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1. Introduction

Since the discovery of the AdS/CFT correspondence [1 – 3], there has been a lot of interest

in trying to find a gravity dual of QCD. Important progress was made with the realisation [4]

that flavour degrees of freedom can be incorporated by adding Nf D-branes in the probe

approximation where their back-reaction is ignored. This is an approximation, which is

valid only if the number of flavours is much less than the number of colours, Nf ≪ Nc.

Chiral symmetry breaking in holography was studied in a D3/D7-brane model in [5].

An interesting D4/D6-brane model was presented in ref. [6] where Nc D4-branes compact-

ified on a circle make a supergravity background, in which Nf flavour branes are put in

as probes. On scales smaller than the Kaluza-Klein scale associated with the compact

direction, the dual gauge theory is effectively four-dimensional and exhibits many of the

qualitative features of QCD.

Based on this model, Sakai and Sugimoto presented a similar D4/D8-brane model [7, 8],

which comes surprisingly close to recover the meson spectrum as found experimentally. In

particular, the spectrum contains a massless pion, associated with a spontaneously broken

chiral symmetry. Moreover, the effective theory for the pions was found to contain the

Skyrme model. It has been argued that baryons can be constructed in the supergravity

description by introducing a baryon vertex [9], which in the D4/D8 context is a D4-brane

wrapped on a four-sphere. This object is interpreted as the Skyrmion on the probe D8-

brane. Several investigations of the baryons from this point of view have been performed

recently in e.g. refs. [10 – 16].
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As a holographic description of QCD there are some fundamental difficulties with the

D4/D8 model. One problem is that on scales small compared to the radius of the compact

direction (i.e. in the UV) the gauge theory is inherently five-dimensional. Moreover, the

mass scale of the scalar and vector mesons is the same as the mass scale Mkk of the Kaluza-

Klein modes arising from the compact direction. That is, the model predicts a tower of

non-observed Kaluza-Klein modes with similar masses to the observed mesons. Another

problem is that the D4/D8-brane configuration is non-supersymmetric and unstable, the

unstable modes being the scalar fields corresponding to the radius of the circle and to the

asymptotic brane-anti-brane separation. However, in the supergravity limit these modes

become non-normalisable and as such cause no worry.

The addressed problems in the D4/D8-brane holographic model of QCD might well be

related to the fact that we are only working in the probe approximation. Ideally, the flavour

D8-brane back-reaction should be taken into account, but how to do this is only partly

understood at the moment. For some attempts to go beyond the probe approximation, see

e.g. refs. [17 – 21].

In this paper, we investigate an implication to the Sakai-Sugimoto model of string

theory having a supersymmetric spectrum. Although the supersymmetry of the D4 back-

ground is explicitly broken by the boundary conditions, there is still a supersymmetric

spectrum. In particular, the D8-brane probe action has a fermionic part in addition to the

bosonic Dirac-Born-Infeld and Chern-Simons parts. The fluctuations of these fermionic

modes should be interpreted as the supersymmetric partners of the mesons, so we refer to

them as mesinos. Being aware of their presence in the full spectrum, a natural question

is therefore what their masses are. Since mesinos are not found experimentally, nor in

the QCD, these masses ought to be very large. However, due to the absence of different

scales it seems unlikely that this is so. A priori, we therefore expect mesino masses to be

comparable to the meson masses, of order Mkk. We compute these masses explicitly and

conclude that the expectation is true: Mesinos appear on the same scale as mesons.

The question then arises how this “unwanted” (from the phenomenological point of

view) mesino sector affects the “good” meson sector. To get a partial answer to this ques-

tion, we investigate mesino interaction terms, in particular, we compute trilinear meson-

mesino-mesino couplings. One could be tempted to speculate that these interactions are

somehow suppressed and that the mesino sector therefore would not interact with the me-

son sector. However, we shall find that this is not the case. The mesinos do indeed interact

with the mesons.

The paper is organised as follows. Section 1 contains a review of the Sakai-Sugimoto

model, introducing the notation used throughout the paper. Moreover, the spectrum of

the mesons in this model is re-derived. Section 2 displays the computation of the spectrum

of the fermionic fluctuations of the D8-brane, which are identified as mesinos. Section 3

describes how these mesinos interact with bosonic fields. The effective four-dimensional

interaction vertices are given explicitly. Section 4 is dedicated to a discussion of our results

and concludes the paper.
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1.1 The Sakai-Sugimoto Model

The Sakai-Sugimoto model [7] is a D4/D8-brane configuration with Nc D4-branes wrapping

a circle and Nf flavour D8-D8-branes. Schematically, the brane configuration is as follows:

0 1 2 3 4 5 6 7 8 9

D4 * * * * *

D8-D8 * * * * * * * * *

The 4-direction is the circle, and anti-periodic boundary conditions for the fermions on this

circle break the supersymmetry explicitly.

This D4-brane supergravity background is given by [9]

ds2 =

(

U

R

)
3

2
(

ηµνdxµdxν + f(U)dτ2
)

+

(

R

U

)
3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

eφ = gs

(

U

R

)
3

4

, F4 = dC3 =
3R3

gs
ǫ4, f(U) = 1 − U3

kk

U3
,

(1.1)

where µ, ν = 0, . . . , 3 and τ is the compact direction, which the D4-branes wrap. V4 = 8π2

3

is the volume, ǫ4 is the volume form and dΩ2
4 is the line element of a unit S4, respectively.

R and Ukk are constant parameters and R3 = πgsNcl
3
s where gs is the string coupling,

ls ≡
√

α′ is the string length and Nc is the number of D4-branes. The coordinate U

satisfies U ≥ Ukk, and to avoid a conical singularity, the coordinate τ must have a period

δτ =
4π

3
R

3

2 U
− 1

2

kk ≡ 2π

Mkk
, Mkk =

3

2
U

1

2

kkR
− 3

2 , (1.2)

where we have defined the Kaluza-Klein mass Mkk. Below this energy scale, the field theory

is effectively four-dimensional. In the limit Ukk → 0, the τ direction uncompactifies and

we recover the background built out of flat D4-branes.

