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1. Introduction and Overview

Bethe’s ansatz [1] for solving a one-dimensional integrable model was and remains a powerful
tool in contemporary theoretical physics: 75 years ago it solved one of the first models of quantum
mechanics, the Heisenberg spin chain [2]; today it provides exact solutions for the spectra of certain
gauge and string theories and thus helps us understand their duality [3] better. Since the discovery
of integrable structures in planarN = 4 supersymmetric gauge theory [4–6] and in planar IIB
string theory onAdS5×S5 [7, 8] the tools for computing and comparing the spectra of both models
have evolved rapidly. We now have complete asymptotic Bethe equations [9, 10] which interpolate
smoothly between the perturbative regimes in gauge and string theory and which agree with all
available data.

In this note we will focus on the S-matrix [11] in the excitation picture above a ferromagnetic
ground state. We start by reviewing the algebraic construction of the S-matrix in Sec.2. In Sec.3
we subsequently show that this S-matrix has indeed a larger symmetry algebra: a Yangian.

2. The Universal Enveloping AlgebraU(su(2|2)nR2)

In this section the results on the S-matrix of AdS/CFT shall be reviewed from an algebraic
point of view. The applicable symmetry is a central extensionh of the Lie superalgebrasu(2|2)
which we consider first. We continue by presenting the Hopf algebra structure of its universal
enveloping algebra and its fundamental representation. Finally, we comment on the S-matrix and
its dressing phase factor.

Lie Superalgebra. The symmetry in the excitation picture for light cone string theory onAdS5×
S5 and for single-trace local operators inN = 4 supersymmetric gauge theory is given by two
copies of the Lie superalgebra [12, 13]

h := su(2|2)nR2 = psu(2|2)nR3. (2.1)

It is a central extension of the standard Lie superalgebrassu(2|2) or psu(2|2), see [14]. It is
generated by thesu(2)× su(2) generatorsRa

b, Lα
β , the superchargesQα

b, Sa
β and the central

chargesC, P, K. The Lie brackets of thesu(2) generators take the standard form

[Ra
b,R

c
d] = δ c

bRa
d−δ a

dRc
b, [Lα

β ,Lγ
δ ] = δ

γ

β
Lα

δ −δ α

δ
Lγ

β ,

[Ra
b,Q

γ
d] =−δ a

dQγ
b + 1

2δ a
bQγ

d, [Lα
β ,Qγ

d] = +δ
γ

β
Qα

d− 1
2δ α

β
Qγ

d,

[Ra
b,S

c
δ ] = +δ c

bSa
δ − 1

2δ a
bSc

δ , [Lα
β ,Sc

δ ] =−δ α

δ
Sc

β + 1
2δ α

β
Sc

δ . (2.2)

The Lie brackets of two supercharges yield

{Qα
b,S

c
δ}= δ

c
bLα

δ +δ
α

δ
Rc

b +δ
c
bδ

α

δ
C,

{Qα
b,Q

γ
d}= ε

αγ
εbdP,

{Sa
β ,Sc

δ}= ε
ac

εβδ K. (2.3)

The remaining Lie brackets vanish.
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∆Ra
b = Ra

b⊗1+1⊗Ra
b,

∆Lα
β = Lα

β ⊗1+1⊗Lα
β ,

∆Qα
b = Qα

b⊗1+U +1⊗Qα
b,

∆Sa
β = Sa

β ⊗1+U −1⊗Sa
β ,

∆C = C⊗1+1⊗C,

∆P = P⊗1+U +2⊗P,

∆K = K⊗1+U −2⊗K,

∆U = U ⊗U .

Table 1: The coproduct of the braided universal enveloping algebra U(h).

Where appropriate, we shall use the collective symbolJA for the generators. The Lie brackets
then take the standard form

[JA,JB] = f AB
C JC. (2.4)

For simplicity of notation, we shall pretend that all generators are bosonic; the generalisation to
fermionic generators by insertion of suitable signs and graded commutators is straightforward.

