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On Surface-Symmetric Spacetimes with
Collisionless and Charged Matter

Sophonie Blaise Tchapnda

Abstract. Some future global properties of cosmological solutions for the
Einstein—Vlasov—Maxwell system with surface symmetry are presented. Glo-
bal existence is proved, the homogeneous spacetimes are future complete for
causal trajectories, and the same is true for inhomogeneous plane-symmetric
solutions with small initial data. In the latter case some decay properties
are also obtained at late times. Similar but slightly weaker results hold for
hyperbolic symmetry.

1. Introduction and main results

In general relativity the time evolution of self-gravitating collisionless particles
can be modelled by the Einstein—Vlasov system. For surveys of results on that
system see [1]. Cosmological spacetimes are those admitting a compact Cauchy
hypersurface. In this case the particles are galaxies or even clusters of galaxies.

Results on expanding cosmological models with collisionless matter, a posi-
tive cosmological constant and surface symmetry have been obtained in [12,13]. In
the present paper we want to examine what happens when the particles in the self-
gravitating collisionless gas under consideration are charged. The Einstein—Vlasov
system is then coupled to the Maxwell equations determining the electromagnetic
field created by the charged particles. Considering this particular problem extends
the knowledge on global dynamical properties of solutions of the Einstein equa-
tions. Adding the Maxwell equations could also help to answer the question why
in the cosmology literature people usually talk about the magnetic field more than
the electric field. If the accelerated expansion, which here is due to the positive
cosmological constant, could let the latter decay faster than the former then this
could be an explanation. This might also have some connection with the so-called
Landau damping effect [15]. The results of the present paper do not suffice to
address this issue, but we hope they can provide a basis for doing that in the
future.
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As known results related to the Einstein—Vlasov—Maxwell system we can men-
tion a small data global existence theorem in the spherically symmetric asymptot-
ically flat setting obtained in [5]. In the absence of Vlasov matter the asymptotic
behaviour of solutions of that system with 73-Gowdy symmetry was studied re-
cently in [11].

Let us now formulate our system. We suppose there are two species of charged
particles, one of positive charge +1 and the other of negative charge —1. All the
particles are supposed to have the same rest mass equal to 1, and to move forward
in time so that the number densities f* and f~ for positive and negative charge
species respectively, are non-negative functions supported on the mass shell

PM = {gapp®p’ = -1, p° > 0},

a submanifold of the tangent bundle T'M of the space-time manifold M with
metric g of signature — + ++. We use coordinates (t,z%) with zero shift and
corresponding canonical momenta p®; Greek indices always run from 0 to 3, and
Latin ones from 1 to 3. On the mass shell PM the variable p° becomes a function
of the remaining variables (¢, 2%, p®):

P’ = V=g"V1 + gurp®p" .
The Einstein—Vlasov-Maxwell system now reads

p* I a
S+ g Oanf = o 407D + Fy “p?)0pe fH =0 (1.1)
_p® _ 1, a _
Gag + Agaﬁ = 87T(Tag + Taﬁ) (1.3)
VaoFgy + Vg +VFog =0 (1.4)
Vo FoP = JP (1.5)
_ dp'dp?dp?
Top = [ (54 £ Ipapslol” (1.6)
R3 Do
Tap = FanFs ' = 920 F VR, (1.7)
dptdp®dp?
7= [ (= g (18)
R3 Do

where po = gasp”, I'g,, are the Christoffel symbols, |g| denotes the determinant of
the metric g, G the Einstein tensor, A the cosmological constant, F' the electro-
magnetic field created by the charged particles, J? the total particle current den-
sity generated by the charged particles and T3 and 7,3 are the energy-momentum
tensor for Vlasov and Maxwell matter respectively.
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A computation in normal coordinates shows that V,J¢ = 0. This equation
is an expression of the conservation of charge. It can be shown as in [10] that Tyhs
satisfies the dominant energy condition, i.e., T,sV*W?# > 0 for any two future-
pointing timelike vectors V¢ and W<. Let us show that the same is true for the
Maxwell tensor 7,3. Proving this is equivalent to show the weak-energy condition
TagV"‘Vﬁ > 0 for all timelike vector V¢, together with the property that TQBVB is
non-spacelike for any future-pointing timelike vector V. The proof of the latter
can be deduced from the following identities which hold since F' is antisymmetric

1
TavTs =, (T T20)90p s TapT™ 20

Contracting the first of these identities twice with V* implies the following, using
the second identity and the fact that V¢ is timelike:

(Vora) (T5V7) = 4 (17575)gagV*V? <0

and setting P, = V“1,,, this means that P, P* < 0, that is P, is non-spacelike
as desired. Now proving the weak-energy condition is equivalent to show that 7y
is non-negative since we can choose an orthonormal frame such that V* is the
timelike vector of the frame. In such a frame ggo = —1 so that 79 = ; g™ Foo Fop +
}LF @ [, > 0 as the sum of spatial lengths of a vector and a tensor respectively.

In the present paper we adopt the definition of spacetimes with surface sym-
metry, i.e., spherical, plane or hyperbolic symmetry given in [8]. We write the
system in areal coordinates, i.e., coordinates are chosen such that R = ¢, where R
is the area radius function on a surface of symmetry. The circumstances under
which coordinates of this type exist are discussed in [2] for the Einstein—Vlasov
system with vanishing A, and in [13] for the case with A. The analysis there can be
extended to the situation under consideration here since the Maxwell tensor 7,3
satisfies the dominant energy condition. In such coordinates the metric takes the
form

ds? = —e2Mbr) gy2 4 2AE) g2 4 42 (d6‘2 + sin} 9d902) (1.9)
where
sinf ifk=1
sing 6 := 1 ifk=0

sinhf if k=-1
Here t > 0, the functions A and p are periodic in r with period 1. It can be
shown as in [6] and [2] that due to the symmetry f* and f~ can be written as a
function of

t,rw = e pt and L :=t*(p?)2+ttsin 0(p®)?, with r,w € R; L € [0, 400|.

In these variables we have p® = e #\/1 4+ w? + L/t2.

In surface symmetry the only non-zero components of F' are Fy; and Fbs.
Indeed setting h := g+ eg ® eg — €1 ® e1, with eg = e™# gt and e; = e’*aar, the
mapping X? + hZX® is the orthogonal projection on the tangent space of the
orbit, and since the vector Y, := F,s(eo)®h? is invariant under the symmetry
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group, it vanishes. This implies that Fys = Fps = 0. Similarly, replacing eg by e;
in the expression of Y, yields F1o2 = Fj3 = 0.

Now we can calculate the Maxwell equations in a coordinate frame. Equa-
tion (1.4) then implies the following, where (0y, 01, 02, 03) = (0%, Or, 0, Oy):

OoFa3 = 01Fa3 = 02Fp1 = 03Fp1 = 0. (1.10)

Using the fact that the mapping (p',p?,p%) — (w,L,p?) is one-to-one from
Rx]0,00[xR to Rx]0, 00[xR and from Rx] — 0o, 0[XR to Rx]0, co[xR, one can
compute the J%’s and obtain .J? = J3 = 0,

2= [Tt = e Dt

and

T _ o oo w -
7= A/ /0 \/1+w2+L/t2(f+_f )(t,r,w, L)dLdw .

Equation (1.5) then implies

{80W|9|F01) =TVlal. - a(VIglE™) = —1%lg] (1.11)

2 (V19IF?2) =0,  9s(\/|g|F*) =0.

