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We use the ‘moving puncture’ approach to perform fully non-linear evolutions of spinning quasi-
circular black-hole binaries with individual spins unaligned with the orbital angular momentum. We
evolve configurations with the individual spins (parallel and equal in magnitude) pointing in the
orbital plane and 45-degrees above the orbital plane. We introduce a technique to measure the spin
direction and track the precession of the spin during the merger, as well as measure the spin flip in
the remnant horizon. The former configuration completes 1.75 orbits before merging, with the spin
precessing by 98-degrees and the final remnant horizon spin flipped by ∼ 72-degrees with respect to
the component spins. The latter configuration completes 2.25 orbits, with the spins precessing by
151-degrees and the final remnant horizon spin flipped ∼ 34-degrees with respect to the component
spins. These simulations show for the first time how the spins are reoriented during the final stage
of binary black hole mergers verifying the hypothesis of the spin-flip phenomenon. We also compute
the track of the holes before merger and observe a precession of the orbital plane with frequency
similar to the orbital frequency and amplitude increasing with time.

PACS numbers: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

There is widespread interest in understanding the dy-
namics of the last orbital stages of generic black-hole bi-
naries (i.e. binaries with randomly aligned spins and un-
equal masses). These last few orbits before the binaries
merge involve highly-nonlinear gravitational interactions
leading not only to large amounts of gravitational radi-
ation leaving the systems, but also to intricate coupling
effects, particularly those involving the spins of the two
component black holes. Questions of how the black holes
orient their spins with respect to the (instantaneous) or-
bital plane and the extent to which the black holes spin-
up during last orbital stages are of great astrophysical
interest. Spinning black holes are believed to be the en-
gines of active galactic nuclei and quasars; the efficiency
with which infalling matter is converted into radiation de-
pends on the energy of the innermost stable orbit and is
greatest for rapidly-spinning holes [1, 2]. The energetic
jets observed in many AGN and stellar-mass accreting
systems are believed to be launched perpendicularly to
the inner accretion disk, hence parallel to the spin axis
of the accreting hole [3]. Changes in the spin direction
are therefore potentially observable. A number of active
galaxies exhibit semi-periodic deviations of the jet direc-
tions from a straight line [4], suggestive of precession of
the accretion disk around the jet-emitting hole or geode-
tic precession of the larger hole, either of which might be
driven by torques from a second orbiting black hole [5, 6].
About 15 radio galaxies show jets with apparently abrupt

changes in jet direction, forming X-shaped patterns [7, 8].
Some models [9, 10] attribute the X shapes to a sudden
re-orientation of the spin axis of the larger hole as it
accretes the smaller hole. Fossil evidence that such re-
orientations were common in the past is observed in the
nearly random jet directions of Seyfert galaxies [11, 12].

In the generic case, inspiral of a binary black hole
should induce first a precession, then a flip, in the direc-
tion of the spin axis of either hole [13]. Unless the mass
ratio is extreme, the final spin orientation is dominated
by the orbital angular momentum of the binary, implying
substantial re-orientation as long as the spin- and orbital
angular momenta are initially mis-aligned [9].

Aside from their astrophysical interest, black-hole bi-
naries are one of the primary targets of the earth-based
gravitational wave observatories, such as LIGO [14],
VIRGO [15], GEO600 [16], etc. These detectors are op-
erating at unprecedented sensitivities. In particular, the
LIGO interferometers are currently taking data at their
design sensitivities. The initial LIGO interferometers
might be able to observe two 20M⊙ inspiralling black
holes out to a distance of more than 100Mpc, and ad-
vanced LIGO could see the same event up to a cosmolog-
ical redshift of z ≈ 0.4 [17]. Predicted black-hole-binary
gravitational waveforms will not only be of great help
for the detection of this radiation using matched filtering
techniques, but will also be essential for the interpreta-
tion of the signals, determination of the event rates, and
extraction of astrophysical parameters. This will be es-
pecially important for the next generation of ground and
space-based detectors, such as LISA [18, 19] which should
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observe gravitational wave bursts from the mergers of su-
permassive black holes in the centers of galaxies out to
very high redshifts.

Simulations of the last orbital stages of black-hole bi-
naries require solving the fully-nonlinear General Rel-
ativity field equations numerically on supercomputers.
However, solving these non-linear equations proved to
be quite difficult and the problem remained unsolved for
over thirty years. However, last year two independent
techniques were developed that broke through the bar-
rier of the numerical instabilities to produce spectacu-
lar results. In 2005 these two approaches were used to
generate the gravitational waveforms from the last or-
bit of non-spinning, equal-mass black-hole binaries. The
first technique, which was developed by Pretorius [20],
used a second-order formulation of the General Relativity
field equations in a generalized harmonic gauge (GHG),
along with singularity excision in the interior of the hori-
zons, adaptive mesh refinement (AMR) on a compacti-
fied space, and the addition of constraint damping terms
to the evolution equation. The second successful ap-
proach was developed a few months later by our group at
UTB [21] and independently by the Numerical Relativity
group at NASA/Goddard [22]. This latter method uses a
mixed first-and-second-order formulation of the General
Relativity field equations known as BSSN system, in com-
bination with the puncture formalism (without the need
for singularity excision). This technique differs from pre-
vious work with punctures in that the punctures are not
fixed on the grid. In both versions of this ‘moving punc-
ture’ approach modifications to the standard 1+log lapse
and Gamma-driver shift conditions were introduced.

Most of the groups in numerical relativity have now
implemented one of the two approaches; the ‘moving
puncture’ technique being the more popular. Given its
technical simplicity and flexibility, this latter approach
has been used to produce several interesting results rang-
ing from the original simulations of non-spinning equal-
mass binaries [23, 24, 25, 26] to spinning equal-mass
binaries [27, 28] and non-spinning unequal-mass bina-
ries [29, 30, 31]. Notably, the moving puncture tech-
nique has recently also been successfully implemented
in the case of neutron-star—black-hole-binaries [32, 33],
thus extending the impact of the technique on the nu-
merical/astrophysical relativity community. Noteworthy,
the GHG approach has also been successfully used to
study eccentric orbits in black-hole binaries with equal-
mass and small corotation spins [24]. A generalized har-
monic form of Einstein’s equations has also been suc-
cessfully used together with a dual coordinates method
to evolve binary black-hole spacetimes for several orbits
prior merger [34].

