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containing odd-zeta functions in the earlier proposed scaling function based
on a trivial phase. Excitingly, we present evidence that this choice is non-
perturbatively related to a recently conjectured crossing-symmetric phase factor
for perturbative string theory on AdS5 × S5 once the constant is fixed to a
particular value. Our proposal, if true, might therefore resolve the long-standing
AdS/CFT discrepancies between gauge and string theory.
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1. Introduction

Supersymmetric N = 4 gauge theory is a conformal quantum field theory in four dimen-
sions. As such, standard lore says that it does not possess an S-matrix since there are no
asymptotic particles. Luckily this naive no-go theorem is wrong in two interesting ways.

Firstly, it turns out that an asymptotic ‘world-sheet’ S-matrix of this theory may
be defined, in the planar limit, in an internal space [1]. This is possible since planar
local composite operators may be interpreted as a one-dimensional ring on which eight
elementary bosons and eight elementary fermions propagate [2]. Furthermore, this S-
matrix appears to be two-particle factorized, since the particle model is integrable, at
one-loop and beyond [3]. For closely related earlier work, see [4] and references therein.
This allows us, under some assumptions, to largely construct the full S-matrix [5], up to
an a priori unknown phase factor, and find the spectrum of the theory [6]. This phase
factor is known to equal one up to three-loop order.

Secondly, it is very interesting to consider the set of all space–time on-shell n-gluon
amplitudes of the N = 4 gauge theory. While these are clearly not scattering amplitudes of
asymptotic particles, they contain much physical information, and we can simply declare
them to serve as a surrogate ‘space–time’ S-matrix. Fascinatingly, much evidence for an
iterative ‘solvable’ structure in these amplitudes was discovered recently [7, 8].

The factorized world-sheet S-matrix and the iterative space–time S-matrix
approaches are not uncorrelated. The conjectured ansatz for the all-loop gluon amplitudes
contains a to-be-determined function f(g), where

g =

√
λ

4π
(1.1)

is the gauge coupling constant. However, this function f(g) may be extracted from the
logarithmically divergent anomalous dimension of leading-twist operators in the gauge
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theory [9]. As such, it may in principle be derived from the diagonalization of the world-
sheet S-matrix. In this work we will call f(g) the universal scaling function of N = 4
gauge theory; it is also known as the cusp or soft anomalous dimension.

In practice, the comparison has so far been done reliably to three-loop order only.
The space–time based approach was completed in [8], and the world-sheet method was
exploited in [1]. The results agreed. The latter method was also successfully checked
against rigorously known anomalous dimensions of twist operators at two loops, and
brilliantly conjectured ones at three loops [10]. The conjecture was based on an intriguing
transcendentality principle, which allowed us to extract the answer from a hard QCD
computation [11].

Clearly, one would like to go to higher loops, and ideally compare the full universal
scaling function. A four-loop computation by Bern, Czakon, Dixon, Kosower and Smirnov
using the iterative gluon amplitude approach is underway [12]3. Furthermore, in [14] it was
shown how to extract the universal scaling function from the Bethe equations which result
from the diagonalized S-matrix. Assuming a trivial (i.e. equal to unity) phase factor, an
all-loop equation determining the function was proposed. While the exact solution of the
equation remains unknown, it allows us to generate perturbative results to any desired
order with ease. In addition, the solution preserves the Kotikov–Lipatov transcendentality
principle [15] to arbitrary loop order.

However, one troubling issue is whether the phase factor is really unity to all orders in
perturbation theory. This leads to various vexing discrepancies [16, 17] with string theory
results in the context of the AdS/CFT correspondence [18]. In fact, the S-matrix [5, 19]
of string theory on AdS5 × S5 definitely requires a phase factor [20] as can be seen by
comparison to an integral equation describing classical solutions [21]. Furthermore, it was
argued that the S-matrix should possess a crossing symmetry [22], which then necessarily
calls for such a phase. In [23] it was shown that the known classical and one-loop part
of the phase factor on the string side satisfies crossing symmetry, and in [24] a crossing-
invariant all-order string phase factor was proposed.

In the weakly coupled gauge theory, the dressing phase could appear, at the earliest,
at four-loop order [25]. The leading (four-loop) effect on the scaling function was already
investigated in [14]. Here we will extend this analysis to all-loop order, and investigate
the effects of the dressing phase on the universal scaling function.

2. Integral equations for the scaling function

Let us start in this section by considering the effect of the dressing phase on the universal
scaling function. We first briefly recall the assumptions and main steps leading to an
integral equation for the scaling function of leading twist operators of N = 4 gauge
theory in the large spin limit S → ∞. Up to three loops, it is based on the asymptotic
Bethe ansatz

(
x+

k

x−
k

)L

=

S∏
j=1
j �=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

. (2.1)

3 While finalizing our manuscript we were informed that this computation [13] has been completed.
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This ansatz was shown to properly work in the sl(2) sector relevant to twist operators up
to three-loop order in [1], and further tests were performed in [26]. It was constructed to
possibly describe gauge theory at four loops and beyond in [6], in analogy with an earlier
proposal for the su(2) sector [27].

The large-spin computation is similar to a thermodynamic limit for a spin chain Bethe
ansatz, as the number S of Bethe roots becomes very large, and their distribution may be
described by a smooth density. Note, however, that the actual length L of this spin chain
should remain quite short. Ideally it should be L = 2, but this is dangerous since the
Bethe ansatz is a priori only asymptotic [17, 27, 1, 6]. A workaround was devised in [14],
where it was argued that the scaling of the anomalous dimension of the lowest state of
operators of finite twist-L is a universal function of the coupling constant g. This suggests
that it should coincide with the scaling function of twist-two operators4. For a similar
discussion, albeit at one loop, see [28].

Despite the similarity to a thermodynamic limit, the computation is quite subtle due
to the singular distribution of the one-loop roots [29]. The problem was solved in [14]
by splitting off the one-loop piece, and subsequently deriving an integral equation for the
non-singular fluctuations around it. It was found that the density of fluctuations σ̂(t) is
determined by the solution of a non-singular integral equation of the general form

σ̂(t) =
t

e t − 1

[
K̂(2 g t, 0) − 4 g2

∫ ∞

0

dt′ K̂(2 g t, 2 g t′) σ̂(t′)

]
. (2.2)

The universal scaling function f(g) is then given by

f(g) = 8 g2 − 64 g4

∫ ∞

0

dt σ̂(t)
J1(2 g t)

2 g t
. (2.3)

Here and in the following Jr(t) denotes a standard Bessel function. Note that this
expression can be reduced provided that the kernel satisfies the property (it will always
be true in this paper)

K̂(0, t) =
J1(t)

t
. (2.4)

The scaling function then simply takes the value of the fluctuation density at t = 0 [30]

f(g) = 16 g2 σ̂(0). (2.5)

For the above, particular Bethe ansatz (2.1) the kernel K̂(t, t′) = K̂m(t, t′) is given by
(m stands for main scattering)

K̂m(t, t′) =
J1(t) J0(t

′) − J0(t) J1(t
′)

t − t′
. (2.6)

The inhomogeneous piece of the integral equation (2.2) with this kernel is thus

K̂m(t, 0) =
J1(t)

t
. (2.7)

4 At four loops the asymptotic Bethe ansätze are only fully reliable at twist three, or higher, and we have to
assume the four-loop universality of the scaling function for the lowest state of twist operators. This universality
may only be rigorously proved for twist ≥2 at one loop [28], for twist ≥2 at two and three loops, and for twist ≥3
at four loops [14]. It would clearly be most welcome to more directly confirm universality from the field theory.
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For this specific kernel (2.6) derived from (2.1) the weak-coupling expansion of the scaling
function is

fm(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(
73

630
π6 − 4 ζ(3)2

)
g8

+ 32

(
887

14 175
π8 − 4

3
π2ζ(3)2 − 40 ζ(3) ζ(5)

)
g10

− 64

(
136 883

3742 200
π10 − 8

15
π4ζ(3)2 − 40

3
π2ζ(3) ζ(5)

− 210 ζ(3) ζ(7)− 102 ζ(5)2

)
g12

+ 128

(
7680 089

340 540 200
π12 − 47

189
π6ζ(3)2 − 82

15
π4ζ(3) ζ(5)− 70π2ζ(3) ζ(7)

− 34π2ζ(5)2 − 1176 ζ(3) ζ(9)− 1092 ζ(5) ζ(7) + 4 ζ(3)4

)
g14

∓ · · · . (2.8)

Here we can observe the Kotikov–Lipatov transcendentality principle [15]: we
attribute a degree of transcendentality k to the constants πk as well as to ζ(k).

