.
This action is a unitary representation of Diff(σ ) and therefore the spatial diffeomorphisms are
represented without anomalies. However, the action is not weakly continuous. This means
that the infinitesimal generators of Diff(σ ), that is, the Lie algebra diff(σ ), cannot be defined
on H. In contrast, the infinite number of Hamiltonian constraints can be defined on H [6].
However, since the classical Poisson algebra of constraints involves diff(σ ), it should come at
no surprise that the part of the quantum algebra that involves the Hamiltonian constraints does
not manifestly mimic the classical algebra because in the quantum theory we can only define
finite diffeomorphisms. In fact, there is a finite diffeomorphism analogue for the commutator
between diff(σ ) and the Hamiltonian constraints and that part of the algebra is realized without
anomalies [6]. However, the commutator between two Hamiltonian constraints classically is
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a linear combination, with phase space dependent coefficients, of elements of diff(σ ) and it is
this commutator which is problematic in LQG.

The philosophy that has been adopted in [6] is that the quantization of the Hamiltonian
constraints should be anomaly free in the sense that the (dual of the) commutator between
two Hamiltonian constraints should annihilate the space of spatially diffeomorphism invariant
states constructed in [5]. This is indeed possible to achieve and one can show that this
requires that the Hamiltonian constraints, which are densely defined on cylindrical functions,
necessarily change (enlarge) the graph that underlies a given cylindrical function. This is also
natural to happen because the natural regularization of the constraint involves small loops that
are attached to the vertices of a given graph which shrink towards the vertex as the regulator is
removed. However, the shrinking process can be compensated for by a spatial diffeomorphism
and since the limit is taken in an operator topology which involves spatially diffeomorphism
invariant states, the loops actually do not completely shrink to the vertex. See [6] or the second
book in [1] for details.

While the commutator of two Hamiltonian constraints then is anomaly free in the sense
explained, in addition one would like to check that the classical limit of the commutator
between quantum Hamiltonian constraints is precisely the corresponding Poisson bracket
between the classical constraints. Here again we are faced with an obstacle: for graph
changing operators such as the Hamiltonian constraints it turns out to be extremely difficult to
define coherent (or semiclassical) states, that is, states labelled by points in the classical phase
space with respect to which the operator assumes an expectation value which reproduces the
value of the corresponding classical function at that point in phase space and with respect to
which the (relative) fluctuations are small. The reason why this happens is that the existing
coherent states for LQG [9] are defined over a finite collection of finite graphs and these
suppress very effectively the fluctuations of those degrees of freedom that are labelled by the
given graph. However, the Hamiltonian constraints add degrees of freedom to the state on
which they act and the fluctuations of those are therefore no longer suppressed. Indeed, the
semiclassical behaviour of the Hamiltonian constraints with respect to these coherent states is
rather bad.

Hence we see that the problems of investigating the classical limit of LQG and verifying
the quantum algebra of constraints are very much interlinked:

(1) spatial diffeomorphism invariance enforces a weakly discontinuous representation of
spatial diffeomorphisms;

(2) anomaly freeness in the presence of only finite diffeomorphisms enforces graph changing
Hamiltonian constraints;

(3) graph changing Hamiltonians seem to prohibit appropriate semiclassical states.

1.2. The master constraint programme for LQG

The purpose of the master constraint programme [10, 11] for LQG is to overcome those
problems. The classical master constraint for a given (infinite) set of classical constraints is
essentially the weighted sum of the squares of the individual constraints. The resulting master
constraint carries the same information about the reduced phase space as the original set of
individual constraints. Since the infinite set of constraints was replaced by a single one, there
are trivially no quantum anomalies no matter whether operators act in a graph changing or
non-graph changing fashion. However, whether or not the original quantum constraints that
enter the construction of the master constraint are anomalous manifests itself in the spectrum
of the master constraint [12]: if the original algebra is anomalous then it is expected that zero
is not contained in the spectrum of the master constraint. This can be cured by subtracting
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from the master constraint the minimum of the spectrum provided of course that it is finite
and vanishes as h̄ → 0 so that the modified constraint still has the same classical limit as the
original one. One then defines the physical Hilbert space as the (generalized) kernel of the
master constraint; see the first reference of [12] for the mathematical details.

The master constraint for GR involves the weighted sum of squares of the Hamiltonian
constraints such that the resulting expression is spatially diffeomorphism invariant. In [11]
the master constraint has been quantized in two different ways: in the first version one
used the graph changing operators defined in [6]. Since the operator must be spatially
diffeomorphism invariant, from the results of [5] this operator must be defined directly on the
spatially diffeomorphism invariant Hilbert space whose states are labelled by (generalized)
knot classes. The semiclassical analysis of this first operator is again difficult because it
changes knot classes and because so far no semiclassical spatially diffeomorphism invariant
states have been defined in LQG. In the second version one used a non-graph changing
operator which therefore can be defined directly on the kinematical Hilbert space. The
Hamiltonian constraints that enter this operator would be anomalous. However, as we said,
the master constraint does not care about this; moreover, the second master constraint is
manifestly spatially diffeomorphism invariant. The second operator therefore can in principle
be analysed by existing semiclassical tools.

1.3. Removing the graph dependence of semiclassical states for LQG: algebraic graphs

However, there is still one caveat. As already mentioned, the semiclassical tools for LQG
developed so far are based on pure states over single graphs or mixed states based on a certain
class of graphs. None of these states involves all the graphs that are allowed in LQG and
therefore those states cannot be semiclassical for all degrees of freedom of LQG. See, e.g.,
the discussion in [13]. One cannot sum over all graphs because the sum is over uncountably
many states; hence the state is not normalizable. Rather than taking an uncountable sum one
could try to consider an uncountable tensor product which gives normalizable states [14]. The
problem here is that there is no such thing as a maximal graph in LQG of which all other
graphs are subgraphs.

Therefore, the existing semiclassical tools of LQG are heavily graph dependent.
It is at this point where we depart in a crucial way from LQG: we discard the notion

of embedded graphs and consider algebraic graphs instead. An algebraic graph is simply a
labelling set consisting of abstract points (vertices) together with information about how many
abstract arrows (edges) point between points. There is no information about the knotting
and braiding of those edges or about the location of the points. All that an algebraic graph
knows about is the number of points and their oriented valence (that is, how many arrows
point between different vertices with in or outgoing orientation). Hence we lose information
about topology and differential structure of the spatial manifold underlying LQG. We call the
theory based on algebraic graphs algebraic quantum gravity (AQG) in order to distinguish it
from LQG by which it is inspired.

The point of introducing the notion of an algebraic graph is that it can be embedded
in all possible ways into a given spatial manifold. Thus, at least all embedded graphs with
the same valence structure as the underlying algebraic graph can be obtained in this way
and we will see that this is enough in order to do semiclassical physics because all physical
(gauge invariant) operators, such as the master constraint, can be defined in an embedding
independent (algebraic) fashion. One just has to lift the action of a given LQG operator on
embedded graphs to the algebraic graph. What we have achieved by this is that our theory
has lost its graph dependence, the chosen algebraic graph is fundamental or maximal. It turns
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out that the algebraic graph necessarily must have a countably infinite number of edges; see
below.

1.4. The extended master constraint

There is a problem with this idea which has to do with spatial diffeomorphism invariance.
Since there is no σ to begin with, there cannot be any Diff(σ ). Therefore, the natural action
of the diffeomorphism group on the Hilbert space of LQG is not available in AQG. One
could try to argue that the Hilbert space of AQG in some sense is already a space of spatially
diffeomorphism invariant states. However, as shown in [15], this would make the physical
Hilbert space of gauge invariant states too large. Therefore one somehow must also perform
a gauge reduction with respect to the spatial diffeomorphism constraints. Even if we forget
about the fact that in AQG there is no Diff(σ ) and embed the algebraic graph into some σ

and thus consider a fixed embedded lattice, there are problems in defining lattice analogues of
the generators of spatial diffeomorphisms, their algebra does not close for finite lattice length
(see, e.g., [16]).

It is at this point at which we invoke the extended master constraint introduced in [10]. The
classical extended master constraint also involves the weighted sum of squares of the spatial
diffeomorphism constraints such that the resulting expression is spatially diffeomorphism
invariant. It can be quantized in LQG in a graph non-changing and spatially diffeomorphism
invariant fashion similar to the simple master constraint. This may come as a surprise because
the infinitesimal generator of spatial diffeomorphisms cannot be defined in LQG. The solution
of the puzzle is that the weight function that enters the sum over squares becomes an operator
which mildens the UV behaviour of the formally singular quantum generators of spatial
diffeomorphisms. The point is now that this extended master constraint also naturally lifts to
algebraic graphs. This way we have also achieved the implemention of spatial diffeomorphism
invariance on the algebraic level without running into anomalies.

Note that many aspects of this idea to work at the embedding independent level had been
spelled out already in [17]. However, the programme could then not be pushed to its logical
frontiers because it was unclear how to deal with spatial diffeomorphism invariance, that is,
the (extended) master constraint programme was not yet developed. Also, there are certain
operators in LQG such as the volume operator [18–20] crucial for the quantum dynamics
which do carry embedding dependent information and therefore cannot be immediately lifted
to the algebraic level. The way we deal with this here is that we choose a fixed algebraic graph
once and for all and choose a generic embedding (this will be made precise later). We then
lift the volume operator of LQG for those embeddings. This will mean that the semiclassical
limit of this operator will come out right only if the semiclassical states are defined using a
generic embedding but again this turns out to be sufficient for semiclassical purposes.

1.5. The structure of AQG and semiclassical states

As already mentioned, an algebraic graph does not contain any information about the braiding
of its edges and is not embedded into any 3-manifold. On such an algebraic graph one can
define an abstract ∗- or C∗-algebra of elementary algebra elements out of which the master
constraint is constructed as a composite operator. We use a specific representation of this
algebra on a Hilbert space which is motivated from LQG and in this representation the master
constraint is a positive, self-adjoint operator. In order to derive the classical limit of the theory
we must give the following data: (1) a 3-manifold σ , (2) initial data m on σ (equivalently: a
point in the classical phase space, for gravity essentially a 3-metric and its extrinsic curvature)
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and (3) an embedding of the algebraic graph (and a graph dual to it) into σ . Out of these data
one can then construct a coherent state along the lines of [9].

In order that we can define a semiclassical limit for all σ we must necessarily work
with (countably) infinite algebraic graphs in order to be able to deal with asymptotically flat
topologies. If σ is compact, the embedding of the algebraic graph will contain accumulation
points but this is no obstacle for our formulation because we can leave all but finitely many
of the edges (and dual faces) of the embedded graph unexcited thus effectively avoiding
accumulation points. This leads us naturally to von Neumann’s infinite tensor product (ITP)
which was applied in the context of LQG in [14]. Moreover, the ITP enables us to embed the
algebraic graph as densely as we wish, thus making the semiclassical approximation as good
as we like3.

As an aside we should mention that while the (extended) master constraint can also be
defined in LQG in a non-graph changing fashion, such an operator is there rather ad hoc
because one has to define it also on rather coarse graphs. On those graphs the expression for
the operator proposed in [10] cannot be obtained by a regularization process from the classical
expression because the loops and edges involved might be ‘large’. In contrast, in AQG there
is a single graph to be considered and it is typically embedded in such a way that all loops and
edges are small, thus being close in appearance to the classical continuum expression.