We are going to study a particular embedding of the D8-D8-branes, in which the D8

and D8 are antipodal in the (U, τ) coordinates and smoothly join together at U = Ukk. For

this purpose, it is useful to make the change of coordinates (U, τ) → (y, z), defined through

U3 = U3
kk

(

1 +
r2

U2
kk

)

, θ =
2π

δτ
τ, (1.3)

y = r cos θ, z = r sin θ. (1.4)

In the (y, z) coordinates, the probe D8-D8-branes are extended along the z direction and

located at y = 0. This configuration corresponds to massless quarks in the gauge field

theory and was demonstrated in the original paper [7] to be a stable solution of the probe

action.

1.2 Meson spectroscopy

In this section, we review the computation of the meson spectrum in the D4/D8-model.

The bosonic part of the action for a D-brane probe is

S = SDBI + SCS + Sf , (1.5)
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where the Abelian Dirac-Born-Infeld action is

SDBI = T

∫

dp+1ξ e−φ
√

− det(gαβ + Fαβ), (1.6)

where gαβ = ∂αXM∂βXNGMN is the induced metric, Fαβ = 2πα′(Fαβ +Bαβ), and Bαβ =

∂αXM∂βXNBMN is the induced B-field and Fαβ is the world-volume gauge field. The

constant T is related to the string length ls by T = ((2π)8l9s)
−1.

The Chern-Simons part SCS is important e.g. to achieve the correct chiral anomaly of

QCD as well as the Wess-Zumino-Witten term in the chiral Lagrangian, but will not be

relevant for us. Our focus is on the fermionic part, Sf , which we will return to after a very

brief summary of meson spectroscopy.

Recall that the gauge sector of the field theory is associated with open strings ending

on the D4-branes, giving rise to a U(Nc) colour gauge symmetry, where Nc is the number

of D4-branes. Introducing a probe brane means introducing a flavour sector associated

with strings stretched between the D4 and the D8 or D8 branes, giving rise to a U(Nf )

global flavour symmetry, where Nf is the number of probe branes.

The basic idea of the holographic description of mesons in this setup is that they can

be identified with fluctuations of the probe D-branes. This works straightforwardly for

scalar and vector mesons, which are associated with fluctuations of the probe D-brane

collective coordinates and world-volume gauge field. For higher spin mesons, alternative

approaches have to be applied. In general, the situation is complicated, but ultra-high

spin mesons have been studied in refs. [22 – 25] using a semi-classical macroscopic spinning

string description.

Returning to the low-spin case, in order to study the fluctuations it is necessary to fix

the coordinate invariance. This is done with a static gauge, which in our case is

ξα = Xα, for α 6= 5, X5(ξ) ≡ y(ξ), (1.7)

where the ξα are the nine-dimensional world-volume coordinates and XM are ten-

dimensional space-time coordinates.

The induced metric on the D8-brane in this case is

ds2
D8 =

(

U

R

)
3

2

ηµνdxµdxν +
4

9

(

R

U

)
3

2 Ukk

U
dz2 + R

3

2 U
1

2 dΩ2
4, (1.8)

where U should now be viewed as a function of z given by

U(z) = Ukk

(

1 +
z2

U2
kk

)1/3

. (1.9)

We will henceforth work with dimensionless quantities

w ≡ z

Ukk
, V (w) ≡ (1 + w2)

1

3 , α ≡
(

Ukk

R

)
3

4

=

(

2

3
MkkR

)
3

2

, (1.10)

such that the induced metric gαβ reads

ds2
D8 = gαβdxαdxβ = α2V

3

2 ηµνdxµdxν +
α2

M2
kk

V − 5

2 dw2 +
9

4

α2

M2
kk

V
1

2 dΩ2
4. (1.11)
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The D8-brane degrees of freedom that remain after this gauge fixing is the scalar

field y (fluctuating around the value y = 0) and the world-volume gauge fields Aα. The

nine-dimensional world-volume naturally splits up in a four-dimensional part xµ, an extra

dimension w and an S4 part. Considering only singlets under the SO(5) of S4, the gauge

field degrees of freedom are Aµ(xµ, w) and Aw(xµ, w).

The Abelian Dirac-Born-Infeld action can be expanded up to second order in the field

strength as

SDBI = T

∫

d9ξe−φ
√

− det(gαβ + Fαβ)

=
T̂α

(2πα′)2

∫

d4xdw V 2

(

1 + (2πα′)2
1

4α4
V −3ηµνηρσFµνFρσ

+(2πα′)2
M2

kk

2α4
V ηµνFµwFνw

)

+ O(F 3), (1.12)

where

T̂ ≡
(

3

2

)4 TV4(2πα′)2

gs

α7

M5
kk

. (1.13)

is a dimensionless constant.

We are interested in finding a four-dimensional effective action for the gauge field

fluctuations with a canonical normalisation. To achieve this we expand the gauge fields

and y in terms of complete sets {pn(w)}, {qn(w)} and {ρn(w)},

Aµ(xµ, w) =
∑

n

V(n)
µ pn(w), (1.14)

Aw(xµ, w) =
∑

n

ϕ(n)qn(w), (1.15)

y(xµ, w) =
∑

n

U (n)(xµ)ρn(w). (1.16)

In the following we will focus on the vector fields and assume Nf = 1. The expansions

of the field strengths then take the form

Fµν(x,w) =
∑

n

(

∂µV(n)
ν (x) − ∂νV(n)

µ (x)
)

pn(w)

≡
∑

n

F (n)
µν (x)pn(w) (1.17)

Fµw(x,w) =
∑

n

∂µϕ(n)(x)qn(w) − V(n)
µ (x)p′n(w). (1.18)

In order to have canonically normalised kinetic terms in the effective four-dimensional

action, we impose the normalisation conditions

T̂

α3

∫

dw V −1(w)pn(w)pm(w) =δnm, (1.19)

T̂M2
kk

α3

∫

dw V 3(w)qn(w)qm(w) =δnm, (1.20)
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and choose the pn(w) to be eigenfunctions of the equation

− V ∂w(V 3∂wpn(w)) = λnpn(w). (1.21)

This equation together with eq. (1.19) implies

T̂

α3

∫

dw V 3(w)p′n(w)p′m(w) = λnδnm. (1.22)

Comparing eqs. (1.19) and (1.22), we notice that we can choose the eigenfunctions qn to

be proportional to p′n:

qn =
(

M2
kkλn

)−1/2
p′n. (1.23)

The fields ϕ(n)(x) can be absorbed into the vector meson field by the gauge transformation

V(n)
µ (x) → V(n)

µ (x) +
(

λnM2
kk

)−1/2
∂µϕ(n)(x), (1.24)

such that the action for the vector meson field V(n)
µ (x) takes the canonical form

S =

∫

d4x





∑

n≥1

(

1

4
F (n)

µν Fµν(n) +
1

2
λnM2

kkV(n)
µ Vµ(n)

)



 (1.25)

for the massive vector fields V. The field strength mode expansion is given by

Fµw(x,w) = −∑

n V
(n)
µ (x)p′n(w) ≡ ∑

n F
(n)
µw (x)p′n(w). (1.26)

Note that the eigenfunctions pm are chosen to be either odd or even functions

pm(−w) = (−)m+1pm(w), (1.27)

such that the odd numbered modes are vectors whilst the even ones are axial vectors.