Alongside this impressive progress in computational
and experimental relativity, the last few years have also
seen significant mathematical progress in our under-
standing of black holes in full non-linear general relativ-
ity. There is now a better understanding of the geometry
and dynamics of trapped and marginally trapped surfaces

using the quasi-local notions of trapping [35], isolated [36]
and dynamical horizons [37]. Isolated horizons describe
black holes in equilibrium in non-stationary spacetimes,
and trapping and dynamical horizons describe the gen-
eral time-dependent case. The applications of these ideas
to classical, and quantum black hole physics are too nu-
merous to be described here, and we refer to [38, 39, 40]
for reviews and a more complete set of references. For
our present purposes, we are mostly interested in cal-
culating the angular momentum of an (approximately)
axisymmetric horizon. The calculation of angular mo-
mentum for isolated horizons is carried out using Hamil-
tonian methods as described in [41, 42, 43]. The analo-
gous Hamiltonian calculation for non-stationary trapping
and dynamical horizons is given in [44]. Conservation
and balance laws describing how the horizon mass and
angular momentum change in response to infalling mat-
ter/radiation are found in [45, 46, 47, 48]. The calcula-
tion of the magnitude of black hole spin angular momen-
tum tailored to numerical relativity is presented in [49]
and more recently, [50] considers higher mass and angu-
lar momentum multipole moments. In this paper we use
this formalism primarily to compute the direction and
magnitude of the spin angular momentum vector.

In a previous paper we reported the first fully-
nonlinear studies of highly-spinning black-hole bina-
ries [28], where we found that the spin can profoundly
affect the orbital dynamics of the last pre-merger stages.
In Ref. [28] we studied cases where the spins were aligned
or counter aligned with the orbital angular momentum.
As a result of the spin-orbit coupling the merger times
dramatically changed with respect to the non-spinning
case. For example, for initial data corresponding to a
quasi-circular orbit with period T ∼ 125M and orbital
frequency ω = 0.05/M , the non-spinning holes would
orbit twice before merging into a single horizon, while
the spinning holes aligned with the orbital angular mo-
mentum and spinning at a rate s/m2 = 0.75 would or-
bit three times before merger. The anti-aligned spin-
ning holes with specific spins s/m2 = −0.75 would only
complete one orbit before the common event horizon
formed. These results can be summarized by a linear
fit to the Richardson extrapolated merger times tCAH

(formation time of the first common apparent horizon)
of the most accurate runs with s/m2 = 0.0, s/m2 = 0.1,
and s/m2 = −0.757 (see Refs. [27, 28])

tCAH

M
= (172 ± 1) + (40 ± 2)S, (1)

where S ≡ (s1/m
2
1 + s2/m

2
2)I . Note that extrapolating

to maximally spinning holes gives a merger time (from
orbital ω = 0.05/M) of 87M and 255M for anti-aligned
and aligned spins respectively.

Extrapolation to maximally rotating black holes
aligned with the orbital angular momentum leads to rem-
nant black holes having a sub-maximal specific rotation
parameter a/m < 0.95 which implies one cannot gen-
erate extreme rotating black holes or violate the cosmic
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FIG. 1: A linear-least squares fit of the remnant Kerr spin
parameter (left y-axis) and radiated energy (right y-axis)
for the merger of equal-mass equal-spin binaries with spins
pointing along (or in the opposite direction to) the orbital
angular momentum. The fits have the functional form y =
c0 + c1(s/m

2) + c2(s/m
2)2.

censorship hypothesis starting from orbiting black holes
(see Fig. 1).

A quadratic fit to the remnant black hole of the merger
of aligned or anti-aligned spinning holes produces

(a/MH)|R = 0.6879 + 0.1476 (S) − 0.00935 (S)2 , (2)

while a fit to the energy radiated versus the initial indi-
vidual spins yields

Erad

M
= 0.0348 + 0.01485 (S) + 0.00425 (S)

2
, (3)

While we expect more simulations of spinning black
holes for other values of the individual spins and with
even higher accuracy will give improved fits, Eqs. (1)-
(3) already provide valuable information for data ana-
lysts and for theoreticians modeling the merger of spin-
ning black-hole binaries with post-Newtonian or ‘Kludge’
waveforms [51].

This differential orbital dynamics in turn also notably
changes waveforms (see Figs. 1-3 in Ref. [28]).

We then explored changes in the magnitude of the spin
due to tidal effects in binaries and the transfer of orbital
angular momentum to spin and vice versa [27]. Those
studies concluded that it is very unlikely that black-hole
binaries become tidally locked in a corotating state dur-
ing the last orbital stages. We considered two representa-
tive cases, one starting with initially non-spinning black
holes and tracked the spin-up during the last two orbits
before merger. The second simulation began with the bi-
nary in an instantaneously corotating state at the same
starting point and again tracked the spin-up of the indi-
vidual holes. In both cases the spin-up was two orders of

magnitude smaller than that needed to lock the binary
into a corotating state.

Since corotation implies both that the spin directions
are aligned with the orbital angular momentum and that
the horizon frequency (the horizon frequency is the an-
gular speed of locally-non-rotating observers as they pass
through the horizon, as seen by stationary observers at
infinity) is equal to the orbital frequency, it is interest-
ing to study how strongly a system with spins initially
not aligned with the orbital angular momentum is driven
towards spin-orbit alignment.

If the spins of the two black holes are not aligned with
the total angular momentum, then the spin and orbital
angular momenta will precess about the total angular
momentum. Precession of the spin of the holes is pro-
duced by spin-orbit coupling and the spin-spin coupling.
This effect has been studied in several papers by means
of the Post-Newtonian expansion [52, 53]

d~Si

dt
=

1

r3

{

(~LN × ~Si)(2 +
3

2

mj

mi

) − ~Sj × ~Si

+ 3(n̂ · ~Sj)n̂× ~Si

}

, (4)

where ~LN ≡ µ(~x× ~v) is the Newtonian orbital angular
momentum, ~x ≡ ~x1 − ~x2, r ≡ |~x|, ~v = d~x/dt, n̂ ≡ ~x/r,

m = m1 +m2, µ ≡ m1m2/m, η ≡ µ/m, ~S ≡ ~S1 + ~S2, an
over-dot denotes d/dt, and the j subscript denotes the
other hole. Since the time derivative of the individual

spin of the holes has the form ~̇Si = ~Ω × ~Si this implies
that the magnitude of each individual spin is conserved
and only its direction will continuously change in time
and rotate at a precession frequency given by

~Ωi =
1

r3

{

(2 +
3

2

m1

m2

) ~LN − ~Sj + 3(n̂ · ~Sj)n̂

}

. (5)

Both the spin and orbital planes precess. This is due
to the fact that, if the radiated angular momentum is

neglected, the total angular momentum ~J = ~L + ~S is

conserved. Hence the ~̇L = − ~̇S. Thus the orbital plane
will precess at the same frequency as the total spin. The
gravitational radiation reaction effect will generate a net
loss of J that will actually produce an increase in the
amplitude of the spin and orbital oscillations since the
black holes will get closer; magnifying the spin-orbit cou-
pling. In this paper, we go beyond the Post-Newtonian
expansion and study these effects using a full numerical
evolutions.