There is a crucial difference between the semiclassical states of LQG and of AQG. In both
theories the coherent states are labelled by embedded graphs. However, in LQG these states
are linear combinations of spin network functions4 over the embedded graph with certain
coefficients which carry the above data. In AQG the coherent states are linear combinations
of spin network functions only if σ is compact and even then these spin network functions
are labelled by the unique abstract graph while the coefficients are labelled by the embedded
graph. This tiny difference has, e.g., the consequence that in LQG coherent states over different
graphs are automatically orthogonal while in AQG this is not necessarily the case.

Since we can accommodate any σ in our formulation, AQG can presumably deal with
topology change. Moreover, as was pointed out in [14], the nonseparable ITP is a direct sum
of separable Hilbert spaces (sectors), some of which can be identified with excitations of our
semiclassical states just discussed which could make contact with Fock spaces and low energy
physics, as sketched in [21].

Note that in AQG, in contrast to the embedded graphs of LQG, the infinite algebraic graph
is fixed. AQG theories defined on different infinite algebraic graphs are unitarily equivalent
if and only if there is a permutation of the vertices such that the algebraic graphs can be
transformed into each other. Hence, in AQG the algebraic graph is a fundamental object. An
interesting question is whether one could extend AQG in such a way as to accommodate all
algebraic graphs. This seems neither necessary nor meaningful to us because one would need
to relate the edges of different algebraic graphs to each other; however, without an embedding
this is not possible5.

3 This does not work for all operators of the theory but only for those which classically would come from volume
integrals. Classical functions of this type separate the points of the classical phase space; see [13] for a discussion.
4 Spin network functions (SNF) provide an orthonormal basis in LQG, in particular, SNFs labelled by different
graphs are orthogonal.
5 We could declare the Hilbert spaces labelled by different algebraic graphs as orthogonal to each other where different
means that there is no permutation transformation between the corresponding adjacency matrices (see section 2). The
elementary operators of the theory would then also be labelled by the algebraic graph in addition to edges and vertices
and one would embed different algebraic graphs in such a way that they are disjoint in order to be consistent with
LQG where such states would be orthogonal. However, there seems to be no physical justification for such a choice
at present.
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Figure 1. Illustrative example in three (two) dimensions how a five (three)-valent graph can be
constructed from a cubic graph by assigning the trivial representation (dashed lines) at one of the
edges at each vertex of the graph.

A different viewpoint is to use the maximal (countable) algebraic graph. This is simply
the algebraic graph which consists of a countably infinite number of vertices such that each
vertex has countably infinite connectivity with every other vertex. In other words, this is
the algebraic graph the entries of whose adjacency matrix are all equal to countable infinity
ℵ. Obviously, all algebraic graphs with finite entries in its adjacency matrix are algebraic
subgraphs of this maximal algebraic graph. For an example how a five-valent graph can be
constructed from a cubic one by deletion of edges, see figure 1. These subgraphs are the ones
that are relevant in practical calculations because one uses states which are only excited on
finitely many edges between any two vertices and it turns out that for suitable operators (such
as the volume operator) the contribution from unexcited edges drops out6.

Yet another viewpoint, possibly sufficient in order to accommodate most or at least a big
class of embedded graphs at least in semiclassical approximations, is the observation that,
given an algebraic graph with finite, given entries in its adjacency matrix, we can choose
to embed some of its edges in such a way that they are arbitrarily short with respect to the
spatial metric to be approximated in the semiclassical calculations. This edge is then almost
equivalent to a virtual edge, it is effectively only an intertwiner and its endpoints almost merge
into a single vertex (see also figure 2). This way we can generate, effectively, almost any
valence of vertices and we can effectively avoid usage of the maximal algebraic graphs or
algebraic graphs with large entries in their adjacency matrix.

Therefore, in order to keep the discussion in this paper and the companion papers simple,
we will avoid the maximal algebraic graph but rather choose a sufficiently complex algebraic
graph as our fundamental graph. We will indicate where modifications would be necessary in
order to work with the maximal algebraic graph. Concretely, we will focus on cubic algebraic
graphs (all vertices have valence six and two vertices have at most one edge in common) which
will simplify our calculations and turns out to be sufficient in order to perform semiclassical
calculations.

Note that no continuum limit has to be performed on the algebraic graph. None of the
operators of the theory depends on a lattice length. This is not possible because the theory is

6 If it does not, then in order to avoid infinities one has to invoke projection operators which again reduce the infinite
sums over edges to those which are excited (see [21].)
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Figure 2. Idea how an eight-valent algebraic graph can be expressed in terms of two five-valent
graphs with an connecting (inner) edge which is very short with respect to the background metric
approximated by the coherent states.

manifestly background independent. There are no scales to be sent to zero, everything is UV
finite. The precision with which the semiclassical limit is reached depends on the choice of the
embedding (its ‘fineness’ with respect to the background metric to be approximated) which is
a feature of the state but the fundamental quantum algebra does not know about this. This is
in strong contrast to, say, lattice QCD on Minkowski space, where the Hamiltonian depends
explicitly on the lattice length. One could interpret AQG as saying that lattice calculations are
correct and that the lattice is actually fundamental if it is thought of as the concrete embedding
of the algebraic graph. Lattice refinements are then to be thought of as different choices of
embeddings of the fundamental algebraic graph. This also sheds new light on Wilson’s notion
of the renormalization group.

1.6. The semiclassical limit

With this setup, in two companion papers [22, 23] we will establish that the semiclassical limit
of the extended master constraint is correct. More precisely, in [22] we carry out an exact
computation using a simplification which consists in replacing the non-Abelian group SU(2)

by the Abelian group U(1)3. This computation reproduces the classical U(1)3 analogue of
the master constraint to zeroth order in h̄. The point of this approximation is that the U(1)3

analogue of the volume operator, which enters the master constraint in a pivotal way, is
analytically diagonizable. This is not the case for SU(2) and prohibits exact semiclassical
calculations. In [23] we develop semiclassical perturbation theory for AQG and LQG with
error control which allows us to analytically calculate coherent state matrix elements of
positive fractional powers of the SU(2) volume operator up to any order in h̄. The resulting
semiclassical SU(2) calculation is then exactly analogous to the U(1)3 and reproduces the
same classical limit as follows from the results of [9]. Hence [22, 23] together imply that the
infinitesimal gauge generators of AQG have the correct classical limit. This is what is so far
missing in LQG.

The coherent states chosen may be further improved, for instance, by statistical averaging
over a certain class of embedded graphs so as to produce a density matrix (see, e.g., [24]). Note
that here again there is a crucial difference between LQG and AQG. In LQG the statistical
average of coherent states, which are linear combinations of spin network states, affects both
the spin network states and their coefficients. In AQG it affects only the coefficients. Let � be
some uncountable set of graphs embedded into some σ and let µ be a probability measure on �.
Let Pψγ

be the projection onto the coherent state ψγ and consider the object ρ := ∫
�

dµ(γ )Pψγ
.

Then it is not difficult to see [13] that in LQG this operator is the zero operator while in AQG
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Table 1. Summary of the major differences in the mathematical structure of loop quantum gravity
(LQG) and algebraic quantum gravity (AQG).

Object LQG AQG

Topology Must be provided Absent
Differentiable structure Must be provided Absent
Hilbert space HLQG := HAIL HAQG := H⊗

Separability Nonseparable Nonseparable
Graphs Embedded Algebraic (combinatorial)
Number of graphs Uncountably infinite One
Structure of graphs Finite Countably infinite
Generating set of ∗-algebra A Uncountably infinite Countably infinite

this operator is trace class with unit trace. Even if we formally interchange the integral over
� with taking the trace there are still qualitative differences, for generic operators A in LQG
which admit an embedding independent lift to AQG such as the total volume of a compact
manifold σ between the corresponding values of Tr(Aρ).

1.7. Summary of differences between AQG and LQG

For the benefit of the reader we summarize the most important conceptual differences and
similarities between AQG and LQG in table 1.

Note that the reason for the Hilbert spaces to be nonseparable is very different in the two
cases. For LQG, it is due to the fact the set � of all finite embedded graphs is uncountable.
For AQG, it is due to the fact that the ITP of a countable number of Hilbert spaces of which
at least countably infinite many are at least two dimensional is not separable. Also the two
Hilbert spaces of LQG and AQG are not directly related to each other. The only thing one
can say is the following: given an algebraic graph, a manifold σ and an embedding X we can
consider the set �X

α of all finite subgraphs of X(α). Consider the closed linear span HX
α of

spin network states over elements of �X
α . Then HX

α ⊂ HLQG for all X. On the other hand, for
all X the spaces HX

α are isomorphic to the sector of HAQG which is the closed linear span of
finite excitations of the vector ⊗e1, where 1 is the constant function equal to unity.

Note that in LQG one needs all graphs because the algebra of elementary operators
contains the holonomies along all possible paths and those are obtained from a fixed given
path through the natural action of the diffeomorphism group. In AQG the action of the
infinitesimal diffeomorphisms preserves the algebraic graph and so there is no need to take
all algebraic graphs into account. This is different from what was done in [14] where
one worked in an embedding-dependent context and considered ITP Hilbert spaces over all
possible countably infinite embedded graphs.

1.8. Organization of the paper

In section 2 we introduce the concept of an algebraic graph and define the abstract ∗-algebra
labelled by it. For an arbitrary algebraic graph, we introduce the extended master constraint
using the notion of a minimal loop.

In section 3 we review the framework of coherent states as developed in [9] as well as
elements of the infinite tensor product construction of [14] and lift it to the algebraic level.
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In section 4 we present the result of the calculation of our companion papers [22, 23] which
establishes the correctness of the classical limit of the master constraint on cubic algebraic
graphs.

In section 5 we forecast the tasks that can be addressed using the new AQG framework.
In particular, we have in mind applications in quantum cosmology and the contact with the
physics of the standard model. In order to do so one has to deal with the question in which
sense one can perform trustable computations without solving the theory7. We present a
possible scheme, elements of which were proposed in [25], which could be called quantum
gauge fixing. In section 6 we sketch how ideas from AQG might help to solve two important
problems for the spin foam approach to LQG, namely (1) to make contact with the canonical
programme which as we prove in [22, 23] does have contact with the classical theory, and (2)
to get rid of the triangulation dependence of spin foam models.

Finally, in section 7 we summarize and list some interesting open problems.

2. Algebraic quantum gravity

As appropriate for a top-to-bottom approach we introduce the basic ingredients of AQG
axiomatically. In a second step we show how to extract physics from the mathematical notions
and in particular reveal the connection with LQG. The latter is the subject of sections 3 and 4.

2.1. Algebraic graphs

Comprehensive monographs on algebraic graphs are listed in [26]. Here we just summarize
what is needed at this point for our purposes. An (oriented) algebraic graph with N vertices can
be defined in terms of its adjacency matrix. This is an N ×N matrix α whose entries αIJ take
non-negative integer values n where n denotes the number of edges that start in vertex i and
end in vertex j . Note that αIJ , αJI are not related to each other and that eIJ := αIJ +αJI is the
total number of edges that connect vertices I, J . The valence of I is given by vI = ∑

J eIJ .
We also use the symbols V (α),E(α) to denote the set of vertices and edges respectively and
b(e), f (e) to denote the vertex at which e begins or finishes, respectively.