Hopf Algebra. Next we consider the universal enveloping algebra U(h) of h. The construction
of the product is standard, and one identifies the Lie brackets (2.4) with graded commutators. For
the coproduct one can introduce a non-trivial braiding [15, 16]

∆JA = JA⊗1+U [A]⊗JA (2.5)

with some abelian1 generatorU (a priori unrelated to the algebra) and the grading

[R] = [L] = [C] = 0, [Q] = +1, [S] =−1, [P] = +2, [K] =−2. (2.6)

The coproduct is spelt out in Tab.1 for the individual generators. The above grading is derived
from the Cartan charge of thesl(2) automorphism [14] of the algebrah and therefore the coproduct
is compatible with the algebra relations.

We should define the remaining structures of the Hopf algebra: the antipode S and the counit
ε [15, 16]. The antipode is an anti-homomorphism which acts on the generators as

S(1) = 1, S(U ) = U −1, S(JA) =−U −[A]JA. (2.7)

The counit acts non-trivially only on 1 andU

ε(1) = ε(U ) = 1, ε(JA) = 0. (2.8)

1Curiously, we can include the supersymmetric grading(−1)F in the generatorU to manually impose the correct
statistics. This is helpful for an implementation within a computer algebra system. In this caseU would anticommute
with fermionic generators.
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Cocommutativity. This coproduct is in general not quasi-cocommutative as can easily be seen
by considering the central chargesP, K in Tab.1. To make it quasi-cocommutative we have to
satisfy the constraints [15]

P⊗
(
1−U +2) =

(
1−U +2)⊗P, K⊗

(
1−U −2) =

(
1−U −2)⊗K. (2.9)

They are solved by identifying the central chargesP, K with the braiding factorU as follows [16]

P = gα
(
1−U +2), K = gα

−1(1−U −2). (2.10)

This leads to the following quadratic constraint

PK−gα
−1P−gαK = 0. (2.11)

It was furthermore shown in [17] that the coproduct is quasi-triangular, at least at the level of central
charges, see also [18].

Fundamental Representation. The algebrah has a four-dimensional representation [13] which
we will call fundamental. The corresponding multiplet has two bosonic states|φa〉 and two fermi-
onic states|ψα〉. The action of the two sets ofsu(2) generators has to be canonical

Ra
b|φ c〉= δ

c
b |φa〉− 1

2δ
a
b |φ c〉,

Lα
β |ψγ〉= δ

γ

β
|ψα〉− 1

2δ
α

β
|ψγ〉. (2.12)

The supersymmetry generators must also act in a manifestlysu(2)× su(2) covariant way

Qα
a|φb〉= aδ

b
a |ψα〉,

Qα
a|ψβ 〉= bε

αβ
εab|φb〉,

Sa
α |φb〉= cε

ab
εαβ |ψβ 〉,

Sa
α |ψβ 〉= dδ

β

α |φa〉. (2.13)

We can write the four parametersa,b,c,d using the parametersx±, γ and the constantsg, α as

a =
√

gγ, b =
√

g
α

γ

(
1− x+

x−

)
, c =

√
g

iγ
αx+ , d =

√
g

x+

iγ

(
1− x−

x+

)
. (2.14)

The parametersx± (together withγ) label the representation and they must obey the constraint

x+ +
1

x+ −x−− 1
x−

=
i
g

. (2.15)

The three central chargesC,P,K andU are represented by the valuesC,P,K andU which read

C =
1
2

1+1/x+x−

1−1/x+x−
, P = gα

(
1− x+

x−

)
, K =

g
α

(
1− x−

x+

)
, U =

√
x+

x−
. (2.16)

They furthermore obey the quadratic relationC2−PK = 1
4. Note that the corresponding quadratic

combination of central chargesC2−PK is singled out by being invariant under thesl(2) external
automorphism.

4



P
o
S
(
S
o
l
v
a
y
)
0
0
2

The S-Matrix of AdS/CFT and Yangian Symmetry Niklas Beisert

Fundamental S-Matrix. In [13, 17] an S-matrix acting on the tensor product of two fundamental
representations was derived. It was constructed by imposing invariance under the algebrah

[∆JA,S ] = 0. (2.17)

We will not reproduce the result here, it is given in [17]. Note that we have to fix the parameters
ξ = U =

√
x+/x− in order to make the action of the generators compatible with the coproduct

(2.5).2

This S-matrix has several interesting properties. Firstly, it is not of difference form; it cannot
be written as a function of the difference of some spectral parameters. Secondly, the S-matrix could
be determined uniquely up to one overall function merely by imposing a Lie-type symmetry (2.17)
[13]. This unusual fact is related to an unusual feature of representation theory of the algebrah:
The tensor product of two fundamental representations is irreducible in almost all cases [17].