The relevance of precessing spinning-black-hole bina-
ries to data analysis has been stressed in several papers
using the post-Newtonian templates. ‘Spiky’ templates
have been considered to detect moderate massive galactic
binaries in [54, 55, 56]. Detection and post-Newtonian
dynamics in precessing binaries have also been exten-
sively discussed in [51, 57, 58, 59, 60, 61], and the rele-
vance to LISA observations have been discussed in [62].
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This paper is organized as follows. In Sec. II we de-
scribe the techniques used to evolve the binary and mea-
sure the horizon spins. In Sec. III we describe the initial
data parameters for the binary configurations mentioned
in the remainder of the text. In Sec. IV we give a de-
tailed description of the new results regarding spin and
orbit precession. Finally in Sec. V we discuss some of the
implications of our results.

II. TECHNIQUES

We use the Brandt-Brügmann puncture ap-
proach [63] along with the TwoPunctures [64]
and BAM Elliptic [65] thorns to compute initial
data. In this approach the 3-metric on the initial
slice has the form γab = (ψBL + u)4δab, where ψBL

is the Brill-Lindquist conformal factor, δab is the
Euclidean metric, and u is (at least) C2 on the punc-
tures. The Brill-Lindquist conformal factor is given by
ψBL = 1 +

∑n
i=1mi/(2ri), where n is the total number

of ‘punctures’, mi is the mass parameter of puncture i
(mi is not the horizon mass associated with puncture
i), and ri is the coordinate distance to puncture i.
In all cases below, we evolve data containing only
two punctures with equal puncture mass parameters,
and we denote this puncture mass parameter by mp.
We evolve these black-hole-binary data-sets using the
LazEv [66] implementation of the moving puncture
approach [21, 22]. In our version of the moving puncture
approach [21] we replace the BSSN [67, 68, 69] conformal
exponent φ, which has logarithmic singularities at the
punctures, with the initially C4 field χ = exp(−4φ).
This new variable, along with the other BSSN variables,
will remain finite provided that one uses a suitable
choice for the gauge. An alternative approach uses
standard finite differencing of φ [22]. Note that both
approaches have been used successfully by several other
groups [29, 30, 32, 70, 71, 72].

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with
a modified 1+log lapse, a modified Gamma-driver shift
condition [21, 73], and an initial lapse α ∼ ψ−4

BL. The
lapse and shift are evolved with (∂t − βi∂i)α = −2αK,

∂tβ
a = Ba, and ∂tB

a = 3/4∂tΓ̃
a − ηBa. These gauge

conditions require careful treatment of χ near the punc-
ture in order for the system to remain stable [21, 23, 72].
In Ref. [74] it was shown that this choice of gauge leads
to a strongly hyperbolic evolution system provided that
the shift does not become too large. For our version of
the moving puncture approach, we find that the prod-
uct αÃij∂jφ initially has to be C4 on the puncture. In

the spinning case, Ãij is O(r3) on the puncture, thus
requiring that α ∝ r3 to maintain differentiability. We
therefore choose an initial lapse α(t = 0) = 2/(1 + ψ4

BL)
which is O(r4) and C4 on the puncture and reproduces
the isotropic Schwarzschild lapse at large distances from
the horizons. The initial values of βi and Bi are set to

zero.
Hannam et. al. [71] examine the smoothness of the

evolved fields at late times at the puncture. They find
that, in the case of Schwarzschild, χ transitions from an
initially C4 field to a C2 field at late times. Although
we require that the fields are initially C4, this late-time
drop in smoothness does not appear to leak out of the
horizon (which is consistent with the analysis in [71]).

We use a ‘multiple transition’ fisheye transforma-
tion [23] to push the boundaries to 200M , while main-
taining a resolution of up to M/30 in the central region.

We measure the magnitude S of the angular momen-
tum of the horizons using our implementation of the al-
gorithm detailed in [49]. The magnitude of the horizon
spin is given by

S =
1

8π

∮

AH

(ϕaRbKab)d
2V (6)

where ϕa is an approximate Killing vector on the hori-
zon, Kab is the extrinsic curvature of the 3D-slice, d2V
is the natural volume element intrinsic to the horizon,
and Ra is the outward pointing unit vector normal to
the horizon on the 3D-slice; the sign of ϕa is chosen so
that S is positive. This algorithm for calculating S was
initially meant to be applied to the case when the indi-
vidual black holes are modeled as axisymmetric isolated
horizons, which is valid when the two black holes are suf-
ficiently far away from each other. The isolated horizon
formalism is generalized to the dynamical case through
the notion of a dynamical horizon [45], and the formula
for S remains valid under this generalization.

Turning now to the direction of the spin angular mo-
mentum vector, we first note that, in general, it seems dif-
ficult to assign a unique coordinate independent 3-vector
~S to a spinning horizon. For example, we could take a
normal Kerr spacetime and slice it non-axisymmetrically

so that it becomes difficult to assign a spin 3-vector ~S
to the black hole on these distorted 3D-slices. There is
however a generalization which works. To see this, first
note that every smooth cross section (with complete S2

topology) of a Kerr horizon is axisymmetric, no matter
how distorted this cross-section is. This may seem some-
what surprising at first glance, but it is a straightforward
consequence of the fact that the null generators of the
Kerr horizon have vanishing expansion, shear and twist;
the axial symmetry vector projects to a symmetry of the
2-geometry of the cross-section. Thus there exists a sym-
metry vector ϕa on this cross-section. The poles of the
horizon are then defined to be the points where the axial
symmetry vector ϕa vanishes. From a spacetime per-
spective, the locus of points on the Kerr horizon defined
by ϕa = 0 is a coordinate and gauge independent notion.
These considerations remain valid on every axisymmetric
isolated horizon. As long as we have a suitable axial vec-
tor, we can similarly define the poles even for dynamical
and trapping horizons. The poles exist whenever we can
assign a (possibly approximate) axial symmetry vector
ϕa on the horizon. Of course, when the horizons become
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extremely distorted, it might happen that it is no longer
approximately axisymmetric, or the axial vector might
have more than two poles. In such extreme cases, this
would not work. But we shall see through our numerical
simulations that there is a significant dynamical regime
where exactly 2 poles exist, and these problems do not
arise.