The �-loop contribution to the universal scaling function f(g) for N = 4 gauge theory
has a uniform degree of transcendentality 2� − 2.

The function fm(g) derived from the integral equation (2.2) obeys this rule [14]. A
rigorous proof to all orders in perturbation theory was given in [30].

Let us next generalize the universal scaling function to the case of an arbitrary weak-
coupling dressing phase. The only restriction is that the phase should merely modify
the gauge theory Bethe ansatz at four loops or beyond, as the Bethe ansatz (2.1) is
firmly established up to three-loop order [31, 25]. The corrections of the higher-loop
Bethe equations which are consistent with current knowledge are

(
x+

k

x−
k

)L

=
S∏

j=1
j �=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp(2iθ(uk, uj)), (2.9)

where the dressing phase θ is conjectured to be of the general form [20, 32, 25]

θ(uk, uj) =
∞∑

r=2

∞∑
ν=0

βr,r+1+2ν(g)(qr(uk) qr+1+2ν(uj) − qr(uj) qr+1+2ν(uk)). (2.10)

The qr(u) are the eigenvalues of the conserved magnon charges, see [27]. The coefficient
functions βr,s(g) expand in powers of the coupling constant

βr,r+1+2ν(g) =

∞∑
μ=ν

g2r+2ν+2μβ
(r+ν+μ)
r,r+1+2ν (2.11)

with β
(�)
r,s some numerical constants in the same notation as in [25]. We should eliminate

from the start the only coefficient β
(2)
2,3 = 0 contributing at three loops. Note that in [14]
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only the leading four-loop correction

exp

(
2iθ(uk, uj)

)
= exp

(
i 8β g6 (q2(uk) q3(uj) − q3(uk) q2(uj)) + · · ·

)
(2.12)

was treated. Thus the first constant in (2.10) is β
(3)
2,3 = 4β.

The modified Bethe ansatz (2.9) with (2.10) may be treated in much the same fashion
as the simpler ansatz (2.1), see [14] for the details. In particular, the singular one-loop
distribution may be split off in the same way. In fact, for an arbitrary dressing phase the
general form (2.2) of the integral equation as well as the properties (2.5) and (2.4) remain
valid. What changes is the kernel (2.6), which generalizes to

K̂(t, t′) = K̂m(t, t′) + K̂d(t, t
′) (2.13)

with the dressing kernel

K̂d(t, t
′) =

4

t t′

∞∑
ρ=1

∞∑
ν=0

∞∑
μ=ν

g2μ+1(−1)ν(β
(2ρ+ν+μ)
2ρ,2ρ+1+2ν J2ρ+2ν(t) J2ρ−1(t

′)

+ β
(2ρ+1+ν+μ)
2ρ+1,2ρ+2ν+2 J2ρ(t) J2ρ+1+2ν(t

′)) (2.14)

and the inhomogeneous term of the integral equation (2.2) receives additional
contributions

K̂d(t, 0) =
J1(t)

t
+

2

t

∞∑
ν=0

∞∑
μ=ν

g2μ+1(−1)ν β
(2+ν+μ)
2,3+2ν J2+2ν(t). (2.15)

Notice that as promised (2.4) still holds for (2.13), (2.14) and arbitrary constants β
(�)
r,s ,

and that therefore also (2.5) remains valid.
Equation (2.2) is still just as suitable for a perturbative small-g expansion if we use

the modified kernel (2.13) and (2.14) instead of (2.6). It was already stated in [14] that a
four-loop dressing phase (2.12) leads to the following O(g8) term in the scaling function
f(g):

f(g) = · · ·−16
(

73
630

π6 − 4 ζ(3)2 + 8 β ζ(3)
)
g8 + · · · . (2.16)

This violates transcendentality for generic β. However, if β is a rational number times
ζ(3) (or π3) transcendentality is preserved. It is straightforward to extend this analysis
to even higher loop order:

Interestingly, a study of the effect of the constants β
(�)
r,s in (2.10) reveals that

for arbitrary loop order transcendentality is preserved if and only if the degree of

transcendentality of β
(r+ν+μ)
r,r+1+2ν is 2μ + 1, independently of r and ν. In other words

β(�)
r,s should have degree of transcendentality 2� + 2 − r − s. (2.17)

A particularly curious case is β = 1
2
ζ(3), which cancels the term containing ζ(3)2,

and thus leads to the much simpler four-loop answer −(73/630) π6 16 g8. Beyond four

loops, one finds that one can always choose the β
(�)
r,s in many different ways such that all

terms containing zeta functions of odd argument are cancelled from the expansion (2.8).

What is truly remarkable, however, is that the constants β
(�)
r,s are uniquely determined if
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we impose a further restriction on them conjectured to hold for arbitrary long-range spin
chains compatible with gauge theory5 in [25], cf equation (4.2) in that paper,

β
(r+ν+μ)
r,r+1+2ν = 0 for μ < r + ν − 1, (2.18)

or, in a different notation, β
(�)
r,s = 0 for � < r + s − 2. One finds to the first few orders6

β
(3)
2,3 → +2 ζ(3),

β
(4)
2,3 → −20 ζ(5),

β
(5)
2,3 → +210 ζ(7), β

(5)
3,4 → +12 ζ(5), β

(5)
2,5 → −4 ζ(5),

β
(6)
2,3 → −2352 ζ(9), β

(6)
3,4 → −210 ζ(7), β

(6)
2,5 → +84 ζ(7).

(2.19)

The expansion of the scaling function significantly simplifies as compared to (2.8):

f0(g) = 8 g2 − 8

3
π2 g4 +

88

45
π4 g6 − 16

73

630
π6 g8 + 32

887

14 175
π8g10

− 64
136 883

3742 200
π10g12 + 128

7680 089

340 540 200
π12g14 ∓ · · · . (2.20)

The even-zeta terms, and thus the parts containing only even powers of π, are unaffected.

However, (2.19) is not the only curious choice for the constants β
(�)
r,s in the dressing

phase (2.10). Another striking choice corresponds to doubling the just discussed special
constants, e.g. to the first few orders (2.19) becomes:

β
(3)
2,3 = +4 ζ(3),

β
(4)
2,3 = −40 ζ(5),

β
(5)
2,3 = +420 ζ(7), β

(5)
3,4 = +24 ζ(5), β

(5)
2,5 = −8 ζ(5),

β
(6)
2,3 = −4704 ζ(9), β

(6)
3,4 = −420 ζ(7), β

(6)
2,5 = +168 ζ(7).

(2.21)

Now the zeta functions of odd argument no longer cancel out. Instead, one finds to, for
example, seven-loop order

f(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(
73

630
π6 + 4 ζ(3)2

)
g8

+ 32

(
887

14 175
π8 +

4

3
π2ζ(3)2 + 40 ζ(3) ζ(5)

)
g10

− 64

(
136 883

3742 200
π10 +

8

15
π4ζ(3)2 +

40

3
π2ζ(3) ζ(5)

+ 210 ζ(3) ζ(7) + 102 ζ(5)2

)
g12

5 This study applied to the su(2) sector of the gauge theory, but the phase is universal for all sectors [1, 6, 5] and
thus includes sl(2).
6 Some of the coefficients appear in the expansion of the scaling function at higher orders than naively expected
from the expansion of the kernel (2.13) and (2.14). They are nevertheless fixed. For example, β

(5)
3,4 does not appear

at six loops as expected, but only at seven loops in f(g). But at this order it is fixed to 12 ζ(5) if we demand all
odd-zeta terms to cancel.
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+ 128

(
7680 089

340 540 200
π12 +

47

189
π6ζ(3)2 +

82

15
π4ζ(3) ζ(5) + 70π2ζ(3) ζ(7)

+ 34π2ζ(5)2 + 1176 ζ(3) ζ(9) + 1092 ζ(5) ζ(7) + 4 ζ(3)4

)
g14

∓ · · · . (2.22)

Remarkably, the alternating sum (2.22) is identical to (2.8) for the case of a trivial dressing
phase by multiplying all zeta functions with odd arguments by the imaginary unit i, i.e. the
replacement ζ(2n+1) → i ζ(2n+1). After this operation, and in contradistinction to the
earlier case as discussed in [14], now all relative signs of the terms in (2.22) are identical,
but the terms are otherwise unchanged! A proof of this transformation will be given in
appendix B.

