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We use the ‘‘moving puncture’’ approach to perform fully nonlinear evolutions of spinning quasicir-
cular black-hole binaries with individual spins unaligned with the orbital angular momentum. We evolve
configurations with the individual spins (parallel and equal in magnitude) pointing in the orbital plane and
45� above the orbital plane. We introduce a technique to measure the spin direction and track the
precession of the spin during the merger, as well as measure the spin flip in the remnant horizon. The
former configuration completes 1.75 orbits before merging, with the spin precessing by 98� and the final
remnant horizon spin flipped by �72� with respect to the component spins. The latter configuration
completes 2.25 orbits, with the spins precessing by 151� and the final remnant horizon spin flipped �34�

with respect to the component spins. These simulations show for the first time how the spins are reoriented
during the final stage of black-hole-binary mergers verifying the hypothesis of the spin-flip phenomenon.
We also compute the track of the holes before merger and observe a precession of the orbital plane with
frequency similar to the orbital frequency and amplitude increasing with time.
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I. INTRODUCTION

There is widespread interest in understanding the dy-
namics of the last orbital stages of generic black-hole
binaries (i.e. binaries with randomly aligned spins and
unequal masses). These last few orbits before the binaries
merge involve highly-nonlinear gravitational interactions
leading not only to large amounts of gravitational radiation
leaving the systems, but also to intricate coupling effects,
particularly those involving the spins of the two component
black holes. Questions of how the black holes orient their
spins with respect to the (instantaneous) orbital plane and
the extent to which the black holes spin-up during the last
orbital stages are of great astrophysical interest. Spinning
black holes are believed to be the engines of active galactic
nuclei and quasars; the efficiency with which infalling
matter is converted into radiation depends on the energy
of the innermost stable orbit and is greatest for rapidly-
spinning holes [1,2]. The energetic jets observed in many
AGN and stellar-mass accreting systems are believed to be
launched perpendicularly to the inner accretion disk, hence
parallel to the spin axis of the accreting hole [3]. Changes
in the spin direction are therefore potentially observable. A
number of active galaxies exhibit semiperiodic deviations
of the jet directions from a straight line [4], suggestive of
precession of the accretion disk around the jet-emitting
hole or geodetic precession of the larger hole, either of
which might be driven by torques from a second orbiting
black hole [5,6]. About 15 radio galaxies show jets with
apparently abrupt changes in jet direction, forming X-
shaped patterns [7,8]. Jets of Seyfert galaxies often mis-

align from subkiloparsec to kiloparsec scales [9]. Some
models [10,11] attribute these spatial variations to a sudden
reorientation of the spin axis of the larger hole as it accretes
a smaller hole. Fossil evidence that such reorientations
were common in the past is observed in the nearly random
orientations of jets in disk galaxies with respect to the disk
plane [12,13].

In the generic case, an inspiral of a black-hole binary
should induce a precession in the direction of the spin axis
of either hole [14], and unless the mass ratio is extreme, the
final spin orientation is dominated by the orbital angular
momentum of the binary, implying substantial reorienta-
tion as long as the spin and orbital angular momenta are
initially misaligned [10]. We refer to this jump in the spin
direction of the remnant, with respect to the individual
spins, as a spin-flip. Note that this definition of spin-flip
does not require nonlinear interactions; it is a simple
consequence of the remnant acquiring most of the total
angular momentum of the original binary. Also note that
the ‘‘flip’’ is actually the difference in spins between two
distinct types of objects: individual horizons and common
horizons.

Aside from their astrophysical interest, black-hole bi-
naries are one of the primary targets of the earth-based
gravitational wave observatories, such as LIGO [15],
VIRGO [16], GEO600 [17], etc. These detectors are oper-
ating at unprecedented sensitivities. In particular, the LIGO
interferometers are currently taking data at their design
sensitivities. The initial LIGO interferometers might be
able to observe two 20M� inspiraling black holes out to
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a distance of more than 100 Mpc, and advanced LIGO
could see the same event up to a cosmological redshift of
z � 0:4 [18]. Predicted black-hole-binary gravitational
waveforms will not only be of great help for the detection
of this radiation using matched filtering techniques, but
will also be essential for the interpretation of the signals,
determination of the event rates, and extraction of astro-
physical parameters. This will be especially important for
the next generation of ground and space-based detectors,
such as LISA [19,20] which should observe gravitational
wave bursts from the mergers of supermassive black holes
in the centers of galaxies out to very high redshifts.

Simulations of the last orbital stages of black-hole bi-
naries require solving the fully-nonlinear General
Relativity field equations numerically on supercomputers.
However, solving these nonlinear equations proved to be
quite difficult and the problem remained unsolved for over
30 years. However, last year two independent techniques
were developed that broke through the barrier of the nu-
merical instabilities to produce spectacular results. In 2005
these two approaches were used to generate the gravita-
tional waveforms from the last orbit of nonspinning, equal-
mass black-hole binaries. The first technique, which was
developed by Pretorius [21], used a second-order formula-
tion of the General Relativity field equations in a general-
ized harmonic gauge (GHG), along with singularity
excision in the interior of the horizons, adaptive mesh
refinement (AMR) on a compactified space, and the addi-
tion of constraint damping terms to the evolution equation.
The second successful approach was developed a few
months later by our group at UTB [22] and independently
by the Numerical Relativity group at NASA/Goddard [23].
This latter method uses a mixed first-and-second-order
formulation of the General Relativity field equations
known as BSSN system [24–26], in combination with
the puncture formalism [27,28] (without the need for sin-
gularity excision). This technique differs from previous
work with punctures in that the punctures are not fixed
on the grid. In both versions of this ‘‘moving puncture’’
approach modifications to the standard 1� log lapse
and Gamma-driver shift conditions were introduced
[22,23,29].

Most of the groups in numerical relativity have now
implemented one of the two approaches; the ‘‘moving
puncture’’ technique being the more popular. Given its
technical simplicity and flexibility, this latter approach
has been used to produce several interesting results ranging
from the original simulations of nonspinning equal-mass
binaries [30–33] to spinning equal-mass binaries [34,35]
and nonspinning unequal-mass binaries [36–38]. Notably,
the moving puncture technique has recently also been
successfully implemented in the case of neutron-star—-
black-hole-binaries [39,40], thus extending the impact of
the technique on the numerical/astrophysical relativity
community. Noteworthy, the GHG approach has also

been successfully used to study eccentric orbits in black-
hole binaries with equal-mass and small corotation spins
[31]. A generalized harmonic form of Einstein’s equations
has also been successfully used together with a dual coor-
dinates method to evolve black-hole-binary spacetimes for
several orbits prior merger [41].