We are only interested in oriented algebraic graphs but for completeness we mention that
for unoriented algebraic graphs the adjacency matrix is symmetric, its entries αIJ being the
total number of edges connecting vertices I, J and vI = ∑

J αIJ is the valence of vertex I.
We will be interested in N = ℵ, i.e., graphs where the number of edges has countably infinite
cardinality but where the valence of each vertex is bounded by a small number of order unity,
typically by 2D for cubic algebraic graphs or D + 1 for simplicial algebraic graphs which we
wish to embed into a D-dimensional manifold. This is necessary in order that the semiclassical
limit of the theory is reached for arbitrary noncompact topologies σ .

There is no information contained in the adjacency matrix which tells us how the various
edges are braided. Also no information is available whether the edges are smooth, or n-times
differentiable, whether the tangents of two edges adjacent at a vertex intersect there at a non-
vanishing angle etc. In particular, cubic algebraic graphs ‘with defects’, i.e. those obtained
by deleting D − 1 edges adjacent at each vertex (the degrees of freedom on the deleted edges
are then not excited) can be considered as algebraic simplicial graphs; hence the simplicial
case is contained in the cubic one. This might be of some importance because it is easy to
generate random, simplicial, embedded graphs by the Dirichlet–Voronoi procedure [24] which

7 That is, the construction of (1) physical states annihilated by the master constraint, (2) operators commuting with
it as well as (3) a definition of the quantum dynamics in terms of physical Hamiltonians.
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improves the semiclassical properties of coherent states or density matrices constructed from
them [13].

2.2. Quantum kinematics

2.2.1. Gauge field and gravitational sector. Given an algebraic graph α we associate with
each of its (distinguishable) edges e an element A(e) of a compact, connected, semisimple Lie
group G and an element E(e) of8 its Lie algebra Lie(G).

These are subject to the algebraic relations

[A(e),A(e′)] = 0

[Ej(e), A(e′)] = ih̄Q2δe,e′τj /2A(e)

[Ej(e), Ek(e
′)] = −ih̄Q2δe,e′fjklEl(e

′).

(2.1)

Furthermore, the following ∗-relations hold:

A(e)∗ = [A(e)−1]T , Ej (e)
∗ = Ej(e). (2.2)

We will denote the resulting9 ∗-algebra by A. Here Q2 plays the role of the coupling
constant of the gauge theory10 in question and τj , j = 1, . . . , dim(G) are generators of
the Lie algebra of G which we take to be anti-Hermitian and trace-free for convenience
since any compact, semisimple Lie group can be realized as a subgroup of some SU(N).
These satisfy [τj , τk] = fjklτl where the structure constants fjkl are totally skew and we
normalize according to Tr(τj τk) = − 1

2δjk . Also Ej(e) := −2 Tr(τjE(e)). Obviously, (2.1)
takes the form of a direct sum of ∗-algebras, one for each edge e, each of which can be
considered as the quantization of the cotangent bundle T ∗(G).

A natural representation of the algebra A in (2.1) is the infinite tensor product (ITP)
Hilbert space H⊗ := ⊗eHe where He

∼= L2(G, dµH ) and µH is the Haar measure on G.
Other representations are conceivable but this representation is natural if we want to match
the uniqueness result [7, 8] of LQG valid for any (semianalytic) 3-manifold. For a review of
the ITP and the associated von Neumann algebras connected with it, see, e.g., [14]. We just
collect the necessary notions here.

The ITP Hilbert space is closure of the finite linear span of vectors of the form ⊗f := ⊗efe

where fe ∈ He. The inner product between these vectors is given by

〈⊗f ,⊗f ′ 〉 :=
∏

e

〈fe, f
′
e〉He

. (2.3)

The infinite product
∏

e ze of complex numbers ze = |ze| eiφe is defined by
∏

e ze :=[∏
e |ze|

]
ei
∑

e φe , φe ∈ [−π, π) provided that both of
∑

e ‖ze| − 1| and
∑

e |φe| converge,
in which case we also say that

∏
e ze is convergent. Otherwise we set

∏
e ze = 0. One can

show that for z =∏e ze �= 0 we can find for any δ > 0 a finite subset Eδ(α) of the set E(α) of
edges of α such that

∣∣z−∏e∈Eδ(α) ze

∣∣ < δ for all Eδ(α) ⊂ E ⊂ E(α). Obviously we consider
only elements such that ‖⊗f ‖ �= 0.

Two vectors ⊗f ,⊗f ′ are said to be strongly equivalent if and only if
∑

e |〈fe, f
′
e〉He

− 1|
converges. We denote by [f ] the strong equivalence class of f . It follows that 〈⊗f ,⊗f ′ 〉 = 0
if either [f ] �= [f ′] or [f ] = [f ′] and 〈fe, f

′
e〉 = 0 for at least one e.

We say that
∏

e ze is quasi-convergent if
∏

e |ze| converges. If we set (z · f )e := zefe

then ⊗z·f = (∏
e ze

)⊗f fails to hold if
∏

e ze is not convergent. We say that f, f ′ are

8 For LQG practitioners we stress that the notation E(e) is no misprint: E is just labelled by the edges of the algebraic
graph, surfaces will come in only when we consider semiclassical states.
9 We have set the gravitational Immirzi parameter to unity, otherwise rescale Q appropriately.
10 In particular Q2 = 8πGNewton for gravity. If needed we write QGR for gravity and QYM for the gauge field sector.
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weakly equivalent provided that there exists z such that [z · f ] = [f ′]. This is equivalent to
the convergence of

∑
e ||〈fe, f

′
e〉| − 1|. We denote by (f ) the weak equivalence class of f .

Obviously, strong equivalence implies weak equivalence. One can show that the closure of
the span of all vectors in the same strong equivalence class [f ], denoted by H⊗

[f ], is separable,
consisting of the completion of the finite linear span of the vectors of the form ⊗f ′ where
f ′

e = fe for all but finitely many e. The ITP Hilbert space H⊗ is the direct sum of the H⊗
[f ]. Let

also H⊗
(f ) be the closure of the finite linear span of the ⊗f ′ with (f ′) = (f ). Then the strong

equivalence subspaces of H⊗
(f ) are unitarily equivalent, the corresponding unitary operators

being of the form Uz⊗f := ⊗z·f with
∏

e ze quasi-convergent.
Our basic operators act in the obvious way as

A(e)⊗f := [A(e)fe] ⊗ [⊗e′ �=efe′ ]

Ej(e)⊗f := [Ej(e)fe] ⊗ [⊗e′ �=efe′ ]
(2.4)

where [A(e)fe](h) := hfe(h) and [Ej(e)fe](h) := ih̄Q2
[

d
dt

]
|t=0fe(etτj /2h). It is not difficult

to show that this makes A(e) a unitary matrix valued (in particular bounded) multiplication
operator and Ej(e) an essentially self-adjoint derivation operator. Relations (2.4) define them
densely on H⊗. This concludes the definition of the quantum kinematics.

2.2.2. Fermionic sector. Given an algebraic graph α we associate with each vertex v ∈ V (α)

Grassmann-valued variables θM(v), θ̄M(v), where M is a compound index M ≡ (m, I), where
m = ±1/2 is a Weyl spinor index and I = 1, . . . , d, where d is the dimension of the defining
representation of the Yang–Mills group G. These are subject to the anti-commutation relations

[θM(v), θN(v′)]+ = [θ̄M(v), θ̄N (v′)]+ = 0, [θM(v), θ̄N (v′)]+ = Q2
Fh̄δMNδv,v′ (2.5)

as well as the ∗-relations

[θM(v)]∗ = θ̄M(v). (2.6)

Here h̄Q2 is dimensionfree if we take θ to be dimensionless11. We consider just one
fermion species and only one helicity12. Again we will denote the resulting ∗-algebra
by A. A natural representation thereof is again by an infinite tensor product: for each
v we consider the 22d -dimensional Hilbert space of ‘holomorphic’ functions13 fv(θ) =∑2d

k=0

∑
1�M1<···<M2d

f M1,...,Mk
v θM1(v) · · · θMk

(v) where the complex valued coefficients are
totally skew. Set for one single Grassmann degree of freedom dµ(θ) = dθ dθ̄

(
1 + θ̄ θ

/(
h̄Q2

F

))
and define the usual Berezin ‘integral’ over superspace (better: linear functional)

∫
dθ1 = 0,∫

dθ θ = 1. We now consider the infinite tensor product H⊗ := ⊗v∈V (α)Hv where
Hv = L2(dµv), dµv(θ) = ∏

M dµ(θM(v)) which is a representation space of A via
(θM(v)fv)(θ) := θM(v)fv(θ) and (θ̄M(v)fv)(θ) := h̄Q2

F∂
/
∂θM(v)fv(θ) (left derivative).

All remarks about the infinite tensor product from the last subsection apply, just that the
label set has switched from edges to vertices.

2.2.3. Higgs sector. Given an algebraic graph α we associate with each vertex v ∈ V (α)

Lie(G) valued (if the Higgs transforms in the adjoint representation) or vector valued (if

11 The θ are related to the usual fermionic degrees of freedom of dimension cm−3/2 by a canonical transformation
which takes care of the dimensionalities (see below).
12 By the canonical transformation (it preserves anti-Poisson brackets) θm �→ θ̄m one can switch between left and
right handed descriptions.
13 Note that θ, θ̄ are classically anticommuting Grassmann numbers but that in quantum theory classical identities
such as the nilpotency [θ θ̄]2 = 0 no longer hold.
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the Higgs transforms in the defining representation of G) fields φj (v), πj (v) subject to the
algebraic relations

[φj (v), φk(v
′)] = [πj (v), πk(v

′)] = 0, [πj (v), φk(v
′)] = ih̄Q2

Hδjkδv,v′ (2.7)

and the ∗-relations

φj (v)∗ = φj (v), πj (v)∗ = πj (v) (2.8)

if the Higgs is Lie(G) valued. If it transforms in the defining representation so that it is
complex valued then we split the Higgs into real and imaginary parts and impose (2.8) on
those.

Again an infinite tensor product provides a representation of this ∗-algebra A. Consider the
probability measure on R given by dµ(x) = ex2/2 dx/

√
2π and dµv(φ) :=∏j dµ(φj (v)). Let

Hv = L2(dµv) and H⊗ = ⊗vHv . We consider functions of the form fv(φ) ≡ fv({φj (v)}j ),
which depend only on the φj (v). Then [φI (v)fv](φ) := φI (v)fv(φ) and [πI (v)fv](φ) :=
ih̄[∂/∂φI (v) − φI (v)/2]fv(φ) provide a representation of A on H⊗.

2.3. Quantum dynamics

We turn now to the quantum dynamics. Pivotal for everything to come is the volume operator.
Given a vertex v of the algebraic graph, we set

Vv := 
3
P

√√√√∣∣∣∣ 1

48

∑
e1∩e2∩e3=v

εv(e1, e2, e3)εijkEi(e1)Ej (e2)Ek(e3)

∣∣∣∣ (2.9)

where the sum is over all triples of mutually distinct edges e1, e2, e3 incident at v. The totally
skew function (e1, e2, e3) �→ εv(e1, e2, e3) takes values ±1, 0 and will be chosen according to
the algebraic graph in question in such a way that it matches the embedding dependent volume
operator of LQG [19] when embedding the algebraic graph in a generic14 way. The functions
εv(e1, e2, e3) are then chosen once and for all, they are embedding independent. Note that the
embedding independent operator [18] has been ruled out as inconsistent in a recent analysis
[27, 28]. In formula (2.9) we have assumed that all edges are outgoing from v. If e is ingoing
at v, then replace Ej(e) by −Adjk(he)Ek(e) where hτjh

−1 =: Adjk(h)τk defines the adjoint
representation of G on Lie(G).