Given the location of the two poles on the horizon, how
do we assign a 3-vector to them, and thereby obtain all

the components of the spin vector ~S? An obvious start-
ing point would be to use the unit normal vector Ra at
the poles. This would not give a unique answer in the
absence of reflection symmetry. Alternatively, we could
consider the curl of ϕa suitably averaged over the hori-
zon. However, even if we could successfully assign such a
3-vector uniquely, it is not clear in general how this vec-
tor should be compared with the spin 3-vector calculated
at spatial infinity. This could be done in spacetimes with
global axisymmetry, but this is not available to us in the
present case. In the absence of a solution to this problem,
we simply define the direction of the spin to be the Eu-
clidean unit-norm vector tangent to the coordinate line

joining the two poles. The spin-vector ~SIH is then equal
to this Euclidean unit-norm vector multiplied by the Iso-
lated Horizon spin obtained from Eq. (6). The definition

of ~S might need to be further refined, however it seems
to be satisfactory for our purposes. This definition of
the spin vector reproduces the Bowen-York spin param-
eters on the initial slice, and should remain reasonable
as long as the coordinates do not become too distorted.
In addition to using the Killing vector ϕa, we also found
it useful to define angular momenta with the flat space
coordinate rotational killing vectors ϕa

x = (0,−z, y),
ϕa

y = (z, 0,−x), ϕa
z = (−y, x, 0). We can then obtain the

coordinate-base spin vector ~Scoord = (Sx, Sy, Sz) by ap-
plying the three coordinate rotational vectors to Eq. (6)
(i.e. Sx = 1

8π

∮

AH
(ϕa

xR
bKab) d2V ). This definition of the

spin direction reproduces the Bowen-York spin parame-
ters on the initial slice as well, and produces reasonable
results at later times for the gauges used here. (Of course
this latter coordinate based calculation will not yield an
accurate evaluation of the spin direction or magnitude
for more general gauges, while the former approximate
Killing vector calculation will produce accurate spin mag-
nitudes for generic gauges.) In both cases the spin mag-

nitude is the Euclidean norm of the 3-vector ~S.
We solve for the approximate Killing vector field ϕa on

the horizon using standard spherical-polar coordinates.
In these coordinates the Killing vector is obtained with
highest accuracy when its poles are aligned with the co-
ordinate poles of the (θ, φ) coordinates. To make the
calculation as accurate as possible, we find the minimum
of ϕaϕa in the northern hemisphere and then rotate the
angular coordinates so that the new north pole is aligned
with the minimum of ϕaϕa. We then re-calculate ϕa to

obtain a more accurate location of the minimum and iter-
ate until the new minimum of ϕaϕa lies on the north pole.
There is a complication in the above procedure in that we
cannot calculate ϕa on the coordinate poles themselves.
In practice we stop iterating when the minimum of ϕaϕa

lies within 2 angular grid-points of the coordinate pole.
The spin-direction associated with the minimum of ϕaϕa

therefore cannot be obtained with higher precision than
a few angular grid sizes. It might be possible to im-
prove the accuracy by considering multiple patches on
the horizon to avoid the coordinate singularity, or to use
a spectral decomposition.

The configurations discussed in this paper contain ei-
ther PI-symmetry, i.e. (x, y, z) → (−x,−y, z), or parity
symmetry, i.e. (x, y, z) → (−x,−y,−z). We exploit these
two symmetries to reduce the grid size by a factor of 2.
The zero-spin and (anti-)aligned spin binaries have the
additional symmetry (x, y, z) → (x, y,−z). We imple-
ment the parity symmetry boundary conditions using a
locally modified version of the PI-symmetry boundary
thorn kindly provided to us by Erik Schnetter.

III. INITIAL CONFIGURATIONS

We study two configurations of non-aligned-spin bina-
ries with parallel spins (equal in magnitude) that exhibit
spin and orbital-plane precession, as well as spin-flips of
the remnant horizon spin with respect to the individual
horizon spins. We choose configurations where the binary
separation is small enough that the spin-orbit coupling
is large, but large enough that the binaries complete at
least ∼ 1.75 orbits before merging. The first configu-
ration, which we denote with SP3 starts with the spins
aligned along the initial orbital plane. This can be inter-
preted as a binary in which one black hole orbits about
the pole of the second black hole. The second configu-
ration, which we denote with SP4, starts with the spins
pointing 45◦ above the initial orbital plane, correspond-
ing to a binary in which infall occurs initially along a
plane tilted with respect to both spins. In both cases
the masses and spins of the two holes are parallel and
equal in magnitude. Setting the two spins equal ensures
that the system is parity-symmetric, but still is generic
enough to display both spin and orbital plane precession
as well as a spin-flip in the direction of the orbital angu-
lar momentum. The initial data parameters for these two
configurations, which were obtained using the 3PN equa-
tions of motion, are given in Table I. We also report the
initial-data parameters for the previously studied aligned
(S + +, SC), anti-aligned (S − −), and non-spinning bi-
naries (S0). The PN data provides the puncture location,
momenta, and spins. We complete the data by choosing
puncture mass parameters (equal for the two punctures)
such that the total ADM mass of the system is 1.
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TABLE I: Initial data for quasi-circular, equal-mass black-hole binaries. The binaries have an ADM mass of (1.0000±0.0005)M ,
with orbital frequency MΩ fixed to 0.500, and initial proper separations l. The punctures are located at (±X, 0, 0), with mass
parameter mp, momentum (0,±P, 0), spin angular momentum (0, Sy , Sz), and specific spin a/m (m is the horizon mass).

Name Sy/M
2 Sz/M

2 X/M P/M J/M2 a/m l/M mp/M
SP3 0.128725 0 3.276347 0.133587 0.91243 0.5013 10.20 0.43025
SP4 0.091198 0.091198 3.179908 0.1314406 1.03454 0.5007 9.94 0.43037
S0 0.0 0.0 3.280 0.1336 0.876 0.0 10.01 0.4848
SC 0.0 0.025757 3.2534 0.1330 0.917 0.1001 9.93 0.4831
S + + 0.0 0.1939 3.0595 0.1291 1.1778 0.757 9.27 0.3344
S − − 0.0 -0.1924 3.465 0.1382 0.5729 -0.757 10.3 0.3344

IV. RESULTS

We evolved the SP3 configuration using central res-
olutions of h = M/22.5, h = M/25, and h = M/30;
with grid-sizes of 5762 × 288, 6402 × 320, and 7682 × 384
respectively. We used ‘multiple transition’ fisheye trans-
formation [23] to place the outer boundaries at 200M ;
far enough away that boundary effects do not interfere
with the orbital dynamics of the system. In addition, we
also evolved the SP4 configuration with a central resolu-
tion of h = M/25, a grid size of 6402 × 320, and outer
boundary at 200M .