To wrap up the above results, we would like to mention that the scaling functions
fm(g), f0(g) and f(g) are part of a one-parameter family fκ(g) interpolating between these
three choices. The general function is obtained by multiplying the constants in (2.19)
by an overall factor of (1 + κ). The resulting universal scaling function fκ(g) is the
same as the sign-synchronized scaling function f(g) in (2.22), but with the replacement
ζ(2n + 1) →

√
κ ζ(2n + 1).

We see that there are very interesting and seemingly natural ways to deform the
scattering phase of [27, 6] while preserving Kotikov–Lipatov transcendentality. We will
now argue in section 3 that the (conjectured) AdS/CFT correspondence, together with
(conjectured) integrability and a (conjectured) crossing-symmetric strong-coupling phase
factor, indeed appears to single out one of the above choices. We will continue in section 4
with the investigation of the kernels and scaling functions. There we will derive a closed
form for the very same constants and a concise integral expression for the summed dressing
kernel.

3. An analytic continuation of sorts

In the following section, we shall investigate the constants β
(�)
r,s starting from string theory.

For perturbative string theory it is useful to write the dressing phase θk,j in (2.9) and (2.10)
as

θ(uk, uj) =

∞∑
r=2

∞∑
s=r+1

cr,s(g)(q̃r(uk) q̃s(uj) − q̃s(uk) q̃r(uj)). (3.1)

Here the excitation charges q̃r(u) are normalized as q̃r(u) = gr−1qr(u) differently
from (2.10). Consequently, the coefficient functions cr,s and βr,s are related by

cr,s(g) = g2−r−sβr,s(g). (3.2)

The strong-coupling expansion of cr,s within string theory is non-trivial [20], [33]–[35]

cr,s(g) =

∞∑
n=0

c(n)
r,s g1−n. (3.3)

doi:10.1088/1742-5468/2007/01/P01021 8
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A proposal for the all-order strong-coupling expansion based on available data [20], [33]–
[35] and crossing symmetry [22] was made in section 5.2 of [24]

c(n)
r,s =

(1 − (−1)r+s)ζ(n)

2(−2π)n Γ(n − 1)
(r − 1)(s − 1)

Γ[1
2
(s + r + n − 3)] Γ[1

2
(s − r + n − 1)]

Γ[1
2
(s + r − n + 1)] Γ[1

2
(s − r − n + 3)]

. (3.4)

This expression is formally 0/0 when setting n = 0, 1 so we have to use a proper
regularization [24]: in these cases the correct expression is known from comparison to
classical and one-loop string theory data [20], [33]–[35]

c(0)
r,s = δr+1,s, c(1)

r,s = −(1 − (−1)r+s)

π

(r − 1)(s − 1)

(s + r − 2)(s − r)
. (3.5)

The expression for c
(1)
r,s is easily recovered from (3.4) through the limit ζ(n)/ Γ(n− 1) → 1

when n → 1. For n = 0 we first set r, s to some integer values with s > r. If s > r + 1

the only singular term is 1/ Γ(n − 1) which guarantees c
(0)
r,s = 0. This explains the δr+1,s

term in (3.5). For s = r + 1, however, the term Γ[1
2
(s − r + n − 1)] diverges at n = 0. In

this case we can rewrite the expression with arbitrary n as

c
(n)
r,r+1 =

2(n − 1) ζ(n) Γ(1 + 1
2
n)

(−2π)n Γ(n + 1) Γ(2 − 1
2
n)

r(r − 1) Γ(r − 1 + 1
2
n)

Γ(r + 1 − 1
2
n)

. (3.6)

Here we can easily set n = 0 and obtain c
(0)
r,r+1 = 1 as required by (3.5).

In order to compare to gauge theory, we have to find an expansion of cr,s(g) at weak
coupling according to (2.10). The main obstruction in the investigation of the function
cr,s(g) is that the known expansion at strong coupling is merely asymptotic: for fixed r, s

and even n the sequence of coefficients c
(n)
r,s terminates at n = s− r + 1 [24]. However, the

odd-n sequence does not terminate and grows factorially as

c
(n+2)
r,s

c
(n)
r,s

=
n2

64π2
+ O(n). (3.7)

Consequently, the series of c
(n)
r,s is asymptotic and has zero radius of convergence around

g = ∞. It is Borel summable, but the expression for the coefficients may be too complex
to perform the sum in practice.

In order to extrapolate to weak coupling, let us consider a simple model function first.
In [24] some similarities between the phase and the digamma function Ψ(z) = ∂z log Γ(z)
were observed. This function has the following asymptotic expansion for large and positive
z

Ψ(1 + z) = log z +

∞∑
n=1

cn

zn
, cn = −Bn

n
= (−1)nζ(1 − n), (3.8)

where Bn are the Bernoulli numbers which can also be expressed through the zeta function
as Bn = (−1)n+1nζ(1 − n). Conversely, the expansion around z = 0 is

Ψ(1 + z) = −γE +

∞∑
k=1

c̃k zk, c̃k = −(−1)kζ(1 + k) (3.9)
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with γE being Euler’s constant. The curious observation is that the expansion coefficients
for large z and for small z are almost the same. They are related by

cn = −c̃−n. (3.10)

In other words, we obtain the expansion coefficients by analytic continuation of the index
parameter n to negative values.

Could it be that a similar relation holds also for the expansion of the coefficients
cr,s(g) at strong and weak coupling, respectively? Admittedly, this is a very wild guess,
but it turns out to be literally true. The expansion of cr,s(g) at weak coupling is

cr,s(g) = −
∞∑

n=1

c(−n)
r,s g1+n. (3.11)

In the following we shall not only provide indications for the mathematical correctness of
this statement, but also argue that it leads to a consistent physical picture.

As a first test, let us compute some c
(n)
r,s with negative value of n. Straight evaluation

turns out to yield 0/0 in most cases and the expressions need to be regularized. We will
therefore use the same procedure as in the cases n = 0, 1 and set r, s to their expected

values first. Afterwards we take the analytic continuation of c
(n)
r,s for the expected value

of n. In this way we obtain, e.g.

c
(−1)
2,3 = 0, c

(−2)
2,3 = −4 ζ(3). (3.12)

The absence of a n = −1 contribution translates via � = (r+s−n−1)/2 to the absence of
a � = 5/2 contribution, where � represents the number of loops in gauge theory. In general
all contributions for odd negative n should be zero to guarantee absence of contributions
at fractional orders. In that case the expansion coefficients at weak coupling would be

β(�)
r,s = −c(r+s−2�−1)

r,s . (3.13)

The first non-trivial contribution appears at7

β
(3)
2,3 = 4 ζ(3). (3.14)

This is encouraging for several reasons: firstly, it influences anomalous dimensions starting

from four loops. Currently, we know β
(�)
2,3 = 0 for � = 0, 1, 2 only, so this is perfectly

consistent with available data from gauge theory. Moreover, β
(3)
2,3 is the first allowed

contribution according to (2.18). In addition, the value 4ζ(3) has transcendentality 3 in
the counting scheme of [15]. This is precisely the right transcendentality required for a
uniform transcendentality of the scaling function [14]. Finally, the value (3.14) agrees
precisely with the first in the series of sign reversing constants (2.21)! Let us now rewrite

7 A curious observation is that the leading contribution to the function β2,3 = ζ(3) λ3/1024π6 + · · · resembles
the value 3ζ(3)λ3/512π4 [36] of a certain X-shaped diagram [37] to a circular Maldacena–Wilson loop [38] (the
conjectured value λ3/4!3 in [37] is almost true). If a contribution proportional to ζ(3) survives in the sum over
all diagrams at this order, it would imply that the ladder approximation [39] is not complete. This may seem
unlikely, as this approximation yields a consistent strong-coupling result [39, 40]. However, it is not yet excluded
either that non-ladder contributions have a mild, but non-vanishing effect.
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the coefficients in a form more convenient for negative n. We use the identities

ζ(1 − z) = 2(2π)−z cos(1
2
πz) Γ(z) ζ(z) and Γ(1 − z) =

π

sin(πz) Γ(z)
(3.15)

and obtain for integer r, s a new form for the coefficients

c(n)
r,s =

(1 − (−1)r+s) cos(1
2
πn) (−1)s−1−n ζ(1 − n) Γ(2 − n) Γ(1 − n) (r − 1)(s − 1)

Γ[1
2
(5 − n − r − s)] Γ[1

2
(3 − n + r − s)] Γ[1

2
(3 − n − r + s)] Γ[1

2
(1 − n + r + s)]

.