Alongside this impressive progress in computational and
experimental relativity, the last few years have also seen
significant mathematical progress in our understanding of
black holes in full nonlinear general relativity. There is
now a better understanding of the geometry and dynamics
of trapped and marginally trapped surfaces using the qua-
silocal notions of trapping [42], isolated [43] and dynami-
cal horizons [44]. Isolated horizons describe black holes in
equilibrium in nonstationary spacetimes, and trapping and
dynamical horizons describe the general time-dependent
case. The applications of these ideas to classical and quan-
tum black hole physics are too numerous to be described
here, and we refer to [45–47] for reviews and a more
complete set of references. For our present purposes, we
are mostly interested in calculating the angular momentum
of an (approximately) axisymmetric horizon. The calcula-
tion of angular momentum for isolated horizons is carried
out using Hamiltonian methods as described in [48–50].
The analogous Hamiltonian calculation for nonstationary
trapping and dynamical horizons is given in [51].
Conservation and balance laws describing how the horizon
mass and angular momentum change in response to infal-
ling matter/radiation are found in [52–55]. The calculation
of the magnitude of black hole spin angular momentum
tailored to numerical relativity is presented in [56] and
more recently, [57] considers higher mass and angular
momentum multipole moments. In this paper we use this
formalism primarily to compute the direction and magni-
tude of the spin angular momentum vector.

This paper is organized as follows. In Sec. II we discuss
the post-Newtonian predictions for spin and orbital plane
precession. In Sec. III we describe the techniques used to
evolve the binary and measure the horizon spins. In Sec. IV
we describe the initial data parameters for the binary
configurations mentioned in the remainder of the text. In
Sec. V we give a detailed description of the new results
regarding spin and orbit precession. In Sec. VI we discuss
some of the implications of our results. Finally, in the
appendix we review past results from aligned-spin and
nonspinning binaries.

II. POST-NEWTONIAN ANALYSIS

If the spins of the two black holes in a binary are not
aligned with the total angular momentum, then the spin and
orbital angular momenta will precess about the total angu-
lar momentum. Precession of the spin of the holes is
produced by spin-orbit coupling and the spin-spin cou-
pling. This effect has been studied in several papers by
means of the post-Newtonian expansion [58,59]
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precession frequency given by
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Both the spin and orbital planes precess. This is due to
the fact that, if the radiated angular momentum is ne-
glected, the total angular momentum ~J � ~L� ~S is con-

served. Hence the _~L � 
 _~S. Thus the orbital plane will
precess at the same frequency as the total spin. The gravi-
tational radiation reaction effect will generate a net loss of
J that will actually produce an increase in the amplitude of
the spin and orbital oscillations since the black holes will
get closer; magnifying the spin-orbit coupling. In this
paper, we go beyond the post-Newtonian expansion and
study these effects using full numerical evolutions.

Precession occurs in the plane perpendicular to the total
angular momentum. We thus split the spin vector of each
hole into components parallel to, and perpendicular to, the
total angular momentum, i.e. ~S � ~Sk � ~S?, where ~Sk �

� ~S � Ĵ	Ĵ and ~S? � ~S
 � ~S � Ĵ	Ĵ. Note that the direction (but
not magnitude) of the total angular momentum does not
change significantly between the start and end of the
simulations. We define the total angle of precession �p

as the angle by which ~S? is rotated between the start and
the end of the simulation. The total precession angle is then
given by

 cos�p �
~SM � ~SI 
 �Ĵ � ~SM	�Ĵ � ~SI	������������������������������������������������������������������


S2
M 
 �Ĵ � ~SM	

2�
S2
I 
 �Ĵ � ~SI	

2�
q ; (3)

where ~SI is the initial spin of one of the individual hori-
zons, ~SM is the spin of that individual horizon at the merger
time, and ~J is the initial total angular momentum of the
system.

The relevance of precessing spinning-black-hole bi-
naries to data analysis has been stressed in several papers
using the post-Newtonian templates. ‘‘Spiky’’ templates
have been considered to detect moderate massive galactic
binaries in [60–62]. Detection and post-Newtonian dy-

namics in precessing binaries have also been extensively
discussed in [63–68], and the relevance to LISA observa-
tions has been discussed in [69].

III. TECHNIQUES

We use the Brandt-Brügmann puncture approach [27]
along with the TWOPUNCTURES [70] and BAM_ELLIPTIC

[71] thorns to compute initial data. In this approach the
3-metric on the initial slice has the form �ab � � BL �
u	4�ab, where  BL is the Brill-Lindquist conformal factor,
�ab is the Euclidean metric, and u is (at least) C2 on the
punctures. The Brill-Lindquist conformal factor is given by
 BL � 1�

Pn
i�1 mi=�2ri	; where n is the total number of

‘‘punctures’’, mi is the mass parameter of puncture i (mi is
not the horizon mass associated with puncture i), and ri is
the coordinate distance to puncture i. In all cases below, we
evolve data containing only two punctures with equal
puncture mass parameters, and we denote this puncture
mass parameter by mp. We evolve these black-hole-binary
data-sets using the LAZEV [72] implementation of the
moving puncture approach [22,23]. In our version of the
moving puncture approach [22] we replace the BSSN [24–
26] conformal exponent �, which has logarithmic singu-
larities at the punctures, with the initially C4 field � �
exp�
4�	. This new variable, along with the other BSSN
variables, will remain finite provided that one uses a suit-
able choice for the gauge. An alternative approach uses
standard finite differencing of � [23]. Note that both
approaches have been used successfully by several other
groups [36,37,39,73–75].

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with a
modified 1� log lapse, a modified Gamma-driver shift
condition [22,29], and an initial lapse ��  
4

BL . The lapse
and shift are evolved with �@t 
 �i@i	� � 
2�K, @t�a �
Ba, and @tBa � 3=4@t~�

a 
 �Ba. These gauge conditions
require careful treatment of� near the puncture in order for
the system to remain stable [22,30,75]. In Ref. [76] it was
shown that this choice of gauge leads to a strongly hyper-
bolic evolution system provided that the shift does not
become too large. For our version of the moving puncture
approach, we find that the product � ~Aij@j� initially has to
be C4 on the puncture. In the spinning case, ~Aij is O�r3	 on
the puncture, thus requiring that � / r3 to maintain differ-
entiability. We therefore choose an initial lapse��t � 0	 �
2=�1�  4

BL	 which is O�r4	 and C4 on the puncture and
reproduces the isotropic Schwarzschild lapse at large dis-
tances from the horizons. The initial values of�i and Bi are
set to zero.

Hannam et al. [74] examine the smoothness of the
evolved fields at late times at the puncture. They find
that, in the case of Schwarzschild, � transitions from an
initially C4 field to a C2 field at late times. Although we
require that the fields be initially C4, this late-time drop in
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smoothness does not appear to leak out of the horizon
(which is consistent with the analysis in [74]).

We use a ‘‘multiple transition’’ fisheye transformation
[30] to push the boundaries to 200M, while maintaining a
resolution of up to M=30 in the central region.

We measure the magnitude S of the angular momentum
of the horizons using our implementation of the algorithm
detailed in [56]. The magnitude of the horizon spin is given
by

 S �
1

8	

I
AH
�’aRbKab	d2V (4)

where ’a is an approximate Killing vector on the horizon,
Kab is the extrinsic curvature of the 3D-slice, d2V is the
natural volume element intrinsic to the horizon, and Ra is
the outward pointing unit vector normal to the horizon on
the 3D-slice; the sign of ’a is chosen so that S is positive.
This algorithm for calculating S was initially meant to be
applied to the case when the individual black holes are
modeled as axisymmetric isolated horizons, which is valid
when the two black holes are sufficiently far away from
each other. The isolated horizon formalism is generalized
to the dynamical case through the notion of a dynamical
horizon [52], and the formula for S remains valid under this
generalization.