We will also need the total volume given by V =∑v∈V (α) Vv . Finally we need the crucial
operators

Q(r)
v = 1

Tv

∑
e1∩e2∩e3=v

εv(e1, e2, e3) Tr
((

A(e1)
[
A(e1)

−1, V r
v

])
× (A(e2)

[
A(e2)

−1, V r
v

])(
A(e3)

[
A(e3)

−1, V r
v

]))
(2.10)

where Tv is the number of unordered triples of mutually distinct edges incident at v and r is
any real number. They will be needed in order to ensure the correct density weight of the
various expressions in the classical limit of the master constraint.

We now consider the following composite operators the classical limit of which are half
densities.

14 The possible embeddings of an algebraic graph fall into diffeomorphism equivalence classes. An embedding is
called generic if a random embedding results with non-vanishing probability in an embedded graph of the same
equivalence class. If there is more than one possibility then we must pick one. For our cubic graph to be considered
later we consider half-generic embeddings in the sense that there is a neighbourhood of each vertex and a coordinate
system in which the graph looks like the three coordinate axes in R

3.



2478 K Giesel and T Thiemann

2.3.1. Gravitational sector.

A.1a Gravitational Gauss constraint. For any v ∈ V (α) we set

GGR
j (v) := Q(1/2)

v

 ∑
b(e)=v

Ej (v) −
∑

f (e)=v

Adjk(A(e))Ek(v)

 (2.11)

where j, k = 1, 2, 3 for G = SU(2).
B.1 Spatial diffeomorphism constraint. Given a vertex v of the algebraic graph α and two

edges e, e′ incident at and outgoing from v, a loop βv,e,e′ within α starting at v along e
and ending at v along (e′)−1 is said to be minimal [10] provided that there is no other
loop within α satisfying the same restrictions with fewer edges traversed. We denote by
L(v, e, e′) the set of minimal loops with the data indicated15.
For any v ∈ V (α) we set

DGR
j (v) := 1

Tv

∑
e1∩e2∩e3=v

εv(e1, e2, e3)

|L(v, e1, e2)|
×

∑
β∈L(v,e1,e2)

Tr(τj [A(β) − A(β)−1]A(e3)[A(e3)
−1,
√

Vv]) (2.12)

where the sum is over unordered triples of mutually distinct edges adjacent to v and
where again we assumed for convenience that all edges are outgoing from v. The
quantity Tv := |{e1 ∩ e2 ∩ e3 = v; |εv(e1, e2, e3)| = 1}| is the number of contributing
triples16.

C.1a Euclidean Hamiltonian constraint. For any v ∈ V (α) and any 0 < r ∈ Q we set

H
(r)
E (v) := 1

Tv

∑
e1∩e2∩e3=v

εv(e1, e2, e3)

|L(v, e1, e2)|
×

∑
β∈L(v,e,e′)

Tr([A(β) − A(β)−1]A(e3)[A(e3)
−1, (Vv)

r ]) (2.13)

where the conventions are the same as above. This constraint is just an auxiliary
construction which we need in order to define various other quantities, it has no physical
meaning in our manifestly Lorentzian theory.

C.1b (Lorentzian) Hamiltonian constraint. For any v ∈ V (α) we set

HGR(v) − H
(1/2)

E (v) := 1

Tv

∑
e1∩e2∩e3=v

εv(e1, e2, e3) Tr
((

A(e1)
[
A(e1)

−1,
[
H

(1)
E , V

]]))
× (A(e2)

[
A(e2)

−1,
[
H

(1)
E , V

]]))
(A(e3)[A(e3)

−1,
√

Vv]))r (2.14)

where the conventions are the same as above and H
(1)
E :=∑v H

(1)
E (v), V :=∑v Vv .

2.3.2. Yang–Mills sector.

A.2b Yang–Mills Gauss constraint. For any v ∈ V (α) we set

GYM
J (v) := Q(1/2)

v

 ∑
b(e)=v

EJ (v) −
∑

f (e)=v

AdJK(A(e))EK(v)

 (2.15)

15 If we would work with the maximal algebraic graph, then the set L(v, e, e′) would need to be reduced to those
minimal loops which are possible within the algebraic graph on which a given state depends, i.e., on which it is
excited. This is equivalent to introducing suitable projection operators as described in [21].
16 To Tv a comment similar to that for L(v, e, e′) applies when extending the framework to the maximal algebraic
graph.
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where J,K = 1, . . . , dim(G) for G and we use underlined symbols to distinguish
gravitational and Yang–Mills quantities.

B.2 Spatial diffeomorphism constraint. For any v ∈ V (α) we set

DYM
j (v) := Q(1/6)

v

1

Pv

∑
e1∩e2=v

1

|L(v, e1, e2)|
∑

β∈L(v,e1,e2)

Tr([A(β) − A(β)−1]E(e1))Ej (e2)

(2.16)

where the sum is over all pairs of distinct edges adjacent to v and Pv is their number.
C.2 Hamiltonian constraint. For any v ∈ V (α) we set

H YM(v) = 1

2Q2

1

P ′
v

∑
e1∩e2=v

[
Tr
(
τjA(e1)

[
A(e1)

−1, V 1/4
v

])
EJ (e1)

]†
× [Tr

(
τjA(e2)

[
A(e2)

−1, V 1/4
v

])
EJ (e2)

]
+

1

Tv

∑
e1∩e3∩e4=v

1

Tv

∑
e2∩e5∩e6=v

εv(e1, e3, e4)

|L(v, e3, e4)|
εv(e2, e5, e6)

|L(v, e5, e6)|
∑

β∈L(v,e3,e4)

×
∑

β ′∈L(v,e5,e6)

[
Tr
(
τjA(e1)

[
A(e1)

−1, V 1/4
v

])
Tr(τ J A(β))

]
× [Tr

(
τjA(e2)

[
A(e2)

−1, V 1/4
v

])
Tr(τ J A(β ′))

]
(2.17)

Here in the electric term we sum over all pairs of edges incident at v and P ′
v is their

number.

2.3.3. Fermionic sector.

A.3a Gravitational Gauss constraint. For any v ∈ V (α) we define

GF
j (v) = Q(1/2)

v

∑
I

θ̄mI (v)(τj )mnθnI (v). (2.18)

A.3b Yang–Mills Gauss constraint. For any v ∈ V (α) we define

GF
J (v) = Q(1/2)

v

∑
m

θ̄mI (v)(τ J )IKθmK(v). (2.19)

B.3 Spatial diffeomorphism constraint. For any v ∈ V (α) we define

DF
j (v) := i

2

∑
b(e)=v

Q(1/6)
v Ej (e)[θ̄mJ (v)[A(e)]mn[A(e)]JKθnK(f (e)) − h.c.] (2.20)

where, as usual, h.c. denotes the adjoint, with respect to our chosen representation, of the
expression in the bracket and the sum is over all edges adjacent to v which are outgoing
from there17.

C.3 Hamiltonian constraint. For any v ∈ V (α) we define

HF (v) =
∑

b(e)=v

Q(1/2)
v Ej (e)

{[
Q

(1/2)

f (e)

]2
(A(e))jkθ̄mJ (f (e))(τj )mnθnJ (f (e))

− [Q(1/2)
v

]2
θ̄mJ (v)(τj )mnθnJ (v)

+ i
[
Q(1/2)

v

]2
[θ̄mJ (v)[A(e)]pn[A(e)]JK(τj )mpθnK(f (e)) − h.c.]

− [Q(1/2)
v

]2
Tr
(
τjA(e)

[
A(e)−1,

[
H

(1)
E (1), V

]])
θ̄mJ (v)θmJ (v)

}
. (2.21)

Here (A(e))jk denotes the matrix elements of the holonomy in the spin one
representation.

17 This corresponds to the forward lattice derivative. One can also add a term involving the incoming edges adjacent
to v corresponding to the backward lattice derivative.
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2.3.4. Higgs sector.

A.4b Yang–Mills Gauss constraint. For any v ∈ V (α) we define

GH
J (v) = Q(1/2)

v πK(v)(τ J )KLφL(v). (2.22)

B.4 Spatial diffeomorphism constraint. For any v ∈ V (α) we define

DH
j = [Q(1/2)

v

]3 ∑
b(e)=v

Ej (e)πJ (v)[(A(e))JKφK(f (e)) − φJ (v)]. (2.23)

C.4 Hamiltonian constraint. For any v ∈ V (α) we define

HH(v) = 1

2

[
Q(1/2)

v

]3
πJ (v)πJ (v) +

1

2
V 1/2

v U(φ(v)) +
1

2

[
Q(1/2)

v

]3
×
[ ∑

b(e)=b(e′)=v

Ej (e)Ej (e
′)[(A(e))JKφK(f (e)) − φJ (v)]

× [(A(e′))JLφL(f (e′)) − φJ (v)] (2.24)

where U is a positive, gauge invariant function of the φI (v), called the potential term.

2.3.5. The (extended) master constraint. We now simply add all the various geometry and
matter contributions18

Gj(v) := GGR
j (v) + GF

j (v)

GJ (v) := GYM
J (v) + GF

J (v) + GH
J (v)

Dj (v) := DGR
j (v) + DYM

j (v) + DF
j (v) + DH

j (v)

H(v) := HGR(v) + H YM(v) + HF (v) + HH(v) + �
√

Vv

(2.25)

where we have added a possible cosmological term in the last line and can now simply define
the master constraint as

M :=
∑

v∈V (α)

[Gj(v)†Gj(v)) + GJ (v)†GJ (v) + Dj(v)†Dj(v) + H(v)†H(v)]. (2.26)

The master constraint is manifestly positive and we take as its self-adjoint extension the
Friedrich’s extension19.

Several remarks are in order:

(I) Difference with background dependent theories. What is remarkable about all these
formulae is that they are rather similar to the expressions familiar from (Hamiltonian)
lattice gauge theory. For instance, on a regular cubic spatial lattice embedded in R

3

with edge length ε with respect to the standard Euclidean metric the classical continuum
Yang–Mills Hamiltonian

HYM = 1

2Q2

∫
R

3
d3xδab Tr[EaEb + BaBb], (2.27)

18 We suppress appropriate numerical coefficients which turn all the terms to be added dimensionless and such that in
the semiclassical limit [22] these terms have the same coefficients as in the classical constraints. More precisely, for
each commutator between a holonomy and a power r of the volume operator we should divide by rh̄Q2

GR and each
contribution to either constraint comes with an additional factor of 1/Q2

sector.
19 Some care is required in order to do this. As we will show in section 5, the master constraint preserves all strong
equivalence class Hilbert subspaces of the ITP. Since polynomials of elements of A applied to the vector ⊗f lie
dense in the sector defined by ⊗f it follows that the master constraint is densely defined on that sector if and only if
‖M⊗f ‖ is finite. We will simply remove those sectors from the ITP on which M is not defined and take the Friedrich’s
extension on each of the remaining sectors. As we show in this series of papers, all sectors corresponding to classical
background geometries lie in the domain of the master constraint.
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where Ba = εabcFbc/2 is the magnetic field and F the curvature of the Yang–Mills
connection, would be discretized in terms of our lattice variables as

HYM = 1

2Q2ε

∑
v

δab Tr
[
E
(
ea
v

)
E
(
eb
v

)
+ A
(
βa

v

)
A
(
βb

v

)]
, (2.28)

where the sum is over all vertices of the lattice, ea
v is the edge in the ath direction beginning

at v and βa
v is the plaquette loop in the xa = const. plane beginning at v.