Figures 2 and 3 show the puncture trajectory and
horizon-spin direction along this track for the SP3 con-
figuration (the latter suppressing the z-direction). Note
that the scale of the z-axis in Fig. 2 is 1/10th that of
the x and y axes. From the plots one can clearly see the
orbital plane precess out of the equatorial plane, as well
as the spin axis rotating by approximately 90◦ in the xy
plane during the course of the merger. The spins are ini-
tially aligned along the y-axis, but at merger they show
both a significant z-component and an approximate 90◦

rotation to the −x-axis. Precession occurs in the plane
perpendicular to the total angular momentum. We thus
define the total precession angle Θp as

cosΘp =
~SM · ~SI − (Ĵ0 · ~SM )(Ĵ0 · ~SI)

√

[S2
M − (Ĵ0 · ~SM )2][S2

I − (Ĵ0 · ~SI)2]
, (7)

where ~SI is the initial spin of the individual horizons,
~SM is the spin of the individual horizons at the merger

time, and ~J0 is the initial total angular momentum of the
system. The individual horizon spins at the merger are
~Scoord = (−0.121 ± 0.002,−0.007± 0.003, 0.037± 0.003)
(we use the coordinate based measure of the spin at the
merger because the calculation of SIH is not accurate
when the black holes are this close together; see com-
ments below). Hence the total precession angle for the
SP3 configuration is 98◦. Note that there is no discernible
correlation between the orientation of the projected hori-
zon and the projected spin direction.

In Fig. 4 we show the coordinate (~Scoord) and Killing

vector based (~SIH) calculation of the spin components

versus time. ~SIH displays a step-function-like behavior
due to the difficulty in finding the poles (i.e. the ze-
roes of ϕaϕa) in the Killing vector accurately. As dis-
cussed above, the Killing vector calculation is most ac-
curate when its poles are located at the coordinate poles
of the (θ, φ) coordinates on the horizon. However, the
difficulty in calculating the Killing vector itself near the
coordinate poles introduces an uncertainty in the loca-
tion of the Killing vector poles. We also stress that the
direction associated with the location of the two poles
of the Killing vector is coordinate dependent. From the

figure we see that the x-and-y-components of ~SIH oscil-
lates about the much more regular x and y components

of ~Scoord, while the z-component of ~SIH is consistently

larger than the the z-component of ~Scoord. The calcu-

lation of SIH (and hence ~SIH) breaks down prior to the
merger when the horizons get too close (and hence the
mutual tidal distortions destroy the approximate axial

symmetry). ~Scoord, however, continues to produce rea-

sonable results through the merger. Thus, it is ~Scoord

that shows the clear rotation of the spin from the y-axis
to the x-axis at the merger. Note that the uncertainties
in the spin directions do not correspond to uncertainties
in the magnitudes of the spin. For the Killing vector

based calculation ~SIH, it is the spin magnitude that is
determined with high accuracy. Figure 5 shows between
third and fourth-order convergence of the components of
~Scoord from the three resolutions (the third-order error
may be due to third-order errors leaking out of the punc-
ture as well as third-order errors from the horizon calcu-
lations), while Fig. 6 shows the value of the z-component
of the specific spin Sz/m

2 (where m is the horizon mass)

based on the z-component of ~SIH for the three resolu-
tions. In this latter figure the curves have been trans-

lated. (A convergence plot of ~SIH would not be mean-

ingful because the size of the step discontinuities in ~SIH

are larger than the differences in the spin direction with
resolution.) For the z-component of the spin, we expect
that, given the lack of significant oscillations plaguing

the x and y components, ~SIH gives a better measurement

than the more highly coordinate-dependent ~Scoord. The
spin-up of the z-component of the specific spin by 0.16
is ten times larger than the analogous spin-ups of about
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FIG. 2: The puncture trajectories along with spin direction
(every 4M) for the SP3 configuration for the M/30 resolution
run. The spins are initially aligned along the y-axis, but rotate
by ∼ 90◦ during the 1.25 last orbits and also acquire a non-
negligible z-component. Note that the z-scale is 1/10th the x
and y scale.

0.01 seen in the zero-spin (S0) and aligned-spin (SC) con-
figurations (see [27]). However, as can be seen in Fig. 4,
the spin magnitude does not increase significantly. Thus
this spin-up in the z-direction is not equivalent to the
spin-up observed in the case of the aligned-spin and non-
spinning binaries. In those cases the spin-up involved an
increase in the spin magnitude, while here it primarily
involves a rotation of the spin vector out of the xy plane.
This rotation of the spin out of the xy plane follows the
post-Newtonian predictions of Eq. (4).

In Fig. 7 we plot the x and y components of the spin
as a function of the z component for both the Post-
Newtonian predicted spins (using numerical tracks) and
the numerically determined spins. Plotting the data in
this manner removes the ambiguity of assigning the ap-
propriate Post-Newtonian time to the numerical time co-
ordinate on the horizon. The qualitative behavior of the
spin in our numerical simulation is consistent with the
post Newtonian spin for most of the evolution (smaller
values of Sz).

The puncture trajectories are third-order convergent as
is demonstrated in Fig. 8. The x-component of the track
appears to show poorer convergence between t = 10M
and t = 60M but this is likely due to the coarseness of
the grid. Note that the trajectories are calculated by
integrating ∂tx

a = −βa at the location of the punctures.
The curve is expected to converge to lower order because
the shift is not smooth on the puncture (see [71] for a
discussion on the behavior of the evolved fields at the
punctures). However, as is shown below, the Hamiltonian
constraint violation also shows third-order convergence,
which indicates that lower-order convergent effects leak
out of the puncture. These lower-order errors are likely
not observed in the waveform (see below) because of a
larger fourth-order error term dominating the third-order
error terms at these resolutions.