Turning now to the direction of the spin angular mo-
mentum vector, we first note that, in general, it seems
difficult to assign a unique coordinate independent 3-
vector ~S to a spinning horizon. For example, we could
take a normal Kerr spacetime and slice it nonaxisymmetri-
cally so that it becomes difficult to assign a spin 3-vector ~S
to the black hole on these distorted 3D-slices. There is
however a generalization which works. To see this, first
note that every smooth cross section (with complete S2

topology) of a Kerr horizon is axisymmetric, no matter
how distorted this cross section is. This may seem some-
what surprising at first glance, but it is a straightforward
consequence of the fact that the null generators of the Kerr
horizon have vanishing expansion, shear and twist; the
axial symmetry vector projects to a symmetry of the 2-
geometry of the cross section. Thus there exists a symme-
try vector’a on this cross section. The poles of the horizon
are then defined to be the points where the axial symmetry
vector ’a vanishes. From a spacetime perspective, the
locus of points on the Kerr horizon defined by ’a’a � 0
is a coordinate and gauge independent notion. These con-
siderations remain valid on every axisymmetric isolated
horizon. As long as we have a suitable axial vector, we can
similarly define the poles even for dynamical and trapping
horizons. The poles exist whenever we can assign a (pos-
sibly approximate) axial symmetry vector ’a on the hori-
zon. Of course, when the horizons become extremely
distorted, it might happen that it is no longer approximately
axisymmetric, or the axial vector might have more than

two poles. In such extreme cases, this would not work. But
we shall see through our numerical simulations that there is
a significant dynamical regime where exactly 2 poles exist,
and these problems do not arise.

Given the location of the two poles on the horizon, how
do we assign a 3-vector to them, and thereby obtain all the
components of the spin vector ~S? An obvious starting point
would be to use the unit normal vector Ra at the poles. This
would not give a unique answer in the absence of reflection
symmetry. Alternatively, we could consider the curl of ’a

suitably averaged over the horizon. However, even if we
could successfully assign such a 3-vector uniquely, it is not
clear in general how this vector should be compared with
the spin 3-vector calculated at spatial infinity. This could
be done in spacetimes with global axisymmetry, but this is
not available to us in the present case. In the absence of a
solution to this problem, we simply define the direction of
the spin to be the Euclidean unit-norm vector tangent to the
coordinate line joining the two poles. The spin-vector ~SIH

is then equal to this Euclidean unit-norm vector multiplied
by the isolated horizon spin obtained from Eq. (4). The
definition of ~S might need to be further refined, however it
seems to be satisfactory for our purposes. This definition of
the spin vector reproduces the Bowen-York spin parame-
ters on the initial slice, and should remain reasonable as
long as the coordinates do not become too distorted. In
addition to using the Killing vector ’a, we also found it
useful to define angular momenta with the flat space coor-
dinate rotational killing vectors

 ’ax � 
0;
�z
 zc	; �y
 yc	�;

’ay � 
�z
 zc	; 0;
�x
 xc	�;

’az � 

�y
 yc	; �x
 xc	; 0�;

(5)

where �xc; yc; zc	 is the coordinate centroid of the horizon.
We can then obtain the coordinate-base spin vector
~Scoord � �Sx; Sy; Sz	 by replacing the approximate Killing
vector in Eq. (4) with the three coordinate rotational vec-
tors (i.e. Si �

1
8	

H
AH�’

a
i R

bKab	d
2V). This definition of

the spin direction reproduces the Bowen-York spin pa-
rameters on the initial slice as well, and produces reason-
able results at later times for the gauges used here. (Of
course this latter coordinate based calculation will not
yield an accurate evaluation of the spin direction or mag-
nitude for more general gauges, while the former approxi-
mate Killing vector calculation will produce accurate spin
magnitudes for generic gauges.) In both cases the spin
magnitude is the Euclidean norm of the 3-vector ~S. Note
that in the former case this Euclidean norm is precisely the
spin given by Eq. (4).

We solve for the approximate Killing vector field ’a on
the horizon using standard spherical-polar coordinates. In
these coordinates the Killing vector is obtained with high-
est accuracy when its poles are aligned with the coordinate
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poles of the �
;�	 coordinates. To make the calculation as
accurate as possible, we find the minimum of ’a’a in the
northern hemisphere and then rotate the angular coordi-
nates so that the new north pole is aligned with the mini-
mum of ’a’a. We then recalculate ’a to obtain a more
accurate location of the minimum and iterate until the new
minimum of ’a’a lies on the north pole. There is a
complication in the above procedure in that we cannot
calculate ’a on the coordinate poles themselves (since
the 2D Christoffel symbol is singular). In practice we
stop iterating when the minimum of ’a’a lies within 2
angular grid-points of the coordinate pole. The spin direc-
tion associated with the minimum of ’a’a therefore can-
not be obtained with higher precision than a few angular
grid sizes. It might be possible to improve the accuracy by
considering multiple patches on the horizon to avoid the
coordinate singularity, or to use a spectral decomposition.

We found that using 160 points in the 
 direction and
320 points in the � direction provides reasonable results
for the horizon spin calculation, with errors in the spin
direction of about 2�. Adding significantly more points
only increases the numerical error because the horizon
algorithm itself uses far fewer points to locate the apparent
horizons and the underlying numerical grid has a far
coarser resolution.

The configurations discussed in this paper contain either
PI-symmetry, i.e. �x; y; z	 ! �
x;
y; z	, or parity-
symmetry, i.e. �x; y; z	 ! �
x;
y;
z	. We exploit these
two symmetries to reduce the grid size by a factor of 2. The
zero-spin and (anti-)aligned spin binaries have the addi-
tional symmetry �x; y; z	 ! �x; y;
z	. We implement the
parity-symmetry boundary conditions using a locally
modified version of the PI-symmetry boundary thorn
kindly provided to us by Erik Schnetter. Note that behavior
of the components of gab and kab under these symmetries
can be obtained from the behavior of these components
under simple reflections. Thus, gxz�x; y; z	 � gxz�
x;
y;

z	 under parity-symmetry while gxz�x; y; z	 � 
gxz�
x;

y; z	 under PI-symmetry. The Einstein equations pre-
serve these symmetries. In the case of spinning, equal-
mass binaries, parity-symmetry requires that the two spins
be equal in magnitude and parallel (i.e. the spin-vector
behaves as a pseudovector).