The non-zero components of the electric and magnetic parts of F' are E! = et F0!
and By = e #./|g|F?® respectively. Using these identities and recalling that
Vgl = t?e*#sing 0, (1.10) and (1.11) lead to the following, where ¢ is an ar-
bitrary constant and E! is denoted by FE:

o (t*e*E(t,r)) = me /OO /Oo(f+ — ), r,w, L)dLdw ,
—o0 JO

oy (2 E(t, 1)) = —e”w/ / v T — )¢, r,w, L)dLdw ,
(e Bt ) B RS R 2
Bi(t,r) = ct—2eMET)

After calculating the Vlasov equations in the variables (¢,r,w, L), the non-
trivial components of the Einstein tensor, and the energy-momentum tensor and
denoting by an upper dot or by prime the derivation with respect to ¢ or r respec-
tively, the complete Einstein—Vlasov—-Maxwell system then reads as follows

el
V14 w? + L/t
— (w4 e M T+ w2 + L/t2 — AEE) D, fT =0 (1.12)
el
V1+w? + L/t
— (w4 e M1+ w? + L/t2+ HE)d, f~ =0 (1.13)

oft + arf*

O f™ + o f~
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e 2N+ 1) + k — At? = 8nt?p (1.14)
e (2t — 1) — k + At? = 87t?p (1.15)
p = —4nter M (1.16)
W A (W= N)) e (A +(A—p) <2\ + 1)) + A = 47q (1.17)
Or(t2e*E) = t?e*a (1.18)
O (t2e*E) = —t%etb (1.19)
where
T o0 o0 _
p(t,r) := t2[ /0 V1+w?+ L/e2(f* + f7)(t,r,w, L)dLdw
+ ;(€2>‘E2 + Ct74) = 672”(T00 + Too)(t, 7‘) , (1'20)

- T [e’e} [e’e} U}2 N B
pt,r) = 1@/0 Lt 1 L) (f* + f)(t,r,w, L)dLdw
- 1( 2AE2 + ct™ 4) = 6_2A(T11 + Tll)(t 7‘) (121)
Jtr) =, / / w(f* + )t rw, L)dLdw = —eM Ty (t,7),  (1.22)

L _
q(t,r) := 1 /—oo/o \/1_'_ (f* + f)(t,r,w, L)dLdw

w2 + L/t?
+(PE? et = (T22 +T22)(t,7), (1.23)
a(t,r) := / / )(t, 7, w, L)dLdw, (1.24)

b(t,7) = t2/_ /O \/1+w2+L/t2(f+—f‘)(t,r,w,L)dew. (1.25)

We prescribe initial data at some time ¢t = tg > 0,

o

f+(thTawaL) = fo+(rvw7L)7 f_(to,T,’LU,L) = f_(r,w,L) )

Ato,7) = A(r), pu(to,r) = p(r), E(to,r) = E(r)
and want to study the existence and behaviour of the corresponding solution for
t € [tg, +00).

To this end we maintain the notation in [7,12,13], and follow their work
wherever possible. The first step consists on generalizing the local existence result
n [7, Theorem 3.1] to the case of charged particles under study:
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Theorem 1.1. Let f* € C1(R? x [0,00]) with f*(r + 1,w,L) = f*(r,w,L) for
(r,w, L) € R? x [0,00][, f¥ >0, and wo := wi +wy , Lo := L§ + Ly with

wE = Sup{|w||(r,w,L) € suppfi} < o0
LE = Sup{L|(r,w,L) € suppfi} < o0

Let A, E € CMR), i € C2(R) with A(r) = A(r + 1), a(r) = p(r + 1),

E(r)=E(r+1) forr € R, and

o

i (r) = —4mtoe™j(r)
472 Sen [T N
=, e wl| f™+f | (ryw,L)dLdw, reR,
0 —00 JO

0, (26 E) = teta = 7re)‘/ / <fJr - f) (ryw,L)dLdw, reR.
—o0 J0
Then there exists a unique, Tight mazimal, regular solution (f,f~, A\ u, E) of

(1.12)~(1.19) with (f*, f~, A\, u, E)(to) = (f*,f*,/\,,&,é) on a time interval
[to, Tmax[ with Tmax E]to, OO]

The regularity concept used in this statement is defined below.
The next theorem provides a continuation criterion used to prove that the
solution exists on the whole time interval [to, oo[.

Theorem 1.2. Let (f+, f~,\, u, E) be a right mazimal regular solution obtained in
Theorem 1.1. If one has

sup {|wl|(r,w, L) € suppf*} < oo,
sup {|wl|(r, w, L) € suppf~} < oo,
sup {,u(t,r)|r eR,te [to,Tmaz[} < 00,
sup { (e E|)(t,r)|r € R,t € [to, Tmaz|} <
then Ty,0z = 0O.

In the following we claim that among the conditions given in the previous
theorem there is one which implies the others.

Proposition 1.3. The condition
sup {u(t,r)|r cR, tc [to,Tmam[} < o0
is sufficient in order to conclude that Ty, = 0.

We can then state
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Theorem 1.4. Consider initial data as in Theorem 1.1 and assume in the case
of spherical symmetry that t3 > 1/A. Then the solution of the surface-symmetric
Einstein—Viasov-Mazwell system with positive cosmological constant, written in
areal coordinates, exists for all t € [to, 00[ where t denotes the area radius of the
surfaces of symmetry of the induced spacetime.

Once the existence of solutions is proven, one would like to study their as-
ymptotic behaviour at late times. In particular an important point is to know
whether the spacetime obtained is future complete or not. This seems not to be
easily achieved by a direct argument for the generic data case of the inhomoge-
neous Einstein—Vlasov—Maxwell system. Nevertheless it works out in the spatially
homogeneous case, as well as in the inhomogeneous plane-symmetric case under
an additional assumption on the initial data.

Let us examine spatially homogeneous solutions. These correspond to LRS
(locally rotationally symmetric) models of Bianchi type I and type III and
Kantowski—Sachs type for plane, hyperbolic and spherical symmetry respectively.
We refer to [9] for a detailed discussion on these models. We use the same no-
tation as in [4], where the case of uncharged particles has been studied. Most of
the results obtained in that case apply also if the particles are charged, the ex-
ception being those for which the proof involves matter terms. We will also use
results from [14] in which the only requirement for the energy-momentum tensor
is to satisfy the dominant and strong energy conditions, these are valid in the case
under investigation. Let us formulate our system in Bianchi symmetry.

The spacetime is considered as a manifold G x I, I being an open interval
and G a simply connected three-dimensional Lie group. The metric has the form

ds® = —dr? + gijei Qe
where {e;} is a left invariant frame and {e’} the dual coframe.
The Einstein constraint equations are

R — kijk" + (kijg”)* = 16m(Too + 700) + 27 (1.26)
Vikij = —8mTy, . (1.27)
The evolution equations are
0r9ij = —2kij (1.28)
Oikij = Rij + (kumg"™)kij — 2kukl — 8m(Ti; + 7ij)
— 47 (Too + 100) + 47(Tim + Tlm)glmgij — Agij , (1.29)

where

Too + Too = /(f+ + ) 0) (1 + grs0"v%) 2 g 2 du
1
+ Foy Fo 7 + 4F75F75 (1.30)

Tos = [ (7 + £ r )il 2o (1.31)
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Tij + 75 = /(f+ + [ 0)vivi (14 grv™v®) 72 gV 2o
+ i Fy 7 = gf FysF° (1.32)

with v := (v!,v?,0®) and dv := dv'dv?dv3.
The Vlasov equations are

Orf* +

o . . I
2k5v? — (1 + Grs0"V%) T2 Myt — <Fo '+ Fj lvo) 181,1']” =0
v

(1.33)

o +

o ) ) v
2kv7 — (1+ Grs0 V%) T2 My 4 <F0 '+ F; ZZO> 181,”‘ =0,
(1.34)

where vi,,, = 39" (=Cly.gmi + Clpgni + Chungii), Ciy, are the structure constants
of the Lie algebra of G.

Note that in LRS Bianchi symmetry the only non-zero components of F'
are F% and F?3. The Maxwell equations (1.4) allow us to obtain an explicit
expression for the magnetic part F23 of F. Thus the remaining unknown for the
Maxwell equations is the electric part F°! of F. For a Bianchi model the Maxwell
equations (1.5) take the following form

- {Igll/QFOﬁ} +CLFP|g|'? = JP|g M
which yields for 8 = 0 and 3 = i respectively
ClF0=J° (1.35)
O, FY — (trk)F* + Cy, FI' = J' (1.36)

here

0= / (f* — £ 0)lglY2do

T = [ = 0 (1 g v?) g .

Setting ki; = é(k[mglm)gij + 04, 04 being the trace free part of the second
fundamental form k;;, and using the Hamiltonian constraint (1.26) we obtain

1 2 —R 1 .
gt} = g A
3(]%]!] ) 9 + 20'”0' +87Tp+ 5
then using the fact that R < 0 (cf. [14]), it follows by the Proposition 1 in [4] that
the matter energy density is bounded by
p<Ce 7, (1.37)

We can prove the following
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Theorem 1.5. Let f(0,v) be a nonnegative C* function with compact support.
Let (gij(0),ki;(0), f7(0,v), f=(0,v), F%(0)) be an initial data set for the evolu-
tion equations (1.28), (1.29), the Vlasov equations (1.33), (1.34) and the Mazwell
equation (1.36), which has Bianchi symmetry and satisfies the constraint equations
(1.26), (1.27), and (1.35). Then the corresponding solution of the Finstein—Vlasov—
Mazwell system is a future complete spacetime for causal trajectories.