In addition to the above massive modes, there are non-normalisable solutions to the

eq. (1.21) with eigenvalue zero:

p0(w) = C arctan(w). (1.28)

This reflects the fact that there exist a function q0 = CV −3, which is orthogonal to all

other qn

∫

dw V 3q0qn ∝
∫

dw p′n = 0. (1.29)

The normalisation constant is determined easily to be

C =

(

T̂M2
kk

α3
π

)−1/2

. (1.30)
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Taking the zero mode into account, the effective action becomes

S =

∫

d4x





1

2
∂µϕ(0)∂µϕ(0) +

∑

n≥1

(

1

4
F (n)

µν Fµν(n) +
1

2
λnM2

kkV(n)
µ Vµ(n)

)



 , (1.31)

where the massless scalar field ϕ(0) is interpreted as the pion.

The masses of the vector mesons were found in ref. [7] using a numerical shooting

technique. These masses can be matched with the observed values amazingly well. It is

surprising because we have no really good understanding of why this particular D-brane

setup should be a good approximation of the holographic dual of QCD.

So far, we have tacitly assumed that the gauge potential vanishes as w → ±∞. The

field strength should vanish as w → ±∞ for the effective action to be normalisable. Then it

is always possible to choose a gauge where the potential vanishes for large |w|. In section 3.1

we shall study couplings to an external gauge field, and for that it is useful to employ the

gauge where Aw = 0. At first look the pion field ϕ(0) seems to be gauged away in this

gauge but this is impossible. There exists no gauge, which sets Aw = 0 and lets Aµ vanish

for large |w| at the same time.

The Aw = 0 constraint can be accomplished by the gauge transformation

Aα → Aα − ∂αΛ (1.32)

with the gauge function Λ given by

Λ(x,w) = ϕ(0)(x)p0(w) +

∞
∑

n=1

ϕ(n)(x)
(

M2
kkλn

)−1/2
pn(w). (1.33)

After the gauge transformation eq. (1.32), the gauge potential reads

Aµ(x,w) =−∂µϕ(0)(x)p0(w) +
∑

n≥1

(

V(n)
µ (x) − 1

Mkk

√
λn

∂µϕ(n)(x)

)

pn(w),

Aw(x,w) = 0. (1.34)

The contribution from the massive scalar modes ϕ(n) can again be absorbed into the massive

vectors V(n)
µ by a field redefinition. The asymptotic values of the gauge potential for large

values of |w| are

Aµ(x,−∞) = C
π

2
∂µϕ(0)(x), (1.35)

Aµ(x,∞) = −C
π

2
∂µϕ(0)(x). (1.36)

Taking an external gauge field into account, the gauge potential in Aw = 0 gauge may

be written as

Aµ(x,w) = V̂µ + Âµp0(w) +
∑

n≥1

v(n)
µ p2n−1(w) +

∑

n≥1

a(n)
µ p2n(w), (1.37)

Aw(x,w) = 0, (1.38)

– 7 –
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where the fields v
(n)
µ and a

(n)
µ are the massive vector and axial vector mesons, respectively.

The zero modes are given by

Âµ =
1

2
(ALµ − ARµ) +

i

fπ
∂µπ, (1.39)

V̂µ =
1

2
(ALµ + ARµ) , (1.40)

where ALµ, ARµ are the asymptotic values of the external gauge field for w → ±∞ and the

pion field ϕ(0) ≡ iπ with its decay constant fπ ≡ 2/(π C). In particular, the electromagnetic

photon field can be extracted by setting ALµ = ARµ = eQAEM
µ for the electric charge Q.

The field strengths read

Fµν(x,w) = ∂µV̂ν(x) − ∂νV̂µ(x) +
(

∂µÂν(x) − ∂νÂµ(x)
)

p0(w)

+
∑

n≥1

(

∂µv(n)
ν (x) − ∂νv

(n)
µ (x)

)

p2n−1(w)

+
∑

n≥1

(

∂µa(n)
ν (x) − ∂νa(n)

µ (x)
)

p2n(w)

≡
∑

n

F (n)
µν (x)pn(w), (1.41)

Fµw(x,w) = Âµ(x)p′0(w) +
∑

n≥1

v(n)
µ (x)p′2n−1(w) +

∑

n≥1

a(n)
µ (x)p′2n(w)

≡
∑

n

F (n)
µw (x)p′n(w), (1.42)

where we indicated the split into vector and axial components. Equipped with these

expansions we can aim for effective couplings of mesinos to gauge fields.

2. Mesino spectroscopy

As promised in the introduction, we shall now turn to the fermionic sector of the probe

D-branes and compute the masses of these fluctuations. A similar calculation has been

partly done in the appendix of ref. [7]. The same ideas have been applied also in ref. [26]

for computing the masses of the meson superpartners in the D3/D7 setup. In that model,

N = 2 supersymmetry is preserved and the masses can be calculated analytically. As

expected, there is a match between fermion and boson masses.

