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1. Introduction

The study of a one-dimensional bosonic geodesic σ-model based on the the Kac-Moody

coset E10/K(E10) has revealed a tantalizing dynamical link to the bosonic dynamics of

maximal D = 11 supergravity in the vicinity of a space-like singularity [2] (see also [3]).1

Though striking, this link is limited to truncations on both the Kac-Moody side and the

supergravity side. Further progress is partly inhibited by a lack of understanding of the

structure of E10 and of its maximal compact subgroup K(E10) which is not even of Kac-

Moody type [7]. The extension of the partial results in the bosonic sector to fermionic fields

requires the representation theory of the infinite-dimensional K(E10). As an important

first step it was shown in [8 – 11] that K(E10) admits (unfaithful) spinor representations

of dimensions 320 and 32 with the correct properties to parallel the promising features of

the bosonic model. In particular, it was shown there that the fermionic field equations of

maximal supergravity (with appropriate truncations) take the form of a K(E10) covariant

‘Dirac equation’. Furthermore, the decomposition of these spinor representations under

those subgroups of K(E10) which are known to lead to the massive type IIA and type

1An alternative covariant approach to the bosonic dynamics of D = 11 supergravity based on E11 and

the conformal group was initiated in [4, 5]. See also [6] for a proposal combining some features of [5] and [2].
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Figure 1: Dynkin diagram of E10 with numbering of nodes.

IIB theories were shown to result in precisely the right (respectively, vector-like and chiral)

fermionic field representations of type IIA and type IIB supergravity [12] (the corresponding

embeddings of the bosonic sectors had already been studied previously in [13, 14] for E10,

and [15 – 17] for E11). In this way the E10 and K(E10) structures incorporate kinematically

and dynamically the known duality relations between the maximal supergravity theories

for bosons and fermions alike.2

In this paper we extend the analysis of the unfaithful K(E10) representations to a

decomposition under its K(E9) subgroup. The latter is the maximal compact subgroup of

the affine E9 which is known to be a symmetry of the field equations of maximal N = 16

supergravity in D = 2 [20 – 23].3 While the finite-dimensional exceptional ‘hidden sym-

metries’ En of maximal supergravity in D = 11 − n for n ≤ 8 can be directly realised on

the supergravity fields [26, 27], the infinite-dimensional affine symmetries of the D = 2

theory are realised via a linear system whose integrability condition yields the equations

of motion. The fermionic fields (as well as the supercharges) form linear representations of

the maximal compact subgroup K(En) for n ≤ 9. Here we will show how, using K(E10)

and its representations, the K(E9) transformation rules for the fermions in two space-time

dimensions can be derived purely algebraically from the reduction. This constitutes the

first direct proof of the K(E9) properties of D = 2 supergravity that does not resort to

the linear system. Moreover, we will show that our algebraic action is equivalent to the

analytic description of the K(E9) action in terms of a spectral parameter via a ‘generalised

evaluation map’ [1]. The equivalence of the latter with the algebraic construction of the

present work suggests that K(E10) may admit a similar realisation – a tantalizing oppor-

tunity for future research, since it may also lead to a new realisation of the hyperbolic

Kac-Moody algebra E10 itself!

A major tool in our investigation is the so-called level decomposition of the global

hidden symmetries En. In figure 1, we display the Dynkin diagram of E10 with our labelling

conventions; the lower rank exceptional algebras are obtained by removing nodes from the

left. The level decomposition with regard to the An−1 ≡ sl(n) subalgebras of En allows

one to identify the physical fields from the adjoint representation of En in terms of SL(n)

tensors. More specifically, these level decompositions follow the scheme presented in table 1

for n = 5, . . . , 9, where we label the relevant SL(n) representations by bold face letters in

2The correct structure for the non-maximal type I supergravity theory in D = 10 is DE10 ⊂ E10 [18].

The 32 and 320 representations of K(E10) decompose into the correct spinors of K(DE10). The bosonic

sector of this theory was previously studied in relation to DE11 in [19].
3See also [24, 25] for similar infinite-dimensional symmetries in pure Einstein gravity.
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En\ℓ −4 −3 −2 −1 0 1 2 3 4

E5 10 ⊕ (24⊕1) ⊕ 10

E6 1 ⊕ 20 ⊕ (35⊕1) ⊕ 20 ⊕ 1

E7 7 ⊕ 35 ⊕ (48⊕1) ⊕ 35 ⊕ 7

E8 8 ⊕ 28 ⊕ 56 ⊕ (63⊕1) ⊕ 56 ⊕ 28 ⊕ 8

E9 · · · ⊕ 80 ⊕ 84 ⊕ 84 ⊕ (80⊕1⊕1) ⊕ 84 ⊕ 84 ⊕ 80 ⊕ · · ·

Table 1: The level decompositions of the global En hidden symmetries in D = 11 − n dimensions

under the gravity SL(n) subgroup. The column headings ℓ refer to the level in this level decompo-

sition. For ℓ = 0, the adjoint of SL(n) always combines with the singlet into the adjoint of GL(n),

in the affine case also extended by the derivation d and the central element c of E9. The derivation

is part of gl(9).

the usual way, noting that the entries of the columns ℓ = 1, 2 always correspond to the

three- and six-form representations of SL(n), respectively (and the columns ℓ = −1,−2 to

their contragredient representations). Naturally, E6 in five dimensions is the first time the

six-forms appear in the scalar coset.

For the finite-dimensional algebras in this series (that is, for n ≤ 8) these results have

been known for a long time (for a systematic analysis, see [27]). For n = 9, the triple of

representations 84 ⊕ 80 ⊕ 84 is repeated an infinite number of times, giving rise to the

affine extension of E8 in the standard way (the two singlets appearing in the middle column

for E9 are the central charge c and the derivation d). For n = 10 and n = 11, we can no

longer display the representations in such a simple fashion, as the number of representations

‘explodes’; but see [28] for the tables up to levels ℓ = 18 and ℓ = 10, respectively, which

were obtained by computer algebra,4 and also [2] and [29] for earlier results on very low

levels of E10 and E11, respectively.

We conclude this introduction with some comments on the link between the mathe-

matical structures (ideals, and unfaithful representations of infinite-dimensional compact

subgroups of hidden symmetries) exhibited in the main part of this paper, and the so-called

’generalised holonomies’ discussed in the recent literature. Quite generally, the latter should

be identified with quotients of the infinite-dimensional algebras K(E9) and K(E10) by cer-

tain finite codimension ideals. Given any Lie algebra k and a linear representation space

V , the subspace

iV :=
{

x ∈ k |x · v = 0 ∀v ∈ V
}

⊂ k (1.1)

defines an ideal in k. The representation is unfaithful if iV 6= {0}. The existence of non-

trivial ideals implies in particular that the Lie algebra k is not simple. For any iV , we can

define the quotient algebra

qV := k/iV ⊂ gl(V ). (1.2)

4In fact, for E10, the tables are available up to A9 level ℓ = 28 with a total of 4 400 752 653 representa-

tions [28].
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The unfaithful finite-dimensional spinorial representations of K(E9) and K(E10) discovered

in [1, 8 – 11] are directly related to the Dirac- and vector (gravitino) spinors appearing in

maximal supergravities. For instance, the relevant representations for K(E10) are the

32 and the 320 [9, 10]. These representations are inherited by K(E9) ⊂ K(E10), such

that the 32 decomposes into two inequivalent 16-dimensional Dirac-type representations

of K(E9). As one of our main results we are able to present the associated ideals in K(E9)

in complete detail, cf. section 3. Because a single ideal may be associated to more than

one (and sometimes infinitely many) representations, the description of these structures in

terms of ideals appears to be the most economical way to study them.

It is perhaps worth stressing that the quotient group SO(16)+×SO(16)− associated to

the 16+ ⊕16− representation of K(E9) is not a subgroup of K(E9), because the would-be

SO(16)+ × SO(16)− generators are distributional objects, as we will explain (see also [11]).

The latter group has been proposed as a ‘generalised holonomy group’ of M-theory [30, 31],

generalising the SO(9) Lorentz structure group of the tangent space of the nine torus on

which the D = 11 theory was reduced. By studying its subgroups and the branching of the

32 representation under these, supersymmetric solutions can be studied and classified [32,

30, 31, 33]. On the other hand, it is known that neither this generalised holonomy group,

nor its extensions SO(32) and SL(32), can extend to symmetries of the full equations

because of global obstructions [34]. In addition, the generalised holonomies proposed so

far do not admit acceptable vector-spinor representations, and as such are restricted to the

Killing spinor equation instead of the full supergravity system (in particular, the Rarita

Schwinger equation). Our results strengthen the case for K(E9) and for K(E10) as the

correct generalised holonomy (and R symmetry) groups since both groups do allow for all

the required spinor representations. Moreover, K(E9) is a genuine local symmetry of the

reduced theory.

This article is organised as follows. Section 2 summarizes some (largely known) results

on the embedding of E8 and E9 in a notation adapted to the level decomposition, and

goes on to derive their embedding into E10. Informed readers may skip the bulk of this

section and proceed directly to section 3, where we derive the branching of the unfaithful

K(E10) spinors under the K(E9) subalgebra. The resulting K(E9) transformation rules

are compared to those of the linear system in section 4. Using relations provided in two

appendices, we establish complete agreement with previous results of [1].

2. E8, E9 and E10

We here study the chain of embeddings E8 ⊂ E9 ⊂ E10 in A7 ⊂ A8 ⊂ A9 level decom-

positions and fix necessary notation for our analysis of the spinor representations in the

next section. Throughout this paper, except for the appendices, we adopt the following

indexing conventions for the SL(n) tensors arising in the decomposition of the algebras E8,

– 4 –
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A7 level ℓ in E8 Generator SL(8) representation

−3 Zi 8

−2 Zi1...i6 28

−1 Zi1i2i3 56

0 Gi
j 63 ⊕ 1

1 Zi1i2i3 56

2 Zi1...i6 28

3 Zi 8

Table 2: A7 decomposition of E8.