In the inhomogeneous case the result in the latter theorem can be proved in
plane symmetry for small initial data, a similar but slightly weaker result is true
for hyperbolic symmetry as well. We have the following

Theorem 1.6. Consider any solution of Einstein—Viasov—-Mazwell system with pos-
itive cosmological constant in plane or hyperbolic symmetry written in areal coor-
dinates, with initial data as in Theorem 1.4. In the case of hyperbolic symmetry
assume that A is sufficiently large. Let § be a positive constant and suppose the
following inequalities hold:

toA(to) = 1] <8, (e M) (to) <6, | E)(to)l <6 (1.38)

|At2e2r(to) _ 3 _ 3pe2n(to)| < g, w(ty) <4, c<d, (1.39)

where w(t) denotes the mazimum of |w| over the support of f+(t) or f=(t). Then
if & is sufficiently small, the following properties hold at late times:

tA—1=0@"2%), e M/ =012, SE=0@1"2%, (1.40)

At?e* — 3 — 3ke* = O(t™?), w=0@t"1). (1.41)
Furthermore the spacetime is future complete for causal trajectories.

The rest of the paper is organized as follows. In Section 2 we present some
preliminary results that we use to prove Theorem 1.1 in Section 3. The proof for
the other results is also given in Section 3.

2. Preliminaries
The regularity properties required for a solution are as in [7].

Definition 2.1. Let I C]0, 00| be an interval

(a) f£ € C'(I x R? x [0,00[) is reqular, if f*(t,r + 1,w,L) = f*(t,r,w,L)
for (t,r,w,L) € T x R? x [0,00[, f£ > 0, and suppf=(t,r,.,.) is compact,
uniformly in r and locally uniformly in t.

(b) p(orp,j, q, a,b) € CLIXR) is reqular, if p(t,r+1) = p(t,r) for (t,r) € IXR

(c) A € CY(I x R) is regular, if A € C*(I x R) and A\(t,r + 1) = A(t,7) for
(t,r)e I xR

(d) p € CHI x R) is regular, if i/ € C'(I x R) and p(t,r + 1) = u(t,r) for
(t,r) € I xR.

(e) E (or i) € CH(I x R) is regular, if E(t,r +1) = E(t,r) for (t,r) € I x R.
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It is possible to solve each equation of the system (1.12)—(1.15), (1.19), when
the other unknowns are given. This is the content of the following

Proposition 2.2. Let f+, f=, \, fi, E be regular for (t,7) € I xR, I C]0,00[ an
interval with tg € I. Replace f, f=, A, p, E respectively by f+, f=, \, i, E in p,

b, p to define p, b and p. Suppose that f+, f~ € C*(R? x [0, ), 3)\, L, E € CL(R)
and are periodic of period 1 in r. Assume that

to E_QZ(T) +k t A
( ) —k— 87T/ s*p(s,r)ds+ . (2 —t3) >0, (t,r) € IxR. (2.1)
t t Ju 3t
Then the system
=Xy
oft + ‘ onft
& V14 w? + L/t /
- (f\w 4P A1+ w? 4+ L2 — eiﬂ"E) Buft =0 (2.2)
eP
O f™ + orf~
& V14 w? + L/t /
- (f\w + P A1+ w? 4+ L2 + e”ﬂE) Ouwf™ =0 (2.3)
e M (275)\ + 1) +k — At? = 8nt?p (2.4)
e (2t — 1) — k + At? = 87t*p (2.5)
Oy (t2e E) = —t%etb (2.6)

has a unique, regular solution (f*,f=, A\ u, E) on I x R with fT(tz) = fT,
F(to) = =, Ato) = A, plte) = it and E(ty) = E. The solution is given by

fE(t,r,w, L) = foi((Ri,Wi)(to,t,w,L),L) (2.7)
e 2m(tr) — tO(e_zi(T) +k) g 8:' /t $2§(S,T)d5 + ?‘ft(tS _ tg) (2.8)
to
At,r) = dmte2n @ 5ty — 1 T k;j“(t7r) + ‘;‘te%(m (2.9)
At ) = A(r) + / (s, r)ds (2.10)
to
E(t,r) = 2o MET) (t%ei(r)%(r) — /t sze“(s’r)i)(s, r)ds) (2.11)
to
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where (RE, W) is the solution of the characteristic system

eﬁ_xw KX N T, - —
r,w) = = w — AT N1+ w + L2+ MEE ] (2,12
) <\/1+w2+L/t2 8% / (2.12)
satisfying (RT, W*)(t,t,r,w, L) = (r,w). If I = [to, T[ with T €]ty, 0] then there
exists some T* €|tg, T| such that condition (2.1) holds on [to, T*[xR. T* depends
on p.

d
ds(

Proof. Integrating (2.6) with respect to ¢ over [to,t] gives (2.11). The rest of the
proof is similar to those of Propositions 2.2 and 2.3, 1) in [12]. O

In order to solve the system (1.12)—(1.19), it will be enough to concentrate
on the subsystem (1.12)-(1.15), (1.19), as can be seen in

Proposition 2.3. The subsystem (1.12)—(1.15), (1.19) is equivalent to the full sys-
tem (1.12)—(1.19), provided the initial data satisfy (1.16) and (1.18) at t = to.

Proof. Under the assumption that the subsystem (1.12)—(1.15), (1.19) is satisfied
as well as (1.16) and (1.18) for ¢ = tg, we should prove that (1.16)—(1.18) hold
for all ¢. Integrating (1.19) over [to, ] with respect to t and differentiating the
resulting equation with respect to r yields

o tO
0, (2 E) = t2eta + / s2el (b + u'b)ds . (2.13)
t

Using (1.12) and (1.13) and integration by parts with respect to ¢t and w leads to
an expression for f:o s2etb'ds so that (2.13) implies

to e’} e’}
O, (P E) = tPea+n / / / BT+ f7) (s, rw, L)dLdwds . (2.14)
t —o0 JO

Computing the conservation law V,J“ = 0 in coordinates (¢, 7, w, L) and integrat-
ing the resulting equation with respect to t yields

to fe%e) [e%e)
7r/ / / EATRE(fT + f7)(s,r,w, L)dLdwds = 0
t —o00 JO

and so (2.14) becomes 9, (t?e*E) = t?e*a that is (1.18) holds for all ¢. Using the
latter and an argument similar to the one used in the proof for [7, Proposition 2.2]
we can show that (1.16) and (1.17) hold for all ¢ as well. O

The latter proposition shows that (1.16) and (1.18) are invariant under evolu-
tion. So they will be considered as constraint equations on initial data (at t = ¢o).
They can be solved:

/! ° o0
Proposition 2.4. The constraint equations ji (r) = —4mtoe ™ j(r) and

0, (12e*E) = t2e*a are solvable.
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Proof. To solve these equations we need to impose the following conditions, be-

oo °
cause (e*E)(r) and e #(") are periodic in  with period 1:

/01 /Z /OOO ei (f°+ _ fo) (r,w, LYdLdwdr = 0,
1) 1= // / M f(r, w, L)dLdwdr = 0

Choosing A freely, the argument of the proof in [13, Remark 2.4] applies. O

and

Remark. Note that considering a model with more than one species of particles is
important in order to prove the solvability of the second constraint equation above.

Indeed if we had only one species of particles the integral fol 7 erf(r,w, L)

[e]
dLdwdr would never vanish, except if f is identically zero.

3. Proofs

3.1. Proof of Theorem 1.1

Instead of considering the subsystem (1.12)—(1.15), (1.19), an idea used in [7], that
we follow here, is to consider an auxiliary system consisting of

el Aw
V1+w?+ L/t2

- (/.\w—l—e“*)‘ﬂ\/l—sz—kL/tz—e)‘Jr“E) OwfT =0, (3.1)

oft + o f*

e
+
V1+w?+ L/t2
- (Aw+eﬂ—kg\/l+w2+L/t2+eA+ﬂE) Ouf~ =0, (3.2)

of~ onf~

together with (1.14), (1.15), (1.19) and
f= —AmteHy (3.3)

Next by proving that ' = ji it is easy to show that if (f, f=, A\ u, i, E) is a
regular solution of (3.1), (3.2), (1.14), (1.15), (3.3), (1.19) on some time interval
I C]0, 0o with ¢o € I, and with initial data satisfying (1.16) and (1.18) for ¢ = to,
then (f1, f~, A\, u, E) solves (1.12)-(1.19).