The fermionic part of the D8-brane action is given by [27 – 29]

S(f) = iT

∫

d9ξ
√

−(g + F)e−φΨ̄
1

2
(1 − ΓD8)(Γ

αDα − ∆ + LD8)Ψ, (2.1)

– 8 –
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where

ΓD8 =

√−g
√

−(g + F)
Γ

(0)
D8Γ

11
∑

q

(−Γ11)q

q!2q
Γα1...α2qFα1α2

. . .Fα2q−1α2q
, (2.2)

LD8 =
−√−g

√

−(g + F)
Γ

(0)
D8

∑

q≥1

(−Γ11)q−1

(q − 1)!2q−1
Γα1...α2q−1Fα1α2

. . .F β
α2q−1

Dβ, (2.3)

Γ
(0)
D8 =

ǫα1...α9

9!
√−g

Γα1...α9
= −Γ11Γ5, (2.4)

∆ =
1

2
ΓM∂Mφ − 1

8

1

4!
eφFNPQRΓNPQR, (2.5)

DM = ∇M − 1

8

1

4!
eφFNPQRΓNPQRΓM , (2.6)

∇M = ∂M +
1

4
Ω

NP
M ΓNP . (2.7)

The Ω’s are the spin connections, ∇M = ∂M + 1
4ΓABΩABM is the usual covariant derivative

and ΓNPQR = Γ[NΓP ΓQΓR]. Latin indices M = 0, . . . , 9 refer to space-time and Greek

indices α = 0, . . . , 4, 6, . . . 9 refer to the D8-brane world-volume. Quantities are pulled back

onto the D8-brane in the usual way, e.g. ∇α = ∂αXM∇M . Transformations between curved

indices α,M and flat (local Lorentz frame) indices α,M are done with the vielbeins, so we

have e.g. Γα = gαβ∂βXME
M

M ΓM .

The field Ψ is a 32-component Majorana spinor in ten dimensions and

P− ≡ 1

2
(1 − ΓD8) (2.8)

is a projection operator necessary for kappa invariance. The ΓD8 matrix is in the case of

vanishing gauge field (Fαβ = 0)

ΓD8 ≡ 1

9!

1√−g
ǫα1···α9Γα1···α9

Γ11 = Γ5. (2.9)

We are dealing with Majorana spinors in ten dimensions. These spinors obey a reality

condition. For the product of two Majorana spinors with an arbitrary number of Γ matrices,

we have

χ̄ΓM1...MnΨ = (−)n(n+1)/2Ψ̄ΓM1...Mnχ (2.10)

so that these expression vanish if the spinors are the same and n = 1, 2, 5, 6, 9, 10. Moreover,

choosing as the κ symmetry fixing condition the chirality condition Γ11Ψ = Ψ, then the

only non-vanishing products are

Ψ̄ΓM1M2M3Ψ, Ψ̄ΓM1...M7Ψ, (2.11)

since the chirality matrix Γ11 transforms products of four and eight Γ matrices into six and

two, which vanish.

As mentioned before, setting y = 0 is equivalent to setting the quark mass to zero.

This is an assumption we are making throughout this paper. Since we are now not in-

terested in the fluctuations of the bosonic fields, we set Fαβ = 0 in the calculation of the

– 9 –
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mesino spectrum and also set ∂y = 0. We will include the gauge field contributions when

considering mesino interactions with vector mesons in the next section. We find that the

contributions from the flux F4 cancel in the action (2.1). The measure and dilaton factors

together give

T
√−ge−φ = T̂ (V4(2πα′)2)−1αV 2 (2.12)

With the definitions given above and some rather straightforward manipulations, we find

S = iT̂ (V4(2πα′)2)−1

∫

d4xdwdΩ4V
2L, (2.13)

where

L = Ψ̄P−

[

2

3
MkkV

− 1

4 Γm∇S4

m + V − 3

4 Γµ∂µ

+ MkkV
5

4 Γ4∂w +
13

12
MkkwV − 7

4 Γ4

]

Ψ,

(2.14)

where m = 6, 7, 8, 9 and Γm∇S4

m is the Dirac operator on a unit four-sphere.

We rescale the spinor

Ψ → Ψ̃ = V −13/8Ψ. (2.15)

This rescaling removes the last term in eq. (2.14). Moreover, it leads to an action where

the term with the w derivative has no weighting factor V

S =
iT̂

V4(2πα′)2

∫

d4xdwdΩ4 Ψ̄P−

[

2

3
MkkV

− 3

2 Γm∇S4

m + V −2Γµ∂µ + MkkΓ4∂w

]

Ψ. (2.16)

2.1 Spinor decomposition

We want to decompose our spinor Ψ into an S4 part χ, a 3 + 1-dimensional part ψ and a

remaining two-dimensional part u, i.e.

Ψ = u ⊗ ψ(x, z) ⊗ χ(S4). (2.17)

A convenient choice for the decomposition of the 10-dimensional gamma matrices is

Γµ = σx ⊗ γµ ⊗ 1, µ = 0, 1, 2, 3; (2.18a)

Γ4 = σx ⊗ γ ⊗ 1, (2.18b)

Γ5 = σy ⊗ 1⊗ γ̃, (2.18c)

Γm = σy ⊗ 1⊗ γ̃m, m = 6, 7, 8, 9; (2.18d)

where γ = iγ0γ1γ2γ3 is the chiral matrix in 3+1 dimensions and γ̃ = γ̃6γ̃7γ̃8γ̃9 is the chiral

matrix on the tangent space of S4. In this decomposition, the ten-dimensional chirality

matrix takes a particularly simple form: Γ11 = σz ⊗ 1⊗ 1. If we further decompose the u

into σz eigenstates u±, we get

σzu± = u±, σxu± = u∓, σyu± = ±iu∓. (2.19)

– 10 –
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The kappa symmetry fixing condition Γ11Ψ = Ψ is then equivalent to u = u+ ≡ |↑〉.
The general solution for the Dirac equation on the four sphere is well-known [30],

∇/S4 χ±ls = iλ±
l χ±ls; λ±

l = ±(2 + l); l = 0, 1, . . . , (2.20)

where the quantum number s = 0, 1, . . . , dl and dl = 4(3 + l)!/(3! l!) is the degeneracy

of the eigenvalue λ±
l . With the above splitting and Ψ̄ = 〈↑ |σx ⊗ ψ̄ ⊗ χ†, the Lagrangian

becomes

L ∼ 〈↑ | ↑〉 χ†χ ψ̄
[

. . .
]

ψ. (2.21)