E9 and E10:

E10 ↔ a, b, . . . ∈ {1, . . . , 10}

E9 ↔ α, β, . . . ∈ {2, . . . , 10}

E8 ↔ i, j, . . . ∈ {3, . . . , 10} (2.1)

2.1 E8 via A7

The E8 subalgebra of E10 is generated by nodes 3 through to 10 of figure 1 and can be

written in terms of irreducible tensors of its A7
∼= sl(8) subalgebra (corresponding to nodes

3 through to 9). By adjoining the eigth Cartan generator, this sl(8) subalgebra can be

extended to a gl(8) subalgebra generated by

Gi
j , with

[

Gi
j, G

k
l

]

= δk
j Gi

l − δi
lG

k
j, (2.2)

where the indices take values i, j = 3, . . . , 10. The A7 decomposition of E8 gives the sl(8)

tensors displayed in table 2 [27].

In the left column we have indicated the sl(8) level, that is the number of times

the exceptional simple root α10 occurs in the associated roots. All indices i, j, . . . run from

3, . . . , 10 and all tensors, except for Gi
j, are totally anti-symmetric in their SL(8) (co-)vector

indices. The Chevalley transposition (·)T acts by (Gi
j)

T = Gj
i and (Zi1i2i3)

T = Zi1i2i3 , etc.

The gl(8) tensors in the table with upper (lower) indices correspond to positive (negative)

roots. In E10 language, the former correspond to the ‘E-type’ generators, while the latter

transform in the contragredient representations and correspond to the ‘F-type’ generators

in the notation of [3].

The commutation relations between Gi
j and the positive and negative gl(8) level ‘step

– 5 –
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operators’ are

[

Gi
j, Z

k1k2k3

]

= 3δ
[k1

j Zk2k3]i,
[

Gi
j , Z

k1...k6

]

= −6δ
[k1

j Zk2...k6]i,
[

Gi
j , Z

k
]

= δk
j Zi + δi

jZ
k,

[

Gi
j , Zk1k2k3

]

= −3δi
[k1

Zk2k3]j,
[

Gi
j, Zk1...k6

]

= 6δi
[k1

Zk2...k6]j,
[

Gi
j, Zk

]

= −δi
kZj − δi

jZk. (2.3)

Note the trace terms in the commutation relations involving the gl(8) vectors Zi and

Zi which are needed for the correct transformation under the trace of gl(8), and for the

consistency of the first two relations with the second relation in (2.4) below. Furthermore,

[

Zi1i2i3, Zi4i5i6
]

= Zi1...i6 ,
[

Zi1i2i3 , Zi4...i9
]

= 3Z [i1ǫi2i3]i4...i9 , (2.4)

where ǫi1...i8 is the SL(8) totally anti-symmetric tensor. Similar expressions are obtained

for the negative level generators by applying the Chevalley transposition.

The mixed commutation relations are

[

Zi1i2i3 , Zj1j2j3

]

= −2δi1i2i3
j1j2j3

G + 18δ
[i1i2
[j1j2

G
i3]
j3]

,
[

Zi1i2i3, Zj1...j6

]

= −5! δi1i2i3
[j1j2j3

Zj4j5j6],

[

Zi1...i6, Zj1...j6

]

= −
2

3
· 6! δi1...i6

j1...j6
G + 6 · 6! δ

[i1...i5
[j1...j5

G
i6]
j6]

,

[

Zi1i2i3 , Zj

]

=
1

5!
ǫi1i2i3k1...k5Zk1...k5j,

[

Zi1...i6 , Zj

]

=
1

2
ǫi1...i6k1k2Zk1k2j,

[

Zi, Zj

]

= Gi
j. (2.5)

Here, G ≡
∑10

k=3 Gk
k. Equations (2.3), (2.4) and (2.5), together with their Chevalley

transposes, constitute a complete set of E8 commutation relations. The normalisations of

the generators are

〈

Gi
j

∣

∣Gk
l

〉

= δi
lδ

k
j + δi

jδ
k
l ,

〈

Zi1i2i3
∣

∣Zj1j2j3

〉

= 3! δi1i2i3
j1j2j3

,
〈

Zi1...i6
∣

∣Zj1...j6

〉

= 6! δi1 ...i6
j1...j6

,
〈

Zi
∣

∣Zj

〉

= δi
j . (2.6)

Modulo normalisation factors, the same relations have been given for example in [27, 35].

In comparison with the notation of [35] the tensors on levels ℓ = ±2 have been dualised

using the ǫ-tensor of SL(8) and some of the normalisations have changed.

– 6 –
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2.2 E9 as extended current algebra

As is well known (see e.g. [36]), the affine Lie algebra E9 ≡ E
(1)
8 is obtained from E8 by

‘affinization’, that is by embedding E8 in its current algebra (parametrized by the spectral

parameter t), and by adjoining two more Lie algebra elements, the central charge c and the

derivation d: E9 = E8[[t, t
−1]] ⊕ Rc ⊕ Rd (as always, we restrict attention to the split real

forms of these Lie algebras). By writing X(m) ≡ X ⊗ tm (for m ∈ Z) the E9 commutation

relations are

[

X(m), Y (n)
]

=
[

X ⊗ tm, Y ⊗ tn
]

= [X,Y ] ⊗ tm+n + mδm+n,0〈X|Y 〉 c,
[

d,X(m)
]

= mX(m),
[

c,X(m)
]

= 0, [c, d] = 0. (2.7)

They can thus be read off directly from the E8 commutation relations above in the standard

fashion. The inner product between c and d is 〈c|d〉 = 1. The ‘horizontal’ E8 at affine

level 0 is isomorphic to E8 and we will often write X ≡ X(0) for any E8 generator X, for

example

Gi
j ≡ G(0)i

j , Zi ≡ Z
(0)
i , etc. (2.8)

Next, we will study how the current algebra generators emerge from E10, that is how they

are obtained from the latter algebra by truncation and by ‘dimensional reduction’.

2.3 Embedding of E9 in E10

With regard to the E10 Dynkin diagram, the E9 subalgebra of E10 is obtained by deleting

node 1 from the diagram 1, or equivalently by restricting to level zero in an E9 level

decomposition5 which counts the number of occurrences of the simple root α1. However,

one does keep the Cartan generator h1 which is needed to ‘desingularize’ the metric on

the root lattice (so the Cartan subalgebra of E9 can be identified with the one of E10, h1

appears only in d). Using the gl(10) basis of E10, where small Latin indices take values

a = 1, . . . , 10,

Ka
b , with [Ka

b,K
c
d] = δc

bK
a
d − δa

dKc
b, (2.9)

the E10 Cartan generators are

ha = Ka
a − Ka+1

a+1 (a = 1, . . . , 9),

h10 = −
1

3

10
∑

a=1

Ka
a + K8

8 + K9
9 + K10

10. (2.10)

The invariant inner product of these generators is given by

〈Ka
b|K

c
d〉 = δa

dδc
b − δa

b δc
d. (2.11)

5In comparison to the A9 level decomposition of E10 which can be thought of as a space-like foliation of

the Lorentzian root lattice, the E9 decomposition foliates the root lattice by null planes.
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The coefficient of the second term is not fixed by invariance but by requiring that

〈h10|h10〉 = 2, where h10 in (2.10) was fixed by requiring the right gl(10) commutation

relation with the A9 level ℓ = 1 generator Eabc.6 We follow the conventions of [3] except

for two differences: Firstly, we take e10 to be E8 9 10 since the exceptional node is attached

at the other end. Secondly, we rescale the A9 level ℓ = ±3 generators by a factor 1/3.

In terms of the A9 level decomposition of E10 the E9 elements are precisely those

contained in the ‘gradient representations’ of [2] where indices are restricted to take values

2, . . . , 10. As shown there (see also [28]), every nth order gradient generator contains n

sets of nine anti-symmetric indices, and thus has A9 Dynkin labels [n ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]. For

instance, at A9 level ℓ = 3n + 1, we have the following gradient generators

Ea
(1)
1 ···a

(1)
9 |···|a

(n)
1 ···a

(n)
9 |bcd with a

(j)
i , b, c, d ∈ {1, . . . , 10} ,

which are antisymmetric in all 9-tuples (a
(j)
1 · · · a

(j)
9 ). Restricting all indices on the above

element to the values 2, . . . , 10, we see that, up to permutations, there is only one choice of

filling indices into these 9-tuples, and we thus only need to remember that there were n such

sets. In fact, this restriction is physically motivated since E9 arises in the reduction to two

dimensions with one left-over non-compact spatial direction 1 (obviously, there are nine

alternative choices for this residual spatial dimension, corresponding to ten distinguished

E9 subgroups in E10). Accordingly, we introduce the following shorthand notation for the

gradient generators

E

n times
z }| {

2 . . . 10| · · · |2 . . . 10|α1α2α3 ≡
(n)

E α1α2α3

E

n times
z }| {

2 . . . 10| · · · |2 . . . 10|α1...α6 ≡
(n)

E α1...α6

E

n times
z }| {

2 . . . 10| · · · |2 . . . 10|α0|α1...α8 ≡
(n)

E α0|α1...α8 (2.12)

where α0, α1, α2, · · · = 2, . . . , 10. The ’F-type’ gradient generators are defined analogously.

Our notation is summarized in table 3: the indices here take values α = 2, . . . , 10, and

together with Kα
β and K1

1 from A9 level ℓ = 0 they constitute all E9 generators expressed

in E10 variables. As will be seen below, the central charge c of E9 in terms of E10 generators

is proportional to K1
1 and commutes with all elements of E9 whence the restriction of

indices to α = 2, . . . , 10 is the correct restriction to E9. That the suppression of the blocks

of nine indices is justified will be shown below. Now we want to relate these generators to

the E9 generators of section 2.