(3.16)

The factor cos(1
2
πn) makes it apparent that n must be even and that there are no

fractional-loop contributions. Furthermore the factor 1/ Γ[1
2
(5 − n − r − s)] imposes the

lower bound −n ≥ r + s− 3 for the loop order � = (r + s−n− 1)/2 ≥ r + s− 2 consistent
with (2.18). As we discussed already in section 2,

β(�)
r,s ∼ ζ(2 + 2� − r − s), (3.17)

this is precisely what is required for a uniform transcendentality of the scaling function.
Being convinced of the physical plausibility of the proposal, we shall now investigate

the equivalence of the weak-and strong-coupling expansions for the choice r = 2, s = 3.
The proposed weak-coupling expansion is

c2,3(g) = −
∞∑

n=1

c
(−2n)
2,3 g1+2n (3.18)

with

c
(−2n)
2,3 =

4(−1)n ζ(2n + 1) Γ(2n) Γ(2n − 1)

Γ(n) Γ(n + 1) Γ(n + 2) Γ(n + 3)
. (3.19)

We shall write ζ(1 + 2n) using its series representation

c2,3(g) =

∞∑
n=1

∞∑
k=1

4(−1)n+1 (2n − 1)! (2n)! (g/k)1+2n

(n − 1)! n! (n + 1)! (n + 2)!
. (3.20)

The sum over n can now be evaluated explicitly to

c2,3(g) =
∞∑

k=1

h2,3(g/k), h2,3(z) = −1

z
+

1 + 16z2

6πz3
K(4iz) − 1 − 4z2

6πz3
E(4iz), (3.21)

where K and E are the elliptic integrals of the first and second kind, respectively8. The
function h2,3, some partial sums as well as the series expansion of c2,3 are displayed in
figure 1.

It is now possible to connect to strong coupling. The expansion of the function h2,3

at large positive z is

h2,3(z) =
8

3π
− 1

z
+

3 log(16z)

4πz2
− 5

8πz2
+

5 log(16z)

512πz4
+

1

2048πz4
+ · · · . (3.22)

8 We use the convention that the modulus appears in a squared form as (4iz)2 = m.
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Figure 1. Left: plot of h23(z) with asymptotic value 8/3π. Right: plot of the
partial sums in c23(g) with weak coupling expansion up to radius of convergence
g = 1

4 .

Zeta function regularization9 of the sum yields

∞∑
k=1

h2,3(g/k) = g

∫ ∞

0

h2,3(1/z) dz +
8ζ(0)

3π
− ζ(−1)

g

+
3

4π

ζ ′(−2)

g2
− 5

8π

ζ(−2)

g2
+

5

512π

ζ ′(−4)

g4
− 1

2048π

ζ(−4)

g4
+ · · ·

= g − 4

3π
+

1

12g
− 3ζ(3)

16π3g2
+

15ζ(5)

2048π5g4
+ · · ·

=
∞∑

n=0

c
(n)
2,3g

1−n. (3.23)

Here the sum over kn is regularized to ζ(−n) while the sum over kn log(k) yields
−ζ ′(−n). We have verified the perfect agreement of the expansion with the strong-coupling

coefficients c
(n)
2,3 to order g−100 leaving little room for error. In appendix C we present a

proof of this statement to all orders. In the proof we observe some exponential corrections
of the type O(e−g) to the series. These corrections are not unexpected because the series
is asymptotic. A plot of the partial sums and asymptotic strong-coupling expansion of
c2,3 is given in figure 2.

We have also confirmed the same agreement for other values of (r, s): we can always
replace the ζ(1 + 2n) in cr,s by a new sum and write cr,s in terms of a function hr,s(z)
without odd-zeta terms10

cr,s(g) =

∞∑
k=1

hr,s(g/k). (3.24)

9 Zeta function regularization is closely related to Euler–MacLaurin summation. However, the latter has to be
adapted to deal correctly with terms kn log(k) in the expansion of h, see [40]. We thank S Frolov for providing us
with this reference.
10 This form of the phase may be suggestive of the presence of bound states [41] (or in general larger multiplets [42])
in intermediate channels during the scattering process. For instance, the dispersion relation as well as other
characteristic quantities of a bound state of k particles is typically obtained by replacing g → g/k in the expressions
for a single particle.
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Figure 2. Left: plot of partial sums in c2,3(g) with asymptotic strong-coupling
expansion. Right: we have plotted xc2,3(1/x) instead to improve the view of the
strong-coupling behaviour.

The series in g can now be written formally as the hypergeometric function

hr,s(z) =
2 cos[1

2
π(s − r − 1)] Γ(r + s − 2)

Γ(r − 1) Γ(s − 1)
zr+s−2

4F3(�a;�b;−16z2) (3.25)

with arguments �a = [1
2
(r+s−2), 1

2
(r+s−1), 1

2
(r+s−1), 1

2
(r+s)] and �b = [r, s, r+s−1].

This hypergeometric function can be evaluated to the general form using elliptic integrals

hr,s(z) =
Pr,s(z

2)

zr+s−2
+

Qr,s(z
2)

πzr+s−2
K(4iz) +

Rr,s(z
2)

πzr+s−2
E(4iz). (3.26)

Here P, Q, R are some polynomials of degree (r + s− 3)/2 with rational coefficients. The
polynomials P and R have special factors for all values of r, s, namely P (z2) ∼ z2(r−2)

and Q(z2) ∼ (1 + 16z2). As in the above case of (r, s) = (2, 3), we use zeta function
regularization to evaluate the sums (3.24) at strong coupling11. We have further expanded
some of the functions (3.25) at strong coupling and they fully agreed with the proposal
in [24] upon zeta function regularization in all cases tested (all pairs of r, s with s ≤ 10
to 20 orders). In appendix C we will finally show for general (r, s) that cr,s(g) at large g

yields the first two orders c
(0)
r,s and c

(1)
r,s in (3.5) which are known from perturbative string

theory [20, 34].
It is therefore fair to claim that the strong-coupling expansion (3.3) and the weak-

coupling expansion (3.11) describe one and the same function cr,s(g) for all (r, s). However,
we should stress that the weak-coupling expansion is more versatile than the strong-
coupling one: the functions hr,s have singularities at g = ± i

4
, and thus the coefficients

cr,s(g) have singularities at g = ± i
4
k for all positive integers k.12 Consequently, cr,s(g)

has a finite radius of convergence around g = 0, and the weak-coupling series defines
the function unambiguously. In contradistinction the strong-coupling expansion is merely
asymptotic and does not fully define the function.

11 The polynomial P generates even-loop orders in string theory, while Q, R generate the odd ones. Its coefficients
are thus directly related to the coefficients c

(2n)
r,s .

12 The singularities arise from the elliptic integrals in (3.26) and therefore appear to be related to a degeneration
of the complex tori defining the kinematical space for the bound states in [41, 42].
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4. Magic kernels

Now we will return to our study of the integral equation for the fluctuation density in
the presence of a perturbative dressing phase θ 	= 0. As noted in section 2, there appears

to exist a very special choice for the constants β
(�)
r,s in (2.10) such that the odd-zeta

contributions to the scaling function based on a trivial phase θ = 0 (fm(g), see (2.8))
either cancel (f0(g), see (2.20)), or synchronize their relative sign w.r.t. the even-zeta
contributions (f(g), see (2.22)). The constants of the latter case appeared to differ from
the ones of the former case by a factor of two. Let us now prove these statements, and

derive the relevant set of constants β
(�)
r,s .

An observation of central importance for this section is that the simplified scaling
function f0(g) may be obtained from an effective kernel much simpler than (2.13) and
(2.14). One just needs to decompose the ‘main scattering’ kernel (2.6) into two parts

K̂m(t, t′) = K̂0(t, t
′) + K̂1(t, t

′), (4.1)

which are even and odd functions, respectively, under both t → −t and t′ → −t′.
Explicitly these functions are

K̂0(t, t
′) =

t J1(t) J0(t
′) − t′ J0(t) J1(t

′)

t2 − t′2
,

K̂1(t, t
′) =

t′ J1(t) J0(t
′) − t J0(t) J1(t

′)

t2 − t′2
.