As in [7], the solution of the auxiliary system above is used to construct a
sequence of iterative solutions.

o o! o o - ~
Let /NJ’ =, )\O(tar) = )‘(T)v Mo(t,’f’) = M(T)v MO(tar) = /J,(’f’), Eo(t,T') =
E(r) for t € [tg,00[, 7 € R ; Ty = oo. If \n—1, fin—1, fin—1, En—1 are already

o
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defined and regular on [tg, T,—1[xR with T;,_1 > 0 then let
we#n—l_)\n—l

V1+w?+ L/

/\nflw

GE (t,r,w, L) := <

—etnr A, /T w? + L2+ e)‘"lJr“"lEnl) (3.4)

for t € [tg, Ty—1[ and denote by (RE, WE)(s,t,r,w, L) the solution of the charac-

teristic system
d

ds (Ri7 Wi) = Gi:—l (S) R7 Wa L)

with initial data
(Rf,Wf)(t,t,r,w,L) = (r,w), (t,r,w,L) € [to,Tp_1[xR? x [0,00].
Define .
fEtrw, L) o= fE((RE, WE)(to, t,m,w, L), L),
that is, f© is the solution of
wektn—1=An-1

V1+w? + L/t2

et /1w + L2 T e“**“"‘lE"—l)awff =0 (3.5)

o fE + o fE — <An_1w+

with f¥(to) = f*, and define p,, pn, jn, @n, @n, by by the integrals (1.20)-(1.25)
with f*, E, X replaced by f, E,_1, A\n_1 respectively. Define

t —2/i(r) + k 8 t
T, := sup {t/ €lto, Tn-1[ | ole ' ) —k— :/ 5*pn (s, 7)ds
to

A
+3t(t3—t8) >0,reR,te [to,t’}}.

Using Proposition 2.2, let

e—2hn(t,r) . to(e_Qf‘t(T) +k) j_ 8t7T /t Ppn(s,r)ds + ?f)\t(ts —#),  (3.6)
to
oftr) = dmtenn @) g, = RO A i, 37)
An(t, 1) i= A(r) +/tt An(s, 7)ds, (3.8)
fn(t,r) == —47rte>‘"£“"jn(t, ), (3.9)
B (t,7) = t"2e (b7 (t%eg‘(r)%(r) - /t sze“"(s’r)bn(s,r)ds) . (3.10)
to
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Subtracting (3.5) corresponding to f* by the one corresponding to f~, integrating
the resulting equation with respect to w and L and integrating by parts with
respect to w yield

ar(tze“"bn) _ (/\n _ ).\nfl)e)\n_l_un_l-hu"tQan _ e)\n—l_An_an—l"l',unat(tQGAnan) ’

so that multiplying (3.10) by t?e*» and differentiating the resulting equation with
respect to r lead to

t
Oy (t2e)‘"En) = t2qpetn1Hn-1 —/ 52 (u; — ﬂn,l)e“"bn ds

to
t
—|—/ s (fun — ﬂn_l)ane“"_“"‘lJrA"‘l ds. (3.11)
to
We split the proof of Theorem 1.1 into several lemmas. From now on || - || denotes

the L°°-norm on the function space in question, the numerical constant C' may
change from line to line and does not depend on n or ¢ or the initial data. Firstly
we prove:

Lemma 3.1. The sequences fin, An, Ay P> Pns Eny Jns Gn, bp, finetn = are

uniformly bounded in n, in the L°>°-norm by a continuous function on [tg, co].
Proof. Define P, (t) := (P} + P, )(t) with
PE() : sup {|wl|(r,w, L) € suppfni(t)}, t € [ty,Tn[, and
Qn(t) :==sup {562“"(5’T)|r eER,tg<s< t} ,
Sp(t) :=sup {|En|e)‘"(s’r)|r ERtg <s<t},

we have the following estimate on suppf ()

V1+w?+ L)1 < \/1 + (PEW) + L/ <O+ LE)(1+ PE®),

so that

o) 1) I < G (14 25)° (1 + [ ) (14 PE0)* (14 Suca (1)
(3.12)
lizw s aemd)? (4] ) a+ e (313)

and then using (3.7) and (3.9)

et (tr) |+ | An(tsr) |< C(1L+ A)(1 + LE)? (1 +

) o+ prey?

(14 Qn(®) (14 Sn_1(1)” (3.14)
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This inequality is used to obtain an estimate on supp fniH(t) for |Wf+1| which

implies

t

X 2 3/2 2

PEA() < +C7 [ (14 PEE) (14 PEA) (14 Qu(s) (14 5,1(9)
0

(1+ Sn(s)) ds,

with C* = C(1 4+ A)(1 4 Lg)2(1+ || f£ ||). Setting PE(t) := sup{PE(t)|m < n}
and Sy, (t) := sup{Sy,(t)|m < n}, it follows that

P (1) <wi +C /t (1+ PE(9))° (14 Qu()** (1 + Su(s)) ds,

to
whence

Poyi(t) <wo+C* / (14 Posr () (14 Qu()** (1 + 8,(s))

to

%ds. (3.15)

Taking the derivative of (3.6) with respect to ¢ leads to
k 1
t(2p‘n€2'u") — 87T(t62'u")2pn + 2 (teQ‘u")Q 4 tt62yn _ A(teQ“")Q 7

integrating this over [t,t] and using integration by parts for the left hand side
yields

Qut) < ||toc? || + € /t (14 Po(5)) (1+ Qu() (1 + Sui(s)?ds.  (3.16)

to

Next (3.10) implies that

Su(t) < |l B +0*/t (1+ Pa(5))* (14 Qu(s)) *ds. (3.17)

to

Adding (3.15), (3.16) and (3.17) implies that

15/2

° o o t ~ ~
n+ n n = " n+1 n n .
(Pt 1+Qu+50) () < wort]toe? |+ e*E‘ﬂLC*/ [L+(Par+Qut-Sa) ()] ds

to

Thus P,, Q., S, are estimated by z1(t), the right maximal solution of the equation

t
+C* / (1+ zl(s))l5/2ds,

to

21(t) = wo + Htoez‘o‘ A E

+

which exists on [tg, T, we have T, > T(). Therefore there exists a continuous
function C7(t) which depends only on z; as an increasing function such that pu,,
Ay Ans Prs Prs By Gins Gy by fin€”n =27 are bounded in the L>-norm by C; (t). O

Next we prove:

Lemma 3.2. The sequences i, X, \., pl., pl., E., i\, a., b, fi., are uniformly
bounded in n, in the L>-norm by a continuous function on [ty, oo].
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Proof. Let us start from (3.11). Given Lemma 3.1 most of the quantities on the
right hand side of (3.11) can be estimated. The exception is u, which is obtained
after differentiating (3.6) with respect to r:

2pim

/ € o/ 24 fo 2 4
o (B, 1) = : top (r)e “H — 477/ s*pr,(s,r)ds |,
¢

again most of the terms are unproblematic with one exception that is p/,:
2

=g [ ey g G D Dt
— e 1B, 10, (eM 1 Ep_q).
Defining
Dy (t) :=sup { | Onf) (s) | + 1 9 fiy (5) || [to < s < ¢},

and

An(t) = sup { ]| (> Eu)(s) || to < s < ¢},
we deduce the following estimates

1 #2p5,(t) | < C1() (Da(t) + Ana (t))
I () 1| < Ci()(ex + Dn(t) + Anca(t))

o/
where ¢ :=|| 672“;3/ I+ | A || +1+ | A |, and so (3.11) implies
t
| Or(eME,) (1) [|< Cu(2) —|—/ Ci1(s)(c1 + Dn(s) + Ap_1(s))ds
to

thus
An(t) <Ci(t) 4+ [ Ci(s)(c1+ Du(s) + Ap_1(s))ds. (3.18)

to

Now differentiating (3.7) and (3.8) yields

. k
N (t,7) = e (gwtu;(t, r)pn(t,r) + 4mtpl (t, 1) — : o (t, 1) + At%)

o!

AL(t,r) =X (r) —|—/ N (s,7)ds,

to

and using the expression for p,, we obtain
It (®) | < CLr(8)(Da(t) + Ana(t))
X 15 1AL | < CLt)(er + Dalt) + Auar (1)) -
On the other hand it follows from (3.9) that
el = —dute® g, |

and
(7 i) (4.7) [ Cr(8) (01 + Dult) + Dua (1)
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We can now estimate the derivatives of Gif with respect to r and w :

w
V14+w? +Ljt2]

— (e“"iA"[Ln)’\/l +w?+ L/t? — A;w + (u%e“"“‘"En + e“"@r(e)‘"En)) > ,

8TGf(t,7“,w, L) = ((Hn — )\n)’e“"_k"

1+ L/t?