The final remnant horizon for the SP3 configuration

-4
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FIG. 3: The projection of puncture trajectories and spin for
the SP3 configuration onto the xy plane along with the indi-
vidual apparent horizons for the M/30 run. The horizons and
spins are shown at t = 0, 20M, 40M, ..., 160M, 164M . The
first common horizon (also shown) formed at t = 164.2M .
The spins are initially aligned along the y-axis but rotate by
∼ 90◦ during the last 1.25 orbits. The spin of the second
black hole (not shown) is equal to the first.
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FIG. 4: The spin components and magnitude versus time
for the SP3 configuration as calculated using the coordinate
rotational vectors (coord) and the poles of the approximate
Killing vector (IH) for the M/30 resolution. The calcula-
tion of the approximate Killing vector breaks down near the
merger (which occurs at t = 164.2), but the purely coordi-
nate based calculation continues to produce reasonable re-
sults. Note that the direction obtained from the Killing vec-
tor oscillates about the coordinate based direction. Also note
the spin has just rotated by 90◦ in the xy plane at the time
of merger. The spin magnitude remains essentially constant
throughout the merger phase. The magnitude of the spin cal-
culated from the Killing vector is coordinate invariant and,
unlike the spin direction, is expected to be more accurate
than the coordinate based calculation.
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FIG. 5: A convergence plot of the coordinate-base ~Scoord cal-
culation for the SP3 configuration. Note that for our choice
of resolutions, third-order convergence is demonstrated by
S(M/22.5) − S(M/25) = (S(M/25) − S(M/30)) ∗ C, where
C = 0.88. The spin is initially third-order convergent, with
higher order-convergence apparent at later times.

has mass M |H = 0.9613 ± 0.0007 with specific spin
a/M |H = 0.7215 ± 0.0003. The remnant spin compo-
nents calculated from the approximate Killing vector are
~SIH = (−0.045± 0.001, 0.199± 0.003, 0.638± 0.003) with
magnitude SIH = 0.669± 0.001. The total ADM mass of
the system is 1.00000±0.00005 with angular momentum
~J = (0, 0.257450, 0.875352). Hence (3.87± 0.07)% of the
mass and (23.6 ± 0.1)% of the angular momentum were
converted into radiation. The system gained net angular
momentum in the x-direction but lost (22.7±0.4)% of its
angular momentum in the y-direction and (27.1 ± 0.3)%
of its angular momentum in the z-direction. Thus the
binary preferentially radiated angular momentum in the
direction of the orbital angular momentum. We measure
the angle of the spin-flip both with respect to the initial
individual horizon spins and the individual horizon spins
at the merger. For the SP3 configurations these angles
are 72◦ and 71◦ respectively. In Fig. 9 we show the spin
direction of the individual horizons and spin direction of
the remnant horizon. The smooth precession and discon-
tinuous flip are apparent. Note that the spin flip, unlike
the spin precession, cannot be modeled accurately by a
post Newtonian expansion due to the highly non-linear
merger process that converts roughly 25% of the initial
total angular momentum into gravitational radiation.

The spin direction and puncture trajectories are coor-
dinate dependent measures of precession. The waveform,
on the other hand, should provide a coordinate indepen-
dent measure of the precession. To show the effect of pre-
cession on the waveform we examine the (ℓ = 2,m = 1)
mode. This mode vanishes identically for the zero-spin,
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0.18

S
z/m

2

M/22.5
M/25
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FIG. 6: The z-component of the Killing vector based calcula-
tion of the spin rescaled by the square of the horizon mass for
the three resolutions. The curves have been translated by a
distance equal to the difference in merger times of the M/22.5
and M/25 runs with the merger time of the M/30 run. In
this configuration, unlike the previously studied aligned-spin
binary, the spin-up is large.

aligned-spin, and anti-aligned spin cases previously stud-
ied (i.e. S0, SC, S++, S- -) [21, 23, 27, 28]. In Fig. 10
we show the (ℓ = 2,m = 1) mode at an extraction radius
of r = 15M as well as a convergence plot of this mode
(showing fourth-order convergence).

We next examine how the results change when we set
the initial spins closer to the z-axis. The SP4 configu-
ration has the same total spin as the SP3 configuration
but at an angle of 45◦ with respect to the orbital plane.
This rotation of the spin has two significant effects. First,
the SP4 configuration has a significant spin in the same
direction as the orbital angular momentum, and from
our previous results [27, 28] we expect that the binary
merger will be delayed due to the resulting spin-orbit re-
pulsive effect. Second, the amplitude of the orbital plane
precession will be reduced (i.e. there is no orbital plane
precession if the spins are rotated 90◦ with respect to
the orbital plane, and the amount of precession should
vary smoothly with angle). In Fig. 11 we show the z-
component of the first puncture trajectory versus time
for SP3 and SP4, where the latter has been rescaled by√

2. Note that at early times the rescaled tracks agree
perfectly. Thus, for a given magnitude of the spin, the
orbital plane precession has a sinϑ dependence, where
ϑ is the angle between the spin and orbital angular mo-
mentum. At later times, the spin-orbit coupling induced
delay in the merger becomes evident and the two tracks
no longer agree.

Comparing the waveforms from the SP3 and SP4 con-
figurations is complicated by the fact that the initial
data burst masks the early-time behavior. Neverthe-
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FIG. 7: The post Newtonian and numerical Sx and Sy com-
ponents of the spin of the individual horizons for the SP3
configuration as functions of the Sz component of the spin
(which increases monotonically in time prior to the merger).
Note the very reasonable agreement for most of the evolution.
The plot terminates at the merger.

less, there is a small region just after the initial pulse
leaves the system (see Fig. 12) where it is evident that
the (ℓ = 2,m = 1) mode scales with sinϑ. However,
at later times the differences in the orbital dynamics de-
stroys this scaling.

In Figures 13 and 14 we show the spin magnitude and
direction for the SP4 configuration as well as a projec-
tion of the track and spin direction onto the xy plane.
Due to the increased stability of aligned spin binaries,
this configuration completes 2 3

8
orbits prior to merger

(compared to 1 3
4

for SP3). Consequently spin-precession
rotates the spin vector by an additional 45◦ compared
to the SP3 configuration. In this case the Killing vec-
tor based calculation of the spin remains accurate long
enough that the spin-precession rotation beyond 90◦ (i.e.

the local minimum in Sx) is observed in ~SIH as well as
~Scoord. Note that, once again, there is a significant spin-
up in the z-direction caused by a rotation of the spin vec-
tor towards the z-axis (rather than a net increase in the
spin amplitude), and that there is no discernible correla-
tion between the projected horizon orientation (i.e. the
orientation of the semi-major axis) and the projected spin
direction. The individual horizon spins at the merger are
~Scoord = (−0.033± 0.005,−0.041± 0.003, 0.114± 0.001).
Hence the total precession angle for the SP3 configura-
tion is 151◦.