Normalising the fields according to

〈↑ | ↑〉
∫

dΩ4 (χls)†χl′s′ = (2πα′)2V4δ
l,l′δs,s′ , (2.22)

we arrive at the action

S = iT̂

∫

d4xdw ψ̄

[

−2

3
MkkλV − 3

2 + V −2γµ∂µ + Mkkγ∂w

]

ψ. (2.23)

2.2 Four-dimensional action in canonical form

In order to read off the mass of the four-dimensional fluctuations, we need to rewrite the

action (2.23) in canonical form. We do this by working with two-spinors ψ±,

ψ =

(

ψ+

ψ−

)

, (2.24)

and choose the Weyl basis where

γµ = i

(

0 σµ

σ̄µ 0

)

, γ =

(1 0

0 −1)

, (2.25)

where σµ = (1,−σi) and σ̄µ = (1, σi). Then we expand the fermion fields in terms of

complete sets {fn
+(w)} and {fn

−(w)},

ψ+(xµ, w) =
∑

n

ψ
(n)
+ (xµ)fn

+(w), ψ−(xµ, w) =
∑

n

ψ
(n)
− (xµ)fn

−(w), (2.26)

where the functions fn
+ and fn

− are real eigenfunctions of the coupled first-order differential

equations

−2λ

3
V − 3

2 fn
+(w) + ∂wfn

+(w) =M̃nV −2fn
−(w),

−2λ

3
V − 3

2 fn
−(w) − ∂wfn

−(w) =M̃nV −2fn
+(w),

(2.27)

where M̃n ≡ Mn

Mkk
. With the normalisations

T̂

∫

dw V −2(w)fn
±(w)fm

± (w) = δnm, (2.28)
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the action takes the canonical form

S =−
∫

d4x
∑

n

{

ψ
(n)†
− iσµ∂µψ

(n)
− + ψ

(n)†
+ iσ̄µ∂µψ

(n)
+ + Mn

[

ψ
(n)†
− ψ

(n)
+ + ψ

(n)†
+ ψ

(n)
−

]}

, (2.29)

which is the action, written in the Weyl basis, for a set of Dirac spinors

ψ̃(n) =

(

ψ
(n)
+

ψ
(n)
−

)

(2.30)

with masses Mn. With these Dirac spinors, the action takes the familiar form

S = i

∫

d4x
∑

n

[

¯̃ψ(n)γµ∂µψ̃(n) + Mn
¯̃ψ(n)ψ̃(n)

]

. (2.31)

In order to compute the masses Mn we have to solve the eigenvalue problem (2.27). We

will do this numerically in the next section.

The coupled first order differential equations (2.27) can be rewritten as two decoupled

second order differential equations in Sturm-Liouville form,

−∂w

[

V 2∂wfn
±(w)

]

+ q±(w)fn
±(w) = M̃2

nV −2fn
±(w), (2.32)

where

q±(w) =
4λ2

9
V −1 ± 2λ

9
wV −5/2 =

w2

36
V −4





(

4λ

√

1 +
1

w2
± 1

)2

− 1



 ≥ 0. (2.33)

We therefore know that the eigenvalues M̃n are real and well-ordered and that the eigen-

functions are real and unique. At this point we note that λ → −λ is equivalent to swapping

fn
± → fn

∓, so we can therefore assume λ > 0 without loss of generality.

Inspecting the equations, we note that fn
−(−w) satisfies the same equation as fn

+(w).

The uniqueness of the eigenfunctions then implies that they are the same up to a sign, i.e.

we have

fn
∓(−w) = c(n)fn

±(w), c(n) = ±1. (2.34)

For the special case M = 0, the equations (2.27) can be solved analytically, giving

f± = C±(w +
√

w2 + 1)±
2λ
3 . (2.35)

However, this is a non-normalisable solution.

2.3 Numerical results

The asymptotic behaviour of the eigenfunctions is found by investigating the differential

equations (2.27) for w → ∞ and yields

f+ ∼
(

A w− 2λ
3
− 1

3 − B
4λ − 1

3M̃
w

2λ
3

)

,

f− ∼
(

−A
4λ + 1

3M̃
w− 2λ

3 + B w
2λ
3
− 1

3

)

,

(2.36)
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where A and B are undetermined constants. As we have already noted, it is sufficient to

consider the λ = (l + 2) ≥ 2 case. Then we have

f+f+ ∼ B2w
4λ
3 , f−f− ∼ B2w

2

3
(2λ−1) (2.37)

This expression is not normalisable according to equation (2.28) unless we require B = 0.

It is this regularity condition, which produces a discrete mass spectrum.

Let us now turn to the initial conditions. Evaluating the equations (2.27) at w = 0

gives

±fn
±
′(0) − 2λ

3
fn
±(0) = M̃nfn

∓(0). (2.38)

From equation (2.34) we get

f−(0) = cf+(0), f ′
−(0) = −cf ′

+(0). (2.39)

Equations (2.38) and (2.39) together give

f+(0) = f0; f ′
+(0) =

(

2λ

3
− cM̃

)

f0;

f−(0) = cf0; f ′
−(0) = −c

(

2λ

3
− cM̃

)

f0, (2.40)

so that the only choice we have in initial conditions is in f0 and the sign of c.

The aim when solving the eigenvalue problem numerically is to identify the mass

eigenvalues M̃n corresponding to regular eigenfunctions. In doing this we apply a shooting

method. The actual value of f0 is not important and can always be set to f0 = 1. The

recipe is then to choose either c = +1 or c = −1 and guess a value of M̃ . Then we

integrate the equations numerically up to very large w and compute the coefficient B in

the asymptotic behaviour (2.36) according to

B = lim
w→∞

w− 2λ
3

+ 1

3 f−(w). (2.41)

Different M̃ give different values for B, and as we have argued above, only those giving

B = 0 are regular mass eigenstates, see figure 1. In order to determine all the eigenvalues,

we scan through a range of M̃ for c = ±1 and for various l ≥ 0. It turns out that the

lightest masses are found for c = −1. In general, odd (even) n corresponds to c = −1

(c = +1):

fn
∓(−w) = (−)nfn

±(w). (2.42)

Numerical values for M̃ are presented in table 1.

We can determine the parity of the eigenstates in the same way as in ref. [7]. Consider

a transformation L : (t, ~x,w) → (t,−~x,−w), which is a proper Lorentz transformation in

five dimensions. The four-dimensional interpretation is that of a parity transformation.