DG (t,r,w, L) = (etn 2

_ eﬂn*)\n '“n w _ )\n> )
: V1+w?+ L/t2
and thus
| 9,GE(t,m,w, L) | < Cr(t)(c1 + Dn(t) + An_1(t) + An(t))
| Gwaf(t,r,w,L) | < Ci(¢),

for t € [to, TW[, r € R, L € [0, Lo] and | w |< 2z (t). Differentiating the character-
istic system with respect to r, we obtain

d

ds Or (Riﬂrl, Wnﬂl) (s,t,r,w, L) = 9,GE (s, Riﬂrl, Wnﬂl, L) .8TRi[+1(s, t,r,w, L)

+ 0uGE (s, RE | WE |, L).O,WE (s, t,r,w, L),

it follows that

d

0" (RE, |, WE ) (s,t,r,w, L)| < Ci(s)(e1 + Dn(s) + Ap_i(s) + An(s))

| 8T(Rf+17 WniJrl)(svta T, w7L) | 9

therefore by Gronwall’s inequality we obtain,
for (r,w, L) € suppf, 1 (t) Usuppf, () Usuppf, (t) Usuppf, (1)

}8T(R7ﬂl:+1’ W?irl)(to’ i, 7w, L)}

< exp [/t Ci1(s)(c1+ Dn(s) + Ap_i1(s) + Apn(s))ds

The definition of fF implies that

| 9 FE() l1< Ha<r,w>fi sup { | 0, (RE, W) (to,t,rw, L) |

|(r,w, L) € suppf,f (t) Usuppf, (t)} .
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Combining this with the previous inequality and using the definition of D,
we obtain the following :

P
X exp { C1(s)(c1 4+ Dn(s) + Ap—1(s) + An(s))ds} . (3.19)

Do) < (

+ Ha(r,w)f

t

to

Let Dp(t) := sup{ Dy, (t)|m < n} and A, (t) := sup{A,,(t)|m < n}. Then (D,),
and (A,), are increasing, therefore adding (3.18) and (3.19) implies

)

X exp [ /t t Ca(5)(er + Dy () + An(s))ds] .

)

which exists on an interval [to, T®[C [to, T™[. Then it follows that

Drya(t) + An(t) < Cu(t) + (1 + H8<r,w>f+

+ Ha(nw)f_

Let z5 be the right maximal solution of

@@=Q@+@+wwf+

+ Ha(nw)f_

X exp [/t: Ci(s)(cr + zz(s))ds] ,

Dy () + An(t) < z(t), telto, T?[, neN.

Therefore there exists a continuous function Cs(t) which depends only on z; as an
increasing function such that all the quantities estimated against D,, and A,, are
bounded in the L>-norm by Cs(t). O

The following lemma deals with convergence of iterates.

Lemma 3.3. The sequences f.5, £, Ans tins Ens Ans fins fins Prs Pns Jns Gns by
converge uniformly on every compact subset [to, T®)] C [to, T®[ on which the
previous estimates hold.

Proof. Define for t € [to, T

an(t) = sup {|| (fi31 = £ | + ( w1 = Fa )8 [+ Qnr = Aa)(s) |
H 1 (g = 1) (3) ||+ || (2 B — e Bn)(s) |5 to <5<t}

and let C denote a constant which may depend on the functions z; and 25 intro-
duced previously. Then using Lemma 3.1, we have

| ons1(t) = pu(®) 1 1| prta(8) = pu(®) 1] | pn+1() pa(t) Il
[ Gngr () = gn(®) 1] || ant1(t) = an(t) ||, || bn1(t) = bn(t) [|< Can( )
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Using mean value theorem to estimate differences ern+1+#n+1 —eAnFhn and etn+1 —
etn, we deduce from (3.7) and (3.9) that

I A1 () = A (®) s 1 it () = n(t) [|< Can(t)
(3.8) thus implies

¢
I s =2 1€ [ ans)ds. (3.20)
to
By mean value theorem (3.6) implies
t
| (s = 1)) 1< C [ ans)ds. (3.21)
to

Reasoning as in step 3 for the proof of Theorem 3.1 in [6] we can prove that

|(R7 W):Jrl - (R, W):;l(tf)v t,r,w, L) ) |(R7 W);Jrl - (R7 W);l(tf)v t,r,w, L)

¢
SC/ an—1(8)ds
to

which implies, using the fact that fF was defined in terms of the characteristics,
and by mean value theorem

I = FDO I (fpr = F)B IS C [ an_a(s)ds. (3.22)

From (3.10) we deduce that
H(e)‘"En - exnflEn,l)(t)H <C [ ap_1(s)ds. (3.23)

Adding (3.20)—(3.23) gives
an(t) <C t (o (s) + an—1(s))ds
then by Gronwall’s inequality !
an(t) < C tozn_l(s)ds,
and by induction v

CnJrl
ap(t) < | forneN, te [to,T(B)] )
n!
We then conclude the uniform convergence of the iterates. In L*°-norm, A\, — A,
Mn—>u,ﬂnﬁﬂ,fJHer,f;Hfi,En%E. O

In order to prove that the latter limits are regular in the sense of Defini-
tion 2.1, we need to show the uniform convergence of the derivatives of the iterates
above.

Lemma 3.4. The sequences Oy f;7, Owfif, Orfr, Owfis Ny, b, fil, Or (e’ E) are
uniformly convergent on [to, T®)].
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Proof. Fix t € [to, T®)], lw| < U, L < min(Ld, Ly ), to < s < t. For 9 € {0y, 00}
and s +— (RI(s),W(s)) the solution of the characteristic system associated
to (3.5) in fF, define

£5(s) = e()‘"_“")(s’Rf)ﬁRff(s,t, r,w, L), (3.24)

n

My (8) 1= OW (s,t,r,w, L)

+ (\/1 +w? + L/s2ernHn /\n) ORE (s, t,r,w,L). (3.25)

(s.(RE W) (s,t,r,0, L))

Reasoning as in step 4 for the proof of Theorem 3.1 in [6] it can be proved with
minor changes that for all € > 0, there is a non negative integer N such that
forn > N,

(anﬂ 53;“"““’7:“ —nnH ) < Ce

0 [ (g5 = 6811+ e =) (e
(3.26)

By Gronwall’s lemma it follows that the sequences & and n;® converge uniformly.
The transformation from (OR;E, OWF) to (¢, nF) being invertible with convergent
coefficients, we deduce the convergence of 9., (RS, W¥) and thus the convergence
of 8, fF and 0, fF, using the fact that f was defined in terms of characteristics.
Let us prove the convergence of X, p!,, fi’,, 0r(e*" E,). Define

T (t) = Sup{l S =& | () 1€ =& [ )+ [l —mi [(s)
g =m0 L)+ 1 (g = 1) () [T+ 1 N = A0) () |l
O Buia) = 0, (M En) | (5), to<s <t (3.27)

The sequences fiy, fin, fin, )\m e* By, pny jns Gn, by converge uniformly, we then
take the above integer N large enough so that we have for n > N,

(e B — e Eyt) (8) I 1l (ks = ) (8) 11 1 (i = fin—1)(s) ]
I (An+1 A)(8) I (s = pu)(8) 11 | Gt = G) () 11
I Gngr = i) (8) 1511 (@nsr = an)(8) [ 1| (Bnpr = bn)(s) [[< €. (3.28)

Taking & = 0y, it follows from (3.24)—(3.25) that

ORE(s) = e(un—kn)(&Rf)giﬁ(s) 7 (3.29)
OWiE(s) =n(s) = (V1 +w? + L/s2An ) €(s). (3.30)
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Using these equations and since fT was defined in terms of characteristics we
obtain

| @S — B 7E)(s) | < ‘

ot
Ornf H (10, RE., — 0, RE| + 10, W2, — 0, WE)(s)

ot
< ‘ 3T,wf (|el"n+1_An+1£i:+l _ e,un_Ané"r:i:|

I = nE+ A& — Mg (5) (3.31)
this implies, using (3.28) and the fact that A, py, An, &, are bounded:

1 (Orfis = 0 f) (5) 1< Ce+ O (10 — &l + Iy — m 1) (s). (3.32)