IV. INITIAL CONFIGURATIONS

We study two configurations of nonaligned-spin binaries
with parallel spins (equal in magnitude) that exhibit spin
and orbital-plane precession, as well as spin-flips of the
remnant horizon spin with respect to the individual horizon
spins. We choose configurations where the binary separa-
tion is small enough that the spin-orbit coupling is large,
but large enough that the binaries complete at least �1:75
orbits before merging. The first configuration, which we
denote with SP3 starts with the spins aligned along the
initial orbital plane. This can be interpreted as a binary in
which one black hole orbits about the pole of the second
black hole. The second configuration, which we denote
with SP4, starts with the spins pointing 45� above the
initial orbital plane, corresponding to a binary in which
infall occurs initially along a plane tilted with respect to
both spins. In both cases the masses and spins of the two
holes are equal (i.e. spins parallel and equal in magnitude).
Setting the two masses and spins equal ensures that the
system is parity-symmetric, but still is generic enough to
display both spin and orbital plane precession as well as a
spin-flip in the direction of the orbital angular momentum.
The initial data parameters for these two configurations,
which were obtained using the 3PN equations of motion,
are given in Table I. We also report the initial-data parame-
ters for the previously studied aligned (S�� , SC), anti-
aligned (S

 ), and nonspinning binaries (S0). The PN
data provides the puncture location, momenta, and spins.
We complete the data by choosing puncture mass parame-
ters (equal for the two punctures) such that the total ADM
mass of the system is 1.

V. RESULTS

We evolved the SP3 configuration using central resolu-
tions of h � M=22:5, h � M=25, and h � M=30; with
grid-sizes of 5762 � 288, 6402 � 320, and 7682 � 384
respectively. We used ‘‘multiple transition’’ fisheye trans-
formation [30] to place the outer boundaries at 200M; far
enough away that boundary effects do not interfere with the
orbital dynamics of the system. In addition, we also
evolved the SP4 configuration with a central resolution of

TABLE I. Initial data for quasicircular, equal-mass black-hole binaries. The binaries have an ADM mass of �1:0000� 0:0005	M,
with orbital frequency M� fixed to 0.0500, and initial proper separations l. The punctures are located at ��X; 0; 0	, with mass
parameter mp, momentum �0;�P; 0	, spin angular momentum �0; Sy; Sz	, and specific spin S=m2 (m is the horizon mass).

Name Sy=M2 Sz=M2 X=M P=M J=M2 S=m2 l=M mp=M

SP3 0.128 725 0 3.276 347 0.133 587 0.912 43 0.5013 10.20 0.430 25
SP4 0.091 198 0.091 198 3.179 908 0.131 440 6 1.034 54 0.5007 9.94 0.430 37
S0 0.0 0.0 3.280 0.1336 0.876 0.0 10.01 0.4848
SC 0.0 0.025 757 3.2534 0.1330 0.917 0.1001 9.93 0.4831
S�� 0.0 0.1939 3.0595 0.1291 1.1778 0.757 9.27 0.3344
S

 0.0 
0:1924 3.465 0.1382 0.5729 
0:757 10.3 0.3344
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h � M=25, a grid size of 6402 � 320, and outer boundary
at 200M.

Figs. 1 and 2 show the puncture trajectory and horizon-
spin direction along this track for the SP3 configuration
(the latter suppressing the z-direction). Note that the scale
of the z-axis in Fig. 1 is 1=10th that of the x and y axes.

From the plots one can clearly see the orbital plane precess
out of the equatorial plane, as well as the spin axis rotating
by approximately 90� in the xy plane during the course of
the merger. The spins are initially aligned along the y-axis,
but at merger they show both a significant z-component
and an approximate 90� rotation to the 
x-axis. The
individual horizon spins at the merger are ~Scoord �
�
0:121� 0:002;
0:007� 0:003; 0:037� 0:003	 (we
use the coordinate based measure of the spin at the merger
because the calculation of SIH is not accurate when the
black holes are this close together; see comments below).
Hence the total precession angle for the SP3 configuration
is �p � 98�. Note that there is no discernible correlation
between the orientation of the projected horizon and the
projected spin direction.

In Fig. 3 we show the coordinate ( ~Scoord) and Killing
vector based ( ~SIH) calculation of the spin components
versus time. ~SIH displays a step-function-like behavior
due to the difficulty in finding the poles (i.e. the zeroes
of ’a’a) in the Killing vector accurately. As discussed
above, the Killing vector calculation is most accurate when
its poles are located at the coordinate poles of the �
;�	
coordinates on the horizon. However, the difficulty in
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FIG. 2 (color online). The projection of puncture trajectories
and spin for the SP3 configuration onto the xy plane along with
the individual apparent horizons for the M=30 run. The horizons
and spins are shown at t � 0; 20M; 40M; . . . ; 160M; 164M. The
first common horizon (also shown) formed at t � 164:2M. The
spins are initially aligned along the y-axis but rotate by �90�

during the last 1.25 orbits. The spin of the second black hole (not
shown) is equal to the first.
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FIG. 3 (color online). The spin components and magnitude
versus time for the SP3 configuration as calculated using the
coordinate rotational vectors (coord) and the poles of the ap-
proximate Killing vector (IH) for the M=30 resolution. The
calculation of the approximate Killing vector breaks down
near the merger (which occurs at t � 164:2), but the purely
coordinate-based calculation continues to produce reasonable
results. Note that the direction obtained from the Killing vector
oscillates about the coordinate based direction. Also note the
spin has just rotated by 90� in the xy plane at the time of merger.
The spin magnitude remains essentially constant throughout the
merger phase. The magnitude of the spin calculated from the
Killing vector is coordinate invariant and, unlike the spin direc-
tion, is expected to be more accurate than the coordinate-based
calculation.
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FIG. 1 (color online). The puncture trajectories along with spin
direction (every 4M) for the SP3 configuration for the M=30
resolution run. The spins are initially aligned along the y-axis,
but rotate by �90� during the 1.25 last orbits and also acquire a
non-negligible z-component. Note that the z-scale is 1=10th the x
and y scale.
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calculating the Killing vector itself near the coordinate
poles introduces an uncertainty in the location of the
Killing vector poles. We also stress that the direction
associated with the location of the two poles of the
Killing vector is coordinate dependent. From the figure
we see that the x- and y-components of ~SIH oscillates about
the much more regular x and y components of ~Scoord, while
the z-component of ~SIH is consistently larger than the
z-component of ~Scoord. The calculation of SIH (and hence
~SIH) breaks down prior to the merger when the horizons get
too close (and hence the mutual tidal distortions destroy the
approximate axial symmetry). ~Scoord, however, continues to
produce reasonable results through the merger. Thus, it is
~Scoord that shows the clear rotation of the spin from the
y-axis to the x-axis at the merger. Note that the uncertain-
ties in the spin directions do not correspond to uncertainties
in the magnitudes of the spin. For the Killing vector based
calculation ~SIH, it is the spin magnitude that is determined
with high accuracy. Figure 4 shows between third and
fourth-order convergence of the components of ~Scoord

from the three resolutions (the third-order error may be
due to third-order errors leaking out of the puncture as well
as third-order errors from the horizon calculations), while
Fig. 5 shows the value of the z-component of the specific
spin Sz=m2 (where m is the horizon mass) based on the
z-component of ~SIH for the three resolutions. In this latter
figure the curves have been translated. (A convergence plot
of ~SIH would not be meaningful because the size of the step
discontinuities in ~SIH are larger than the differences in the

spin direction with resolution.) For the z-component of the
spin, we expect that, given the lack of significant oscilla-
tions plaguing the x and y components, ~SIH gives a better
measurement than the more highly coordinate-dependent
~Scoord. The spin-up of the z-component of the specific spin
by 0.16 is 10 times larger than the analogous spin-ups of
about 0.01 seen in the zero-spin (S0) and aligned-spin (SC)
configurations (see [34]). However, as can be seen in
Fig. 3, the spin magnitude does not increase significantly.
Thus this spin-up in the z-direction is not equivalent to the
spin-up observed in the case of the aligned-spin and non-
spinning binaries. In those cases the spin-up involved an
increase in the spin magnitude, while here it primarily
involves a rotation of the spin vector out of the xy plane.
This rotation of the spin out of the xy plane follows the
post-Newtonian predictions of Eq. (1).