The generators of E8 are embedded regularly in E10 and, away from the Cartan sub-

algebra, are identical to those of E10 for levels |ℓ| ≤ 3 if the indices are restricted to the

6This is the reason for the minus sign in the bilinear form (2.11), resulting in the indefiniteness of the

inner product (2.11). By contrast, (2.6) has a plus sign in the corresponding formula, whence the inner

product is positive definite for E8.
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A9 level in E10 (Restricted) gradient generator sl(9) irrep

ℓ = 3n + 3
(n)

E α0|α1...α8 80

ℓ = 3n + 2
(n)

E α1...α6 84

ℓ = 3n + 1
(n)

E α1α2α3 84

ℓ = −3n − 1
(n)

F α1α2α3 84

ℓ = −3n − 2
(n)

F α1...α6 84

ℓ = −3n − 3
(n)

F α0|α1...α8
80

Table 3: Identification of the E9 generators in terms of E10 gradient generators.

range {3, . . . , 10}. Therefore we find immediately that

Z(0)i1i2i3 =
(0)

E i1i2i3, Z
(0)
i1i2i3

=
(0)

F i1i2i3 ,

Z(0)i1...i6 =
(0)

E i1...i6 , Z
(0)
i1...i6

=
(0)

F i1...i6 ,

ǫk1...k8Z(0)i =
(0)

E
i|k1...k8 , ǫk1...k8Z

(0)
i =

(0)

F i|k1...k8
, (2.13)

where the superscript on the l.h.s. denotes the affine level, whereas the superscript on the

r.h.s. denotes the ‘gradient’ level as explained in (2.12). As a mnemonic and notational

device to distinguish between these two kinds of levels we place the superscripts slightly

differently, as evident from the preceding equation. The objects on the r.h.s. are GL(8)

tensors, and we recall that, for the comparison between E8 and E10 we must restrict the

indices on the SL(10) tensors appearing in the A9 decomposition of E10 to the values

i = 3, . . . , 10. To identify the GL(8) generators in terms of the Cartan generators we note

that the only difference can be in the diagonal part of G(0)i
j since the off-diagonal elements

correspond to step operators. A simple calculation shows that the correct identification

between Gi
j ∈ E8 and Ki

j ∈ E10 is7

Gi
j ≡ G(0)i

j = Ki
j + δi

j(c − d), (2.14)

where the central element c and derivation d of E9 in terms of the gl(10) generators are

given by

d = K2
2, c = −K1

1. (2.15)

It is easy to see that c indeed commutes with all elements of E9 and has inner product +1

with d. Furthermore, d commutes with E8 of (2.13) as it should. Evidently, the affine level

operator d counts the number of tensor indices taking the value 2 (with (+1) for upper

7One way to see the necessity of this redefinition is to compute [Z(0)8 9 10, Z
(0)
8 9 10] both in E8 and E10,

and to demand that the central charge c and the derivation d drop out from this commutator for E8.
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and (−1) for lower indices). The extra terms in (2.14) also induce the relative change in

sign between (2.6) and (2.11).

Using the relation of the general linear subalgebras (2.14) we can show that the blocks

of nine anti-symmetric indices suppressed in the gradient generators are not ‘seen’ by the

gl(8) generators, as we already claimed above. Consider a generator X2k1...k8 which is

totally anti-symmetric in its nine indices and k ∈ {3, . . . , 10}. Then

[

G(0)i
j,X

2k1...k8

]

= 8δ
[k1

j Xk2...k8]2i − δi
jX

2k1...k8 = −9δ
[i
j Xk1...k8]2 = 0 (2.16)

by Schouten’s identity; the last term in the middle expression is due to the correction term

with d in (2.14), which is thus crucial for the vanishing of the above commutator. This

confirms that we can indeed replace each 9-tuple of indices by a label indicating the number

of such 9-tuples and assume that the 9-tuples are filled in some fixed way by 2, . . . , 10.

From the form of d in (2.15) we see that the number of upper indices equal to 2 on a

positive step generators is the affine level and similarly for negative step operators. It is

not hard to identify the following affine level +1 generators among the E10 generators,

Z
(1)
j = K2

j,

Z
(1)
j1...j6

=
1

2
ǫj1...j6k1k2

(0)

E k1k22,

Z
(1)
j1j2j3

=
1

5!
ǫj1j2j3k1...k5

(0)

E k1...k52,

G(1)i
j = −

1

7!
ǫjk1...k7

(0)

E i|2k1...k7 −
1

8!
δi
jǫk1...k8

(0)

E 2|k1...k8. (2.17)

This involves only generators with A9 level ℓ = 0, . . . , 3 in the E10 decomposition. Similarly,

at affine level −1 we have

Z(−1)i = Ki
2,

Z(−1)i1...i6 =
1

2
ǫi1...i6k1k2

(0)

F k1k22,

Z(−1)i1i2i3 =
1

5!
ǫi1i2i3k1...k5

(0)

F k1...k52,

G(−1)i
j = −

1

7!
ǫik1...k7

(0)

F j|2k1...k7
−

1

8!
δi
jǫ

k1...k8
(0)

F 2|k1...k8
. (2.18)

Again, the redefinition (2.14) is crucial for the correct E9 transformation rules, e.g.

[

G(0)i
j, Z

(1)
k1...k6

]

=
1

2
ǫk1...k6l1l2

[

Ki
j − δi

jd ,
(0)

E l1l22

]

=
1

2
ǫk1...k6l1l2

(

2δl1
j

(0)

E
il22 − δi

j

(0)

E
l1l22

)

=
1

2 · 6!
ǫk1...k6l1l2

(

2δl1
j ǫil2m1...m6 − δi

jǫ
l1l2m1...m6

)

Z(1)
m1...m6

= 6δi
[k1

Z
(1)
k2...k6]j, (2.19)
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in agreement with (2.3) for affine level +1. We identify also the following elements at affine

level ±2,

Z
(2)
j = −

1

7!
ǫjk1...k7

(0)

E 2|2k1...k7 ,

Z(−2)i = −
1

7!
ǫik1...k7

(0)

F 2|2k1...k7
. (2.20)

Indeed, one can check from these relations that
[

Z(−2)i, Z
(2)
j

]

= G(0)i
j − 2δi

j c (2.21)

as it should be for this affine commutator. Again we see, that the affine level is equal

to the difference between the number of upper and lower indices equalling 2. With rela-

tions (2.13), (2.14), (2.15), (2.17), (2.18) and (2.20) we have identified all E9 generators

appearing on A9 levels −3 ≤ ℓ ≤ 3 in E10. It should now be clear how to obtain the higher

affine levels: the scheme repeats itself after shifting ℓ → ℓ+ 3, as illustrated in figure 2. As

evident from these formulæ, the affine level and the A9 level are ‘oblique’ w.r.t. each other:

The elements of affine level n are spread over the A9 levels 3n − 3 ≤ ℓ ≤ 3n + 3. This is

also shown in figure 2.

For completeness, we write the general formulæ for n > 1,

Z
(n)
i = −

1

7!
ǫik1...k7

(n−2)

E
2|2k1...k7,

Z
(n)
i1...i6

=
1

2
ǫi1...i6k1k2

(n−1)

E
k1k22,

Z
(n)
i1i2i3

=
1

5!
ǫi1i2i3k1...k5

(n−1)

E
k1...k52,

G(n)i
j = −

1

7!
ǫjk1...k7

(n−1)

E
i|2k1...k7 −

1

8!
δi
jǫk1...k8

(n−1)

E
2|k1...k8,

Z(n)i1i2i3 =
(n)

E i1i2i3,

Z(n)i1...i6 =
(n)

E
i1...i6 ,

Z(n)i =
1

8!
ǫk1...k8

(n)

E i|k1...k8 (2.22)

for the positive current modes and

Z
(−n)
i =

1

8!
ǫk1...k8

(n)

F i|k1...k8
,

Z
(−n)
i1...i6

=
(n)

F i1...i6,

Z
(−n)
i1i2i3

=
(n)

F i1i2i3 ,

G(−n)i
j = −

1

7!
ǫik1...k7

(n−1)

F j|2k1...k7
−

1

8!
δi
jǫk1...k8

(n−1)

F 2|k1...k8
,

Z(−n)i1i2i3 =
1

5!
ǫi1i2i3k1...k5

(n−1)

F k1...k52,

Z(−n)i1...i6 =
1

2
ǫi1...i6k1k2

(n−1)

F k1k22,

Z(−n)i = −
1

7!
ǫik1...k7

(n−2)

F 2|2k1...k7
(2.23)
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Eα0|α1...α8

Eα1...α6

Eα1α2α3

Kα
β,K1

1

Fα1...α6

Fα1α2α3

56

28

56

28

8

8

63 ⊕ 1

0

56

28

8

-1

28

8

56

63 ⊕ 1 8

8

1-2 2

63⊕ 1, c, d

Affine level n

56 28

A9 level ℓ

0

-2

-1

1

2

3

-3

-4

4

Fα0|α1...α8

28 56

Figure 2: Diagram illustrating the distribution of A9 levels and affine levels in E10. The affine

level n is given by the number of upper 2s minus the number of lower 2s on an E10 generator. The

indices on the A9 level ℓ 6= 0 generators range over α = 2, . . . , 10. The boxed set of generators

correspond to copies of E8; at affine level 0, the central charge and derivation are also included.

for the negative current modes with n > 1. Observe that the sl(8) representations appearing

in the vertical lines in figure 2 combine ‘sideways’ into the required sl(9) representations

in accordance with the decompositions

80 → 8 ⊕ (63 ⊕ 1) ⊕ 8,

84 → 56 ⊕ 28,

84 → 56 ⊕ 28. (2.24)

3. K(E9) spinor representations from K(E10)

The generators of K(E10) are the anti-symmetric elements under the Chevalley transpo-

sition (see e.g. [11]). Therefore, we can construct a K(E10) generators for any positive

root step operator E by taking J = E − ET ≡ E − F . The restriction to K(E9) is then

obtained by considering only those positive step operators of table 3. As mentioned in the

introduction K(E9) is not of Kac-Moody type (nor is K(E10)). The reason for this is that

the invariant inner product

(x|y) := −〈x|y〉 for all x, y ∈ K(E9) (or K(E10)), (3.1)

inherited from the invariant bilinear form on E9 (E10), is positive definite on the compact

subalgebras [7].
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Despite this complication, finite-dimensional, hence unfaithful, representations cor-

responding to Dirac-spinor and vector-spinor (gravitino) representations of K(E10) have

been constructed in [8 – 11]. We now study the branching of these representations to

K(E9) ⊂ K(E10). Before doing so we derive the complete K(E9) commutation relations

in a form convenient for this computation.