The remnant horizon for the SP4 run formed just as the
boundary reflections began to contaminate the interior.
Consequently the error bounds and the mass and spin of
the remnant are higher for SP4 than SP3. The final rem-
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FIG. 8: The difference in track locations between the M/22.5
and M/25 runs as well as the difference in track locations
between the M/25 and M/30 runs. The latter difference has
been rescaled by C = 0.88 to demonstrate third-order con-
vergence. The reduced order of convergence for X between
t = 10M and t = 60M is likely due to the coarseness of the
grid.
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FIG. 9: The spin-direction of the individual horizons every
4M during the spin-precession phase and the final horizon
spin-direction for the SP3 configuration. The arrows indi-
cate the spin-direction only, not the magnitude. Note the
continuous change in the spin-direction during the precession
stage and the discontinuous jump (or flip) to the remnant
spin-direction.
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FIG. 10: The real and imaginary parts of the (ℓ = 2, m = 1)
mode of ψ4 for the SP3 configuration with resolution h =
M/25 (upper panel), as well as a convergence plot of this
waveform (lower panel). Note that the waveform is fourth-
order convergent (as is evident by the agreement of the two
differences).
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FIG. 11: The z-component of the puncture trajectory (for
the puncture initially located at x > 0) versus time for the
SP3 and SP4 configurations with resolution h = M/25. Note
that after rescaling by

√
2 the two trajectories agree at early

times. At later times the spin-orbit coupling in the partially
aligned case delays the merger; causing the two trajectories
to diverge. Both curves terminate at their respective merger
times.

nant mass is M |H = (0.9524± 0.0002)M with a spin pa-
rameter of a/M |H = 0.805±0.002. The spin components

are ~Scoord = (−0.020±0.003, 0.121±0.002, 0.720±0.002),
where we used the coordinate-base definition to calcu-
late ~S. (The Killing vector based calculation of the spin
could not be obtained accurately because the system be-
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FIG. 12: The imaginary part of the (ℓ = 2,m = 1) compo-
nent of ψ4 for the SP3 and SP4 configurations extracted at
r = 15M with a central resolution of M/25. Note that be-
tween t = 50 and t = 75 the two waveforms scale with sinϑ as
is evident by the good agreement between the two waveform
after rescaling the SP4 waveform by

√
2 (i.e. 1/ sin(π/4)).

However, this scaling breaks down at later times (t > 85M)
due to the differences in orbital decay arising from the in-
creased stability of the SP4 configuration. This scaling also
breaks down at early times because of the non-physical initial
data radiation pulse.

0 50 100 150 200
t/M

−0.1

−0.05

0

0.05

0.1

S
/M

2

Sx (coord)
Sy (coord)
Sz (coord)
S (coord)
Sx (IH)
Sy (IH)
Sz (IH)
S (Killing)

FIG. 13: The spin components and magnitude of the indi-
vidual horizons (the two horizons have equal spins) for the
SP4 configuration up to merger (with resolution h = M/25).
Note that in this configuration the spins rotate by 135◦ in
the xy plane prior to merger. Also note that the significant
z-direction spin-up is once again caused by a rotation further
out of the xy plane. Once again the Killing vector determi-
nation for the spin direction oscillates about the coordinate
definition for the spin direction. The approximate Killing
vector calculation begins breaks down at around t = 180M .
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FIG. 14: The xy plane projection of the orbital track,
apparent horizons, and spin direction for the SP4 config-
uration up to merger. The horizons are given at t =
0, 20M, 40M, ..., 180M, 196M . The common horizon formed
at t = 195.4M . The projected spin vector decreases in mag-
nitude at late time due to the spin rotating further out of the
xy plane. Note that the spin direction precesses by 135◦ in
the xy plane during the merger. The spin of the second black
hole (not shown) is equal to the first.

came approximately axisymmetric after the boundary er-
rors affected the remnant spin parameters.) The sys-
tem therefore radiated (4.76 ± 0.02)% of its mass and
(29.4 ± 0.2)% of its angular momentum. The system
gained net angular momentum in the −x direction, while
losing (34±1)% and (29.3±0.2)% of its angular momen-
tum in the y and z directions respectively. It thus ap-
pears that this configuration preferentially radiates angu-
lar momentum in the orbital plane. However, we caution
the reader that the errors quoted for the SP4 configu-
ration for the mass and spin do not take into account
either possible boundary effects or finite-difference trun-
cation errors. The spin-flip angle of the remnant spin
with respect to the initial individual spins and the in-
dividual spins at merger are 35◦ and 32◦ respectively.
In Fig. 15 we show the spin-direction of the individual
horizons and spin-direction of the remnant horizon. The
smooth precession and discontinuous flip are apparent.

As was mentioned above, the calculation of the spin
direction is coordinate dependent. Nevertheless, these
particular coordinates show remarkable agreement be-
tween the puncture trajectories and the waveform. In
Fig. 16 we show the orbital part of the (ℓ = 2,m = 2)
component of ψ4 extracted at r = 10M , where we trans-
lated the SP4 waveform and multiplied by a constant
phase in such a way that plunge part of the waveforms
agree [25]. Note that the SP3 configuration shows ∼ 4
cycles of orbital motion prior to the plunge (i.e. the last
trough in the plot), while the SP4 configuration shows
∼ 5 cycles. Thus we expect that the SP4 track should
contain approximately one-half of an orbit more than the
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FIG. 15: The spin-direction of the individual horizons every
4M during the spin-precession phase and the final horizon
spin-direction for the SP4 configuration. The arrows indi-
cate the spin-direction only, not the magnitude. Note the
continuous change in the spin-direction during the precession
stage and the discontinuous jump (or flip) to the remnant
spin-direction.

SP3 configuration. Although there is an uncertainty in
the exact location of the beginning of the ‘plunge’ wave-
form in the figure, its approximate location will be given
by the formation time of the common horizon at this
resolution plus the coordinate distance to the extraction
sphere (here we identify the start of the plunge with the
first trough located at t = 168 = TCAH + 10M), the
number of cycles in both configurations prior to the last
peak shown is consistent with 1/4 of an orbit more than
the number of orbits (i.e. 1.75 and 2.25 respectively) ob-
served in Figs. 3 and 14. Interestingly, the number of
cycles after the initial pulse of radiation (3.5 and 4.5 re-
spectively) is in excellent agreement with the number of
orbits observed in the puncture trajectories. Thus these
coordinates appear to reasonably reproduce the orbital
dynamics of the binary. This fidelity by which the co-
ordinates reproduce the merger dynamics, and the rel-
atively good agreement between the two measurements
of the spin direction, is the motivation for using these
coordinate dependent measurements to measure the spin
direction.