In Fig. 6 we plot the x and y components of the spin as a
function of the z component for both the post-Newtonian
predicted spins (using numerical tracks) and the numeri-
cally determined spins. Plotting the data in this manner
removes the ambiguity of assigning the appropriate post-
Newtonian time to the numerical time coordinate on the
horizon. The qualitative behavior of the spin in our nu-
merical simulation is consistent with the post-Newtonian
spin for most of the evolution (smaller values of Sz).

The puncture trajectories are third-order convergent as is
demonstrated in Fig. 7. The x-component of the track
appears to show poorer convergence between t � 10M
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where C � 0:88. The spin is initially third-order convergent,
with higher order-convergence apparent at later times.
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and t � 60M but this is likely due to the coarseness of the
grid. Note that the trajectories are calculated by integrating
@txa � 
�a [22] at the location of the punctures. The
curve is expected to converge to lower order because the
shift is not smooth on the puncture (see [74] for a discus-

sion on the behavior of the evolved fields at the punctures).
However, as is shown below, the constraint violations also
show third-order convergence, which indicates that lower-
order convergent effects leak out of the puncture. These
lower-order errors are likely not observed in the waveform
(see below) because of a larger fourth-order error term
dominating the third-order error terms at these resolutions.

The final remnant horizon for the SP3 configuration has
mass MH =M � 0:9613� 0:0007 with specific spin
S=M2

H
� 0:7215� 0:0003. The remnant spin compo-

nents calculated from the approximate Killing vector are
~SIH=M

2� �
0:045�0:001;0:199�0:003;0:638�0:003	
with magnitude SIH=M

2 � 0:669� 0:001. The total ADM
mass and angular momentum (i.e. initial mass and angular
momentum) of the system are MADM=M � 1:000 00�
0:000 05 and ~JADM=M2 � �0; 0:257 450; 0:875 352	.
Hence �3:87� 0:07	% of the mass and �23:6� 0:1	% of
the angular momentum were converted into radiation, with
�Jz=M2 � �0:237� 0:003	. The system gained net angu-
lar momentum in the x-direction but lost �22:7� 0:4	% of
its angular momentum in the y-direction and �27:1�
0:3	% of its angular momentum in the z-direction. Thus
the binary preferentially radiated angular momentum in the
direction of the initial orbital angular momentum. We also
obtained estimates of the radiated mass and z-component
of the angular momentum from  4 of �3:8� 0:1	% and
�0:24� 0:02	M2 respectively, in excellent agreement with
the results from the remnant horizon parameters. (The
errors in the radiated mass and angular momentum from
the waveform are relatively large due to boundary reflec-
tion contaminating the late-time waveform.) Note that the
excellent agreement in �Jz between the final horizon di-
rection measurement and the radiated z-component of the
angular momentum indicates that we obtain the final hori-
zon spin magnitude and direction to within the expect 2�

accuracy. For comparison we also give the remnant
spin direction calculated using the coordinate rotation
vectors ~Scoord=M2 � �
0:033� 0:002; 0:190� 0:001;
0:6395� 0:0003	 (where the errors are a measure of the
flatness of the components of ~Scoord versus time). The
corresponding spin magnitude Scoord=M2 � 0:668�
0:002 agrees with the norm SIH and the directions agree
to within 1.3� (the expected error in the direction determi-
nation is �2�).

We measure the angle of the spin-flip both with respect
to the initial individual horizon spins and the individual
horizon spins at the merger. For the SP3 configurations
these angles are 72� and 71�, respectively. In Fig. 8 we
show the spin direction of the individual horizons and spin
direction of the remnant horizon. The smooth precession
and discontinuous flip are apparent. Note that the spin flip,
unlike the spin precession, cannot be modeled accurately
by a post-Newtonian expansion due to the highly nonlinear
merger process that converts roughly 25% of the initial
total angular momentum into gravitational radiation. The
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final spin direction for the SP3 configuration is rotated by
4.0� with respect to the initial ADM angular momentum.
This rotation, though small, is larger than the expected
error in our spin direction algorithm, indicating that there
is a small net change in the direction of the angular
momentum.

The spin direction and puncture trajectories are coordi-
nate dependent measures of precession. The waveform, on
the other hand, should provide a coordinate independent
measure of the precession. To show the effect of precession
on the waveform we examine the �‘ � 2; m � 1	 mode.
This mode vanishes identically for the zero-spin, aligned-
spin, and antialigned spin cases previously studied (i.e. S0,

SC, S�� , S

 ) [22,30,34,35]. In Fig. 9 we show the
�‘ � 2; m � 1	 mode at an extraction radius of r � 15M
as well as a convergence plot of this mode (showing fourth-
order convergence). The contributions of the �‘ � 2; m �
�1	 modes to the radiated mass are smaller than the
contributions of the dominant �‘ � 2; m � �2	 modes
by a factor of �20, while the contributions of the �‘ �
2; m � �1	 modes to the radiated angular momentum are
smaller than the contributions of the dominant �‘ � 2; m �
�2	 modes by a factor of �80.

We next examine how the results change when we set the
initial spins closer to the z-axis. The SP4 configuration has
the same total spin as the SP3 configuration but at an angle
of 45� with respect to the orbital plane. This rotation of the
spin has two significant effects. First, the SP4 configuration
has a significant spin in the same direction as the orbital
angular momentum, and from our previous results [34,35]
we expect that the binary merger will be delayed due to the
resulting spin-orbit repulsive effect. Second, the amplitude
of the orbital plane precession will be reduced (i.e. there is
no orbital plane precession if the spins are rotated 90� with
respect to the orbital plane, and the amount of precession
should vary smoothly with angle). In Fig. 10 we show the
z-component of the first puncture trajectory versus time for
SP3 and SP4, where the latter has been rescaled by

���
2
p

.
Note that at early times the rescaled tracks agree perfectly.
Thus, for a given magnitude of the spin, the orbital plane
precession has a sin# dependence, where # is the angle
between the spin and orbital angular momentum. At later
times, the spin-orbit coupling induced delay in the merger
becomes evident and the two tracks no longer agree.
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FIG. 8 (color online). The spin direction of the individual
horizons every 4M during the spin-precession phase and the
final horizon spin direction for the SP3 configuration. The arrows
indicate the spin direction only, not the magnitude. Note the
continuous change in the spin direction during the precession
stage and the discontinuous jump (or flip) to the remnant spin
direction.
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Comparing the waveforms from the SP3 and SP4 con-
figurations is complicated by the fact that the initial data
burst masks the early-time behavior. Nevertheless, there is
a small region just after the initial pulse leaves the system
(see Fig. 11) where it is evident that the �‘ � 2; m � 1	
mode scales with sin#. However, at later times the differ-
ences in the orbital dynamics destroys this scaling.