The K(E10) generators at ‘A9 levels’ ℓ = 0, . . . , 3 are defined by

Jab
(0) = Ka

b − Kb
a,

Ja1a2a3

(1) =
(0)

E
a1a2a3 −

(0)

F a1a2a3 ,

Ja1...a6

(2) =
(0)

E a1...a6 −
(0)

F a1...a6 ,

J
a0|a1...a8

(3) =
(0)

E a0|a1...a8 −
(0)

F a0|a1...a8
, (3.2)

for a, b = 1, . . . , 10. Observe that on the l.h.s. the position of indices no longer matters,

as these tensors transform only under the SO(10) subgroup of K(E10) and indices can

be raised and lowered with the invariant δab. The lower indices in parentheses on the

l.h.s. indicate the A9 level in E10 (or A8 level in E9), where as the indices placed above

the generators on the r.h.s. indicate the gradient level of (2.12). As before, the K(E9)

generators are obtained from these by ‘dimensional reduction’, that is by restricting the

indices to α, β = 2, . . . , 10, corresponding to the A8 level decomposition of E9. The relation

between the A8 decomposition and the current algebra decomposition of E9 was explained

in the preceding section.

In the remainder we will make use of the following notation for the K(E9) generators

in K(E10) for k ≥ 0,

Jαβ
(0) = Kα

β − Kβ
α,

Jα1α2α3

(3k+1) =
(k)

E α1α2α3 −
(k)

F α1α2α3 ,

Jα1...α6

(3k+2) =
(k)

E α1...α6 −
(k)

F α1...α6 ,

J
α0|α1...α8

(3k+3) =
(k)

E
α0|α1...α8 −

(k)

F α0|α1...α8
, (3.3)

using the notation of (2.12) and table 3. The generator at A8 level (3k+3) is so(9) reducible

and decomposes after dualisation into

J
β|α1...α8

(3k+3) =
(

Jβγ
(3k+3) + Sβγ

(3k+3)

)

ǫγα1...α8 for k ≥ 0. (3.4)

Here, the anti-symmetric tensor Jαβ
(3k+3) = −Jβα

(3k+3) is the trace part of the orginal tensor

J
α0|α1...α8

(3k+3) , and the symmetric Sαβ
(3k+3) = +Sβα

(3k+3) is traceless, Sγγ
(3k+3) = 0, according to the

original Young symmetry. The anti-symmetric part has the same representation structure

as Jαβ
(0) ; by contrast, the symmetric generators Sαβ

(3n) have no zero mode part, and exist only

for n ≥ 1.
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From (2.22) and (2.23) we deduce the following K(E9) relations (for m ≥ n),

[

Jαβ
(3m), J

γδ
(3n)

]

= 2δβγJαδ
(3(m+n)) + 2δβγJαδ

(3(m−n)),
[

Jαβ
(3m), S

γδ
(3n)

]

= 2δβγSαδ
(3(m+n)) − 2δβγSαδ

(3(m−n)),
[

Sαβ
(3m), J

γδ
(3n)

]

= 2δβγSαδ
(3(m+n)) + 2δβγSαδ

(3(m−n)),
[

Sαβ
(3m), S

γδ
(3n)

]

= 2δβγJαδ
(3(m+n)) − 2δβγJαδ

(3(m−n)),
[

Jαβ
(3m), J

γ1γ2γ3

(3n+1)

]

= 3δβγ1Jαγ2γ3

(3(m+n)+1) −
3

6!
δβγ1ǫαγ2γ3δ1...δ6Jδ1...δ6

(3(m−n)−1),
[

Jαβ
(3n), J

γ1γ2γ3

(3m+1)

]

= 3δβγ1Jαγ2γ3

(3(m+n)+1) + 3δβγ1Jαγ2γ3

(3(m−n)+1),
[

Sαβ
(3m), J

γ1γ2γ3

(3n+1)

]

= 3δβγ1Jαγ2γ3

(3(m+n)+1) +
3

6!
δβγ1ǫαγ2γ3δ1...δ6Jδ1...δ6

(3(m−n)−1)

−
1

3
δαβJγ1γ2γ3

(3(m+n)+1) −
1

3 · 6!
δαβǫγ1γ2γ3δ1...δ6Jδ1...δ6

(3(m−n)−1),
[

Sαβ
(3n), J

γ1γ2γ3

(3m+1)

]

= 3δβγ1Jαγ2γ3

(3(m+n)+1) − 3δβγ1Jαγ2γ3

(3(m−n)−1)

−
1

3
δαβJγ1γ2γ3

(3(m+n)+1) +
1

3
δαβJγ1γ2γ3

(3(m−n)−1),
[

Jαβ
(3m), J

γ1...γ6

(3n+2)

]

= 6δβγ1Jαγ2...γ6

(3(m+n)+2) − δβγ1ǫαγ2...γ6δ1δ2δ3Jδ1δ2δ3
(3(m−n)−2),

[

Jαβ
(3n), J

γ1...γ6

(3m+2)

]

= 6δβγ1Jαγ2...γ6

(3(m+n)+2) + 6δβγ1Jαγ2...γ6

(3(m−n)+2),
[

Sαβ
(3m), J

γ1...γ6

(3n+2)

]

= 6δβγ1Jαγ2...γ6

(3(m+n)+2) + δβγ1ǫαγ2...γ6δ1δ2δ3Jδ1δ2δ3
(3(m−n)−2)

−
2

3
δαβJγ1...γ6

(3(m+n)+2)
−

1

9
δαβǫγ1...γ6δ1δ2δ3Jδ1δ2δ3

(3(m−n)−2)
,

[

Sαβ
(3n), J

γ1...γ6

(3m+2)

]

= 6δβγ1Jαγ2...γ6

(3(m+n)+2) − 6δβγ1Jαγ2...γ6

(3(m−n)+2)

−
2

3
δαβJγ1...γ6

(3(m+n)+2) +
2

3
δαβJγ1...γ6

(3(m−n)+2),
[

Jα1α2α3

(3m+1) , J
β1β2β3

(3n+1)

]

= Jα1α2α3β1β2β3

(3(m+n)+2) − 18δα1β1δα2β2

(

Jα3β3

(3(m−n)) + Sα3β3

(3(m−n))

)

,
[

Jα1α2α3

(3m+1) , J
β1...β6

(3n+2)

]

= 3ǫγβ1...β6α1α2

(

Jα3γ
(3(m+n)+3) + Sα3γ

(3(m+n)+3)

)

+
1

6
δβ1β2β3
α1α2α3

ǫβ4β5β6γ1...γ6Jγ1...γ6

(3(m−n)−1),
[

Jα1α2α3

(3n+1) , Jβ1...β6

(3m+2)

]

= 3ǫγβ1...β6α1α2

(

Jα3γ
(3(m+n)+3) + Sα3γ

(3(m+n)+3)

)

−120δβ1β2β3
α1α2α3

Jβ4β5β6

(3(m−n)+1),
[

Jα1...α6

(3m+2)
, Jβ1...β6

(3n+2)

]

= −6 · 6!δα1β1 · · · δα5β5

(

Jα6β6

(3(m−n))
+ Sα6β6

(3(m−n))

)

−400δα1β1 · · · δα3β3ǫα4...α6β4...β5γ1γ2γ3Jγ1γ2γ3

(3(m+n)+4) , (3.5)

with implicit (anti-)symmetrizations on the r.h.s. according to the symmetries of the l.h.s.

and with the understanding that the level zero symmetric piece vanishes: Sαβ
(0) = 0. Note

that in some relations a level index become negative for m = n; in those cases one has to

use the formula in the next row for which this does not happen. Let us emphasize once
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more that these formulas were deduced by making use of the identifications found in the

previous section, and by exploiting the fact that the affine E9 commutators are known

for all levels, whereas we have no complete knowledge of the higher level commutation

relations for E10. From the above commutation relations, one readily verifies that the Lie

algebra K(E9) indeed possesses a ‘filtered’ structure, with

[J(k) , J(l)] = J(k+l) + J(|k−l|) (k, l ≥ 0). (3.6)

3.1 Dirac-spinor ideal

Under K(E10) the 32-dimensional Dirac-spinor ε transforms as follows on the first four

levels [8, 9, 11],

Jab
(0)ε =

1

2
Γabε,

Ja1a2a3

(1) ε =
1

2
Γa1a2a3ε,

Ja1...a6

(2) ε =
1

2
Γa1...a6ε,

J
a0|a1...a8

(3) ε = 4δa0[a1Γa2...a8]ε, (3.7)

where Γa are the ten real, symmetric (32 × 32) Γ-matrices of SO(10) ⊂ GL(10) (see

appendix A) and Γab = Γ[aΓb] etc. denote their anti-symmetrised products. Note that

only the SO(10) trace part of J
a0|a1...a8

(3) is realised non-trivially, in accordance with the fact

that no Young tableaux other than fully antisymmetric ones can be built with Γ-matrices.

Furthermore, we have rescaled the ‘level’ 3 generator by a factor 1/3 relative to [3, 9, 11].

As emphasized in [9 – 11], the above representation is unfaithful as the infinite-dimensional

group is realized on a finite number of spinor components.