(4.2)

It turns out that the component K̂1 is responsible for all odd-zeta contributions to fm. If
we eliminate it and set K̂ = K̂0 in (2.2) we obtain just the same functions σ̂0 and f0(g),
see (2.20). Note that again (2.4) remains true under this symmetrization, and (2.7) holds

with K̂m → K̂0.
We can use this observation to obtain an almost closed expression for the dressing

kernel. We start from the integral equation with a purely even kernel (4.2)

σ̂0(t) =
t

et − 1

[
K̂0(2 g t, 0) − 4 g2

∫ ∞

0

dt′ K̂0(2 g t, 2 g t′) σ̂0(t
′)

]
, (4.3)

which leads to f0(g). Replacing K̂0 by K̂m − K̂1, using K̂1(t, 0) = 0, and substituting σ̂0

once into the ensuing second convolution only, we derive the relation

σ̂0(t) =
t

et − 1

[
K̂m(2 g t, 0) + K̂c(2 g t, 0)

− 4 g2

∫ ∞

0

dt′
(
K̂m(2 g t, 2 g t′) + K̂c(2 g t, 2 g t′)

)
σ̂0(t

′)

]
(4.4)

with the function K̂c

K̂c(t, t
′) = 4 g2

∫ ∞

0

dt′′ K̂1(t, 2 g t′′)
t′′

et′′ − 1
K̂0(2 g t′′, t′). (4.5)

Now (4.4) is just the original integral equation (2.2), but with the kernel K̂ = K̂m+K̂c.

Therefore we can interpret K̂c as a dressing kernel to generate the simplified dressing
function f0(g). In fact, it agrees precisely with the expansion of the general dressing
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kernel (2.13) and (2.14) using the first few coefficients found in (2.19)! The expression for

the dressing kernel K̂c allows us to derive a closed expression for the constants β
(�)
r,s leading

to cancellation of odd-zeta contributions. The details of this derivation are presented in
appendix A; the final result is

β
(r+ν+μ)
r,r+1+2ν → (−1)r+μ+1 (r − 1)(r + 2ν)

2μ + 1

(
2μ + 1

μ − r − ν + 1

) (
2μ + 1
μ − ν

)
ζ(2μ + 1). (4.6)

Surprisingly, these coefficients agree, up to a global factor of 1
2
, with the ‘analytic

continuation’ of the conjectured strong-coupling dressing phase constants (3.13) and
(3.16)! The results of the previous section then suggest that the correct crossing-invariant
choice of constants is just twice (4.6). Of course, these constants agree with those in (2.21).
The corresponding kernel for the integral equation (2.2) of the universal scaling function
f(g) is, cf (2.6), (4.5)

K̂(t, t′) = K̂m(t, t′) + 2 K̂c(t, t
′). (4.7)

What does this imply for the universal scaling function? We ‘experimentally’ observed
in section 2, to rather high order, that the doubled constants (4.8) lead to sign reversals in
those odd-zeta terms which do not have the same relative sign as the even-zeta terms in
the original proposal (2.8). Up to this minor modification, the associated scaling function
agrees with the one based on a trivial phase. We will present a proof of this statement in
appendix B.

It is interesting to investigate the analytic structure of the three candidate scaling
functions. In each case one would like to find the locations of all singularities in the
complex g-plane, and determine whether they correspond to poles, branch points, or are
of essential type. The convergence properties of the weak coupling expansion series are,
in particular, clearly related to the singularity with smallest |g|.

The integral form of the dressing kernel Kc allows us to derive conveniently the first
few orders in the expansion of the scaling function. The analytic expression is given (2.22).
Beyond 20 orders, however, the analytic calculation slowed down substantially due to an
exploding number of partitions for the odd-zeta contributions. This complexity can be
reduced by reverting to a numerical computation. We were able to produce all three
scaling functions fm(g), f0(g) and f(g) up to 50 loops, O(g100), at 1000-digit accuracy
(needed for intermediate steps). A plot of these three functions is shown in figure 3.

We have then used the quotient criterion to investigate the convergence properties of
the series. Our results indicate that the radius of convergence in g is 1

4
in all three cases.

The related singularity is situated at g = ± i
4

or, put differently, at λ = −π2. The accuracy
of this result was very high and the position matches with the singularity of the function
in (3.21). The exponents of the singularity f 
 (λ + π2)α appear to be α = +1, +2

3
, +1

2
for the three functions fm(g), f0(g) and f(g), respectively. We were not able to produce
a very accurate result in this case; we expect it to be accurate within a few per cent.

In conclusion, the final proposal for the, hopefully correct, expansion coefficients of
the dressing phase (2.10) and (2.11) is

β
(r+ν+μ)
r,r+1+2ν = 2(−1)r+μ+1 (r − 1)(r + 2ν)

2μ + 1

(
2μ + 1

μ − r − ν + 1

) (
2μ + 1
μ − ν

)
ζ(2μ + 1). (4.8)
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Figure 3. Top to bottom curves: plot of the scaling functions fm(g), f0(g) and
f(g) with g = 1

4

√
x.

The resulting universal scaling function f(g) in a weak-coupling expansion was presented
in (2.22) to the first few orders. Its convergence properties seem to indicate a singularity
at λ = −π2 with exponent +1

2
.

The strong-coupling expansion of the scaling function f(g) remains to be evaluated
within the Bethe ansatz framework. A comparison to available data [43, 44] from string
theory would constitute an important test of our proposed dressing phase. The leading
order at strong coupling based on the AFS phase [20] (which is consistent with our
proposal) indeed agrees [45] with an explicit string theory calculation [43]. Conversely, in
the case of the undressed function fm(g), the integral equation is troublesome and leads
to a fluctuating solution [30]. Hopefully the situation is improved by the correct dressing
phase in order to find agreement with string theory.

5. Conclusions and outlook

In this paper we have derived an expression (2.10), (2.11) and (4.8) for the complete
weak-coupling expansion of the dressing phase θ in the Bethe ansatz [6] of planar N = 4
gauge theory. It is based on a crossing-symmetric proposal in section 5.2 of [24] for
the strong-coupling expansion of the dressing phase in conjunction with some curious
structures of cancellations and replacements when a dressing phase modifies the scaling
function fm(g) based on a trivial phase, as originally derived in [14]. Whether or not our
proposal describes the AdS/CFT system accurately, we have shown that there exists a
natural expression for the dressing phase which appears to interpolate between currently
known spectral data at weak and strong coupling. We are hopeful, but have not shown,
that any alteration of our proposal is likely to violate the transcendentality principle in
gauge theory and/or crossing symmetry in string theory as well as leads to potential
contradictions with the available data. In that sense our proposal lends support to an
exact interpretation of the AdS/CFT correspondence [18], at least in the case of N = 4
gauge theory in the ’t Hooft limit and free IIB superstrings on AdS5 × S5.

The dressing phase θ is given as a multiple expansion in excitation charges and the
coupling constant. The radius of convergence w.r.t. the ’t Hooft coupling λ around λ = 0
is |λ| < π2. The singularities are situated at λ = −n2π2 for all non-zero integers n.
Consequently, perturbative gauge theory appears to unambiguously define the phase
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and its analytic continuation. Note, however, that we have not succeeded in summing
over the modes r, s of βr,s(g) or even studying the analytic structure of the phase θ in
general. Conversely, the strong-coupling expansion of the phase can merely be asymptotic
because λ = ∞ is an accumulation point of singularities. The asymptotic string expansion
proposed in section 5.2 of [24] seems to be in perfect agreement with our proposal, but it
is not sufficient to uniquely define a complex function.

Two methods of testing our coefficients come to mind: the first is a direct computation
of the scaling function f(g) at four loops. Until recently, it was known up to three loops
[7, 8], see also [10], but with methods based on the unitarity of scattering amplitudes it is

within computational reach [12, 13]. Our prediction β
(3)
2,3 = 4β = 4ζ(3) leads to a four-loop

contribution to the universal scaling function

f(g) = · · ·−16

(
73

630
π6 + 4 ζ(3)2

)
g8 + · · ·

≈ · · ·−3.015 02 × 10−6λ4 + · · · . (5.1)

The final outcome of the four-loop calculation by Bern, Czakon, Dixon, Kosower and
Smirnov [13], which was performed in parallel and completely independently from our
analysis, is

f(g) = · · ·−64 × (29.335 ± 0.052) g8 + · · ·
= · · ·−(3.0192 ± 0.0054) × 10−6λ4 + · · · . (5.2)

The perfect agreement between the two numbers provides further confidence that our
proposed dressing phase correctly describes the asymptotic spectrum of anomalous
dimensions in planar N = 4 gauge theory. At the least it ascertains that the dressing
phase is non-trivial starting from O(g6), and that the constant for the first correction

in [14] takes the value β = 1
4
β

(3)
2,3 = ζ(3). Note, however, that we have to assume the

exact universality of the scaling function, i.e. that it is exactly the same for twist-two (as
assumed in [13]) and for higher-twist (as required for the asymptotic Bethe ansatz).