In Figs. 12–14 we show the spin magnitude and direc-
tion for the SP4 configuration, as well as the 3D puncture
trajectories and spins and a projection of the trajectories
and spin direction onto the xy plane. Because of the
increased stability of aligned spin binaries, this configura-
tion completes 2 3

8 orbits prior to merger (compared to 1 3
4

for SP3). Consequently spin-precession rotates the spin
vector by an additional 45� compared to the SP3 configu-
ration. In this case the Killing vector based calculation of
the spin remains accurate long enough that the spin-
precession rotation beyond 90� (i.e. the local minimum
in Sx is observed in ~SIH as well as ~Scoord). Note that, once
again, there is a significant spin-up in the z-direction
caused by a rotation of the spin vector towards the z-axis
(rather than a net increase in the spin amplitude), and that
there is no discernible correlation between the projected
horizon orientation (i.e. the orientation of the semimajor
axis) and the projected spin direction. The individual
horizon spins at the merger are ~Scoord � �
0:033�
0:005;
0:041� 0:003; 0:114� 0:001	. Hence the total
precession angle for the SP3 configuration is �p � 151�.

The remnant horizon for the SP4 run formed just as the
boundary reflections began to contaminate the interior.
Consequently the error bounds for the mass and spin
of the remnant are higher for SP4 than SP3. The final
remnant mass is MH � �0:9524� 0:0002	M with a spin
parameter of S=M2

H
� 0:805� 0:002. The spin compo-

nents are ~Scoord=M2 � �
0:020� 0:003; 0:121� 0:002;
0:720� 0:002	, where we used the coordinate-base defini-
tion to calculate ~S. (The Killing vector based calculation of
the spin could not be obtained accurately because the
system became approximately axisymmetric after the
boundary errors affected the remnant spin parameters.)
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FIG. 13 (color online). The puncture trajectories and horizon
spin direction (shown every 4M until merger) for the SP4
configuration. Note that the z-scale is 1=10th that of the x and
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FIG. 11 (color online). The imaginary part of the �‘ � 2; m �
1	 component of  4 for the SP3 and SP4 configurations extracted
at r � 15M with a central resolution ofM=25. Note that between
t � 50 and t � 75 the two waveforms scale with sin# as is
evident by the good agreement between the two waveform after
rescaling the SP4 waveform by
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[i.e. 1= sin�	=4	]. However,
this scaling breaks down at later times (t > 85M) due to the
differences in orbital decay arising from the increased stability of
the SP4 configuration. This scaling also breaks down at early
times because of the nonphysical initial data radiation pulse.
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The initial ADM mass and angular momentum for this
system were MADM=M � 1:000 00� 0:000 05 and
~JADM=M2 � �0; 0:182 396; 1:018 33	. Hence, �4:76�
0:02	% of the mass and �29:4� 0:2	% of the angular
momentum were converted into gravitational radiation.
The system gained net angular momentum in the 
x
direction, while losing �34� 1	% and �29:3� 0:2	% of
its angular momentum in the y and z directions, respec-
tively. It thus appears that this configuration preferentially
radiates angular momentum in the orbital plane. However,
we caution the reader that the errors quoted for the SP4
configuration for the mass and spin do not take into ac-
count either possible boundary effects or finite-difference
truncation errors. The effect of the radiation on the angular
momentum direction is small, with the SP4 spin direction
rotated by only 1.5� with respect to the initial ADM
angular momentum.

The spin-flip angle of the remnant spin with respect to
the initial individual spins and the individual spins at
merger are 35� and 32�, respectively. In Fig. 15 we show
the spin direction of the individual horizons and spin
direction of the remnant horizon. The smooth precession
and discontinuous flip are apparent. Note that in this case
boundary reflections contaminate the waveform at large r
prior to the merger. Consequently we do not obtain reliable

measurements for the radiated mass and angular momen-
tum from the waveform.

As was mentioned above, the calculation of the spin
direction is coordinate dependent. Nevertheless, these par-
ticular coordinates show remarkable agreement between
the puncture trajectories and the waveform. In Fig. 16 we
show the orbital part of the �‘ � 2; m � 2	 component of
 4 extracted at r � 10M, where we translated the SP4
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FIG. 15 (color online). The spin direction of the individual
horizons every 4M during the spin-precession phase and the final
horizon spin direction for the SP4 configuration. The arrows
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2; m � 2	 component of  4 extracted at r � 10M. The SP4
waveform has been translated by 37M and multiplied by a
constant phase factor prior to taking the real part. The plunge
part of the waveform begins roughly at t � 168M. Thus there are
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FIG. 14 (color online). The xy plane projection of the orbital
track, apparent horizons, and spin direction for the SP4 configu-
ration up to merger. The horizons are given at t � 0; 20M;
40M; . . . ; 180M; 196M. The common horizon formed at t �
195:4M. The projected spin vector decreases in magnitude at
late time due to the spin rotating further out of the xy plane. Note
that the spin direction precesses by 135� in the xy plane during
the merger. The spin of the second black hole (not shown) is
equal to the first.
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waveform and multiplied by a constant phase in such a way
that plunge part of the waveforms agree [32]. Note that the
SP3 configuration shows�4 cycles of orbital motion prior
to the plunge (i.e. the last trough in the plot), while the SP4
configuration shows �5 cycles. Thus we expect that the
SP4 track should contain approximately one-half of an
orbit more than the SP3 configuration. Although there is
an uncertainty in the exact location of the beginning of the
‘‘plunge’’ waveform in the figure, its approximate location
will be given by the formation time of the common horizon
at this resolution plus the coordinate distance to the ex-
traction sphere (here we identify the start of the plunge
with the first trough located at t � 168 � TCAH � 10M),
the number of cycles in both configurations prior to the last
peak shown is consistent with 1/4 of an orbit more than the
number of orbits (i.e. 1.75 and 2.25, respectively) observed
in Figs. 2 and 14. Interestingly, the number of cycles after
the initial pulse of radiation (3.5 and 4.5, respectively) is in
excellent agreement with the number of orbits observed in
the puncture trajectories. Thus these coordinates appear to
reasonably reproduce the orbital dynamics of the binary.
This fidelity by which the coordinates reproduce the
merger dynamics, and the relatively good agreement be-
tween the two measurements of the spin direction, is the
motivation for using these coordinate dependent measure-
ments to measure the spin direction. In addition, the very
good agreement for the radiated z-component of the angu-
lar momentum based on the difference between the rem-
nant ~SIH and ~JADM for SP3 and the waveform-based
calculation, indicates that this method provides an accurate

measurement of the remnant spin direction and magnitude.
We expect the method to provide more accurate results for
the remnant horizon than the individual horizon because
the remnant spacetime is axisymmetric, and, as pointed out
above, there is a natural way to assign a spin direction to
horizons when the spacetime is axisymmetric.