This expression should be contrasted with the classical expression for the master
constraint on a differential manifold σ (we just consider the contribution of the Euclidean
Hamiltonian constraint for illustrative purposes),

M =
∫

σ

d3x
[Tr(FabE

aEb)]2

√| det(E)| , (2.29)

which on a cubic algebraic graph could look like

M =
∑

v

[∑
a

Tr
(
A
(
βa

v

)
A
(
ea
v

)[
A
(
ea
v

)−1
,
√

Vv

])]2

. (2.30)

Expression (2.30), in contrast to (2.28), does not contain information about a background
metric (there is none), a UV regulator ε or even the topology of σ . As long as the algebraic
graph is infinite, it can be embedded arbitrarily densely into any manifold σ and therefore
no continuum limit has to be taken. The theory is therefore UV finite.

(II) As we will see, the kernel of the master constraint defines the states which are
invariant under internal gauge transformations and, when embedded, under spacetime
diffeomorphisms20 of GR. This is due to the simple fact that M vanishes if and only if the
individual constraints hold21.

(III) In order to see that the solutions of the master constraint are, in particular, what one
intuitively expects of spatially diffeomorphism states that one can construct in the
embedding dependent context [5], one must embed those solutions. At this point, the
exact solutions of the master constraint in the new AQG context have not yet been
constructed. However, one can perform tests that support our expectations. First of
all, using coherent states one can show that the semiclassical limit of M is correct. Next,
approximate solutions to the master constraint are coherent states which are peaked on the
constraint hypersurface of the classical phase space and one can verify that the action of
the diffeomorphism group derived in [5] leaves the state approximately invariant. Finally,
one can try to improve the discretizations used in the above formulae which only use
next neighbour terms to all neighbour terms in order to obtain a non-anomalous quantum
algebra on the abstract graph. This could be done, for instance, by the method of perfect
actions [29].

(IV) As already mentioned, it is tempting to drop the spatial diffeomorphism constraint from
our analysis because at the abstract graph level no diffeomorphisms can be defined.
However, that is inconsistent as it does not correctly reduce the degrees of freedom as
required by the spatial diffeomorphism constraint, because the abstract theory and the
embedded theory should be in one-to-one correspondence as far as the physical degrees

20 The symmetries generated by the Hamiltonian and spatial diffeomorphism constraint have the interpretation of
spacetime diffeomorphisms only when the equations of motion hold.
21 The proof of this statement is trivial for the case that zero is only in the point spectrum of some set of (not
necessarily self-adjoint) constraints CI . Namely, CI ψ = 0 for all I obviously implies Mψ = 0 where M =∑I C

†
I CI .

Conversely, Mψ = 0 implies 〈ψ, Mψ〉 = ∑
I ‖CI ψ‖2 = 0, hence CI ψ = 0 for all I. The general case is treated in

complete detail in the first reference of [12].
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of freedom are concerned, and when embedding the abstract graph, the diffeomorphism
group acts nontrivially. See [15] for a more detailed discussion.

3. Semiclassical analysis

We review elements of [9, 17, 13] which can be consulted for more details.
We want to show that AQG is a canonical quantization of classical general relativity

including matter. The canonical formulation of classical GR in the form we need is
reviewed, for instance, in [1]. To begin with, the classical theory is formulated on manifolds
diffeomorphic to R × σ , where σ is a three manifold of arbitrary topology. Thus, we must
choose a differential manifold σ and embed the fundamental algebraic graph α into σ . Its
image will be called γ := X(α). Note that any three manifold admits an infinite number of
triangulations by tetrahedra or cubes and the graphs dual to such triangulations are simplicial
(all vertices are four valent) or cubic (all vertices are six valent), respectively. Thus we focus
on simplicial or cubic algebraic graphs. If there are topological obstructions to embed the total
α into σ then we delete suitable parts of it until it can be embedded. We will then simply not
excite the corresponding edges in the coherent state in what follows so that those edges drop
out of all formulae (the coherent states are replaced by the function equal to 1). An example
is when σ is compact so that embedding the infinite graph would lead to accumulation points.

3.1. Gravity and Yang–Mills sector

We will choose embeddings X such that γ is dual to a certain triangulation γ ∗. Thus, for each
X(e) there is a face Se in γ ∗ which intersects γ only in an interior point pe of both Se and
X(e). For each x ∈ Se, we choose a path ρe(x) which starts in b(X(e)) along X(e) until pe

and then runs within Se until x. Next, we choose a classical G-connection A0 and a Lie(G)

valued vector density E0 of weight 1. With the help of these data we define the quantities

A0(e) := A0(X(e)) := P exp

(∫
X(e)

A0

)
(3.1)

E0(e) :=
∫

Se

εabc dxa ∧ dxbA0(ρe(x))(E0)
c(x)A0(ρe(x))−1 (3.2)

which we will refer to as holonomies and electric fluxes respectively.
As one can show [9], if the classical theory is equipped with the following Poisson

brackets, {
(A0)

j
a(x), (A0)

k
b(y)

} = {(E0)
a
j (x), (E0)

b
k(y)

} = 0,{
(E0)

a
j (x), (A0)

k
b(y)

} = Q2δa
b δ

k
j δ(x, y),

(3.3)

where Q2 is the coupling constant (G = Q2/(8π) is Newton’s constant in GR), then the
quantities (3.1) satisfy

{A0(e), A0(e
′)} = 0

{(E0)j (e), A0(e
′)} = δe,e′τj /2A0(e)

{(E0)j (e), (E0)k(e
′)} = −Q2δe,e′fjkl(E0)l(e)

(3.4)

which precisely matches (2.1). Hence, our kinematical algebra A can be regarded as the
quantization of the reduction of the classical Poisson algebra to the quantities (3.1) and we
have considered a specific representation of A.
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We now consider coherent states. To that end, we construct elements of the
complexification GC of G by

ge;(A0,E0) := exp
(
iE0(e)

/
a2

e

)
A0(e) (3.5)

where we have introduced a parameter ae which may depend on e whose dimension is such
that E0(e)

/
a2

e is dimensionfree We now consider for t > 0 and g ∈ GC

�t
g(h) :=

∑
π

dim(π) e−tλπ χπ(gh−1). (3.6)

Here the sum extends over all equivalence classes of irreducible representations of G and
dim(π), λπ , χπ respectively denote the dimension of π , eigenvalue of the Laplacian on G
when restricted to the representation space of π and the character of π . For G = SU(2) we
have, for instance,

�t
g(h) :=

∑
j

(2j + 1) e−tj (j+1)/2χj (gh−1) (3.7)

where the sum extends over all non-negative half integers. The functions �t
g are elements of

L2(G, dµH ) and there is a measure νt on GC such that the completeness relation holds:∫
GC

dν(g)
�t

g(h)�t
g(h

′)

‖�g‖‖�g′ ‖ = δh(h
′) (3.8)

where δh(h
′) = �0

h(h
′) is the δ-distribution on G with respect to the Haar measure.

We now set te := 
2
P

/
a2

e for gravity and

�e;(A0,E0)(A) := �te
ge;(A0 ,E0)

(A(e)) (3.9)

and

�(A0,E0)(A) := ⊗e∈E(α)�e;(A0,E0)(A). (3.10)

It is important to keep in mind that (3.9) is a state in the abstract graph Hilbert space; we just
use all the data σ,X, γ ∗, ρe, A0, E0, ae in order to construct specific elements of the abstract
ITP Hilbert space. These states are coherent for our kinematical abstract algebra A in the
following sense: consider the ‘annihilation operators’

ge := exp
(
iE(e)

/
a2

e

)
A(e). (3.11)

Then our states satisfy22

ge�(A0,E0) = ge;(A0,E0)�(A0,E0), (3.12)

that is, they are eigenstates of the annihilation operators. This is one of the defining properties of
coherent states. These statements as well as other semiclassical properties such as peakedness
properties are proved in [9]. Of most importance for our purposes is that for the normalized
coherent states

〈�(A0,E0), A(e)�(A0,E0)〉 = A0(e), 〈�(A0,E0), E(e)�(A0,E0)〉 = E0(e) (3.13)

up to terms which vanish faster than any power of te as te → 0. Also the fluctuations are
small; see [9] for complete proofs.

This holds for the gravity sector for which Ea
j is dimensionfree while A

j
a has dimension

cm−1. This is why h̄Q2 = 
2
P has dimension of area. For Yang–Mills theory Ea

J has dimension
cm−2 and AJ

a has dimension cm−1 so that the Feinstrukturkonstante h̄Q2 is dimensionfree.

22 Up to a multiplicative factor which depends only on te and tends to unity as te → 0.
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Thus, for Yang–Mills theory everything remains the same, the only difference being that the
ae are now dimensionfree.

For the mathematically inclined reader, we mention that these states follow from an
application of the complexifier framework [13] which provides a constructive algorithm
towards coherent states. We define the positive operator, the complexifier

C := − 1

2Q2

∑
e∈E(α)

1

a2
e

Tr(E(e)2) (3.14)

and the δ-distribution on the ITP Hilbert space H⊗

δA(A′) := ⊗�0
A(e)(A

′(e)). (3.15)

Then

�(A0,E0) = [e−C/h̄δA]A(e)→ge,(A0,E0)
(3.16)

and

ge = e−C/h̄A(e) eC/h̄. (3.17)

That is, the coherent states are nothing else than heat kernel evolutions of the δ-distribution,
analytically extended to complex group elements23.

3.2. Fermionic sector

There is no such thing as a classical fermion. Only bilinear (commuting rather than
anticommuting) expressions of the Grassmann fields (‘current densities’) have a classical
interpretation. Hence, we are interested in semiclassical states which approximate the self-
adjoint quantities

J +
MN(v) = [θ̄M(v)θN(v) + θ̄N (v)θM(v)]/2,

J−
MN(v) = [θ̄M(v)θN(v) − θ̄N (v)θM(v)]/(2i).

(3.18)

We will equivalently work with the non-self adjoint currents JMN(v) = θ̄M(v)θN(v). These
satisfy the current algebra

[JMN(v), JPQ(v′)] = δv,v′ [δNP JMQ(v) − δQMJPN(v)]. (3.19)

We will construct semiclassical states for these currents; see [30] for other proposals made
in the literature. It will be sufficient to do this for each v separately. For each v the Hilbert
space is complex 2N -dimensional while the number of currents is real N2-dimensional where
N = 2 dim(G) due to the adjointness relation J ∗

MN = JNM . Since there are only N fermionic
degrees of freedom24 θM which count N complex degrees of freedom, we will not look for
states which approximate all the currents but only the N currents JMM = θ̄MθM and the
remaining freedom in the states will be used in order to approximate the phase of θM itself.