Intriguingly this S-matrix is equivalent to Shastry’s R-matrix [21] of the one-dimensional Hub-
bard model [22]. Furthermore the Bethe equations [13] contain two copies of the Lieb-Wu equa-
tions for the Hubbard model [23]. These observations of [17] establish a link between an important
model of condensed matter physics and string theory (complementary to the one in [24]).

Finally, let us note that one can derive (asymptotic) Bethe equations from the S-matrix and
thus confirm the conjecture in [9]. So far this step has been performed in two different ways: by
means of the nested coordinate [13] and the algebraic [20] Bethe ansatz.

Phase Factor. The remaining overall phase factor of the S-matrix clearly cannot be determined
by demanding invariance underh. The phase factor was computed to some approximation from
gauge theory [25] and from string theory [26–29]. The problem of an algebraically undetermined
phase factor is in fact generic. Usually one imposes a further crossing symmetry relation to obtain
a constraint on it. Indeed the known string phase factor is consistent with crossing symmetry [30]
as was shown in [31]. By substituting a suitable ansatz [32] for the phase factor into the crossing
symmetry relation a conjecture for the all-orders phase factor at strong coupling was made in [33].

A corresponding all-orders expansion at weak coupling was presented in [10]. The latter
conjecture was obtained by a sort of analytic continuation in the perturbative order of the series.
Let us illustrate this principle by means of a very simple example: Consider the rational function
f (x) = 1/(1−x). It has the following expansions atx = 0 and atx = ∞

f (x) x→0=
∞

∑
n=0

anxn, f (x) x→∞=
∞

∑
n=1

bnx−n (2.18)

with an = 1 andbn =−1. When we consideran andbn as analytic functions of the index, we can
make the observation (“reciprocity”)

an =−b−n. (2.19)

2This identification removes all braiding factors from the S-matrix in [17] which will thus satisfy the standard
Yang-Baxter (matrix) equation, see also [13, 19, 20].
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Of course there are various ways in which the two functions+1 and−1 could be related, but the
choice (2.19) appears to work for a surprisingly large class of functions!3 It was proved in [36] that
it does apply for the conjectured expansion of the phase factor. Very useful integral expressions
for the phase have recently appeared in [37, 38]. The dressing phase can also be obtained as an
effective quantity [39] (see also [40]) from the scattering mediated by a non-trivial vacuum state
[41, 24, 42]. While this is certainly encouraging in general, it is at the same time strange from the
Hopf algebra point of view to use an S-matrix which does not obey the crossing relation [39, 40].
This calls for further investigations.

Several tests of the phase have recently appeared, they are based on four-loop unitary scattering
methods [43], numerical evaluation [44, 45], analytic methods [44, 36, 46, 47] and on taking a
certain highly non-trivial limit [48].

3. The YangianY(su(2|2)nR2)

In the section we investigate Yangian symmetry [49, 50] for the above S-matrix. We will
start with a very brief review of Yangian symmetry for generic S-matrices (see [51, 52] for more
extensive reviews), and then we apply the framework to the S-matrix discussed above.

Yangians and S-Matrices. Typically the symmetries of rational S-matrices are of Yangian type.
The Yangian Y(g) of a Lie algebrag is a deformation of the universal enveloping algebra of half
the affine extension ofg.

More plainly, it is generated by theg-generatorsJA and the Yangian generatorŝJA. Their
commutators take the generic form

[JA,JB] = f AB
C JC,

[JA, ĴB] = f AB
C ĴC, (3.1)

and they should obey the Jacobi and Serre relations[
J[A, [JB,JC]]

]
= 0,[

J[A, [JB, ĴC]]
]
= 0,[

Ĵ[A, [ĴB,JC]]
]
= 1

4h̄2 f AG
D f BH

E fCK
F fGHKJ{DJEJF}. (3.2)

The symbol fABC = gADgBE f DE
C represents the structure constantsf AD

C with two indices lowered
by means of the inverse of the Cartan-Killing formsgAD andgBE. The brackets{ } and[ ] at the
level of indices imply total symmetrisation and anti-symmetrisation, respectively. Finally,h̄ is a
scale parameter whose value plays no physical role. The first two relations lead to a constraint
on the structure constantsf AB

C . The third relation4 is a deformation of the Serre relation for affine
extensions of Lie algebras.