The stability of the spinning binaries is strongly depen-
dent on the direction of the spin. In Table II we show
the merger times (TCAH) of the SP3 configuration versus
resolution and an extrapolation to infinite resolution, as
well as the merger time for the single SP4 run. The ‘ex-
trapolated’ value of the SP4 merger time was computed
by adding the difference between the extrapolated and
h = M/25 merger times for the SP3 configuration to the
h = M/25 merger time for the SP4 configuration. The
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FIG. 16: The real part of the pre-merger (ℓ = 2,m = 2)
component of ψ4 extracted at r = 10M . The SP4 waveform
has been translated by 37M and multiplied by a constant
phase factor prior to taking the real part. The plunge part
of the waveform begins roughly at t = 168M . Thus there are
3.5 cycles of orbital radiation prior to the plunge (but after
the initial data pulse) for SP3 and 4.5 for SP4. This number
of cycles match the number of orbits in Figs. 3 and 14. The
initial data pulse appears to mask an additional 1/2 cycle of
orbital motion.

TABLE II: Merger times for the SP3 and SP4 configuration
versus resolution, as well as an extrapolation to infinite res-
olution (see text for an explanation of the ‘extrapolation’ of
the SP4 result.)

Resolution SP3 SP4
M/22.5 152.0 ± 0.2 −−−−
M/25 157.4 ± 0.2 195.4 ± 0.2
M/30 164.2 ± 0.2 −−−−
M/∞ 176 ± 3 ∼ 214

extrapolated values of 176±3 and ∼ 214, for SP3 and SP4
respectively, are in large part consistent with the results
from the aligned-spin binaries if we replace S in Eq. (1)
with 2Sz/m

2 (S is the total spin, hence the factor of 2).
The predicted merger times are TCAH = 172 ± 1 and
TCAH = 200 ± 2 for the SP3 and SP4 configurations re-
spectively. The differences between these predictions and
the actual extrapolated merger times can be explained by
the net rotation of the component spins towards the z-
axis, which helps stabilize the binaries.

We conclude this section by showing that the Hamil-
tonian constraint violation converges to third-order. Al-
though the code uses purely fourth-order stencils, lower
order errors both from the lower differentiability of the
evolved fields at the punctures, as well as from the
second-order accuracy of the initial data, lead to a global
third-order error in the constraint violation. Figure 17
shows the Hamiltonian constraint violation at t = 76M
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FIG. 17: The convergence of the Hamiltonian constraint vio-
lation for the SP3 configuration along the x-axis at t = 76M
when the punctures cross the x-axis for the second time.
The Hamiltonian constraint shows third-order convergence.
Points inside the domain of dependence of the boundary have
been excluded. The high-frequency features near the outer
boundary are due to the extreme fisheye de-resolution and
converge with resolution.

(the time when the punctures cross the x-axis for the
second time) along the x-axis for the SP3 configura-
tion. The Hamiltonian violations have been multiplied
by (hl/h)

3 (where hl = M/22.5) to demonstrate third-
order convergence. Note that the high-frequency feature
near the outer boundary is due to the extreme fisheye
de-resolution near the outer boundary and converges to
zero with resolution.

V. CONCLUSION

In this paper, we evolved systems of equal-mass and
equal-spin black-hole binaries with initial spins aligned
perpendicular to, and 45◦ to, the orbital angular mo-
mentum. We observed the combined effects of spin and
orbital plane precession as predicted by post Newtonian
theory, with dramatic, total precessions of ∼ 98◦ and
∼ 151◦ in the SP3 and SP4 simulations respectively.
Both configurations resulted in large spin flips between
the individual horizon spin directions and the final rem-
nant direction, with the SP3 configuration showing a spin
flip of ∼ 72◦ and the SP4 configuration (which had spins
initially more closely aligned with the orbital angular mo-
mentum) resulting in a spin flip of ∼ 34◦.

Although the configurations studied here are parity-
symmetric, this symmetry was only chosen to reduce the
memory footprint of the simulations (allowing for higher
resolution runs); it does not affect the stability of the
‘moving punctures’ algorithm. Notably, the punctures
move out of the xy plane and can get arbitrarily close
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to the numerical gridpoints. Despite this symmetry, the
SP3 and SP4 configurations display most of the signifi-
cant spin-orbit coupling effects associated with spinning
binaries: spin and orbital plane precession, spin flips, and
enhanced stability of the semi-aligned configuration. The
only significant spin-orbit coupling effect not shown by
these configurations is a spin-orbit induced kick of the
remnant hole. In order to see these kicks we would need
to evolve configurations without parity symmetry.

Our methods for calculating the spin direction produce
reasonable results for our choice of gauge conditions. Fu-
ture work will concentrate on improving this calculation
with alternative choices of the gauge parameters (e.g. η
in the Gamma-driver shift and various different choices
of initial values for the lapse function) and with alterna-
tive forms of the Gamma-driver shift condition. Notably,
the lack of agreement between the location of the hori-
zon semi-minor axis and the spin direction indicates that
these coordinates are not yet ideal. In addition, it would
be useful to calculate independent measures of the qual-
ity of the approximate Killing vector, for example the
norm of the Lie derivative of the 2-metric on the horizon
Lϕqab. It is interesting to note that the purely coordi-

nate measurement ~Scoord gives reasonable results for the
spin direction and amplitude, and since this calculation
is both more robust (i.e. the approximate Killing vector
may not exist) than the approximate Killing vector cal-
culations and easier to implement, it may prove to be
a convenient measurement of the spin for those codes
that have not implemented the approximate Killing vec-
tor finding algorithm.

Both the final magnitude, and the final direction, of a
binary black hole merger remnant’s spin are of astrophys-

ical interest: the former determines the efficiency of grav-
itational accretion, and the latter is reflected in the orien-
tation of the inner accretion disk and (indirectly) in the
launching direction of a jet. Our simulations are the first
to follow the time dependence of the spin orientations in
black hole mergers with initially mis-aligned spins, and
the first to verify the spin-flip phenomenon: the sudden
reorientation in spin axis that takes place when the bi-
nary’s orbital angular momentum is converted into spin
in the final stages of the merger. In addition to influ-
encing the gravitational wave forms, the spin evolution
would also be reflected in any electromagnetic signature
due to gas in orbit around the black holes. Predicting
the latter signature is beyond the scope of the present
paper but is a fruitful topic for further study.
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