Using (3.27), (3.28), (3.32) and the expressions of p,, pn, jn, we deduce that

I (s = P) () 1 1 (Pros = Po)(8) 1511 Unga = 30) () (1< Ce+ Clym +7n7%)(8))-

3.33
Now taking the derivative of (3.6) with respect to r, using (3.28), (3.33) and the
fact that p,, ul, are bounded we deduce an estimate for p!:

I (1 — 1) () 1< Ce+ C/ts(vn + Y1) (T)dT . (3.34)

For X,,, we first take the derivative of (3.7) with respect to r and obtain
N = (8wtpl pn + dmtpl)e + (At — k/t)ul e (3.35)

this shows that A/ is bounded. Subtracting (3.35) written for n 4+ 1 and n, we
obtain the following, using the fact that p,, pn, 1), are bounded and (3.27), (3.28)
and (3.32):

I (A1 = A)(8) 1< Ce+ Clyn +vm-1)(s) s (3.36)
and integrating this over [to,t] it follows from (3.8) that

¢
I (Nopr = X)) IS Ce+C [ (n +yn-1)(7)dr . (3.37)
to
For [i},, we take the derivative of (3.9) with respect to r, subtract the expressions
written for n + 1 and n, and use (3.27), (3.28) and (3.32) to obtain

I (1 — i) (8) 1< Ce+ Cloym + n-1)(s) - (3.38)

Now for an estimate for 9, (e’ E,,), we subtract the expressions written for n + 1
and n from (3.11), use (3.27), (3.28), (3.32) and the fact that A, pin, i, an, by, fin
are bounded to obtain

| (0r(e+2 Epy1) — 00(eM En))(5) < Ce+ C [ (Y +ma)(r)dr.  (3.39)

to
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Now we can add (3.26), (3.34), (3.37) and (3.39) to obtain, after taking the supre-
mum over s € [to, t:

() < Ce+C | (vn 4+ Yn-1)(s)ds, (3.40)

to

and setting 4, (t) = sup{ym, m < n}, we deduce by Gronwall’s lemma that
An(t) < Ce, n>N, te [tO,T@)} .

Thus the sequence 4, converges uniformly to 0. By (3.34), (3.37), (3.38) and (3.39),
the sequences fi’,, p!,, X, and 0,(e* E,,) then converge uniformly on [to, T(3)]. O

The regularity of f*, f=, A, u, fi and E follows. Using the convergence
of the derivatives, it can be proven as in [6] that (f, f~, A\, i, i, E) is a regular
solution of (3.1), (3.2), (1.14), (1.15), (3.3), (1.19) and then (f*, f~, A\, u, E) solves
(1.12)—(1.19). To end the proof of Theorem 1.1, we prove the uniqueness of the
solution. Let (f1-+, fi X, iy, Ei), © = 1,2 be two regular solutions of the Cauchy

problem for the same initial data (f, f~, 3\, /(i, E’) at t = tg. Setting
a(t) =sup {|| (fi" = ) |+ 1 (fr = F2)6) [T+ 11 a = A2)(s) ||
(= p2)(s) | + | (M Er = e Bo)(s) |5 to <s <t},

and proceeding similarly as to prove the convergence of iterates leads to

alt) <C / a(s)ds,

which implies that a(t) = 0 for ¢ € [tg, oo[. This proves uniqueness and completes
the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2

Let (f*,f7, A\ u, E) be a right maximal solution of the full system (1.12)—(1.19)
with existence interval [tg, Tinaz[- We assume that Tpq, < 00. By assumption

Q. = sup {te2“(”)|r eR, g <t< me} < 00,
S, 1= sup {|E|e)‘(t’7’)|r eER,tg <t < Tmam} < 0,

and P, < oo where P, := P} + P with

P* :=sup {|w|7 (ryw,L) € suppfi(t),t IS [to,TmM[} )

We take t1 €]to, Tmaz[, and we will show that the system has a solution with
initial data (f7(t1), f~(t1), A(t1), u(t1), E(t1)) prescribed at ¢t = t; which exists
on an interval [t1,¢; 4+ ] with 6 > 0 independent of ¢;. By moving ¢; close enough
to Thaesr this would extend the initial solution beyond T),4z, a contradiction to
the initial solution being right maximal. We have proved previously that such a
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solution exists at least on the right maximal existence interval of the solutions z1, zo
of

t
2 (t) = W(ty) + |12 + [|XE) E(ty)|| + C* / (1+ z1(s)) "™ %ds,
t1

22(t) = C1(t) + (1 || Oy (1) | + 1| Oy ™ (81)]])

X exp {/t: Ci(s)(e1 + @(s))ds} ,

where W (t1) := W (t1) + W~ (1),

W:t(tl) ‘= sup {|w|7 (vav L) € suppfi(tl)} )
C* = CL+ M1+ Lo (L+ I @)l + £~ (t0)ll)
cr =LA+ IV ()] + fle™ )/ ()]l

AV E#)|| < S, |IfE )] = [I£%], Lo is unchanged. Thus we have uniform
bounds W (ty) + |[t1e2#00) | 4 ||eA)E(ty)|| < My, C* < M. On the other hand
we can use the expressions for X', p/, N , some estimates proved in Lemmas 3.1,
3.2, and 3.3 to obtain uniform bounds ¢; < Ms, C1(t) + (1+ || Oy fT(t1) || + ||

Or,un S~ (t1) ||) £ My. Let y1 and yo be the right maximal solution of

and C) is an increasing function of z;. Now W(t;) < P,, |[t1e*t)] < Q,,
o

t
yl(t) = M1 + Mz/ (1 + yl(s))15/2ds,
ty
t

y2<t>=M4exp[ O3 (5)(Ms + ya(s))ds|

t1

respectively, where C} depends on y; in the same way as C depends on z;. Then y;
and y2 exist on an interval [t1,t1 + 6] with 6 > 0 independent of ¢;. If we choose t;
such that Tinee < t1 + 0 then z7 < y1, 29 < yo, in particular z; and z5 exist on
[t1,t1 + d]. This completes the proof of Theorem 1.2.

3.3. Proof of Proposition 1.3

We start by showing how to obtain the bound on w. Since we are in the non-vacuum
case one has wi > 0 and LE > 0. For t > t, define

PE(t) = max{0, max{w|(r,w, L) € suppf=(t)}},
PE(t) := min {0, min{w|(r,w, L) € suppfi(t)}} .

Let (r(s),w(s),L) be a characteristic curve in the support of f*. Assume that
PE(t) > 0 for some t € [to, Timaz[, and let w(t) > 0. Let t; € [to,t[ be defined
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minimal such that w(s) > 0 for s € [¢1,t[. We have

W(s) = —dw — e A/ /1 4+ w? + L/s2 F HE

2 ) 0o B B
_Am 62“/ / <@W1 Fu? L5t — w1+ a2 + L/ )(f++f‘)dezb
S —o0 JO
1 N (k — As?)e?#
2sw 2s

As long as w(s) > 0 we drop the last two terms of the right hand side in (3.41)
since they are negative, and then obtain

FeMrE 4+ w — 2mse (e”‘E2 + 05_4)w . (3.41)

s) Lo ~ 5
w(s) < f/ / “’OJ D) (p+ 4 pyaiaw + Z’ + M| B

(Pj:((;‘))) + M. (3.42)

< w(s)

Now integrating (1.19) with respect to ¢, using the boundedness of p and the fact
that s2[b(s)| < s%a(s) < CPi(s) (a being similar to a with f* — f~ replaced by
ft+ f7), we obtain

(MM E]) (s) < CH(eME|) (1) + C'/ts PE(r)dr.

It then follows that

(87 (PE(s))? + CPE(s) + CPE(s) /t ) Pi(r)dr,

w(s)? <
which implies after integration

W2 (6) ng(t1)+c/tt (s (PE()” + PE(s) ds+c[ /t P (s)PE(r)drds.

If t1 = to then w(t1) < wp, otherwise w(t1) = 0. In any case it follows that

t

w?(t) < wi +C [sfl(Pf(s))ﬁPf(s)} ds+c//Pi )P (7)drds .

t
1 (3.43)
The double integral in the right hand side of (3.43) needs to be worked out.

/ Pi( VPE(T)drds < / / (PE(s)) drds + / / (PE (7)) drds
t1 Jt1 t1 Jt1 t1 Jt
= /( t)(PE(s)) ds + // PE(r)) dsdr
ty

<Ct /t (Pf(s)) ds.

t1

t1
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Therefore (3.43) implies

(PE(1)* < (W +Ct) +C t@*1+t+1xpf@»%u, for t € [to, Trmax| -

t1

By Gronwall’s inequality it follows that Pf is bounded on [to, Trax|-
Estimating w(s) from below in the case w(s) < 0 along the same lines shows
that PT is bounded as well.