Acting on a spinor, the transformation is

ψ(t, ~x,w) → (−iγ0)ψ(t,−~x,−w), (2.43)

– 13 –
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1 2 3 4 5

-0.5

0.5

1

1.5

M̃

(M̃2 + 1)B

Figure 1: The coefficient B plotted as a function of M̃ for λ = 2 and c = ±1. The intersection

points B = 0 give the mass eigenvalues.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

l = 0 1.60− 2.11+ 2.59− 3.05+ 3.51− 3.96+

l = 1 2.27− 2.80+ 3.29− 3.77+ 4.24− 4.70+

l = 2 2.94− 3.48+ 3.98− 4.47+ 4.95− 5.41+

l = 3 3.61− 4.15+ 4.67− 5.17+ 5.65− 6.13+

Table 1: Mesino masses in units of Mkk with parity indicated.

which, using the expansion (2.26) gives

(

ψ+

ψ−

)

→
(

∑

n ψ
(n)
− (t,−~x)fn

−(−w)
∑

n ψ
(n)
+ (t,−~x)fn

+(−w)

)

=

(

∑

n(−)nψ
(n)
− (t,−~x)fn

+(w)
∑

n(−)nψ
(n)
+ (t,−~x)fn

−(w)

)

, (2.44)

where we have used the relation (2.42). In terms of the mesino field ψ̃(n) defined in equa-

tion (2.30), we see that this has the effect

ψ̃(n) =

(

ψ
(n)
+

ψ
(n)
−

)

→ (−)n

(

ψ
(n)
−

ψ
(n)
+

)

= (−)n(−iγ0)

(

ψ
(n)
+

ψ
(n)
−

)

. (2.45)

From this result we see that even-numbered modes correspond to mesinos with even parity,

while odd-numbered ones have odd mesino parity. The parity of the lowest mass eigenstates

is indicated with a sign in table 1.

For comparison, the massless scalar meson (the pion) has negative parity, as does the

lightest vector meson (ρ), whilst the lightest scalar meson, a0(1450), has positive parity.

See ref. [7].

It is interesting to compare the mass spectrum to that of the ordinary mesons. The

mass square ratio between the lightest massive mesino and the lightest massive meson (the

ρ meson, see ref. [7]) is
M2

m2
ρ

=
1.602M2

kk

0.67M2
kk

= 3.8. (2.46)
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In comparison, the mass square ratio of the second lightest and the lightest meson is 2.4

(from this D4/D8-brane model) / 2.51 (experimentally). What we have found is that the

mesino masses are comparable to the meson masses.

3. Mesino interactions

We have found that the model predicts fermionic partners to the mesons, which we have

called mesinos. Their masses are of the same order as meson masses, yet they have no

counterpart in QCD or in experiments. This by itself presents a problem for this model as

a holographic dual of QCD. However, there is still the possibility that these mesinos do not

interact with other particles. If this is the case, we would be able to view this fermionic

sector as irrelevant since it does not affect the meson sector. This section is devoted to the

question of whether this is in fact the case. Specifically, we will investigate the coupling of

the mesinos to vector mesons as well as to an external gauge field.

As in previous sections, we shall consider only SO(5) singlet states. Thus we set

Am = 0, m = 6, 7, 8, 9 and choose the other five components of the gauge field to be

independent of the coordinates of the S4 part.

If a gauge field is switched on the physics on the D8-brane is described by the Dirac-

Born-Infeld action, eq. (1.6). We are interested in trilinear Yukawa-like couplings containing

just one boson. The commutator in a non-Abelian field strength necessarily introduces a

second boson. This would only be relevant if we would also consider two boson — two

fermion couplings. For this reason there is no loss of generality by considering an Abelian

gauge field.

3.1 Trilinear couplings

Trilinear Yukawa-like couplings arise from terms of first order in the field strength in the

fermionic D8-brane action (2.1). Both ΓD8 and LD8 contain a piece linear in F

ΓD8 = Γ5

(

1 − 1

2
Γ11ΓαβFαβ + O(F2)

)

, (3.1)

LD8 = −Γ5Γ11ΓαF β
α Dβ + O(F2) (3.2)

Inserting the expressions into the action, we obtain the Yukawa-like coupling terms as

S3 = i
T

2

∫

d9ξ
√−ge−φΨ̄

1

2
Γ5Γ

11ΓαβFαβ(ΓγDγ − ∆)Ψ

−i
T

2

∫

d9ξ
√−ge−φΨ̄(1 − Γ5)Γ

5Γ11ΓαF β
α DβΨ. (3.3)

This vertex is simplified by imposing the Majorana and Weyl condition, i.e. just keep terms

with derivatives or three or seven Γ matrices. The first piece just contributes

S
(1)
3 = −i

T

2

∫

d9ξ
√−ge−φΨ̄

1

2
Γ5Γ

αβFαβΓγ∂γΨ (3.4)
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Decomposing the spinor in the same way as in the determination of the spectrum eq. (2.17),

we see that this term vanishes. Expanding the second piece gives the following

S
(2)
3 = −iT

∫

d9ξ
√−ge−φ

[

Ψ̄
1

2

(

1 − Γ5
)

1

α3V
9

4

(

ΓµFµνηνρ∂ρ + M2
kkV

4ΓµFµwδww∂w + MkkV
2ΓwFwµηµρ∂ρ

)

Ψ

+Ψ̄
Mkk

8α3
w V −13/4FµνΓµνwΨ

−Ψ̄
eφ

16α2
F6789

(

V −3/2ΓµνFµν + 2MkkV
1/2ΓµwFµw

)

Γ56789Ψ

]

. (3.5)

From now on, the raising and lowering of indices is understood to be performed by ηµν

and δww. We also rescale Ψ → V −13/8Ψ. This has no effect except changing the overall

weighting function. The term arising from the w derivative can be dropped since it comes

with either one or two Γ and does not contribute due to the Majorana property of the

spinors:

S3 = −i
T̂

α2V4(2πα′)2

∫

d4xdwdΩ4

[

Ψ̄
1

2

(

1 − Γ5
)

(

V − 7

2 ΓµFµν∂ν + M2
kkV

1

2 ΓµFµw∂w + MkkV
− 3

2 ΓwFwµ∂µ
)