We note that the Hilbert space at fixed v is the span of states of the form

�a,b := (a1 + b1θ1) · · · (aN + bNθN) (3.20)

for ak, bk ∈ C which are 2N complex degrees of freedom. In order to reduce those to N
complex degrees of freedom we use the normalization |ak|2/s + |bk|2 = 1 for all k which
leaves us with 3N real degrees of freedom. Here we have abbreviated s = h̄Q2. We compute

〈�a,b, JMM�a,b〉 = |aM |2, 〈�a,b, θM�a,b〉 = (−1)M−1b̄MaM (3.21)

23 Also coherent states constructed for the harmonic oscillator or free field theories fit into that scheme.
24 Note that θ̄ plays the role of the conjugate momentum of θ ; hence one fermionic degree of freedom counts for one
configuration and one momentum degree of freedom.



Algebraic quantum gravity (AQG): I. Conceptual setup 2485

If we fix the expectation value of JMM to jM then |aM |2 = s(1 − |bM |2) = jM which shows
that 0 � jM � s, revealing that θM is a bounded operator25. Setting the expectation value of
θM to be zM we see that |zM | = √

jM [1 − jM/s] is already fixed, while the phase is free and
we have arg(aM) = (M − 1)π+ arg(bM)+ arg(zM). The fluctuation of JMM follows from the
operator identities θ2 = θ̄2 = 0 so that (θ̄θ)2 = sθ̄θ , hence

〈
J 2

MM

〉− 〈JMM〉2 = jM(s − jM).
The states (3.20) obey the resolution of identity

1 =
N∏

J=1

∫ 1

0
rs−1
J drJ

∫ 2π

0

dφJ

2π

∫ 2π

0

dϕJ

2π
|�a,b〉〈�a,b| (3.22)

where rJ = |aJ |2/s, φJ = arg(aJ )− arg(bJ ), ϕJ = arg(aJ )+ arg(bJ ).
In contrast to the semiclassical states defined for the gauge and gravitational sector, the

states �a,b defined for one vertex have large fluctuations. This is due to the fact that what we
should consider are not current densities but rather currents, that is, expressions of the form
JMM(B) =∑v∈B JMM(v) where B ⊂ V (α). Then the relative fluctuation with respect to the
states

� = ⊗v∈V (α)�av,bv
(3.23)

is given by

〈�, JMM(B)2�〉 − 〈�, JMM(B)�〉2

〈�, JMM(B)�〉2
=
∑

v∈B jv
M

(
s − jv

M

)[∑
v∈B jv

M

]2 ∝ 1

|B| (3.24)

if jv ≈ j is not varying too much over B. We see that macroscopic currents have very small
fluctuations.

Geometrically, the relation between the components of a Weyl spinor ξM(x) (which
transforms as a scalar under spatial diffeomorphisms) as it appears in the classical action and
the θM(v) is given by the formula [6]

4
√

det(q)(x)ξM(x) :=
∑

v∈V (α)

θM(v)
√

δ(X(v), x) (3.25)

where the three metric qab has appeared explicitly and X is the embedding again. The square
root of the δ-distribution matches the density weight of the equation. Note that ξ vanishes
away from the vertices of the embedded graph. Using

√
δ(x, y)δ(x, z) := δx,yδ(x, z) it is

easy to see that we have for the spatially diffeomorphism invariant quantity∫
σ

d3x
√

det(q)(x)ξ̄M(x)ξM(x) =
∑

v∈V (α)

θ̄M(v)θM(v). (3.26)

3.3. Higgs sector

For the Higgs sector we can construct coherent states of a more traditional type. Given a
classical canonical pair (φ0)I , (π0)I equipped with the Poisson brackets

{(φ0)I (x), (φ0)J (y)} = {(π0)I (x), (π0)J (y)} = 0,

{(π0)I (x), (φ0)J (y)} = Q2δIJ δ(x, y)
(3.27)

25 This follows already from the anticommutation relations. Since both θ θ̄, θ̄θ are positive operators while θ θ̄+θ̄ θ = s,
it follows that ‖θ‖, ‖θ̄‖ � s.
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we consider for each vertex X(v) of the embedded graph the variables (φ0)I (v) := (φ0)I (X(v))

and (π0)I (v) := ∫
Cv

d3x(π0)I (x), where Cv is the cell of the dual cell complex γ ∗ which
contains v. These variables induce the Poisson brackets

{(φ0)I (v), (φ0)J (v′)} = {(π0)I (v), (π0)J (v′)} = 0,

{(π0)I (v), (φ0)J (v′)} = Q2δIJ δv,v′
(3.28)

which is compatible with (2.7). If we take the Higgs field to be dimensionfree then h̄Q2 has
dimension cm2 and the φ0(v) have dimension cm2. Hence we introduce parameters Lv of
dimension cm and from those annihilation operators

aI (v) := 1√
2

[
φI (v) − iπI (v)

/
L2

v

]
(3.29)

and complex numbers

zI (v) := 1√
2

[
(φ0)I (v) − i(π0)I (v)

/
L2

v

]
. (3.30)

From these we construct

�t
z = e−|z|2/2 eza�0, �0(x) = e−x2/tv

/√
2πtv (3.31)

and then

�(φ0,π0) := ⊗v∈V (α),I�
tv
zI (v) (3.32)

where tv = h̄Q2
/
L2

v .

Remark. In contrast to the LQG representation which is necessarily discontinuous in the
edge labels of the holonomy operators so that the connection operator (smeared over one
dimensional paths) does not exist, in AQG we may indeed define such a representation. We
simply define a new algebra by

[Aj(e), Ak(e
′)] = [Ej(e), Ek(e

′)] = 0, [Ej(e), Ak(e
′)] = ih̄Q2δjkδee′ (3.33)

where now both E(e),A(e) are Lie(G) valued. This ∗-algebra is represented on the infinite
tensor product of Hilbert spaces, one for each edge, of the Hilbert space L2(R

dim(G), ddim(G)x)

on which Aj(e) and Ej(e) respectively act by multiplication and derivation by xj . Such a
representation is forbidden in LQG because one needs to relate the Hilbert spaces defined
for different (infinite) graphs to each other in such a way as to respect the relations
A(e1 ◦e2) = A(e1)+A(e2), A(e−1) = −A(e). One can easily see that there is no cylindrically
consistent measure underlying such a Hilbert space because the divergence of the electric flux
operator with respect to such a measure is not L2 (see, e.g., [31]). ITP Hilbert spaces have
no underlying measure; however, now the definition of the inner product between vectors
belonging to two different ITP’s based on different graphs becomes problematic (see [9]). In
AQG there is only one graph and therefore the problem disappears.

One would then define A0(e) = ∫
e
A0 and then define harmonic oscillator type coherent

states just as in (3.29)–(3.31). At least one could do that for the matter gauge fields such as
the Maxwell field for which oscillator type coherent states were actually invented. For gravity
one might want to stick with the algebra of section 2 in order to keep the discreteness of the
spectrum of geometrical operators.

4. (One) semiclassical limit of the master constraint

In what follows we summarize the result of [22] where a semiclassical calculation for the
extended algebraic master constraint operator based on a cubic algebraic graph is presented.
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The calculation makes use of the following approximation. We substitute the gauge group
SU(2) by U(1)3. This is of course incorrect; however, the results of [9, 23] together show
that the results of the exact non-Abelian calculation match precisely the results of the Abelian
approximate calculation, provided one substitutes in the result of the approximate expectation
value calculation every Abelian holonomy and electric flux by the corresponding non-Abelian
quantity. More precisely, the symplectic structure (3.3) does not know whether we are given
a SU(2) or U(1)3 gauge theory, the phase space is the same, only if we add the constraints do
we get this additional information. Hence, we may use a point (A0, E0) in the common phase
space of both theories. In order to carry out the approximate calculation, the non-Abelian
operators (Tr(τjA(e)), Tr(τjE(e))) are replaced by the Abelian ones (hj (e), pj (e)) where
hj (e) corresponds to the holonomy of the j th copy of U(1) and likewise for the electric field.
Note that on purpose we introduce new letters for the holonomy and the electric flux in order
to distinguish more easily whether we are talking about U(1)3 or SU(2). Then, after the
expectation value is calculated one replaces the classical U(1)3 terms ((h0)

j (e), (p0)j (e)) by
(Tr(τjA0(e)), Tr(τjE0(e))). The result of that calculation turns out to be exactly the same as if
directly doing the non-Abelian calculation, of course only to zeroth order in h̄. The advantage
of this indirect calculation is that it is much easier to perform.

In order to do this, all we have to do is to change the coherent states from those for SU(2)

to those of U(1)3. This is rather easy: consider the state

�t
g(h) :=

∑
n∈Z

e−tn2/2(gh−1)n (4.1)

where g ∈ C − {0} = U(1)C and h ∈ U(1). Function (4.1) is an element of L2(U(1), dµH ).
We set for j = 1, 2, 3

g
j

e;(A0,E0)
:= eEj (e)/a2

e ei
∫
e
A

j

0 (4.2)

and with te := 
2
p

/
a2

e

�
{te}
α,(A0,E0)

:= ⊗e∈E(α) ⊗3
j=1 �

te

α,g
j

e;(A0 ,B0)

. (4.3)

For simplicity and since this will not affect the final result, we choose the same te =: t for
each edge. Moreover, we will introduce the shorthand m := (A0, E0) for the phase space
point. The coherent states are then denoted by

�t
γ,m = ⊗e∈E(α) ⊗3

j=1 �t
α,ge,m

. (4.4)

Requiring the graph α to have cubic symmetry we know that each vertex is six-valent. We
label these six edges by eσ

J , whereby σ ∈ {+,−} depending on the orientation with respect
to the vertex v and J ∈ {1, 2, 3}. For more details, see [22]. Let us introduce the following
notation for the U(1)-holonomies and electric fluxes:

hJσjv := h
j

eσ
J (v)

pJσjv := p
eσ
J (v)

j

hI0σ0J0σ
′
0j0v := hI0σ0j0vhJ0σ

′
0j0v+σ0 Î0

h−1
I0σ0j0v+σ ′

0Ĵ0
h−1

J0σ
′
0j0v

. (4.5)
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For the considered algebraic graph of cubic symmetry, the algebraic master constraint operator
denoted by M̂ has the following form,

M̂ =
∑

v∈V (γ )

M̂v

M̂v =
3∑


0=0

Ĉ
†

0,v

Ĉ
0,v

Ĉ0,v =
∑

I0J0K0

∑
σ0=+,−

∑
σ ′

0=+,−

∑
σ ′′

0 =+,−

4

κ
εI0J0K0 ĥαI0σ ′

0J0σ ′′
0 
0v

ĥK0σ0
0v

1

ih̄

[̂
h−1

K0σ0
0v
, V̂

1
2

γ,v

]
Ĉ
0,v =

∑
I0J0K0

∑
σ0=+,−

∑
σ ′

0=+,−

∑
σ ′′

0 =+,−

4

κ
εI0J0K0ε
0m0n0 ĥαI0σ ′

0J0σ ′′
0 m0v

ĥK0σ0n0v

1

ih̄

[̂
h−1

K0n0σ0v
, V̂

1
2

γ,v

]
,

(4.6)

where the square root of the volume operator of the cubic graph denoted by V̂
1
2

α,v expressed in
terms of right invariant vector fields X̂

eσ
J

j := X̂Jσjv = iĥJσjv∂/∂ĥJσjv is given by

V̂
1
2

α,v =

3

p

√∣∣∣∣εjkl

[
X̂1+jv − X̂1−jv

2

] [
X̂2+kv − X̂k−jv

2

] [
X̂3+lv − X̂3−lv

2

]∣∣∣∣


1
2

(4.7)

with its corresponding eigenvalue

λ
1
2 ({nJσjṽ}) =

(

3

p

√∣∣∣∣εjkl

[
n1+jv − n1−jv

2

] [
n2+kv − nk−jv

2

] [
n3+lv − n3−lv

2

]∣∣∣∣
) 1

2

. (4.8)