The bounds on w and u imply that e*|E| is bounded as well, using (1.19).

3.4. Proof of Theorem 1.4

We prove that p is bounded on [tg, Timaz|-
A lengthy computation leads to

1 1t
d / P p(t, r)dr = — ; / el [Qp +q-— pEP [1 + (k— AtQ)eQ“H dr
0 0

dt 2

2 ! I
< - /e‘“”pdr—i— /e“+Ap+p[1+(k—At2)ez“}dr,
t J tJy 2
(3.44)

since g is nonnegative. Using the fact that p+p > 0, p > p and k — At? < 0 it
follows that

d [ e
dt/o e‘”)‘p(t,r)drg—t/o " pdr

and by Gronwall’s inequality
1
/ "ot rydr < Ct™1 t € [to, Trnax| - (3.45)
0

On the other hand using the equation p/ = —4mte**j, (3.45) and the fact that
l7] < p we find

1
m@m—/jmpmﬂgc,temjmg,remu. (3.46)
0

Next using (1.15), p — p < 0 and k — At? < 0, we have

0 1+ ke2w

— At 2p
ot ¢ €

ehr = A [47rte2“(p —p)+
1 k—A#?
< pH—A 2p
<oy e
< 16“7)‘
= t b

so that
E(H_A)(tm) S Ot; te [tﬂaTmar[a e [0’ 1] . (347)
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Now using p — p < 0 and k — At? < 0, it follows that
1 1 t pl
/ w(t,r)dr = / f(r)dr —|—/ / (s, r)drds
0 0 to J0
tq gl
<C+ / / [e*(8ms’p + k — As®) + 1]drds
to 2s 0
<C +/ / (8ms?er el A p 4 1)drds
to 25 Jo

1 t 1
< C+ _In(t/to) + C/ 82/ " pdrds
to 0

(NN V]

< C+ _In(t/ty) + Ct?,

and using (3.46) we obtain
p(t,r) < C(L+t*+1nt), t€ [to, Tnae| 7 € [0,1].

1 is then bounded on [tg, Tinaz|[ and by Proposition 1.3 the proof of Theorem 1.4
is complete.

3.5. Proof of Theorem 1.5
The equation of motion for charged particles is given by the following differential
system for a path v — (7,0°,v%)(v):
dr o d° Lo
— = k Y
v~ " dv o v
For a particle with rest mass m moving forward in time, v = (m? + g;;v'0?)'/2.
Then the relation between coordinate time 7 and proper time v is
dr
dv
In order to prove the completeness of trajectories it is useful to control g;;v'v7 as
a function of 7. As in [4], we can define, from the Vlasov equations (1.33)-(1.34),
the characteristic curve V*(7) satisfying
dv;
dr

= 2/6?1)%0 — ™™ F (Fy 0 + Fj ?).

= (m®+ gijUi’Uj)l/z : (3.48)

= —(L+ g V'V V2 Vo Vig" " g " g5 F i
x [FO I F g™y, (1 + grsvrvsrlﬂ .

1/2 and C is an arbitrary positive

In this section we use the notation v := (A/3)
constant which may change from line to line.
Using the latter equation we obtain
d .. , ,
d (g”‘/z‘/j) = 2k”‘/z‘/j + 2glj‘/iFOj
-
< (=27 + Ce™ g ViV, F 29V V; Fy; . (3.49)
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We have used [4, (3.22)]. The second term in the right hand side of (3.49) can
be estimated using the Cauchy—Schwarz inequality and the elementary inequality
zy < ex?/2 4 y? /2 :
9IViFo; < (97ViVy)2 (9" FoiFoy)'/?
- 1 ..

< LIV + (97 Foiy), (3.50)
where ¢ is such that 0 < € < 2. On the other hand from the definition of 7y it
follows that N

gljF()iF()j S T00 - (351)

and using (1.37) ¢ Fy; Fy; < Ce=27". Thus we deduce from (3.49) and (3.50) the
following

d .. g
(g7ViV}) < (=27 + &+ Ce ") g ViV + Ce ™7 .

dr
Setting V := e(%*E)TgijViVj, it follows that
av
<Ce "V 4+ Ce™ T,
dr
V' is thus bounded by Gronwall inequality and then
GIViV; < Cel-2rHar (3.52)

Therefore g/ V;V; is bounded. This is enough to deduce from (3.48) that for m > 0,
we have

dv
>
dT*C’

so that v goes to infinity as does 7. The completeness of causal trajectories is then
proved.

3.6. Proof of Theorem 1.6
The proof is based on a bootstrap argument. By hypothesis
ltoA(to) =1/ <8, |(e ) (to)| <6, |(*E)(to)| <6
|At2e21(to) 3 _ 3e2nto)| < 5 w(te) <9,
and by continuity, this implies that
A1) —1[ <20, (M) <20, [(E)()] <20
|At2e2r(®) — 3 — 3k ()| < 26, w(t) < 26,

for ¢ close to tg.

Let C7 and € be constants for 0 < C; < 1 and 0 < € < 1/2. We can reduce §
if necessary so that 26 < C1t,*"¢. Then there exists some time interval on which
the following bootstrap assumption is satisfied

A —1) < Cit™2Fe, e | < Gt [ E| < C1t72F¢ (3.53)

|At?e? — 3 — 3ke| < Ot737¢, w(t) < Cpt=1re. (3.54)
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Consider the maximal interval [to, t.) on which (3.53)—(3.54) hold and suppose ¢.
is finite.
Let us continue with the following set of equations:

e 2N+ 1) + k — At? = 8nt?p (3.55)
e M = —dmtel (3.56)
Oi(t2e*E) = —t%eb (3.57)
e (2t — 1) — k + At? = 87t?p (3.58)
= —w—e" M1+ w2+ L/ FTHE.  (3.59)
From (3.55) we have
th—1= ; (Ae*t? — 3 — Bke) + ke + dnt*e*'p (3.60)
from (3.58)
Oy —;t672M(At262M —3—3ke*)| = —8nt?p, (3.61)
and from (3.59)
Oy (tw) = —t71(tA — 1) (tw) — tet (e M) /1 + w2 + L/t2 F te'(*E).  (3.62)

Consider a solution of the full system (1.12)-(1.25) on the interval [to,t.) which
satisfies the bootstrap assumption (3.53)—(3.54). Putting inequalities (3.53)—(3.54)
into equations (3.56)—(3.57), (3.60)—(3.62) allows new estimates to be derived. For
this purpose it is important to have estimates for the matter quantities j, p and b.
Let F := max{|| f* |z, || f~ |lz=}, and L the maximum value of L over the
support of f* or f~.

t2/ / w(f* + f7)dLdw

ArLF 9
< w
S
< ATLFC3t— 412 (3.63)

T [e’e] [e’e] ’UJ2 1
< 4+ f7)dL PE? et
|p|_t2[w/0 \/1+w2+L/t2(f I )dbdw (e +et™)

il =

o0 o0 1
;/ /O wl(F* + F)dLdw + (B + et

IN

_ 1 1
<47TLF012 + 2012 + 2c> At (3.64)

(f" = f7)dLdw

b = ﬂ'/oo /°° w
) oJo 1+w?+ L/t

< ATLFC3t—412, (3.65)



Vol. 8 (2007) On Surface-Symmetric Spacetimes 1249

An estimate for e?* is also required.
e = A2 (A2e?H)
< AT [(APe — 3 — Bke®M) + 3+ 3ke™]
< ATHTEC T 4 3+ Bke?].

If £ < 0 the last term in the latter inequality can be discarded. If k£ > 0 then we
need 3A~172 < 1, i.e., At? > 3. Assume for the moment that k < 0. Then

e < ATHT2[Cp 3 e 4 3]
<BATHTE 4 Oy AT T (3.66)
It follows that

1/2

|dmterj| < Amt[3ATM 2 + AT O] x ArLECR 4T

< 16m2LFC23+2 [\/3/\*17:*1 +cy QA*1/2t*5/2+6/2} ,
keeping the worst powers and using (3.56) implies
e /| < 1672 LFC? (\/3A—1 n 011/2/\—1/2) 2 Oyt (3.67)

Note that here there is no dependence on the initial data except for the conserved
quantities L and F. Moreover Cy = O(C?).
From (3.65)—(3.66) we have

10,26 E)| = [2ehd)
< [BAY2 4 O AR s an DR O

keeping the worst powers gives
2 A 3 1/2 4 —1/2 i3 2, —3+42e¢
O (t°e" F)| < + C{7°A X 4w LFCit ,
AT !

and integrating this in time yields

1 _
(*E)(t) < g B(to)lt™ + )~ <\/ i + c§/2A1/2> x dmLFC2—4+2

2 _
< [tge*<t0>|E(to)| +, i <\/3 + Cll/QAW) LFEC?| 72 = C5t™2,
— €

A

(3.68)

The constant Cs in the last inequality depends in a transparent way on the initial
data. We have

8t?p < dw(STLFC? + CF + e)t 42
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so that using (3.61) and integration gives

‘—;te_Q“(AthQ“ — 3 —3ke?)| < ;toe_z“(tO)Mtgez“(tO) —-3- 3k62“(t0)|

4 _
. j: 5o (BTLFCE +CF + )t~ .