Ψ

+Ψ̄
Mkk

8
w V − 9

2FµνΓµνwΨ

−Ψ̄
gsα

2

16
F6789

(

V −2ΓµνFµν + 2MkkΓ
µwFµw

)

Γ56789Ψ

]

. (3.6)

We would also like to add a total derivative term to the interaction

S3 =
i

2

T̂M2
kk

α2V4(2πα′)2

∫

d4xdwdΩ4 ∂w

(

Ψ̄
1

2

(

1 − Γ5
)

V
1

2 ΓµFµwΨ

)

=
i

2

T̂M2
kk

α2V4(2πα′)2

∫

d4xdwdΩ4

(

∂wΨ̄
1

2

(

1 − Γ5
)

V
1

2 ΓµFµwΨ

+Ψ̄
1

2

(

1 − Γ5
)

V
1

2 ΓµFµw∂wΨ

)

(3.7)

in order to make the action more symmetric regarding the w derivative. The terms where

the derivative hits the function V or Fµw vanish due to the Majorana condition.

Now we employ the splitting (2.17) we used for the spectrum, perform the integration

over the four-sphere and use the normalisation for the u and χ spinors

S3 =−i
T̂

2α2

∫

d4xdw

[

ψ̄
(

V −7/2γµFµν∂ν + MkkV
−3/2γFwµ∂µ

+
1

2
M2

kkV
1/2γµFµw∂w − 1

2

←−
∂wM2

kkV
1/2γµFµw

)

ψ

+ψ̄
Mkk

4
w V −9/2Fµνγµνγψ

−iψ̄
Mkk

4

(

V −3γµνFµν + 2MkkV
−1γµγFµw

)

ψ

]

. (3.8)
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We also re-express the flux

F6789 =
3R3

gs

(3

2

α

Mkk
V

1

4

)−4
=

2

gs

Mkk

α2
V −1. (3.9)

As next step we go to the Weyl basis according to eqs. (2.24) and (2.25) and expand

the fermions and bosons in terms of complete sets. The effective four-dimensional action

is then

S3 = M−2
int

∑

m,n,p

∫

d4x
[

jm,n,pF
(m)
µν

(

ψ
(n)†
+ iσ̄µ∂νψ

(p)
+ + (−)kψ

(n)†
− iσµ∂νψ

(p)
−

)

+tm,n,pM
2
kkF

(m)
µw

(

ψ
(n)†
+ iσ̄µψ

(p)
+ + (−)kψ

(n)†
− iσµψ

(p)
−

)

+lm,n,pMkkF
(m)
µw

(

ψ
(n)†
+ ∂µψ

(p)
− + (−)kψ

(n)†
− ∂µψ

(p)
+

)

(3.10)

+sm,n,pMkkF
(m)
µν

(

ψ
(n)†
+ σ̄µνψ

(p)
− + (−)kψ

(n)†
− σµνψ

(p)
+

)]

,

where k = m + n + p + 1 determines the parity properties of the effective vertex and

M−2
int ≡ 2πα′(αT̂ )−1/2/2 is a dimensionful quantity setting the scale for the interactions.

The purely numerical coefficients are given by

jm,n,p =

∫

dw V −7/2pm(w)fn
+(w)fp

+(w), (3.11)

tm,n,p =

∫

dw
1

2
V 1/2p′m

(

fn
+f

′p
+ − f

′n
+ fp

+ + iV −3/2fn
+fp

+

)

, (3.12)

lm,n,p =

∫

dw V −3/2p′m(w)fn
+(w)fp

−(w), (3.13)

sm,n,p =

∫

dw
1

4

(

wV −9/2 + iV −3
)

pm(w)fn
+(w)fp

−(w). (3.14)

The coefficients have been simplified by using the parity properties of the eigenfunctions

f
(n)
± eq. (2.34) and pm eq. (1.27).

Written in terms of the Dirac spinors (2.30), this gives

S3 = −iM−2
int

∑

m,n,p

∫

d4x (3.15)

[

F (m)
µν

(

jm,n,p
¯̃
ψ(n)γµ(γ)k∂νψ̃(p) − sm,n,pMkk

¯̃
ψ(n)γµν(−γ)kψ̃(p)

)

+MkkF
(m)
µw

(

lm,n,p
¯̃
ψ(n)(−γ)k∂µψ̃(p) + tm,n,pMkk

¯̃
ψ(n)γµ(γ)kψ̃(p)

)]

.

Since this action is effective, the non-renormalisability of the first three terms is not a

problem. The last term is a marginal term, which minimally couples the (axial) vector

mesons to the (axial) vector current depending on the value of k.

Due to the properties eq. (1.27) and eq. (2.42) the coupling constants satisfy the

following symmetry properties

jmpn = jmnp, lmpn = −(−)klmnp,

t∗mpn = −tmnp, s∗mpn = −(−)ksmnp.
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m,n, p jm,n,p tm,n,p lm,n,p sm,n,p

1, 1, 1 0.42 0.0 + 0.026i 0.0 0.0 − 0.11i

1, 1, 2 0.073 0.029 − 0.064i 0.11 −0.039 − 0.042i

1, 2, 2 0.26 0.0 − 0.0061i 0.0 0.0 − 0.051i

2, 1, 1 −0.068 0.0 + 0.17i −0.33 −0.028

2, 1, 2 0.16 0.24 + 0.052i 0.13 0.011 − 0.049i

2, 2, 2 0.029 0.0 + 0.056i −0.040 −0.041

Table 2: The numerical values of the coupling coefficients for the interactions of mesinos with

(axial) vector mesons.

The integrals in these expressions can be computed numerically and generically produce

numbers of order 1. Table 2 lists these numerical values for some interactions. What is

important for our purpose is not the exact values of these coefficients, but the fact that

they are non-zero and not very small.

The value of the coupling constants are determined by these coefficients as well as by

the factors Mint and Mkk. The string coupling gs and the constant α can be expressed in

terms of gauge theory quantities gYM and Nc [7]:

gs =
1

2π

g2
YM

Mkkls
; α =

(

Ukk

R

)
3

4

=
2

3
√

3
(g2

YMNc)
1

2 Mkkls, (3.16)

in the regime 1 ≪ g2
YMNc ≪ g−4

YM [6] giving

M4
int =

4

39π5
(g2

YMNc)
3NcM

4
kk. (3.17)

Notice that the only adjustable scale here is Mkk. The coupling constants are therefore

given by a fixed numerical factor times the appropriate power of Mkk. Note that according

to eq. (3.17) the interaction scale Mint is proportional to the fourth root of the number of

colours so that the interaction terms scale with N
−1/2
c .