Before proceeding it is useful to define the matrix

Γ∗ := Γ1Γ0, (3.8)

in terms of which the following relation holds for the (32 × 32) Γ-matrices

Γα1...α9 = ǫα1...α9Γ∗ ⇒ Γα1...αk =
(−1)k(k−1)/2

(9 − k)!
ǫα1...αkβk+1...β9Γβk+1...β9Γ

∗ (3.9)

with the SO(9) invariant tensor ǫα1...α9 . The matrix Γ∗ satisfies (Γ∗)2 = 1 and commutes

with all Γα for α = 2, . . . , 10, but anticommutes with Γ0 and Γ1, and hence should be

identified with the chirality (helicity) matrix in (1+1) space-time dimensions. By defining

χ± = 1
2 (1 ± Γ∗)χ for any 32-component spinor, it therefore serves to split any such χ into

two sets of 16-component objects, which can be viewed as the right- and left-handed com-

ponents, respectively, of a spinor in (1+1) dimensions, and whose 16 ‘internal’ components

transform as spinors under SO(9) = K(SL(9)) ⊂ K(E9).

The (unfaithful) action of K(E9) on a Dirac-spinor ε is obtained from (3.7) by restrict-

ing the range of the indices, as described before. From the construction of the consistent
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representation we can in this case derive a closed formula for the action of all K(E9) gener-

ators by repeated commutation of the low level elements (3.7) and use of (3.9), and finally

comparison with (3.5). The result is8

Jαβ
(3k) =

1

2
Γαβ(Γ∗)k,

Jα1α2α3

(3k+1) =
1

2
Γα1α2α3(Γ∗)k,

Jα1...α6

(3k+2) =
1

2
Γα1...α6(Γ∗)k,

Sαβ
(3k+3) = 0, (3.10)

where, of course, k ≥ 0. It follows from (3.10) in particular that Sαβ
(3k+3) is represented

trivially on the Dirac spinor, and likewise that the relations involving Sαβ
(3k+3) all trivialise,

as it should be. For the (reducible) Dirac representation, we thus read off the relations

(again for k ≥ 0)

Jαβ
(3k) = Jαβ

(3k+6) , Sαβ
(3k+3) = 0 ,

Jα1α2α3

(3k+1) = −
1

6!
ǫα1α2α3β1...β6Jβ1...β6

(3k+5),

Jα1...α6

(3k+2) = −
1

3!
ǫα1...α6β1β2β3Jβ1β2β3

(3k+4) . (3.11)

The existence of a 32-dimensional unfaithful representation of K(E9) (derived from the

32-dimensional irreducible Dirac spinor of K(E10)) is thus reflected by the existence of a

non-trivial ideal within the Lie algebra K(E9), via (1.1). For obvious reasons, we will refer

to this ideal as the Dirac ideal and designate it by iDirac. To be completely precise, the latter

is defined as the linear span within K(E9) of the relations (3.11). It is straightforward to

check that iDirac is indeed an ideal, i.e. [K(E9), iDirac] ⊂ iDirac. Furthermore, since by (3.11)

all generators of level greater than three can be expressed in terms of lower level generators,

the codimension of this ideal within K(E9) is finite, and equal to the number of independent

non-zero elements up to level three, which is 2 × (36 + 84). The resulting quotient is a

finite-dimensional subalgebra of gl(32) and has the structure

qDirac = K(E9)/iDirac = so(16)+ ⊕ so(16)−. (3.12)

To see that the Lie algebra on the r.h.s. has been correctly identified, recall from [9, 11]

that the quotient algebra associated with the unfaithful Dirac-spinor in K(E10) is so(32);

according to (3.12) this splits into so(16)+ ⊕ so(16)−, since all anti-symmetric (16 × 16)

matrices are contained in the list (3.10).

Since Γ∗ commutes with all these representation matrices, we can decompose the 32-

dimensional K(E9) representation space further into eigenspaces of Γ∗ which are invariant

under the K(E9) action. These are projected out by 1
2(1±Γ∗), and we have the branching

32 → 16+ ⊕ 16− (3.13)

8The rescaling of the level ℓ = 3 generators by 1/3 in comparison with [3] is needed to ensure that the

level (3k) generators are uniformly normalised, cf. also (3.16).
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into two inequivalent spinor representations of K(E9). On the 16± representations of

K(E9), one can thus replace Γ∗ by ±1. This allows us to enlarge the Dirac ideal (3.11) in

two possible ways by replacing the relations (3.11) by

Jαβ
(3k) = ±Jαβ

(3k+3),

Jα1α2α3

(3k+1) = ∓
1

6!
ǫα1α2α3β1...β6Jβ1...β6

(3k+2),

Sαβ
(3k) = 0, (3.14)

for the 16± representations, thereby defining two new ideals i±Dirac ⊃ iDirac. The quotient

algebras are easily seen to be

q±Dirac = K(E9)/i
±
Dirac = so(16)±. (3.15)

Let us now study in a bit more detail the ideal associated with the 16± Dirac-spinors

of K(E9) determined by (3.14) and, in particular, its orthogonal complement with respect

to the K(E9) (and E9 [36]) invariant form 〈·|·〉 under which

〈

Jαβ
(3k)

∣

∣

∣
Jγδ

(3k)

〉

= −2 · 2! δαβ
γδ

[

=
1

16
Tr

(

ΓαβΓγδ
)

]

,

〈

Jα1α2α3

(3k+1)

∣

∣

∣J
β1β2β3

(3k+1)

〉

= −2 · 3! δα1α2α3
β1β2β3

[

=
1

16
Tr

(

Γα1α2α3Γβ1β2β3

)

]

,

〈

Jα1...α6

(3k+2)

∣

∣

∣
Jβ1...β6

(3k+2)

〉

= −2 · 6! δα1 ...α6
β1...β6

[

=
1

16
Tr

(

Γα1...α6Γβ1...β6

)

]

. (3.16)

We also have the consistency of orthogonality relations

〈

Jα1α2α3

(3k+1)

∣

∣

∣
Jβ1...β6

(3k+2)

〉

= 0

[

=
1

16
Tr

(

Γα1α2α3Γβ1...β6

)

]

. (3.17)

Note that the invariant inner product Tr on the 32-dimensional representation agrees with

the one on the algebra for the J(m) generators. Evaluated on Sαβ
(3k) it vanishes in contrast

with the non-vanishing inner product in K(E9). This is no contradiction since we are

dealing with an unfaithful representation.

Defining the infinite linear combinations

J αβ
± =

∑

n≥0

(±1)nJαβ
(3n),

J αβγ
± =

∑

n≥0

(±1)n
(

Jαβγ
(3n+1) ± ǫαβγδ1...δ6Jδ1...δ6

(3n+2)

)

, (3.18)

one checks that w.r.t. (3.1),
(

J αβ
±

∣

∣

∣Z
)

=
(

J αβγ
±

∣

∣

∣Z
)

= 0 for all Z ∈ i±Dirac, (3.19)

and so J αβ
± and J αβγ

± formally belong to the orthogonal complement of i±Dirac.
9 Thus,

the elements (3.18) are not proper elements of the vector space underlying the Lie algebra

9Where the elements of Z ∈ i±Dirac are understood to be finite linear combinations of (3.14).
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K(E9) because the infinite series (3.18) do not converge in the (Hilbert space) completion of

K(E9) w.r.t. the norm (3.1). However, they do exist as distributions, that is, as elements

of the dual of the space of finite linear combinations of basis elements (3.10) (which is

dense in the Hilbert space completion of K(E9)). This is also the reason why the elements

{J αβ
± ,J αβγ

± } do not close into a proper subalgebra of K(E9), as would be the case for

the orthogonal complement of an ideal in a finite-dimensional Lie algebra. Nevertheless,

as we saw above, there is a way to make sense of (3.18) as defining a Lie algebra by

passing to the quotient algebras (3.12) and (3.15). In section 4.2 we will see that these

quotient algebras correspond to generalised evaluation maps in terms of a loop algebra

description. The distributional nature of these objects is also evident from the fact that

formal commutation of the elements (3.18) leads to infinite factors ∼
∑∞

k=1 1. Whereas for

K(E9) the distributional nature can be made precise in terms of usual δ-functions on the

spectral parameter plane (see section 4.2), such a description is not readily available for

K(E10). Giving a more precise definition of the space of distributions for K(E10) could

prove helpful in understanding the K(E10) structure better.

It may seem surprising that K(E9) admits non-trivial ideals, whereas E9 does not

(except for the one-dimensional center). One reason that E9 does not admit any other

ideals is the presence of the derivation d as an element of E9 (or any other affine) Lie

algebra: because relations such as (3.11) and (3.14) involve different affine levels (even

within generators J(n) of fixed sl(9) level n, as we saw), commutation with d will change

the relative coefficients between the terms defining the ideal by (2.7), hence will force the

individual terms to vanish also, thus leading to the trivial ideal i = 0. The existence of

non-trivial ideals in K(E9) is thus due in particular to the fact that d is not an element of

K(E9). In the section 4.2 we shall give a loop algebra interpretation of this result.

3.2 Vector-spinor ideal

The K(E10) transformation of the 320-component vector-spinor ψa can also be written in

terms of SO(10) Γ-matrices [9, 10]. For the first three SO(10) ‘levels’ the K(E10) expressions

are10

(Jab
(0)ψ)c =

1

2
Γabψc + 2δ[a

c ψb],

(Ja1a2a3

(1) ψ)b =
1

2
Γa1a2a3ψb + 4δ

[a1

b Γa2ψa3] − Γb
[a1a2ψa3],

(Ja1...a6

(2) ψ)b =
1

2
Γa1...a6ψb − 10δ

[a1

b Γa2...a5ψa6] + 4Γb
[a1...a5ψa6],

(J
a0|a1...a8

(3) ψ)b =
16

9

(

Γb
a1...a8ψa0 − Γb

a0[a1...a7ψa8]
)

+4δa0[a1Γa2...a8]ψb − 56δa0 [a1Γb
a2...a7ψa8] (3.20)

+
16

9

(

8δa0
b Γ[a1...a7ψa8] − δ

[a1

b Γa2...a8]ψa0 + 7δ
[a1

b Γa0
a2...a7ψa8]

)

.

10When comparing these expressions to [9] we recall once more that we have re-scaled J(3) by 1/3 as for

the Dirac-spinor.
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Reducing these transformations to K(E9) one decomposes the gravitino field ψa into an

SO(9) vector spinor ψα, and in addition the component ψ1 entering via

η := Γ1ψ1, (3.21)

which transforms in the spinor representation of the two-dimensional Lorentz group

SO(1, 1) and SO(9) ⊂ K(E9). The correspondence of the fields ψα and η with the fermionic

fields used in [1] will be explained in section 4.2.