‘|
At this point the assumption € < 1/2 is needed. Then

1 1
‘— 3te*2“(At2e2“ —3—3ke™)| < 3t0|At§ — 3e72u(to) _ 3|

4 _
+, _er (STLFC2+C? +¢).

Using (3.66) and keeping the worst powers, it follows that

|At?e? — 3 — 3ke?|
12

< [3A71 4 ClAfl} [t0|At3 — 3e72u(t0) _ 3k| 4 ) 7; (STLFC} +C? +¢)|t73
€

Oyt ™3 (3.69)

Now let us examine the evolution of w.

Using (3.66), (3.74), (3.68), the bootstrap assumption, the fact that C; < 1
and then keeping the worst powers gives

‘—te“(e*)‘u’)\/l +w?+ L/t2+ te“(eAE)‘

t—2

< lstge*“o)w(toﬂ + 187 LEAY/2C? (1

! _+8TAT (2+ \/L))

and using (3.62), the bootstrap assumption and integration it follows that

¢
tw(t) < tow(te) + [ Cis >Tesw(s)ds

to
t
‘)
to

< tow(to) + 6t2e )| E(t)| + 367 LEAY/2C? (

_ 1 _
3t2e 1) | B(to)| + 187 LFA~/2C2 <1 _+ETATY (2 + \/L>) ]s2ds

! _+8mATY2 (2+ \/L))

1—
Cct

+1—e

=: Cs. (3.70)
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An estimate on the matter quantity p is needed. Using (3.70) gives

T o0 o0 _
Pol = /_OO/O V1+w? 4+ L/2(f* + f7)dLdw

D L
< Z; / / V1+ w2+ L/t22FdLdw
—w JO

4t LF
< 7;2 wy\/1+ w2 + L/t?
ArLF

t2
< 4rLFCst3 (1 ot 4 \/Et*) , (3.71)

IN

C5t’1\/1 + C2t=2 + Lt—2

1 1
P = Pyl + 2(6)‘E)2 + 2ct74
_ - 1 1
< 4nLFCst~3 (1 Fostt 1 \/Lt*1) - ORI Tt (372
In the case of plane symmetry k = 0 (3.66), (3.69) and (3.72) imply that

1
5 (Ae®'1? — 3 — 3ke®!) + ke + Art?e®p

< ;C4t’3 +Amt? [BATI T2 4 Cr AT O
_ _ 1 1
X [47TLFO5t3(1 +Oost Lt’l) + 20%54*26 + 20754}
1 27 pa—1 \/* I, 1 -2
< |, Ca+ 16T LFATIC5(3 + 1) (1+c5+ L) +,CE+ el t72 (3.73)

Whereas in the case of hyperbolic symmetry k = —1, A=1(3 + C1)t 2 appears as
an adding term in the right hand side of (3.73), i.e.,

1
‘ 9 (A2 —3 — 3ke®™) + ke + Amt?e®!p

< [;CAL + 1671’2EFA7105(3 +C4) (1 + C5 + \/E)

1 1
+2012+ 2c+A1(3+C’1)} 2. (3.74)

For the latter inequalities we only kept the worst powers. We have
[tA — 1] < Cot ™2, (3.75)
where Cg is the constant written out in (3.73) for the case k = 0, and in (3.74) for
the case k = —1.
The constants Co—Cs appearing in (3.70)—(3.75) are all less than or equal to

Cx (g(8)+C?), with C a positive constant and g(d) a positive function of § tending
to 0 as § tends to 0. Therefore it is always possible to choose C; and § small enough
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in such a way that CC; < 1/2 and Cg(d) < C1/2, and so the constants Co—Cj are
all less than C4. This closes the bootstrap argument as it implies that (3.53)—(3.54)
hold on an interval [tg,t1), with ¢; > t.. This contradicts the maximality of the
interval [to, t). Therefore ¢, = co. To complete the proof of theorem 1.6 it remains
to show that the spacetime is complete. In fact recall that as in [12] the relation
between coordinate time ¢ and proper time 7 along the trajectory is given by

dr et

dt \/m2+ w2+ L/t2

The decay estimate on e*E and (2.8) and (1.21) can be used to obtain the in-
equality

for k<O0.

It follows that

Thus
dr Cct!
2> )
dt = V/m2+C+L
and so 7 goes to infinity as does t. Theorem 1.6 is then proved.

Acknowledgements

The author thanks A.D. Rendall for fruitful suggestions, and the anonymous ref-
eree for constructive criticisms.

References

[1] H. Andréasson, The FEinstein—Vlasov system/kinetic theory, Liv. Rev. Relativity 8
(2005), 1rr—2005-2.

[2] H. Andréasson, G. Rein and A.D. Rendall, On the Einstein—Vlasov system with
hyperbolic symmetry, Math. Proc. Camb. Phil. Soc. 134 (2003), 529-549.

[3] H. Andréasson, A.D. Rendall and M. Weaver, Ezistence of CMC' and constant areal
time foliations in T? symmetric spacetimes with Vlasov matter, Communications in
Partial Differential Equations 29 (2004), 237-262.

[4] H. Lee, Asymptotic behaviour of the Einstein—Viasov system with a positive cosmo-
logical constant, Math. Proc. Camb. Phil. Soc. 137 (2004), 495-509.

[5] P. Noundjeu, The Einstein—Vlasov—Mazwell system with spherical symmetry, Class.
Quantum Grav. 22 (2005), 5365-5384.

[6] G. Rein, The Vlasov-Finstein system with surface symmetry, Habilitationsschrift
Ludwig-Maximilians-Universitat Miinchen, 1995.

[7] G. Rein, Cosmological solutions of the Viasov-Einstein system with spherical, plane,
and hyperbolic symmetry, Math. Proc. Camb. Phil. Soc. 119 (1996), 739-762.



Vol. 8 (2007) On Surface-Symmetric Spacetimes 1253

[8] A.D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyper-
bolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533.

[9] A.D. Rendall and C. Uggla, Dynamics of spatially homogeneous locally rotation-
ally symmetric solutions of the Einstein—Vlasov equations, Class. Quantum Grav. 17
(2000), 4697-4713.

[10] A.D. Rendall, An introduction to the Einstein—Vlasov system, Banach Center Pub-
lications 41 (1997), 35-68.

[11] H. Ringstrém, On the T?*-Gowdy symmetric Binstein-Mazwell equations, Ann. Henri
Poincaré 7 (2006), 1-20.

[12] S.B. Tchapnda and A.D. Rendall, Global existence and asymptotic behaviour in
the future for the Finstein—Viasov system with positive cosmological constant, Class.
Quantum Grav. 20 (2003), 3037-3049.

[13] S.B. Tchapnda and N. Noutchegueme, The surface-symmetric Einstein—Viasov sys-
tem with cosmological constant, Math. Proc. Camb. Phil. Soc. 138 (2005), 541-553.

[14] R.M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence
of a positive cosmological constant, Phys. Rev. D 28 (1983), 2118-2120.

[15] T. Zhou, Y. Guo and C.-W. Shu, Numerical study on Landau damping, Physica D
157 (2001), 322-333.

Sophonie Blaise Tchapnda

Max Planck Institute for Gravitational Physics
Albert Einstein Institute

Am Miihlenberg 1

D-14476 Golm

Germany

e-mail: tchapnda®@aei.mpg.de

and

On leave from:

Department of Mathematics
Faculty of Science

University of Yaounde I

PO Box 812, Yaounde

Cameroon

e-mail: tchapnda@uycdc.uninet.cm

Communicated by Sergiu Klainerman.
Submitted: July 31, 2006.
Accepted: December 20, 2006.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00417
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