3Among other physical examples, we have identified circular Maldacena-Wilson loops [34] and non-critical string
theory [35] where this reciprocity can be applied. Furthermore, summation by the Euler-MacLaurin formula (also known
as zeta-function regularisation) is consistent with it. I thank Curt Callan, Marcos Mariño and Tristan McLoughlin for
discussions of this principle.

4Forg = su(2) it has to be replaced by a quartic relation.
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The Yangian is a Hopf algebra and the coproduct takes the standard form

∆JA = JA⊗1+1⊗JA,

∆ĴA = ĴA⊗1+1⊗ ĴA + 1
2h̄ fA

BCJB⊗JC. (3.3)

where f A
BC = gBD f AD

C . The antipode S is defined by

S(JA) =−JA, S(ĴA) =−ĴA + 1
4h̄ fA

BC f BC
D JD, (3.4)

and the counitε takes the standard form

ε(1) = 1, ε(JA) = ε(ĴA) = 0. (3.5)

For the study of integrable systems, the evaluation representations of the Yangian are of special
interest. For these the action of the Yangian generatorsĴA is proportional to the Lie generators

ĴA|u〉= h̄uJA|u〉. (3.6)

Here |u〉 is some state of the evaluation module with spectral parameteru. This Yangian repre-
sentation is finite-dimensional if theg-representation is. One merely has to ensure that the Serre
relation (3.2) is satisfied. This is indeed not the case for all representations of all Lie algebras. The
power of the Yangian symmetry lies in the fact that tensor products of evaluation representations
are typically irreducible (except for special values of their spectral parameters). This allows for
simple proofs (e.g. for the Yang-Baxter relation) by representation theory arguments.

Let us finally consider the connection to the S-matrix. The S-matrix is a permutation operator;
it acts by interchanging two modules of the algebra

S : V1⊗V2 → V2⊗V1. (3.7)

In particular, for the tensor product of two evaluation modules one has

S |u1,u2〉 ∼ |u2,u1〉. (3.8)

Invariance of the S-matrix under the Yangian means

[∆JA,S ] = [∆ĴA,S ] = 0 (3.9)

for all generatorsJA, ĴA. The existence of such an S-matrix is equivalent to quasi-cocommutativity
of Y(g). Note that only the difference of spectral parameters appears in the invariance condition:
We can write the action of the coproduct of Yangian generators on the evaluation module|u1,u2〉
as

∆ĴA ' (u1−u2)JA⊗1+u2∆JA + h̄ fA
BCJB⊗JC. (3.10)

Here the first equation in (3.9) ensures that the term proportional tou2 drops out from the second
equation. Therefore the S-matrix typically depends on the differenceu1−u2 of spectral parameters
only.

7
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Yangians in AdS/CFT. Yangian symmetries for planar AdS/CFT have been investigated in [53],
both for classical string theory and for gauge theory at leading order, see also [54–56] Yangian
symmetry also persists to higher perturbative orders in both models [25, 57–60] and it is likely that
it also exists at finite coupling. This Yangian can be understood as a symmetry of the Hamiltonian
on an infinite world sheet or as an expansion of the full monodromy matrix. The Lie symmetry in
this picture ispsu(2,2|4) and the Yangian would be Y(psu(2,2|4)).

Here we consider a different picture of well-separated excitations on a ferromagnetic ground
state and of their scattering matrix. In this picture the Lie symmetry reduces to two copies ofh and
the corresponding Yangian would be Y(h). Our Yangian should arise as a subalgebra of the full
Yangian Y(psu(2,2|4)) when acting on asymptotic excitation states.

Hopf Algebra. Let us now consider Y(h). We have already studied the universal enveloping
algebra U(h). All we still need to do is to introduce one generatorĴA for eachJA obeying the
relations (3.1,3.2), and define its coproduct, antipode as well as counit.