Computing the K(E9) transformations for ‘levels’ 0 up to 3 on the components ψα one

obtains

(Jαβ
(0)ψ)γ =

1

2
Γαβψγ + 2δ[α

γ ψβ],

(Jα1α2α3

(1) ψ)β =
1

2
Γα1α2α3ψβ + 4δ

[α1

β Γα2ψα3] − Γβ
[α1α2ψα3],

(Jα1...α6

(2) ψ)β =
1

2
Γα1...α6ψβ − 10δ

[α1

β Γα2...α5ψα6] + 4Γβ
[α1...α5ψα6],

(Jαβ
(3)ψ)γ = −Γ∗

[

1

2
Γαβψγ + 2δ[α

γ ψβ]

]

,

(Sαβ
(3)ψ)γ = −Γ∗

[

2

9
δαβΓγ − 2δ(α

γ Γβ)

]

Γδψδ. (3.22)

Note that the transformations on ψα close on themselves. Extending the action (3.22) by

the commutation relations (3.5) we deduce the general action on ψα,

(Jαβ
(3k)ψ)γ = (−Γ∗)k

[

1

2
Γαβψγ + 2δ[α

γ ψβ]

]

,

(Jα1α2α3

(3k+1) ψ)β = (−Γ∗)k

[

1

2
Γα1α2α3ψβ + 4δ

[α1

β Γα2ψα3] − Γβ
[α1α2ψα3]

+k

(

1

3
Γα1α2α3β + 2δβ[α1Γα2α3]

)

Γγψγ

]

,

(Jα1...α6

(3k+2) ψ)β = (−Γ∗)k

[

1

2
Γα1...α6ψβ − 10δ

[α1

β Γα2...α5ψα6] + 4Γβ
[α1...α5ψα6]

+k

(

2

3
Γα1...α6β − 2δβ[α1Γα2...α6]

)

Γγψγ

]

,

(Sαβ
(3k)ψ)γ = (−Γ∗)k k

[

2

9
δαβΓγ − 2δ(α

γ Γβ)

]

Γδψδ. (3.23)

Similar to (3.11) we immediately find the following relations which are valid on the ψα

components,

Jαβ
(3k) = Jαβ

(3k+6),

Jα1α2α3

(3k+7) − Jα1α2α3

(3k+1) =
1

6!
ǫα1α2α3β1...β6

(

Jβ1...β6

(3k+5) − Jβ1...β6

(3k−1)

)

,

(3k + 1)Jα1α2α3

(3k+7) − (3k + 7)Jα1α2α3

(3k+1) = −
1

6!
ǫα1α2α3β1...β6

×
(

(3k − 1)Jβ1...β6

(3k+5) − (3k + 5)Jβ1...β6

(3k−1)

)

,

(k + 2)Sαβ
(3k) = k Sαβ

(3k+6). (3.24)
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The first two relations arise from considering the ψα pieces of the transformed spinor (3.23),

the latter two can be derived by focussing on the trace parts in the transformed spinor (3.23)

and are evidently k-dependent. Note also that the relations in the middle involve four

different sl(9) levels.

Just as in the Dirac case it follows immediately from the form of the transforma-

tions (3.23) that Γ∗ commutes with all representation matrices and therefore one can re-

strict to the Γ∗ = ±1 eigenspaces. Hence, on the Γ∗ = ±1 eigenspaces the relations (3.24)

simplify in analogy with (3.14) to

Jαβ
(3k) = ∓Jαβ

(3k+3),

Jα1α2α3

(3k+4) ± Jα1α2α3

(3k+1) = ∓
1

6!
ǫα1α2α3β1...β6

(

Jβ1...β6

(3k+5) ± Jβ1...β6

(3k+2)

)

,

(3k + 1)Jα1α2α3

(3k+4) ± (3k + 4)Jα1α2α3

(3k+1) = ±
1

6!
ǫα1α2α3β1...β6

×
(

(3k + 2)Jβ1...β6

(3k+5) ± (3k + 5)Jβ1...β6

(3k+2)

)

,

Sαβ
(3k)

= (±1)k+1 kSαβ
(3)

. (3.25)

We stress that these and (3.24) are valid only on the ψα components.

The transformation properties of the remaining component η = Γ1ψ1 are more com-

plicated. At the first three levels, they read

Jαβ
(0)η =

1

2
Γαβη,

Jα1α2α3

(1) η = −
1

2
Γα1α2α3η − Γ[α1α2ψα3],

Jα1...α6

(2) η =
1

2
Γα1...α6η + 4Γ[α1...α5ψα6],

Jαβ
(3)η = −Γ∗

[

1

2
Γαβη + ΓαβΓγψγ

]

,

Sαβ
(3)η = −Γ∗

[

− 2Γ(αψβ) +
2

9
δαβΓγψγ

]

. (3.26)

where the mixing of ψα into η is manifest. We can again use the K(E9) commutation

relations (3.5) to deduce the action for all generators from (3.26),

Jαβ
(3k)η = (−Γ∗)k

[

1

2
Γαβη + k2ΓαβΓγψγ

]

Jα1α2α3

(3k+1) η = (−Γ∗)k
[

−
1

2
Γα1α2α3η − (3k + 1)Γ[α1α2ψα3]

−
1

3
k(3k + 1)Γα1α2α3Γβψβ

]

,

Jα1...α6

(3k+2)
η = (−Γ∗)k

[

1

2
Γα1...α6η + 2(3k + 2)Γ[α1...α5ψα6]

]

+
1

3
k(3k + 2)Γα1...α6Γβψβ

]

,

Sαβ
(3k)η = (−Γ∗)kk

[

− 2Γ(αψβ) +
2

9
δαβΓγψγ

]

. (3.27)
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Using (3.23) and (3.27) we can now deduce relations analogous to (3.24) valid on both

the ψα and the η components of ψa and hence on the full representation. These define

the vector-spinor ideal. Since the k-dependence in (3.27) is quadratic, they will be more

complicated than (3.24) and involve up to six different sl(9) levels. We will discuss their

structure at the end of this section and give them explicitly in a simplifying ‘gauge’ which

we now present.

From the transformations (3.23) it can be shown that the gamma-trace Γαψα trans-

forms into itself. For this reason, we can consistently consider the tracelessness condition

Γαψα = 0, (3.28)

which, as we will recall in section 4.2, corresponds to a supersymmetric gauge choice for

the dilatino in the reduction from three to two dimensions. As shown in [12] and [11], cf.

eq. (2.29), this condition is compatible with K(En) only for n = 9, as required. In fact

it follows from (3.23) that Γαψα transforms just as a Dirac-spinor. With the tracelessness

condition (3.28), the k-dependence in (3.23) vanishes, and in particular Sαβ
(3k) acts trivially

on ψα for all k. The corresponding ideal would then be the same as in (3.11). That is,

we have the same SO(16)+ × SO(16)− acting on this part of the gravitino. The action for

Jα1...α6

(3k+2) can be written in a dual form as shown above. Moreover, we see that we can again

specialise to the Γ∗ = ±1 subspaces. There it is easiest to deduce the following relations

for the vector-spinor components ψα in the traceless gauge,

Jαβ
(3k+3) = ∓Jαβ

(3k),

Jα1α2α3

(3k+1) = ±
1

6!
ǫα1α2α3β1...β6Jβ1...β6

(3k+2),

Sαβ
(3k) = 0 (3.29)

in analogy with (3.14) (except that Γ∗ is replaced by (−Γ∗)). By the arguments of the

preceding sections the relevant ideal on the components ψα gives a quotient isomorphic

to so(16)±. However, as noted above, the component η mixes with the ψα components

and one can show that they cannot be decoupled by a change of basis. Therefore the

relations (3.29) have to be weakened in order to describe the full vector-spinor ideal. In

the gauge (3.28) the transformations (3.27) simplify and the k-dependence becomes linear

instead of quadratic. Then it is easy to check that the vector-spinor ideal relations are

identical to (3.24).

Let us now summarize our findings and write out the branching of the 320 represen-

tation of K(E10) into representations of its K(E9) subalgebra. In comparison with the

Dirac representation, the vector-spinor representation exhibits a curious new feature in the

branching. Namely, the transformations on η contain contributions also involving ψα. On

the other hand the ψα components transform solely among themselves. This means that

the ψa representation of K(E10) does not completely reduce into irreducible representations

of K(E9) as one might have expected, rather we have a triangular structure

320 →
(

16+ ⊕ 16−

)

+
(

128+ ⊕ 128−

)

+
(

16+ ⊕ 16−

)

(3.30)
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where the plus signs between the parantheses denote a semidirect sum of, from right to

left, the trace components Γαψα, the traceless part of ψα, and the η components: only the

trace components transform among themselves, the other two summands mix with those

to the left. These results are in accordance with the results of [1], see eqs. (5.12) there, as

we will discuss in more detail below. The triangular structure can, for each chirality, be

pictured by K(E9) representation matrices of block form






∗ ∗ ∗

0 ∗ ∗

0 0 ∗






. (3.31)

The blocks are of dimensions 16× 16, 128× 128 and 16× 16, respectively, and correspond

to the summands in the decomposition (3.30) in reverse order. In this manner, the lower

right block corresponds to the transformation of the gamma-trace Γαψα into itself. The

non-reducibility of the 320 is tantamount to saying that the representation matrix cannot

be block-diagonalised.