A computation of the function f(g) to even higher loop orders would provide more
stringent tests of our proposal. Given the remarkable success of unitarity-based methods
in [7, 8, 13] we do not dare call this impracticable. However, some yet-to-be-discovered
iterative structure is likely to exist if our comparably simple integral equation holds
true. With many perturbative orders available an extrapolation to strong coupling
may be attempted and compared to string theory results [43, 44] via the AdS/CFT
correspondence. Such an analysis was indeed performed in [13] using the KLV [46] and
Padé approximations. It is based on their independent guess of the function f(g) in (2.22)
and how to obtain it from the earlier proposal (2.8) by synchronizing all signs. Strangely,
their approximations, based on using the first seven or eight terms for example, appear
to indicate that (2.22) is about 5% away from the expected strong-coupling value of [43].
Non-coincidence of the values would be rather puzzling with regard to the discussion at
the end of sections 4 and 3. Would it imply that f(g) at strong coupling does not describe
the string states in [43, 44]? Are there some non-perturbative corrections? To that end,
it would be worth investigating whether an adapted scheme which takes into account all
singularities at λ = −n2π2 and their accumulation at λ = ∞ can produce an extrapolation
of f(g) closer to the expected string theory values [43, 44].
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Another way of testing the proposal involves local operators of small classical
dimension. A gauge Bethe ansatz modified by a dressing phase changes the anomalous
dimensions Δ of all operators in all sectors. For example, in the su(2) sector we would
find for the length L = 5 operator Tr X2 Z3 + · · · (this case is actually equivalent to the
sl(2) twist = length three operator Tr D2 Z3 + · · ·) to four loops

Δ = 5 + 8 g2 − 24 g4 + 136 g6 − 16

(
115

2
+ 2 β

(3)
2,3

)
g8 + · · · . (5.3)

For the specific case of constants (4.8) we then have

Δ = 5 + 8 g2 − 24 g4 + 136 g6 − 16

(
115

2
+ 8 ζ(3)

)
g8 + · · · . (5.4)

Intriguingly, this predicts the appearance of a non-rational term in the four-loop
anomalous dimension of a finite length operator! Such contributions are impossible if
the dressing phase is trivial, i.e. if θ = 0. They are certainly not excluded, and a priori
even likely, from the point of view of perturbative field theory. This would then also rule
out the all-loop ‘BDS’ ansatz originally proposed in [27], and as a consequence also its
finite-length description through the Lieb–Wu equations of the Hubbard model, cf (68)
in [47]. It also eliminates the Hubbard Hamiltonian as an exact candidate for the su(2)
dilatation operator [47]. However, a gauge theory dressing phase (2.10) whose constants
preserve transcendentality for twist operators, such as in the specific suggestion (4.8),
would have the following intriguing property affecting operators of finite length and spin.
Up to (at least) wrapping order, the BDS ansatz would give the correct ‘rational part’
of all anomalous dimension matrices, and the Hubbard Hamiltonian would emulate the
‘rational part’ of the su(2) dilatation operator to (at least) wrapping order.

An interesting question concerns the computation of anomalous dimensions beyond
wrapping order. The simplest case is the four-loop anomalous dimension of the Konishi
field, i.e. the su(2) length L = 4 operator Tr X2 Z2 + · · ·, or, equivalently, in sl(2) the
lowest spin S = 2, length L = 2 operator TrD2 Z2 + · · ·. If we, a priori ‘illegally’, apply
the asymptotic Bethe ansatz (2.9) and (2.10) we find the four-loop result

Δ = 4 + 12 g2 − 48 g4 + 336 g6 − 16

(
705

4
+

9

2
β

(3)
2,3

)
g8 + · · · . (5.5)

Recall that β
(3)
2,3 = 0 is the ‘BDS’ case with dressing phase θ = 0. With our conjecture (4.8)

we then have instead

Δ = 4 + 12 g2 − 48 g4 + 336 g6 − 16

(
705

4
+ 18 ζ(3)

)
g8 + · · · . (5.6)

However, as opposed to (5.4), this result is much less certain. It would only be true if our
asymptotic Bethe equations turn out to be exact. Conversely, recall that the Hubbard
model [47] yields for this state

Δ = 4 + 12 g2 − 48 g4 + 336 g6 − 16 × 318 g8 + · · · . (5.7)

Could it be that the Hubbard model still properly yields the ‘rational part’ of fields even
beyond wrapping order? This might then result in

Δ = 4 + 12 g2 − 48 g4 + 336 g6 − 16 (318 + 18 ζ(3)) g8 + · · · , (5.8)

doi:10.1088/1742-5468/2007/01/P01021 18

http://dx.doi.org/10.1088/1742-5468/2007/01/P01021


J.S
tat.M

ech.
(2007)

P
01021

Transcendentality and crossing

but, in the absence of a yet-to-be-constructed rigorous Bethe ansatz for the finite system,
this is of course a quite unfounded speculation.

Of course, there are more general questions: it would be very valuable to find a
closed form for the proposed dressing phase θ and to prove its correctness. Likewise,
the exact integrability of the planar AdS/CFT model still lacks a rigorous proof. Are
the Bethe equations at finite coupling and finite length exact or is there a more
fundamental description of the planar spectrum of which the Bethe equations are
merely some limits? For instance, the exactness may be flawed by certain terms which
are exponentially suppressed at long states [48]. The ‘covariant’ approaches started
in [49, 47, 50] may provide an answer to this question as well as recover the dressing
phase from a more fundamental (and simpler) description. Other promising approaches
are the thermodynamical Bethe ansatz (see [51]) and Baxter equations (see [52]).

It is curious to see that in our proposal the deviations from a trivial phase start to
contribute to anomalous dimensions at four loops, which is a rather high perturbative
order. If true, this might indicate that intuition gained from some perturbative
computations, even if they extend to two or three loops, may be deceiving. For instance,

a non-zero value for β
(3)
2,3 = 4β leads to a four-loop breakdown of weak-coupling BMN

scaling [2] in N = 4 gauge theory. This possibility was discussed by several authors in
the past in order to reconcile discrepancies between gauge and string theory structures
at, respectively weak and strong coupling. See in particular [53, 17, 27, 54, 33, 55]. Our
proposal suggests that this is indeed the case. The assumption of [2] that the BMN limit
leads to a dilute gas with weakly interacting particles is not compatible with our phase.
It should be noted that the perturbative dispersion relation obtained in [56] is indeed
compatible with our proposal. However, it cannot be translated directly into anomalous
dimensions of local operators as suggested in [2, 56].

The same applies for the spinning strings proposal [57]: the weak-coupling expansion
in the effective coupling constant λ′ ∼ λ/J2 leads to terms of the type (λ′)4J2 which
diverge in the limit of large spin J . The investigation of spinning string solutions from
the gauge theory side started in [58] will therefore fatally break down at the four-loop
level. Nevertheless, the proposals [2, 57] have been of tremendous importance to initiate
the study of stringy and integrable structures in N = 4 gauge theory.

Finally, it is worth pointing out that β2,3(g) = O(g6) is reminiscent of the findings [59]
within the plane wave (BMN) matrix model [2]. Also there, a non-trivial dressing phase

was observed starting at the same order. The main difference is that the coefficient β
(3)
2,3

for the BMN matrix model is rational while ours is a rational multiple of ζ(3). This may
potentially be related to the fact that the matrix model has only finitely many degrees of
freedom while N = 4 SYM is non-compact.
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Appendix A. Expansion of the magic kernel

In this appendix we present a weak-coupling expansion of the magic kernel K̂c in (4.5)

leading to an expression for the coefficients β
(�)
r,s of the dressing phase.

A useful integral representation for the even and odd parts was found in [14]:

K̂0(t, t
′) =

∫ 1

0

dλ λ J0(λ t) J0(λ t′),

K̂1(t, t
′) =

∫ 1

0

dλ λ J1(λ t) J1(λ t′).

(A.1)

With their help, we may calculate K̂c to be

K̂c(t, t
′) = 4g2

∫ ∞

0

dt′′
∫ 1

0

dλ1 λ1 J1(λ1 t) J1(λ1 2 g t′′)
t′′

et′′ − 1

×
∫ 1

0

dλ2 λ2 J0(λ2 2 g t′′) J0(λ2 t′)

= −4
∞∑

μ=1

(−1)μg2μ+1ζ(2μ + 1) (2μ)!