There appears to be a small trend towards spin-angular
momentum alignment. To observe this effect we measure
the angle between the spin and final angular momentum
(i.e. the remnant spin), 
JS � arccos�Ŝ � Ĵf	. In Fig. 17 we
show 
JS versus time for the SP3 and SP4 configurations
using both ~SIH and ~Scoord. Both of these measurements
show increasingly larger oscillations in 
JS versus time.
The ~SIH based measurements indicate that the spins in the
SP3 configuration migrate�6� towards Ĵf , while the spins
in the SP4 configuration migrate �8� towards Ĵf (we
measure the angle at the approximate midpoint of the
oscillation). However, the ~Scoord based measurements in-
dicate that the spins in the SP3 configuration migrate by
only�3�, while the spins in the SP4 configuration migrate
by only �2:5�. It is unclear which measurement is supe-
rior. On the one hand ~Scoord is more strongly coordinate
dependent, but, on the other hand, the horizons become
more distorted as they approach each other, which in-
creases the error in ~SIH (i.e. the horizons deviate increas-
ingly strongly from axisymmetry). This is an interesting
effect which we plan to study in much more detail with
improved techniques to measure the spin direction. We
summarize the main results from spin direction calcula-
tions for the SP3 and SP4 simulation in Table II.
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TABLE II. The angle between the initial spin direction and
orbital angular momentum #, the total spin precession angle �p,
spin flip angle between the initial spin direction and remnant
spin direction �flip, and the net change in the z-component of the
angular momentum as calculated using the isolated horizon spin
direction of the remnant �Jz(IH) and waveform �Jz� 4	 for the
SP3 and SP4 configurations.

Config # �p �flip �Jz(IH) �Jz� 4	

SP3 90� 98� � 2� 72� � 2� 0:237� 0:003 0:24� 0:02
SP4 45� 151� � 2� 35� � 2� — —

TABLE III. Merger times for the SP3 and SP4 configuration
versus resolution, as well as an extrapolation to infinite resolu-
tion (see text for an explanation of the ‘‘extrapolation’’ of the
SP4 result.)

Resolution SP3 SP4

M=22:5 152:0� 0:2 —
M=25 157:4� 0:2 195:4� 0:2
M=30 164:2� 0:2 —

M=1 176� 3 �214
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The stability of the spinning binaries is strongly depen-
dent on the direction of the spin. In Table III we show the
merger times (TCAH) of the SP3 configuration versus reso-
lution and an extrapolation to infinite resolution, as well as
the merger time for the single SP4 run. The ‘‘extrapolated’’
value of the SP4 merger time was computed by adding the
difference between the extrapolated and h � M=25 merger
times for the SP3 configuration to the h � M=25 merger
time for the SP4 configuration. The extrapolated values of
176� 3 and �214, for SP3 and SP4, respectively, are in
large part consistent with the results from the aligned-spin
binaries if we replace S in Eq. (A1) with 2Sz=m

2 (S is the
total spin, hence the factor of 2). The predicted merger
times are TCAH � 172� 1 and TCAH � 200� 2 for the
SP3 and SP4 configurations, respectively. The differences
between these predictions and the actual extrapolated
merger times can be explained by the net rotation of the
component spins towards the z-axis, which helps stabilize
the binaries.

We conclude this section by showing that the constraint
violations converge to third-order. Although the code uses
purely fourth-order stencils, lower order errors both from
the lower differentiability of the evolved fields at the
punctures, as well as from the second-order accuracy of
the initial data, lead to a global third-order error in the
constraint violation. Figures 18–20 show the Hamiltonian
constraint, momentum constraint, and BSSN constraint
(Gi � ~�i � @j~gij) violations at t � 76M (the time when
the punctures cross the x-axis for the second time) along
the x-axis for the SP3 configuration. The constraint viola-
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FIG. 19 (color online). The convergence of the momentum
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at t � 76M when the punctures cross the x-axis for the second
time. The momentum constraint shows third-order convergence.
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been rescaled by �hl=h	3 (hl � M=22:5). The high-frequency
features near the outer boundary are due to the extreme fisheye
deresolution and converge with resolution.

 

−10 −8 −6 −4 −2 0 2 4 6 8 10
x/M

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

H
am

ilt
on

ia
n 

V
io

la
tio

n

H(M/22.5)
H(M/25) * (25/22.5)

3

H(M/30) * (30/22.5)
3

FIG. 18 (color online). The convergence of the Hamiltonian
constraint violation for the SP3 configuration along the x-axis at
t � 76M when the punctures cross the x-axis for the second
time. The Hamiltonian constraint shows third-order conver-
gence. Points inside the domain of dependence of the boundary
have been excluded. The high-frequency features near the outer
boundary are due to the extreme fisheye deresolution and con-
verge with resolution.

 

−10 −8 −6 −4 −2 0 2 4 6 8 10
x/M

10
−8

10
−6

10
−4

10
−2

10
0

G
z

10
−8

10
−6

10
−4

10
−2

10
0

G
x

10
−9

10
−7

10
−5

10
−3

10
−1

G
y

FIG. 20 (color online). The convergence of the BSSN con-
straint violation for the SP3 configuration along the x-axis at t �
76M when the punctures cross the x-axis for the second time.
The BSSN constraint shows third-order convergence. Points
inside the domain of dependence of the boundary have been
excluded. In each panel the solid (black) curve, dotted (red)
curve and dashed (blue) curves are the M=22:5, M=25, and
M=30 constraint violations, respectively. The constraints have
been rescaled by �hl=h	3 (hl � M=22:5). The high-frequency
features near the outer boundary are due to the extreme fisheye
deresolution and converge with resolution.
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tions have been multiplied by �hl=h	3 (where hl �
M=22:5) to demonstrate third-order convergence. Note
that the high-frequency features near the outer boundary
are due to the extreme fisheye deresolution near the outer
boundary and converges to zero with resolution.

VI. CONCLUSION

In this paper, we evolved systems of equal-mass and
equal-spin black-hole binaries with initial spins aligned
perpendicular to, and 45� to, the orbital angular momen-
tum. We observed the combined effects of spin and orbital
plane precession as predicted by post-Newtonian theory,
with dramatic, total precessions of�98� and�151� in the
SP3 and SP4 simulations, respectively. Both configurations
resulted in large spin flips between the individual horizon
spin directions and the final remnant direction, with the
SP3 configuration showing a spin flip of�72� and the SP4
configuration (which had spins initially more closely
aligned with the orbital angular momentum) resulting in
a spin flip of �34�. We see a possible small trend to spin–
orbital angular momentum alignment, but no evidence for
significant spin-up of the black-hole spins.