Our task is now to show that the expectation value〈
�t

γ,m, M̂�t
γ,m

〉∥∥�t
γ,m

∥∥2 (4.9)

coincides with the classical U(1)3 master constraint

M[m] =
{∫

σ

d3x
δjkCjCk + qabCaCb + C2

√
det(q)

(x)

}
[m] (4.10)

evaluated at the point m = (A0, E0) in the classical phase space in the limit h̄ → 0. Here the
following functions were defined (we drop the subscript ‘0’)

Cj = ∂aE
a
j Ca = F

j

abE
b
j C = εabc

[
F

j

ab + εjklK
j
a Kk

b

]
el
c (4.11)

where

F
j

ab = 2∂[aAb] Ea
j = ∣∣det

((
ek
b

))∣∣ea
j , ea

j e
j

b = δa
b , ea

j e
k
a = δk

j

qab = ej
ae

j

b Kj
a = Aj

a − �j
a

and where �
j
a is the spin connection of the co-triad e

j
a , that is, Dae

j

b = ∂ae
j

b−�c
abe

j

b+εjkl�
k
ae

l
b =

0, �c
ab are the Christoffel symbols determined by the three metric qab.
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These are the U(1)3 quantities, the SU(2) quantities are defined in exactly the same way,
only the two following functions need to be changed to

Cj → ∂aE
a
j + εjklA

k
aE

a
l

F
j

ab → ∂[aA
j

b] + εjklA
k
aA

l
b.

(4.12)

That the U(1)3 calculation has anything to do with the result of the exact SU(2) calculation
relies on the fact, established in [23], that the SU(2) volume operator can be semiclassically
expanded in terms of polynomials of flux operators plus h̄ corrections. However, as shown in
[9], to zeroth order in h̄, expectation values of polynomials of holonomy and flux operators
agree in U(1)3 and SU(2) calculations and also extends to operators of type Q(r), as shown in
[21]. As long as we arrive at the correct classical U(1)3 master constraint in the leading order
of the expectation value calculation we are also qualitatively done for SU(2).

In [22] we prove that the expectation value of the algebraic master constraint operator
associated with a graph of cubic topology yields in the leading order〈
�t

{g,J,σ,j,L}
∣∣M̂∣∣�t

{g,J,σ,j,L}
〉∥∥�t

{g,J,σ,j,L}
∥∥2 =

∑
v∈V (α)

〈
�t

{g,J,σ,j,L}
∣∣M̂v

∣∣�t
{g,J,σ,j,L}

〉∥∥�t
{g,J,σ,j,L}

∥∥2

=
∑

v∈V (α)

∑
I0J0K0

∑
Ĩ0J̃0K̃0

∑
σ0=+,−

∑
σ̃0=+,−

εI0J0K0εĨ0J̃0K̃0

δm0,n0δm̃0 ,̃n0 +
3∑


0=1

ε
0m0n0ε
0m̃0ñ0


×

(

4a
3
2 |det((p)−)| 1

4

κh̄

)2

(sT )2 e+i
∑

ṽ∈V

∑
(J,σ,j)∈L ϕJσjṽ�(I0 ,̃I0,J0,J̃0,σ0,σ̃0,m0,m̃0,v,J,σ,j,ṽ)

× (f (1)
1
8

(1)
)2

(sgn(σ0)(q
−1)−K0n0

)(sgn(σ̃0)(q
−1)−

K̃0ñ0
)

 + O((sT /t)2). (4.13)

The leading has to be understood as follows. The coherent are labelled with the so-called
classicality parameter t ∝ h̄. Hence, the limit limt→0 corresponds to the limit h̄ → 0 and is the
limit in which the expectation value should agree with the classical quantities to approximate.
We show in detail in [22] that the result of the expectation value of M in the limit t → 0 above
can be identified with the classical discretized master constraint associated with a cubic lattice,
denoted by Mcubic from now on. Furthermore, we prove that Mcubic agrees, indeed, with the
classical continuum expression of the master constraint M in equation (4.10) when shrinking
the parameter interval length ε to zero. This can be summarized in the following equation:〈

�t
α,m

∣∣M̂∣∣�t
α,m

〉∥∥�t
α,m

∥∥2 =
∑

v∈V (α)

〈
�t

{g,J,σ,j,L}
∣∣M̂v

∣∣�t
{g,J,σ,j,L}

〉∥∥�t
{g,J,σ,j,L}

∥∥2
=

lim
t→0

Mcubic[m] =
lim
ε→0

M[m] . (4.14)

Consequently, with the calculation done in [22] we have shown that algebraic quantum gravity
is a theory of quantum gravity which has the same infinitesimal generators as general relativity.
Thus, the problem whether the semiclassical sector includes general relativity, which is still
unsolved within the framework of loop quantum gravity, is significantly improved in the
context of algebraic quantum gravity. Additionally, we discuss the next-to-leading order term
of the expectation value which can be interpreted as fluctuations of M̂. It turns out that these
next-to-leading order contributions are finite. For a more detailed discussion, see [22].
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Let us close this section with some remarks concerning the details of the analysis in [22]:

(1) In [22] we only considered the gravitational sector; however, the techniques used there
carry over to all standard matter coupling.

(2) In [22] we also dropped the piece corresponding to the quantum Gauss constraint because
it is just a linear combination of flux operators for which the correct classical limit has
already been established in [9].

(3) In [22] we only considered the Euclidean part of the Hamiltonian constraint. The
Lorentzian piece cannot be correctly produced using U(1)3 because the classical identity{
H

(1)
E , V

} = ∫
σ

d3xK
j
a Ea

j for SU(2) on which (2.14) relies fails to hold. However, again
the results of [22, 23] show that the correct SU(2) calculation does reproduce the correct
classical limit.

5. Computational AQG and quantum gauge fixing

The fact that the master constraint has the correct classical limit in AQG is a strong indicator
that the theory has the correct classical limit because the master constraint determines both
the physical Hilbert space and the quantum observables which are required to preserve the
physical Hilbert space. Ideally, in order to establish this one needs to compute the physical
Hilbert space, construct the gauge invariant quantum observables and define a dynamics among
those26.

As far as the first task is concerned, this can be done as follows. As is well known (see
the first reference of [12] for all details), given a self-adjoint operator M on a separable Hilbert
space H, there is a unitarily equivalent representation of M on a direct integral Hilbert space,

H ∼= H⊕ =
∫ ⊕

spec(M)

dµ(λ)H⊕
λ , (5.1)

where µ is a spectral measure for M, spec(M) denotes the spectrum of M and the separable
Hilbert spaces H⊕

λ are the generalized eigenspaces of M in the following sense. Given � ∈ H
we can represent it as a system of vectors (�λ)λ∈spec(M) where �λ ∈ H⊕

λ . Then M� is
represented as the system (λ�λ). The inner product is given by

〈�,� ′〉 =
∫

dµ(λ)〈�λ,�
′
λ〉Hλ

(5.2)

This is really nothing else than a generalization of the Fourier transform to an arbitrary
self-adjoint operator, the dimension of H⊕

λ has the interpretation of the multiplicity of λ.
The physical Hilbert space is the kernel of M, that is Hphys = H⊕

0 . The construction of
µ and H⊕

λ requires detailed knowledge of the spectrum of M but otherwise there is a clean
algorithm for how to obtain these structures which are unique up to unitary equivalence27.
While the assumption of separability does not apply to the ITP Hilbert space H⊗, there is no
problem because M preserves all the strong equivalence class Hilbert spaces. This follows
from the fact that M is a countable sum of operators each of which changes only a finite number
of entries in a vector of the form ⊗f ; hence we get a countable sum of vectors in the same
equivalence class, which remains normalizable if ⊗f is in the domain of ⊗f . Hence, we can
apply the direct integral decomposition to each of these separable Hilbert spaces separately.

26 Note that in background independent theories there is no natural Hamiltonian, the Hamiltonian constraint is
constrained to vanish and observables need to commute with it. Hence the Hamiltonian constraint is unsuitable to
define dynamics. Extra work is required in order to define evolution among observables (see below).
27 There are some remaining ambiguities associated with the fact that equalities hold up to measure µ zero sets. For
how to fix them, see [12].



Algebraic quantum gravity (AQG): I. Conceptual setup 2491

The quantum observables are the self-adjoint operators on Hphys. This is mathematically
sufficient but we are interested in those observables with a classical interpretation, that is,
those which can be defined on the kinematical Hilbert space H⊗, which have a classical limit
in the sense of our coherent states and which preserve the eigenspaces H⊕

λ . As can be shown,
a function F on the classical phase space is an observable provided that {F, {F, M}}M=0 = 0
(see [10]). A systematic way to construct such observables is via the partial observable ansatz
due to Rovelli [32]; see [33–35] and references therein for recent improvements concerning
the technical implementation. This is a classical framework which, given a set of constraints
CI , a set of phase space functions TI subject to det(({CI , TJ })) �= 0, a set of real numbers τI

in the range of the TI , and a phase space function f , constructs an observable Fτ
f,T as a power

series in the variables τI − TI . Hence

F τ
f,T = f +

∑
I

(τI − TI )fI +
∑
I,J

(τI − TI )(τJ − TJ )fIJ + · · · , (5.3)

for certain phase space functions fI , fIJ , . . . which can be explicitly constructed. Physically,
the TI are gauge fixing functions and if we evaluate Fτ

f,T at a point in phase space for which
TI = τI then F τ

f,T = f . The meaning of the real parameters τI is that each of them defines a
physical time evolution because Fτ

f,T is an observable for each value of the τI . One can also
show that the evolution in τI is generated by a physical Hamiltonian HI(τ) which in general,
however, will be τ dependent. Of course, the Hamiltonian should be bounded from below
and should reduce to the Hamiltonian of the standard model when the metric is close to the
Minkowski metric plus small fluctuations.

Unfortunately, all of that framework is purely classical and difficult to quantize because
the expression for F τ

f,T faces, in general, severe operator ordering problems. In order to
sidestep these problems it would be desirable to have a more direct procedure at one’s disposal
in order to generate a physical Hamiltonian. One way to do this is via the Brown–Kuchar
mechanism based on a phantom field [36]. By choosing a suitable action for the phantom field,
one can generate a physical Hamiltonian which reduces to that of the remaining matter and
gravity when the phantom field distribution is homogeneous. That Hamiltonian is explicitly
τ -independent and non-negative. Classical physical observables can be constructed as well
which suffer from less severe ordering problems. This is due to the fact that the phantom field
allows for an explicit deparametrization of the entire physical system. One might think that
the drawback of this is that the phantom field is a scalar which has not been observed, but
actually there is no problem because the phantom field is pure gauge anyway.