μ−1∑
n=0

1

n! (n + 1)! (μ − 1 − n)! (μ − 1 − n)!

×
∫ 1

0

dλ1 λ
2(n+1)
1 J1(λ1 t)

∫ 1

0

dλ2 λ
2(μ−n)−1
2 J0(λ2 t′) (A.2)

where we have first expanded the Bessel functions with argument λ1,2 2 g t′′ in g and then
executed the t′′ integration. The two remaining parameter integrals in the last line may
be found from a standard formula. In the first integral the power of λ1 in front of J1(λ1t)
is always even, and in the second one the power of λ2 in front of J0(λ2t

′) is always odd.
Both integrals therefore yield finite sums of Bessel functions:

∫ 1

0

dλ1 λ2m
1 J1(λ1 t) = −(m − 1)! m!

(2m)!

m∑
k=1

(−1)k

(
2m

m − k

)
2k

t
J2k(t)

∫ 1

0

dλ2 λ2m−1
2 J0(λ2 t′)

= −(m − 1)! (m− 1)!

(2m − 1)!

m∑
l=1

(−1)l

(
2m − 1
m − l

)
2l − 1

t′
J2l−1(t

′). (A.3)

On substituting these into (A.2) we can cancel the factors which depend on n but not on
k, l. We re-order the n, k, l sums to find:

K̂c(t, t
′) = − 4

t t′

∞∑
μ=1

(−1)μg2μ+1ζ(2μ + 1) (2μ)!

×
k+l≤μ+1∑

k,l≥1

(−1)k+l(2k) J2k(t) (2l − 1) J2l−1(t
′)

×
μ−l∑

n=k−1

1

(n + 1 − k)! (n + 1 + k)! (μ − l − n)!(μ + l − 1 − n)!
. (A.4)
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The sum over n can be done in closed form:

μ−l∑
n=k−1

1

(n + 1 − k)! (n + 1 + k)! (μ − l − n)! (μ + l − 1 − n)!

=
1

(2μ + 1)!

(
2μ + 1

μ + 1 − k − l

) (
2μ + 1

μ + 1 + k − l

)
. (A.5)

Collecting results, we get

K̂c(t, t
′) = − 4

t t′

∞∑
μ=1

g2μ+1

k+l≤μ+1∑
k,l≥1

J2k(t) J2l−1(t
′) (−1)μ+k+l

× (2k) (2l − 1)

2μ + 1

(
2μ + 1

μ + 1 − k − l

) (
2μ + 1

μ + 1 + k − l

)
ζ(2μ + 1). (A.6)

This is precisely of the form of a kernel stemming from a non-trivial dressing phase θ, as

we can see by comparing to (2.14)! We can even read off the constants β
(�)
r,s :

β
(r+ν+μ)
r,r+1+2ν → (−1)r+μ+1 (r − 1)(r + 2ν)

2μ + 1

(
2μ + 1

μ − r − ν + 1

) (
2μ + 1
μ − ν

)
ζ(2μ + 1). (A.7)

Finally, instead of using the integral representation (A.1), we may also cast the two

kernels K̂0, K̂1 in the form of infinite sums13:

K̂0(t, t
′) =

2

t t′

∞∑
n=0

(2n + 1) J2n+1(t) J2n+1(t
′),

K̂1(t, t
′) =

2

t t′

∞∑
n=1

(2n) J2n(t) J2n(t′).

It follows that

K̂c(t, t
′) =

2

t t′

∞∑
k=1

∞∑
l=0

(−1)k+lc2k+1,2l+2(g) J2k(t) J2l+1(t
′) (A.8)

with the coefficient functions

cr,s(g) = 2 cos

[
1

2
π(s − r − 1)

]
(r − 1)(s − 1)

∫ ∞

0

dt
Jr−1(2 g t) Js−1(2 g t)

t(et − 1)
. (A.9)

We can use this form to present an alternative proof. We firstly expand 1/(et − 1) into a
geometric series and secondly rescale the integration variable t by g such that the integral
will manifestly depend on the ratio g/n only

cr,s(g) =

∞∑
n=1

hr,s(g/n),

hr,s(g/n) = 2 cos

[
1

2
π(s − r − 1)

]
(r − 1)(s − 1)

×
∫ ∞

0

dt

t
exp(−tn/g) Jr−1(2 t) Js−1(2 t).

(A.10)

13 This result was first obtained by Serban [60].
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The integral can now be performed and yields precisely the hypergeometric function
derived earlier in (3.25).

The discussion of the strong-coupling behaviour of the dressing phase is tantamount
to an analysis of the strong-coupling limit of the integrals cr,s(g). In appendix C we
present, by way of example, the full expansion in the case (r, s) = (2, 3). We also show
that (A.10) reproduces the AFS phase [20] as well as the Hernández–López correction [34].

Appendix B. Flipping odd-zeta contributions

Here we show that the replacement of the kernel K̂m → K̂m + 2K̂c leads to the simple
replacement ζ(2n + 1) → iζ(2n + 1) in the scaling function fm(g) → f(g).

Let

z(t) =
t

et − 1
. (B.1)

For any kernel K̂(2gt, 2gt′) and any function f(t) we define the product

(K̂ ∗ f)(t) =

∫ ∞

0

dt′ K̂(2 g t, 2 g t′) z(t′) f(t′). (B.2)

The integral equation may be written as

σ̂(t) = z(t)

(
(K̂0 + K̂c)(2 g t, 0) − 4g2

(
(K̂0 + K̂1 + K̂c) ∗

σ̂

z

)
(t)

)
. (B.3)

In the following we need not consider the internal g dependence of the kernels. Within
the radius of convergence of the iteration the solution of any Fredholm equation of the
second type is the resolvent

σ̂(t) = z(t)
∞∑

n=0

(−4g2)n ([(K̂0 + K̂1 + K̂c) ∗]n P )(t). (B.4)

Here P (t) = (K̂0 + K̂c)(2gt, 0) and K̂c(2gt, 2gt′) = 8g2(K̂1 ∗ K̂0)(2gt, 2gt′). The Fredholm
resolvent must have the form

σ̂(t) = z(t)
∑

n

(−4g2)n ηn (Wn K̂0)(t) (B.5)

because the dressing kernel K̂c consists itself of K̂0, K̂1 which are convoluted by the star
operation (and it also carries the appropriate extra power of the coupling constant). By
n we denote a string built of 0, 1 with total length n, and Wn is the corresponding string

of K̂0, K̂1 acting on the potential K̂0 by the ∗ product defined above in (B.2). The ηn are
numerical coefficients. The integral equation (B.3) determines these numbers uniquely:
We substitute (B.5) into the equation and pick the O(g2(n+2)) terms. All words are
assumed independent; in particular the four double iterations of an arbitrary word Wn:

W0,0,n, W0,1,n, W1,0,n, W1,1,n. (B.6)

doi:10.1088/1742-5468/2007/01/P01021 22

http://dx.doi.org/10.1088/1742-5468/2007/01/P01021


J.S
tat.M

ech.
(2007)

P
01021

Transcendentality and crossing

This yields the four equations

η0,0,n = −η0,n,

η0,1,n = −η1,n,

η1,0,n = −η0,n − 2ηn,

η1,1,n = −η1,n.

The first two equations may be summarized as

η0,m = −ηm (B.7)

from which it follows that the third equation is:

η1,0,n = +η0,n. (B.8)

Recursively, these equations imply that all the η coefficients are merely signs. Second,
(B.8) implies that the operation of appending K̂1 after K̂0 is the only one that induces a

sign flip as opposed to the iteration of the main scattering kernel K̂m = K̂0 + K̂1 alone (in
that case the second term in the rhs of (B.9) would be absent so that η1,m = −ηm, too).

Next, let

E = {t2l : l ∈ N0}, O = {t2l+1 : l ∈ N0}, (B.9)

denote the even and odd powers of t, respectively. In order to obtain the scaling functions
at weak coupling we will eventually expand the kernels K̂0,1(2gt, 2gt′) in the coupling

constant; K̂0 (K̂1) is even (odd) in both arguments, respectively. Let us consider any one
term in the expansion of a kernel convoluted on a power of t by the star product. We
observe the graded structure

K̂0 : E → E : t2l �→ ζ(2m) t2l′,

O → E : t2l+1 �→ ζ(2m + 1) t2l′,

K̂1 : E → O : t2l �→ ζ(2m + 1) t2l′+1,

O → O : t2l+1 �→ ζ(2m) t2l′+1.