Although the configurations studied here are parity-
symmetric, this symmetry was only chosen to reduce the
memory footprint of the simulations (allowing for higher
resolution runs); it does not affect the stability of the
‘‘moving punctures’’ algorithm. Notably, the punctures
move out of the xy plane and can get arbitrarily close to
the numerical grid points. Despite this symmetry, the SP3
and SP4 configurations display most of the significant spin-
orbit coupling effects associated with spinning binaries:
spin and orbital plane precession, spin flips, and enhanced
stability of the semialigned configuration. The only sig-
nificant spin-orbit coupling effect not shown by these
configurations is a spin-orbit induced kick of the remnant
hole. In order to see these kicks we would need to evolve
configurations without parity symmetry.

Our methods for calculating the spin direction produce
reasonable results for our choice of gauge conditions.
Future work will concentrate on improving this calculation
with alternative choices of the gauge parameters (e.g. � in
the Gamma-driver shift and various different choices of
initial values for the lapse function) and with alternative
forms of the Gamma-driver shift condition. Notably, the
lack of agreement between the location of the horizon
semiminor axis and the spin direction indicates that these
coordinates are not yet ideal. In addition, it would be useful
to calculate independent measures of the quality of the
approximate Killing vector, for example, the norm of the
Lie derivative of the 2-metric on the horizon L’qab. It is
interesting to note that the purely coordinate measurement
~Scoord gives reasonable results for the spin direction and
amplitude, and since this calculation is both more robust
(i.e. the approximate Killing vector may not exist) than the

approximate Killing vector calculations and easier to im-
plement, it may prove to be a convenient measurement of
the spin for those codes that have not implemented the
approximate Killing vector finding algorithm.

From the mathematical side, further investigation is
required to make the definition of the spin vector more
rigorous and gauge independent. There are some interest-
ing questions deserving further attention. Is it possible to
meaningfully compare the spin vector defined at the black
hole with the vector defined at spatial infinity? What about
comparing the spin vector of the final black hole with that
for the individual black holes that we start with? Does it
matter that they are all calculated on different dynamical
horizons? With regard to the latter question, it is possible
that the dynamical horizons for the individual black holes
are smoothly connected with the final dynamical horizon
through the appearance of marginally trapped surfaces
lying between the common outer horizon and the two inner
horizons. This scenario is suggested by initial numerical
studies [57], but further analytical and numerical work is
required to confirm this and to fully understand the dy-
namics of marginally trapped surfaces.

We also revisited the question of tidal locking leading to
corotation in close black hole binaries. Corotation implies
both that the spin directions are aligned with the orbital
angular momentum and that the horizon frequency (the
horizon frequency is the angular speed of locally nonrotat-
ing observers as they pass through the horizon, as seen by
stationary observers at infinity) is equal to the orbital
frequency. We found in a previous study [34] that the
spin-up of the holes is too small (by 2 orders of magnitude)
to reach corotation. In this paper we observed signs of
alignment of the spin with the total angular momentum.
The variations in the direction observed are a few degrees
during the last two orbits. Further numerical and analytic
(higher PN order) studies will be needed to see if this effect
is strong enough during the slow inspiral phase to drive the
binary toward spin-orbit alignment.

Both the final magnitude, and the final direction, of a
black-hole binary’s remnant spin are of astrophysical in-
terest: the former determines the efficiency of gravitational
accretion, and the latter is reflected in the orientation of the
inner accretion disk and (indirectly) in the launching di-
rection of a jet. Our simulations are the first to follow the
time dependence of the spin orientations in black hole
mergers with initially misaligned spins, and the first to
verify the spin-flip phenomenon: the sudden reorientation
in spin axis that takes place when the binary’s orbital
angular momentum is converted into spin in the final stages
of the merger [10]. In addition to influencing the gravita-
tional wave forms, the spin evolution would also be re-
flected in any electromagnetic signature due to gas in orbit
around the black holes. Predicting the latter signature is
beyond the scope of the present paper but is a fruitful topic
for further study.
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APPENDIX: PREVIOUS STUDIES

In a previous paper we reported the first fully-nonlinear
studies of highly-spinning black-hole binaries [35], where
we found that the spin can profoundly affect the orbital
dynamics of the last premerger stages. In Ref. [35] we
studied cases where the spins were aligned or counter
aligned with the orbital angular momentum. As a result
of the spin-orbit coupling the merger times dramatically
changed with respect to the nonspinning case. For ex-
ample, for initial data corresponding to a quasicircular
orbit with period T � 125M and orbital frequency ! �
0:05=M, the nonspinning holes would orbit twice before
merging into a single horizon, while the spinning holes
aligned with the orbital angular momentum and spinning at
a rate S=m2 � 0:75 (where S is the magnitude of the spin
angular momentum and m is the mass of the black hole)
would orbit 3 times before merger. The antialigned spin-
ning holes with specific spins S=m2 � 
0:75 would only
complete one orbit before the common event horizon
formed. These results can be summarized by a linear fit
to the Richardson extrapolated merger times tCAH (forma-
tion time of the first common apparent horizon) of the most
accurate runs with S=m2 � 0:0, S=m2 � 0:1, and S=m2 �

0:757 (see Refs. [34,35])

 

tCAH

M
� �172� 1	 � �40� 2	S; (A1)

where S � �S1=m2
1 � S2=m2

2	I. Note that extrapolating to
maximally spinning holes gives a merger time (from orbi-
tal ! � 0:05=M) of 87M and 255M for antialigned and
aligned spins, respectively.

Extrapolation to maximally rotating black holes aligned
with the orbital angular momentum leads to remnant black
holes having a submaximal specific rotation parameter
S=m2 < 0:95 which implies one cannot generate extreme
rotating black holes or violate the cosmic censorship hy-
pothesis starting from orbiting black holes (see Fig. 21).

A quadratic fit to the remnant black hole of the merger of
aligned or antialigned spinning holes produces

 �S=M2
H	jR � 0:6879� 0:1476�S	 
 0:009 35�S	2; (A2)

while a fit to the energy radiated versus the initial individ-
ual spins yields

 

Erad

M
� 0:0348� 0:014 85�S	 � 0:004 25�S	2; (A3)

While we expect more simulations of spinning black
holes for other values of the individual spins and with even
higher accuracy will give improved fits, Eqs. (A1)–(A3)
already provide valuable information for data analysts and
for theoreticians modeling the merger of spinning black-
hole binaries with post-Newtonian or ‘‘Kludge’’ wave-
forms [63].

This differential orbital dynamics in turn also notably
changes waveforms (see Figs. 1–3 in Ref. [35]).

We then explored changes in the magnitude of the spin
due to tidal effects in binaries and the transfer of orbital
angular momentum to spin and vice versa [34]. Those
studies concluded that it is very unlikely that black-hole
binaries become tidally locked in a corotating state during
the last orbital stages. We considered two representative
cases, one starting with initially nonspinning black holes
and tracked the spin-up during the last two orbits before
merger. The second simulation began with the binary in an
instantaneously corotating state at the same starting point
and again tracked the spin-up of the individual holes. In
both cases the spin-up was 2 orders of magnitude smaller
than that needed to lock the binary into a corotating state.
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