Thus we see that, apart from the technical problem of computing all of these quantities,
there is a clear conceptual path for how to do physics with AQG. For instance, the physical
Hamiltonian may be used in order to select the true vacuum of the universe, a quantity that
is ambiguous in the framework of quantum field theory on curved spacetimes. Furthermore,
it will be used in order to compute physical scattering amplitudes. However, in order to
do so, we really need effective computational tools. The computation of the exact physical
Hilbert space will be impossible due to the complexity of the theory so that we have to resort
to approximations. In a background independent and therefore necessarily non-perturbative
theory, only non-perturbative tools are allowed. These are precisely the coherent states defined
in section 3. We will choose a point in the classical phase space which (1) lies on the constraint
surface of the classical master constraint and (2) satisfies the gauge fixing conditions TI = τI

of our chosen functions TI (in our case essentially the phantom field). This means that these
states are approximately physical states because the norm of the master constraint (equivalently
its fluctuation) is close to zero and expectation values of physical observables Fτ

f,T effectively
reduce to the expectation value of f , of course only to lowest order in the fluctuations of the
TI − τI .
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One could call this approximation ‘quantum gauge fixing’ for the following reason. We
are working at the level of the kinematical Hilbert space. We choose a state which is peaked on
a point m of the constraint surface and within its orbit [m] on that point which corresponds to
the gauge cut T = τ . However, there are still fluctuations of all degrees of freedom involved,
not only physical ones, in particular in directions off the constraint surface and within the
gauge orbit. This is in contrast to gauge fixing before quantizing. In a way we gauge fix after
quantizing by choosing appropriate states which suppress the fluctuations into the unphysical
directions. In the longer range, one has of course to answer the question how good this
approximation is as compared to the exact calculation.

6. Algebraic quantum gravity and spin foams

The algebraic or embedding independent setting proposed for AQG also provides an interesting
new perspective for the spin foam programme [37]. Spin foam models try to provide a path
integral representation of LQG. Two of the most important tasks to be completed within the
spin foam programme for 4D general relativity28 are (1) to make contact with the canonical
theory and (2) to remove the triangulation dependence of the models.

In more detail, the spin foam models currently discussed in the literature start from a path
integral that involves a constrained BF theory action. Classically, if one solves those so-called
simplicity constraints which impose that the B field is the exterior product of two vierbeine,
then one obtains the Palatini action and a topological term. In order to define the path integral
mathematically one regularizes it by choosing a triangulation and discretizes the constrained
BF theory on this triangulation. However, to the best knowledge of the authors, none of
the spin foam models currently discussed has properly implemented the quantum simplicity
constraints nor has dealt with the fact that the Palatini theory leads to second class constraints
in the canonical formulation which has a nontrivial effect on the path integral measure if the
canonical and covariant theory are to compute the same thing. This is well known, see for
instance [38], and has also been pointed out in [39] for the spin foam context.

The second issue has to do with the removal of the regulator, that is, triangulation
dependence. A natural idea would be to sum over triangulations, the choice of the weights
being motivated by the group field theory formulation of spin foams [37]. However, again to
the present authors it is completely unclear how to make contact between the original path
integral for the constrained BF theory which at least has a clear connection to the classical
theory we want to quantize and the group field theory formulation. For instance, is it not more
natural to study the infinite refinement limit of spin foam models and to look for critical points
as in lattice gauge theory or dynamical triangulations [40]?

We will now show that AQG offers a clean solution to both problems. Indeed, as advertised
in [10], the extended master constraint defines a new type of spin foam model which computes
by means of the rigging map heuristically29 given by

η : H → Hphys;ψ �→
∫

R

dt exp(itM)ψ (6.1)

the physical inner product

〈η(ψ), η(ψ ′)〉phys :=
∫

R

dt〈ψ, exp(itM)ψ ′〉 =
∫ ∞

0
dt[〈ψ, exp(itM)ψ ′〉 + 〈ψ, exp(−itM)ψ ′〉]

(6.2)

28 There are many promising results in 3D but this is hardly surprising since 2+1 gravity is a TQFT. Most of the
results in 3D rely on the TQFT structure and therefore do not carry over to the 4D case.
29 See the first reference of [12] for the rigorous definitions.
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If the expression 〈ψ, exp(±itM)ψ ′〉 is analytic in t (for instance, if ψ or ψ ′ are analytic vectors
for M) then it can be considered as the analytic continuation t �→ ∓it in t of the expression
〈ψ, exp(−tM)ψ ′〉. Since M is positive, the operators exp(−tM) are bounded for t � 0 (they
form a contraction semi-group) and have improved convergence properties as compared to the
unitarities exp(±itM).

Note that 〈ψ, exp(−tM)ψ ′〉 vanishes when ψ,ψ ′ do not belong to the same sector of the
ITP. If we now write exp(−tM) = [exp(−tM/N)]N and insert N − 1 resolutions of unity
1sector = ∑

s |s〉〈s| where |s〉 denotes a countable orthonormal basis for the given sector then
we arrive at a path integral formulation of the physical inner product. The orthogonality of
the kinematical sectors carries over to their images under the rigging map.

Let us restrict ourselves, for the purpose of this paper, to the case that the semiclassical
theories we want to quantize have compact σ . The appropriate sector of the ITP is then based
on the vector ⊗1 = ⊗e1, where 1 is the constant function equal to 1. An orthonormal basis for
this sector is given by spin network functions defined over all finite subgraphs of the algebraic
graph. Then (6.2) defines a concrete spin foam model of general relativity for which the issue
of triangulation dependence is absent. Note that we may leave N large but finite, the formula
one obtains is exact for any N. Depending on the ‘boundary states’ ψ,ψ ′ and the value of N,
the non-vanishing contributions to the resulting sum will be over subgraphs of the algebraic
graphs which reach a certain maximum size. This should be quite similar to the 3D model
discussed in [41]. Details will follow in future publications.

7. Conclusions and outlook

Algebraic quantum gravity (AQG) offers a conceptually clear and technically simpler approach
to quantum gravity than loop quantum gravity (LQG). The simplification occurs because in
AQG one just has to deal with one, albeit countably infinite, algebraic graph while in LQG
one deals with an uncountably infinite number of finite and embedded graphs. In LQG this
has the effect that the Hamiltonian constraint always refines the graph on which it acts while
in AQG the algebraic graph is the finest possible one. The search for semiclassical states for
such refining or graph changing operators has so far been unsuccessful. However, as we have
indicated here and as will be shown in [22, 23], the present semiclassical tools developed in [9]
are already sufficient to establish the correct semiclassical limit of the master constraint. As
a further bonus, AQG possibly can deal with topology change in the sense that it incorporates
the semiclassical limits for all topologies while the corresponding states belong to the same
Hilbert space.

A point worthy of note is that for convenience we used elementary variables whose
classical limit coincides with those that are the starting point for LQG; hence our considerations
are very much inspired by LQG. However, our purely combinatorial setup can be used in a
much wider context, for instance it is conceivable that one can work with ADM variables
rather than connection variables in the absence of fermionic matter. All one needs is to smear
the ADM variables qab, P

ab over regions in σ whose smearing dimensions add up to 3. These
smearing labels are then promoted to elements of an abstract countable labelling set of an
algebra whose commutation relations mimic the Poisson brackets of the embedded objects.

Much has yet to be understood about AQG. For instance, what have the exact solutions
of the master constraint of AQG, when embedded, to do with the exact solutions of at
least the spatial diffeomorphism constraint of LQG? What we have established is that the
semiclassical limit of the weighted square of the spatial diffeomorphism constraint agrees
with the classical generator. Hence, semiclassical states peaked on the constraint surface of
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the spatial diffeomorphism constraint are approximate solutions of the spatial diffeomorphism
constraint30. But are they approximately invariant under the finite diffeomorphisms of σ?

Another open question is the following. Basically the master constraint is the weighted
sum of the Hamiltonian and spatial diffeomorphism constraints, which when embedded look
similar to the discretizations used in [16]. While the master constraint itself is in any case
non-anomalous we know that the constraints themselves do not close. Thus, the exact kernel
of the master constraint could be empty or may contain too few solutions because the algebra
of the constraints is anomalous. If this is the case then, as already mentioned, one must
modify the master constraint. There are several proposals: either one subtracts from the
master constraint the minimum of the spectrum, or one allows a whole interval of zero in the
spectrum to define solutions [42] or one succeeds in defining non-anomalous constraints on
the lattice, for instance by renormalization group techniques [29].

Finally, an interesting question is whether there is an algebraic version not only of the
volume operator but also of area [18, 43] and length operators of LQG [44]. This requires
a diffeomorphism invariant definition of the classical version of these operators in terms of
matter whose analytical expression uses 3D rather than 2D or 1D integrals in order that there
is an embedding independent lift; see [13] for an explanation. While the construction of
these operators is not necessary because there are other functions on the classical, spatially
diffeomorphism invariant phase space which separate the points, it would certainly be desirable
to have those at one’s disposal. We will leave this for future research.
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Appendix. Alternative quantization of the spatial diffeomorphism and Hamiltonian
constraints

By using the operator Qv defined in section (2.3) one can simplify the discretizations of the
contributions of the spatial diffeomorphism constraint and Hamiltonian constraint and make
the construction of the master constraint look more uniform. We just display the purely
gravitational contributions; the general pattern should become clear.

C′ Spatial diffeomorphism constraint. For any v ∈ V (α) we set

D̃j (v) := 1

Pv

∑
e1∩e2=v

1

|L(v, e1, e2)|
∑

β∈L(v,e1,e2)

Tr(τk[A(β) − A(β)−1])Ek(e1)Ej (e2)

(A.1)

where the sum is over unordered pairs of distinct edges adjacent to v and where again
we assumed for convenience that all edges are outgoing from v. The quantity Pv is the
number of contributing pairs.

D′ Euclidean Hamiltonian constraint. For any v ∈ V (α) we set

H̃E(v) := 1

Pv

∑
e1∩e2=v

1

|L(v, e1, e2)|
∑

β∈L(v,e1,e2)

Tr([A(β) − A(β)−1]E(e1)E(e2)) (A.2)

where we used the same notation as above.
30 This does not contradict the fact that in LQG the infinitesimal generator of the diffeomorphism group does not exist
due to the weight operator that is used in the definition of the square.
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E′ Lorentzian Hamiltonian constraint. For any v ∈ V (α) we set

H̃ (v) − H̃E(v) := 1

Pv

∑
e1∩e2=v

Tr([(A(e1)[A(e1)
−1, [H̃ ′

E, V ]]),

(A(e2)[A(e2)
−1, [H̃ ′

E, V ]])][E(e1), E(e2)]) (A.3)

where we used the same notation as above and have set H̃ ′
E :=∑v

[
Q

(1/2)
v

]†
Q

(1/2)
v H̃E(v).

F′ (Extended) master constraint. The extended master constraint is now simply given by

M′ :=
∑

v∈V (α)

[(
Q(1/2)

v Gj (v)
)†(

Q(1/2)
v Gj (v)

)
+
([

Q(1/6)
v

]2
D̃j (v)

)†([
Q(1/6)

v

]2
D̃j (v)

)
+
([

Q(1/6)
v

]2
H̃ (v)

)†([
Q(1/6)

v

]2
H̃ (v)

)]
(A.4)

where appropriate coefficients are understood as in the main text in order to match
dimensionalities and classical limit. Not only did the constraints simplify, also all terms
involved in M′ sandwich operators of the type

(
Q(r)

v

)†)n(
Q(r)

v

)n
. This is because the

operators Dj(v),H(v) transform as half-densities when embedded, Gj(v) is a simple
density and D̃j (v), H̃ (v) are double densities. The advantage is that the actual constraints
(almost) remain polynomials in holonomies and electric fluxes, up to appearances of the
operators V (r)v .
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