In (2.5) we have defined a braided coproduct for the universal enveloping algebra. For consis-
tency with the Serre relations, we also have to apply an analogous braiding to the standard Yangian
coproduct

∆ĴA = ĴA⊗1+U [A]⊗ ĴA + h̄ fA
BCJBU [C]⊗JC. (3.11)

Note that lowering an index requires to use the inverse Cartan-Killing form of the algebra. In
the case ofh the Cartan-Killing form is degenerate and we need to extend the algebra by the
sl(2) outer automorphism, see [17]. Effectively, lowering an index leads to an interchange of the
automorphism generators with the central charges. We refrain from spelling out the Cartan-Killing
form or the modified structure constants. Instead we present the complete set of coproducts of
Yangian generators in Tab.2, where we also fix the value of̄h.

For the sake of completeness we state the antipode5 and the counit

S(ĴA) =−U −[A]ĴA, ε(ĴA) = 0. (3.12)

Cocommutativity. An important question is if this coproduct can be quasi-cocommutative.6 A
first step is to consider the central generatorsĈ, P̂, K̂. For that purpose it is favourable to choose
suitable combinations

Ĉ′ = Ĉ+gα
−1P−gαK,

P̂′ = P̂+C
(
P−2gα

)
,

K̂′ = K̂−C
(
K−2gα

−1), (3.13)

for whom7 the coproduct almost trivialises

∆Ĉ′ = Ĉ′⊗1+1⊗ Ĉ′,

∆P̂′ = P̂′⊗1+U +2⊗ P̂′,

∆K̂′ = K̂′⊗1+U −2⊗ K̂′. (3.14)
5Note thatf A

BC f BC
D = 0 here, so there is no contribution from the Lie generators.

6The braiding factors in (3.11) turn out to be very important for the Yangian. It can easily be seen that without them
the coproduct cannot be quasi-cocommutative. This is in contradistinction to the universal enveloping algebra where the
braided as well as the unbraided coproduct are quasi-cocommutative.

7Note that the scalar productCĈ′− 1
2PK̂′− 1

2KP̂′ = CĈ− 1
2PK̂− 1

2KP̂ is unaffected by the redefinition.
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∆R̂a
b = R̂a

b⊗1+1⊗ R̂a
b

+ 1
2Ra

c⊗Rc
b− 1

2Rc
b⊗Ra

c

− 1
2Sa

γU
+1⊗Qγ

b− 1
2Qγ

bU
−1⊗Sa

γ

+ 1
4δ

a
b Sd

γU
+1⊗Qγ

d + 1
4δ

a
b Qγ

dU
−1⊗Sd

γ ,

∆L̂α
β = L̂α

β ⊗1+1⊗ L̂α
β

− 1
2Lα

γ ⊗Lγ
β + 1

2Lγ
β ⊗Lα

γ

+ 1
2Qα

cU
−1⊗Sc

β + 1
2Sc

β U +1⊗Qα
c

− 1
4δ

α

β
Qδ

cU
−1⊗Sc

δ − 1
4δ

α

β
Sc

δ U +1⊗Qδ
c,

∆Q̂α
b = Q̂α

b⊗1+U +1⊗ Q̂α
b

− 1
2Lα

γU
+1⊗Qγ

b + 1
2Qγ

b⊗Lα
γ

− 1
2Rc

bU
+1⊗Qα

c + 1
2Qα

c⊗Rc
b

− 1
2CU +1⊗Qα

b + 1
2Qα

b⊗C

+ 1
2ε

αγ
εbdPU −1⊗Sd

γ − 1
2ε

αγ
εbdS

d
γU

+2⊗P,

∆Ŝa
β = Ŝa

β ⊗1+U −1⊗ Ŝa
β

+ 1
2Ra

cU
−1⊗Sc

β − 1
2Sc

β ⊗Ra
c

+ 1
2Lγ

β U −1⊗Sa
γ − 1

2Sa
γ ⊗Lγ

β

+ 1
2CU −1⊗Sa

β − 1
2Sa

β ⊗C

− 1
2ε

ac
εβδ KU +1⊗Qδ

c + 1
2ε

ac
εβδ Qδ

cU
−2⊗K,

∆Ĉ = Ĉ⊗1+1⊗ Ĉ

+PU −2⊗K−KU +2⊗P,

∆P̂ = P̂⊗1+U +2⊗ P̂

−CU +2⊗P+P⊗C,

∆K̂ = K̂⊗1+U −2⊗ K̂

+CU −2⊗K−K⊗C.