The structure of the ideal in K(E9) associated with this representation can be revealed

by starting with the ‘innermost’ layer of the triangular structure, namely Γαψα. As stated

above this transforms as a Dirac-spinor so the associated quotient algebra (projected onto

the two Γ∗ chiralities) is so(16)±, cf. (3.15). This gets enlarged since the ideal relations are

weakened due to the appearance of the gamma-trace in the K(E9) action on ψα, cf. (3.23),

and even more due to (3.27). The expected structure is

q±vs = so(16)± + p
(1)
± + p

(2)
± ⊂ gl(160) (3.32)

as a semi-direct sum with actions from left to right as before, so that so(16)± acts on the

pieces p
(1)
± and p

(2)
± via some representation, [p

(1)
± , p

(1)
± ] ⊂ p

(2)
± , and p

(2)
± is abelian. In the

tracelass case (3.28) this can be evaluated further and we find

q±vs = so(16)± + p± ⊂ gl(144) (Γαψα = 0) (3.33)

where p± are 128 abelian translations and the whole ideal has codimension 248 as can be

counted from (3.24): The action of all K(E9) generators in the vector-spinor representation

can be reduced to that of Jαβ
(0) , Jα1α2α3

(1) , Jα1...α6

(2) and Sαβ
(3) which amount to (40+80)+(80+

48) = 120+128 independent generators. Via the relations (3.24), all higher level generators

can thus be expressed as linear combinations of these 248 basic ones. This discussion shows

that the structure of the ideals in the vector-spinor case is far richer than that of the Dirac-

spinor.

4. Relation to current algebra realisation

In previous work [1], K(E9) transformations of unfaithful fermion representations were

derived starting from the linear system description of N = 16 supergravity in D = 2 [21, 23].

In the present section we will show that the transformations (3.23) and (3.27) we deduced

from the dimensionally reduced theory above are completely equivalent to those in the

linear system.
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4.1 so(16) ⊂ E8(8)

Since the linear system transformations are written using the spectral parameter presen-

tation of K(E9) in the K(E8) ≡ so(16) decomposition of E8 we first need to briefly recall

some notation necessary for the comparison; in particular, we require the E8 commuta-

tion relations adapted to the compact so(16) subalgebra. In this basis, E8(8) decomposes

into the adjoint 120 of so(16) (corresponding to the anti-symmetric compact generators)

and the so(16) spinor representation 128s (corresponding to the symmetric non-compact

generators) which can be further decomposed as

XIJ ∈ 120 → (28,1) ⊕ (1,28) ⊕ (8s,8c) → 28⊕ 28 ⊕ 56v ⊕ 8v, (4.1)

Y A ∈ 128s → (8v,8v) ⊕ (8s,8c) → 1⊕ 28 ⊕ 35v ⊕ 8v ⊕ 56v,

with the chain of embeddings so(16) ⊃ so(8) ⊕ so(8) ⊃ so(8), where the indices v, s, c (=

vector, spinor, and conjugate spinor) label the three inequivalent eight-dimensional repre-

sentations of the various SO(8) groups. The diagonal subalgebra so(8) is to be identified

with the so(8) ⊂ sl(8) of the preceding sections. Furthermore, we here take over the no-

tation from [1]: I, J = 1, . . . , 16 are SO(16) vector indices and A = 1, . . . , 128 labels the

components of a chiral SO(16) spinor. Evidently, the first line in (4.1) corresponds to the

so(8) representations inherited from table 2. The formulas relating the SO(9) and SO(16)

bases are spelled out in appendix B. From (4.1) we also recover the decompositions of

SO(16) under its SO(9) subgroup, viz.

120 → 36 ⊕ 84 , 128s → 44 ⊕ 84. (4.2)

In the conventions of [35], the E8 commutation relations read

[XIJ ,XKL] = 2δI[KXL]J − 2δJ [KXL]I ,

[XIJ , Y A] = −
1

2
ΓIJ

ABY B , [Y A, Y B] =
1

4
ΓIJ

ABXIJ . (4.3)

With the current algebra generators (for m ∈ Z)

X(m)IJ ≡ XIJ ⊗ tm , Y (m)A ≡ Y A ⊗ tm, (4.4)

the K(E9) generators can be represented in the form (for m ≥ 0)

A(m)IJ :=
1

2

(

X(m)IJ + X(−m)IJ
)

, S(m)A :=
1

2

(

Y (m)A − Y (−m)A
)

, (4.5)

implying S(0)A ≡ 0. The K(E9) commutation relations then read

[A(m)IJ , A(n)KL] = 2δ[I[K
(

A(m+n)L]J ] + A(|m−n|)L]J ]
)

[A(m)IJ , S(n)A] = −
1

4
ΓIJ

AB

(

S(m+n)B − sgn(m − n)S(|m−n|)B
)

[S(m)A, S(n)B ] =
1

8
ΓIJ

AB

(

A(m+n)IJ − A(|m−n|)IJ
)

(4.6)

for m,n ≥ 0 (recall that the central term drops out).
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In the formulation (4.6) we can immediately look for ideals of K(E9). The Dirac ideals

i±Dirac are now defined by the relations

A(m)IJ − (±1)mA(0)IJ = 0 , S(m)A = 0. (4.7)

That is, the ideals are defined as the linear span of the expressions on the l.h.s., and it is

then straightforward to verify the ideal property, namely that these subspaces are mapped

onto themselves under the adjoint action of K(E9). The quotient algebras obtained by

division of K(E9) by these ideals are obviously isomorphic to so(16) for both choices of

signs.

The vector-spinor ideals i±vs, on the other hand, can be defined by the relations (for

m ≥ 1)

A(m)IJ − (±1)mA(0)IJ = 0 , S(m)A ∓ (±1)mmS(1)A = 0. (4.8)

They define smaller ideals of codimension 248 since everything is determined by A(0)IJ and

S(1)A. The part of the above relations involving A(m)IJ is identical to that of the Dirac-

spinor (4.7) indicating that there is some relation of the associated quotient to so(16) with

an additional part arising from the S(m)A relations. We will see this in more detail below.

The vector-spinor ideals i±vs can be generated from A(1)IJ∓A(0)IJ = 0 since for example

[

A(1)IJ ∓ A(0)IJ , S(1)A
]

= −
1

4
ΓIJ

AB

(

S(2)B ∓ 2S(1)B
)

(4.9)

implies by the ideal property that S(2)B ∓ 2S(1)B has to vanish. Similar calculations show

that A(1)IJ ∓ A(0)IJ = 0 generates all ideal relations.

In this basis it is not hard to construct further ideals. One example is obtained by

starting from the relation S(2)A ∓ 2S(1)A = 0, without requiring that A(1)IJ ∓ A(0)IJ = 0.

Commuting with S(1)B and demanding that the resulting expression also belongs to the

ideal leads to

A(3)IJ − A(1)IJ ∓ 2A(1)IJ ± A(0)IJ = 0, (4.10)

a relation involving four affine levels. In the case of the vector-spinor these vanish by

taking pairwise combinations, here they define a new ideal which is strictly smaller than

the vector-spinor ideal.

In section 3.1 we explained that the absence of non-trivial ideals in E9 (other than

the one-dimensional center) can be interpreted as a consequence of the presence of the

derivation d. In the current algebra realization, d acts by differentiation: d ≡ ∂t. Setting

X(t0) = 0 for some fixed t0 would then force all higher repeated commutators of this

element with d to vanish at t = t0 by consistency. This, in turn, would imply the vanishing

of all derivatives ∂n
t X(t0), hence would force X(t) = 0 (assuming analyticity in t). This

confirms again that the existence of non-trivial ideals in K(E9) is thus due in particular to

the fact that d is not an element of K(E9). The orthogonal complement of the ideal, given

formally by (3.18), corresponds to distributions X(t) = X0 δ(t − t0) where, as we will see

presently, t0 = ±1. The associated ideal then consists of all elements of the loop algebra
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which vanish at those points. We stress that this requires studying a distribution space

outside of K(E9) and that this could prove a useful strategy also for further investigations

of K(E10).

4.2 Current algebra fermion transformations

In [1] it was realised that in the linear systems approach to two-dimensional N = 16

supergravity the transformation rules for the fermions can be written succinctly in terms

of a current algebra description with a current parameter t. The non-propagating fermions

are the gravitino ϕI and the dilatino ϕI
2, coming from the gravitino in three dimensions.11

They both transform in the vector representation of SO(16), while the field χȦ accomodates

the 128 physical fermions and transforms in the conjugate spinor representation of SO(16).

The dilatino ϕI
2 can be gauged away by use of local supersymmetry [1], corresponding

to the tracelessness condition (3.28). It follows from a comparison with the reduction

of 11-dimensional supergravity to three dimensions [37] that the correspondence between

these SO(16) representations and those used in the foregoing sections is (modulo a factor

2 in the relative normalisation of χȦ compared to ϕI
2 and ϕI , required for the canonical

normalisation of the Dirac term)

χȦ ↔ ψi −
1

2
ΓiΓ

jψj ,

ϕI
2 ↔ Γ∗(Γ2ψ2 + Γiψi),

ϕI ↔ −Γ1ψ1 − Γiψi, (4.11)

thus breaking SO(9) covariance down to SO(8). We have suppressed the two-dimensional

Dirac-spinor indices on the l.h.s (which take two values, so that e.g. the ϕI stands for 2×16

components ϕI
±), and the SO(9) spinor indices on the r.h.s (of which there are 2×16, giving

2 × 128 components for the first line, see also (A.11). Thus the number of components on

both sides matches.

The most general K(E9) Lie algebra element can be written in the form [1]12

h(t) =
1

2

∞
∑

n=0

hIJ
n XIJ ⊗ (t−n + tn) +

∞
∑

n=1

hA
n Y A ⊗ (t−n − tn)

≡
1

2
hIJ(t)XIJ + hA(t)Y A. (4.12)

It can then be shown that K(E9) acts on the chiral components of the fermions via evalu-

11These are called ψI and ψI

2 in [1], but we choose a different notation here to avoid confusion with the

gravitino in 11-dimensional supergravity.
12Since we are interested for the moment in the purely algebraic aspects of the transformation we suppress

the space-time dependence throughout. (The spectral parameter t also depends on two-dimensional space-

time.)
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ation at the points t = ±1 in the spectral parameter plane (cf. eq. (5.12) of [1])13 as

δhϕI
2± = ϕJ

2±hIJ |t=∓1,

δhχȦ
± =

1

4
ΓIJ

ȦḂ
χḂ
±hIJ |t=∓1 − ΓI

AȦ
ϕI

2±∂th
A|t=∓1, (4.13)

δhϕI
± = ϕJ

±hIJ |t=∓1 ± ΓI
AḂ

χḂ
±∂th

A|t=∓1 ∓ 2ϕJ
2±∂2

t hIJ |t=∓1.