To fix the numerical factors, we can use the condition that the rho meson mass and

the pion decay constant should match experimental values. The experimental rho meson

mass is 776 MeV, which gives Mkk = 949 MeV. The pion decay constant fπ is related to

the normalisation constant C in eq. (1.30), giving

f2
π =

1

27π4
(g2

YMNc)NcM
2
kk. (3.18)

Using Nc = 3 and matching this to the experimental value fπ = 92 MeV gives λ = g2
YMNc =

8.2. With these values we find Mint = 173 MeV = 0.18 Mkk. The ’t Hooft coupling satisfies

the requirement to be larger than one, which is necessary for using classical supergravity

only. This restricts to small curvatures as usual in the AdS/CFT correspondence. On the

other hand, the requirement λ ≪ g−4
YM is not met. It arises from the requirement that

the string coupling gs = eφ ought to be small, which can only be satisfied up to a critical

radius Ucrit [6]. The main reason for this failure is that we are using Nc = 3 while the
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n, p jV ,n,p sV ,n,p tπ,n,p lπ,n,p

1, 1 0.79 −0.20i 0.21i −0.38

1, 2 0.096 0.089 − 0.080i 0.031i 0.15

2, 2 0.58 0.13i 0.14i −0.17

Table 3: The numerical values of the coupling coefficients for the coupling of the mesinos to the

electromagnetic field and the pion, respectively.

Nc → ∞ and gYM → 0 in the ’t Hooft limit. If we go to the ’t Hooft limit with finite λ the

interaction scale goes off to infinity and the interactions are suppressed.

Since the cross section for a particular interaction is proportional to the coupling

constant and we have found the coupling constants to be non-zero and non-suppressed, we

conclude that these interaction are not suppressed.

Other interesting quantities are the couplings of the mesinos to the external electro-

magnetic field and to the pion. We use the zero modes in the expansions eqs. (1.41)

and (1.42). The mesinos couple to the external electromagnetic gauge field through

S3 = −iM−2
int

∑

n,p

∫

d4x
[(

∂µV̂ν(x) − ∂ν V̂µ(x)
) (

jV ,n,p
¯̃ψ(n)γµ(γ)n+p∂νψ̃(p)

−sV ,n,pMkk
¯̃ψ(n)γµν(−γ)n+pψ̃(p)

)]

, (3.19)

with the coefficients given by

jV ,n,p =

∫

dw V −7/2f
(n)
+ f

(p)
+ , (3.20)

sV ,n,p =
1

4

∫

dw
(

wV −9/2 + iV −3
)

f
(n)
+ f

(p)
− . (3.21)

The mesino interaction with the pion field is described by

S3 =
Mkk

fπM2
int

∑

n,p

∫

d4x
[

∂µπ
(

Mkktπ,n,p
¯̃
ψ(n)iγµ(γ)n+p+1ψ̃(p)

+lπ,n,p
¯̃ψ(n)(−γ)n+p+1∂µψ̃(p)

)]

, (3.22)

with the coefficients given by

lπ,n,p =

∫

dw V −9/2f
(n)
+ f

(p)
− , (3.23)

tπ,n,p =
1

2

∫

dw
(

f
(n)
+ f

′(p)
+ − f

′(n)
+ f

(p)
+ + iV −3/2f

(n)
+ f

(p)
+

)

V −5/2. (3.24)

The numerical values for the lowest mesino excitations are displayed in table 3.

As in the case of the massive modes the couplings are less than unity but still signifi-

cantly large such that they are not suppressed and have to be taken into account. Mesinos

couple in the Sakai-Sugimoto model to the photon and the pion. The couplings fall off as

N
−1/2
c and 1/Nc for the photon and for the pion, respectively.
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4. Discussion

In this paper, we have investigated the fermionic sector of the flavour brane in the Sakai-

Sugimoto model in the case of massless quarks and only one quark flavour, Nf = 1. We

found that there is a spectrum of mesinos (fermionic mesons) with masses on the same

scale as the bosonic mesons, set by the compactification scale Mkk. The presence of this

fermionic sector itself is a problem for this model as a holographic descriptions of QCD

as it is not part of QCD nor seen experimentally. However, one could have hoped that

the fermionic sector drops out in the low energy physics because of very high masses.

Our result shows that this is not the case — mesinos appear on the same energy scale as

mesons. This follows from the fact that the supersymmetry breaking scale is the same as

the compactification scale or meson mass scale, Mkk.

Having found mesinos of similar mass as the mesons, we asked whether their interaction

with the mesons is suppressed. If that had been the case, we could have argued that the

fermionic mesinos represent harmless junk in the model, not affecting the meson physics.

We found explicitly that this is not so for finite Nc. The interactions between the mesinos

and the mesons are not suppressed and cannot be ignored. The existence of mesinos that

interact with the mesons is a serious problem for the Sakai-Sugimoto model. This should

in fact not come as a surprise, as there is only one energy scale, Mkk, in the model.

Most treatments of the D4/D8-brane model consider only the bosonic part of the probe

brane action and therefore do not encounter the mesinos. If the aim with the holographic

model simply were to reproduce QCD-like physics that would be justified. However, one

of the main motivations for studying this model is that it is a superstring theory model

where the D-branes are equipped with a supermultiplet of fields. We have in principle no

choice but to include the fermionic sector of the D-brane probe action.

The explicit breaking of the supersymmetry due to boundary conditions on the D4-

branes does not affect this point. The number of degrees of freedom in the particle spectrum

is still that of a supersymmetric theory but the mass degeneracy is lifted as we saw in our

calculation.

As said already, the problems exhibited in this paper stem from the fact that the

supersymmetry breaking scale is the same as the meson mass scale. One solution to it

could therefore be to disassociate these scales, i.e. have a supersymmetry breaking scale

different from Mkk. Then we could achieve a separation of mesino masses and meson

masses.
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