Table 2: The coproduct of the Yangian generators in Y(h).

The combination̂C′ is already cocommutative, and in order to make the generatorsP̂′, K̂′ cocom-
mutative we have to set as above in (2.9,2.10)

P̂′ = iguPP, K̂′ = iguKK (3.15)

with two universal constantsuP anduK. With this choice,̂C, P̂, K̂ also become cocommutative
because they differ from̂C′, P̂′, K̂′ only by central elements.

9
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Fundamental Evaluation Representation. For the fundamental evaluation representation we
make the ansatz8

ĴA|X 〉= ig(u+u0)JA|X 〉. (3.16)

By comparison with (3.13,3.15) we can infer thatu has to be related to the parameters of the
fundamental representation by

u = x+ +
1

x+ − i
2g

= x−+
1

x−
+

i
2g

= 1
2(x+ +x−)(1+1/x+x−) . (3.17)

FurthermoreuP anduK in (3.15) have to both coincide with the universal constantu0 = uP = uK.9

The eigenvalues of the redefined central elements of the Yangian within the evaluation repre-
sentation read

Ĉ′ =
igu
4C

+ igu0C, P̂′ = igu0P, K̂′ = igu0K. (3.18)

As an aside we also state the eigenvalue of the quadratic combination

CĈ− 1
2PK̂− 1

2KP̂ = CĈ′− 1
2PK̂′− 1

2KP̂′ = 1
4 ig(u+u0). (3.19)

Fundamental S-Matrix. Using the coproducts in Tab.2 we have confirmed that the S-matrix is
also invariant under all of the Yangian generators

[∆ĴA,S ] = 0. (3.20)

We have used a computer algebra system to evaluate the action of the Yangian generators and the
S-matrix.10 To show invariance requires heavy use of the identity (2.15). Superficially it is very
surprising to find all these additional symmetries of the S-matrix. The deeper reason however
should be that the coproduct is quasi-cocommutative. We have thus proved quasi-cocommutativity
when acting on fundamental representations.

It is interesting to see that the S-matrix is based on standard evaluation representations of the
Yangian. Nevertheless, it is not a function of the difference of spectral parameters. This unusual
property traces back to the link between the spectral parameteru and theh-representation parame-
tersx± in (3.17). The latter is again related to the braiding in the coproduct (3.11).

As our S-matrix is equivalent [17] to Shastry’s R-matrix, our Yangian is presumably an exten-
sion of thesu(2)× su(2) Yangian symmetry of the Hubbard model found in [61].

4. Conclusions and Outlook

In this note we have reviewed the construction of the S-matrix with centrally extendedsu(2|2)
symmetry that appears in the context of the planar AdS/CFT correspondence and the one-dimensio-
nal Hubbard model. We have furthermore shown that the S-matrix has an additional Yangian
symmetry whose Hopf algebra structure we have presented. This Yangian is not quite a standard
Yangian, but its coproduct needs to be braided in order to be quasi-cocommutative. This fact is

8We believe, but we have not verified that this is compatible with the Serre relations (3.2).
9It is conceivable that a further consistency requirement fixes the value ofu0, presumably to zero.

10We have also confirmed the invariance of the singlet state found in [13].
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intimately related to the existence of a triplet of central charges with non-trivial coproduct and
leads to the wealth of unusual features of the S-matrix.

In connection to the Yangian there are many points left to be clarified. Most importantly
the representation theory needs to be understood. Which representations ofh lift to evaluation
representations of Y(h)? At what values of the spectral parameters do their tensor products become
reducible? This information could be used to prove that the coproduct is quasi-cocommutative.
Also the Yang-Baxter equation for the S-matrix should follow straightforwardly. It might also give
some further understanding of bound states [62, 63].

Then it would be highly desirable to construct a universal R-matrix for this Yangian and show
that it is quasi-triangular. This would put large parts of the integrable structure for arbitrary repre-
sentations of this algebra on solid ground much like for the case of generic simple Lie algebras.

Some further interesting questions include: Is this Yangian the unique quasi-cocommutative
Hopf algebra based onh? Does the double Yangian [50] exist and what is its structure? Can
thesl(2) automorphism of the algebra be included at the Yangian level such that the coproduct is
quasi-cocommutative? What would the representations be in this case?
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