Thus, from the point of view [1] the action of K(E9) on the fermions can be viewed as

an evaluation map of the K(E9) elements, not at the origin in spectral parameter space

t = 0 but at t = ±1. In fact, we are dealing with a generalised evaluation map in that

the transformations depend on up to second derivatives in the spectral parameter at the

points t = ±1.

Now we compare (4.13) to (3.23) and (3.27). Writing

hIJ(t)|t=±1 = 2

∞
∑

n=0

hIJ
n (±1)n (4.14)

suggests the structure of an so(16), so we see that the Taylor expansion (4.14) (considered

as a formal power series) should indeed be identified with the formal infinite sum in (3.18).

Considering also the parameters ∂th
A and ∂2

t hIJ , we can see that there is a structural

agreement between the transformations (4.13) and those of the vector-spinor (ψα, η) in

section 3.2. To make the agreement exact, we rewrite (4.13) using the basis given in the

preceding section, and Γ∗ as the chirality (helicity) matrix in (1+1) spacetime dimensions,

(A(m)KLϕ2)
I = 2(−Γ∗)mδI[Kϕ2

L],

(A(m)KLϕ)I = 2(−Γ∗)mδI[KϕL] + 4m2(−Γ∗)m−1δI[Kϕ2
L],

(A(m)KLχ)Ȧ =
1

2
(−Γ∗)mΓKL

ȦḂ
χḂ,

(S(m)Bϕ2)
I = 0,

(S(m)Bϕ)I = m(−Γ∗)mΓI
BḂ

χḂ,

(S(m)Bχ)Ȧ = m(−Γ∗)mΓI
BȦ

ϕ2
I . (4.15)

Using instead the definition (3.8) of Γ∗ as the (32×32) matrix Γ1Γ0 means that we consider

the SO(16) vectors as SO(9) spinors, and the SO(16) spinor χȦ as eight vector components

of a SO(9) vector-spinor. We can thus relate them to the gravitino in section 3.2. This

is done by splitting the vector, spinor and conjugate spinor indices of SO(16) into those

of SO(8), and relating the corresponding gamma matrices to each other, as described in

appendix A. In appendix B, finally, we explain how to express the generators (3.3) of

K(E9) in the basis (S(m)IJ , A(m)A). We can then act with the generators (3.3) on the

fields (χȦ, ϕI , ϕI
2) according to (4.15) and require that the result, expressed in (ψα, η),

coincide with the transformations of these expressions under K(E9) according to (3.23)

13We note that in [1] it was also shown that, considering only induced K(E9) transformations, there

is a non-linear combination of the fermionic and bosonic fields that reduces this action to an action of

SO(16)+ × SO(16)−.
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and (3.27). It turns out that this requirement uniquely fixes the correspondance (4.11),

in agreement with the dimensional reduction [37], up to a constant factor multiplying all

fields, and an arbitrary multiple of ϕI
2 that can be added to ϕI . In this fashion, we have

recovered precisely the results of [1].
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A. Gamma matrix conventions

In this appendix, and the following one, we will no longer follow the index convention for

α, β, . . ., introduced in section 2. Instead we will use α and α̇ as SO(8) spinor and conjugate

spinor indices, respectively, while the indices i, j, . . . still take the values 3, . . . , 10 as SO(8)

vector indices. The chiral (8 × 8) SO(8) gamma-matrices will be denoted by γi
αβ̇

.

Then eight real, symmetric (16 × 16) gamma matrices of SO(9) can be written

γi
IJ =

(

0 γi
αβ̇

γi
α̇β 0

)

, (A.1)

where γi
α̇β is the transpose of γi

αβ̇
. The first eight SO(9) gamma matrices square to one,

anticommute, and define the ninth matrix by

γ3 · · · γ10 =

(

1 0

0 −1

)

≡ γ2. (A.2)

Thus γ2 also squares to one, and anticommutes with γi. The SO(9) gamma matrices can

be extended to the ten, real, symmetric (32 × 32) gamma matrices of SO(10), introduced

in section 3.1, via

Γ1 =

(

0 1

1 0

)

, Γ2 =

(

γ2 0

0 −γ2

)

, Γi =

(

γi 0

0 −γi

)

. (A.3)

In these conventions, the decomposition under Γ2, Γi of a 32 component spinor into two

chiral spinors is manifest. The SO(10) gamma matrices satisfy

Γ1 · · ·Γ10 =

(

0 −1

1 0

)

≡ Γ0 (A.4)

and then we get

Γ∗ ≡ Γ1Γ0 =

(

1 0

0 −1

)

. (A.5)
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Triality implies that the matrices γα
iβ̇

and γβ̇
iα have the same properties as γi

α̇β, and

can also be extended to SO(9) matrices as in (A.1). Thus we can take as SO(16) gamma

matrices the tensor products

Γα = 1 ⊗ γα,

Γα̇ = γα̇ ⊗ γ2, (A.6)

with the components

Γα
βγ̇,δj = δβδγ

j
αγ̇ , Γα

ij,kδ̇
= δikγ

j

αδ̇
,

Γα̇
ij,δk = δjkγ

i
δα̇, Γα̇

βγ̇,iδ̇
= −δγ̇δ̇γ

i
βα̇, (A.7)

as in [37], and all other components are zero. From this one can compute the following

non-trivial anti-symmetric products ΓIJ
AB of gamma matrices,

Γαβ
ij,kl = δikγ

jl
αβ, Γαβ

γα̇,δβ̇
= δγδγ

k
α̇[αγk

β]β̇
,

Γαβ̇

ij,γδ̇
= −γi

γβ̇
γj

αδ̇
, Γαβ̇

γδ̇,ij
= γi

γβ̇
γj

αδ̇
,

Γα̇β̇
ij,kl = δjlγ

ik
α̇β̇

, Γα̇β̇

αγ̇,βδ̇
= δγ̇δ̇γ

k
α̇[αγk

β]β̇
. (A.8)

In (A.7), we see that the vector, spinor and conjugate spinor indices (I, A, Ȧ) of SO(16)

split into those of SO(8) as

I = (α, α̇),

A = (αα̇, ij),

Ȧ = (αi, jα̇), (A.9)

according to the decompositions

16 → (8c,1)⊕(1,8s) → 8s ⊕ 8c,

128s → (8v,8v)⊕(8s,8c) → 1⊕ 28 ⊕ 35v ⊕ 8v ⊕ 56v,

128c → (8v,8c)⊕(8s,8v) → 8s ⊕ 56s ⊕ 8c ⊕ 56c (A.10)

of these so(16) representations under so(8) ⊕ so(8), and then under the diagonal so(8)

subalgebra. For example, the first line in (4.11) then reads

χiα̇
± = (ψi

±)α̇ −
1

2
(γiγj)α̇β̇(ψj

±)β̇,

χαi
± = (ψi

±)α −
1

2
(γiγj)αβ(ψj

±)β. (A.11)

B. Relation between the two E8 bases

We have in this article used two different bases of E8. The first one arose in the A7 level

decomposition described in section 2.1 (table 2), and for the compact generators it was
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generalized to E9 in section 3. The second one, covariant under the maximal compact

subalgebra so(16), was introduced in section 4, and extended to E9 via the current algebra

construction. We will now explain the relation between these two bases, which was also

given in [35] but in different conventions. First, as for E9 in section 3, we consider the

compact linear combinations

J ij = Gi
j − Gj

i ,

J ijk = Zijk − Zijk,

J i1...i6 = Zi1...i6 − Zi1...i6,

J i = Zi − Zi (B.1)

of the basis elements in table 2. These can now be expressed in XIJ by the SO(9) or SO(8)

gamma matrices as

J ij =
1

4
γij

IJXIJ =
1

4
γij

αβXαβ +
1

4
γij

α̇β̇
Xα̇β̇ ,

J i1i2i3 = −
1

4
γi1i2i3

IJ XIJ = −
1

2
γi1i2i3

αβ̇
Xαβ̇ ,

J i1...i6 =
1

4
γi1...i6

IJ XIJ =
1

4
γi1...i6

αβ Xαβ +
1

4
γi1...i6

α̇β̇
Xα̇β̇,

J i = −
1

4
(γiγ2)IJXIJ = −

1

2
(γiγ2)αβ̇Xαβ̇ , (B.2)

where a sign ambiguity in the derivation has been fixed by demanding that the generalised

evaluation map (4.13) and the representation given by (3.23) and (3.27) agree. For the

remaining generators

Sij = Gi
j + Gj

i,

Si1i2i3 = Zi1i2i3 + Zi1i2i3 ,

Si1...i6 = Zi1...i6 + Zi1...i6,

Si = Zi + Zi, (B.3)

it is necessary to break SO(9) covariance, and split the SO(16) spinor indices. Then we get

Sij = 2Y (ij) − δijY kk,

Si1i2i3 = −
1

2
γi1i2i3

αβ̇
Y αβ̇,

Si1...i6 = ǫi1...i6k1k2Y k1k2,

Si = −
1

2
γi

αβ̇
Y αβ̇ , (B.4)

where an overall sign ambiguity in the definition of Y A has been fixed again by equiva-

lence between the representations. Combining these formulas with (2.17), (2.18), (2.22)

and (2.23), we can easily express the generators (3.3) in the basis (S(m)IJ , A(m)A) intro-

duced in section 4.1. For example, we have

J ijk
(3m+1) = −γijk

αβ̇
S(m)αβ̇ − γijk

αβ̇
A(m)αβ̇ ,

1

5!
ǫijkl1...l5J l1...l52

(3m+2) = γijk

αβ̇
S(m)αβ̇ − γijk

αβ̇
A(m)αβ̇ , (B.5)
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and in the same way we obtain the remaining, non-compact, generators of E9.
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