(B.10)

The first integral in a chain of convolutions always acts on an element of E because the
potential is even. Likewise, the energy integral adds a final convolution on the even kernel
K̂0(0, 2gt). The contribution of a word Wn to the scaling function thus contains one

odd-zeta function for each beginning and each end of a K̂1 string in K̂0 ∗Wn ∗ K̂0. In
particular, if there are m such strings, the word gives a contribution with 2m odd-zeta
functions.

Finally, the equations (B.7) and (B.8) say that each creation of a K̂1 string induces
a sign change as opposed to the iteration of the main scattering kernel on its own. Our
result is: the scaling functions for both cases contain terms with 2m odd-zeta functions.
The relative sign of such terms is (−1)m.

Note that the absolute sign of the terms with odd-zeta functions cannot easily be fixed
without explicit computation. Words with n insertions of K̂1 pick up a factor (−1)n from

the g2 expansion relative to those with K̂0 alone. Presumably, words with the minimal
number of K̂1 kernels give the dominating contribution: K̂1 starts at O(g2), thereby
restricting the number of ways one may choose the powers in the various kernels in a
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chain, that is reducing the number of similar terms. If this is so, the iteration of the main
scattering kernel should indeed produce a factor of (−1)m for a term with 2m odd-zeta
functions relative to the leading purely even part. Consequently, the dressing kernel ought
to align all signs.

Appendix C. Strong-coupling expansion

In this appendix we give an exact derivation of the strong-coupling expansion of c2,3(g).
We modify a technique developed in [61] for the discussion of the ground state energy of
the half-filled Hubbard model.

According to equation (A.10),

c2,3(g) = 4

∞∑
n=1

∫ ∞

0

dy
J1(2 g y) J2(2 g y)

y
e−ny =

∞∑
n=1

if ′
(

in

4g

)
(C.1)

with

f ′(z) = 4z − 4z 2F1

(
−1

2
,
1

2
; 2; z−2

)
− 1

2z
2F1

(
1

2
,
3

2
; 3; z−2

)
,

f(z) = 2z2

(
1 − 2F1

(
−1

2
,
1

2
; 2; z−2

n

))
.

(C.2)

We want to use the residue theorem to express the sum as a contour integral. For any
holomorphic function f(z)

resin/4g
f(z)

sinh2(4πgz)
=

1

(4πg)2
f ′

(
in

4g

)
(C.3)

because the terms in which the derivative does not fall on f(z) cancel out14. The integral
is thus written as

c2,3(g) =
(4πg)2

2π

∫
C

dz f(z)

sinh2(4πgz)
=

∫
C

16πg2 dz z2

sinh2(4πgz)

(
1 − 2F1

(
−1

2
,
1

2
; 2; z−2

))
. (C.4)

The region encircled by the contour C contains all the points in/4g up to n < 4g/ε and
f(z) must be holomorphic on it. Let ε > 0 be infinitesimal. We shall consider integration
over the closed contour, see figure C.1

C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ,

C1 = (1/ε)ei[0,π] ,

C2 = [−1/ε,−1 − ε] ∪ [+1 + ε, +1/ε] ,

C3 = (−1 + εei[0,π]) ∪ (+1 + εei[0,π]) ,

C4 = [−1 + ε,−ε] ∪ [+ε, +1 − ε],

C5 = εei[0,π],

(C.5)

Note that the hypergeometric function in f(z) has singularities at z = ±1 and we shall
deform the standard cut on the interval [−1, 1] such that it lies below the contour C4.

14 The original article [61] uses a simple sinh in the denominator. This would lead to an alternating sum of
residues, though.
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Figure C.1. Contour C and its decomposition (C.5).

Let us first consider the integral over the large semicircle C1. Here we have

f(z) = 1
4

+ O(1/z) (C.6)

and for large enough 1/ε we find (neglecting corrections in ε)

8πg2

∫
C1

dz f(z)

sinh2(4πgz)
= 2πg2

∫
C1

dz

sinh2(4πgz)
= g coth(4πg/ε) = g = c

(0)
2,3 g. (C.7)

The first term in f(z) leads to no singularity on the real axis and can be integrated
straightforwardly over the remaining contours

lim
m→∞

∫
C2∪C3∪C4∪C5

16πg2 dz z2

sinh2(4πgz)
=

∫ ∞

−∞

16πg2 dz z2

sinh2(4πgz)
=

1

12g
=

c
(2)
2,3

g
. (C.8)

For very small z the remaining hypergeometric function goes as

2F1

(
−1

2
,
1

2
; 2; z−2

)
∼ 4i

3πz
(C.9)

so that the semicircle C5 at the origin contributes

−
∫

C5

16πg2 dz z2

sinh2(4πgz)
2F1

(
−1

2
,
1

2
; 2; z−2

)
= − 4

3π
= c

(1)
2,3. (C.10)

Since the integrand is an even function of z, the other three pieces add up to the real
part of an integral along the positive semi-axis only:

H(g) = −16πg2

∫
C2∪C3∪C4

dz z2

sinh2(4πgz)
2F1

(
−1

2
,
1

2
; 2; z−2

)

= −32πg2 Re

∫ ∞

0

dz z2

sinh2(4πgz)
2F1

(
−1

2
,
1

2
; 2; z−2

)
. (C.11)

The real part of the hypergeometric function is easily read off from its one-parameter
representation

Re 2F1

(
−1

2
,
1

2
; 2; z−2

)
=

4

π

∫ min(z,1)

0

dt
√

1 − t2
√

1 − t2z−2. (C.12)
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In H(g) we readily estimate the contribution from z > 1 to be of order O(e−g) due to the
suppression by 1/ sinh(4πgz)2. The remainder is

H(g) = −128g2

∫ 1

0

dz z2

sinh2(4πgz)

∫ z

0

dt
√

1 − t2
√

1 − t2z−2 + O(e−g). (C.13)

To deal with these integrals we successively

• expand
√

1 − t2 into a series in t

√
1 − t2 = − 1

2
√

π

∞∑
m=0

Γ(m − 1
2
)

Γ(m + 1)
t2n, (C.14)

• calculate the t integral in each term∫ z

0

dt t2m
√

1 − t2z−2 =

√
π

4

Γ(m + 1
2
)

Γ(m + 2)
z1+2m, (C.15)

• evaluate the z integral. Here we may extend the range to the whole positive semi-axis
since the error is again seen to be O(e−g)

∫ 1

0

dz z2m+3

sinh2(4πgz)
=

∫ ∞

0

dz z2m+3

sinh2(4πgz)
+ O(e−g) =

4 Γ(2m + 4) ζ(2m + 3)

(8πg)2m+4
+ O(e−g).

(C.16)

On collecting terms:

H(g) =
∞∑

m=0

Γ(m − 1
2
) Γ(m + 1

2
) Γ(2m + 4)

Γ(m + 1) Γ(m + 2)

ζ(2m + 3)

π2(8πg)2m+2
+ O(e−g)

=
∞∑

n=3

2 ζ(n)

(−2π)n Γ(n − 1)

Γ[1
2
(n + 2)] Γ[1

2
n]

Γ[1
2
(6 − n)] Γ[1

2
(4 − n)]

g1−n + O(e−g)

=

∞∑
n=3

c
(n)
2,3 g1−n + O(e−g). (C.17)

The second line is obtained by using some identities of gamma functions and setting
n = 2m + 3. In conclusion:

c2,3(g) = c
(0)
2,3 g + c

(1)
2,3 +

c
(2)
2,3

g
+ H(g) =

∞∑
m=0

c
(m)
2,3 g1−m + O(e−g). (C.18)

We proved the correctness of the strong-coupling expansion coefficients c
(m)
r,s from

equation (3.4) (see also (3.23)) for the case (r, s) = (2, 3). The role of the zeta function
regularization used in the main text is simply to dispose of the terms of order O(e−g) that
become visible in this proof.

The argument presented in this appendix should remain applicable for generic values
of (r, s). We hope to return to this general case in future work. We can, however, perform
the analysis for the first two orders. By Euler–MacLaurin summation (or zeta function
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regularization), the leading two orders of cr,s(g) take the form

c(0)
r,s =

∫ ∞

0

hr,s(1/z) dz, c(1)
r,s = ζ(0)hr,s(∞). (C.19)

In fact, one can show that the above argument yields the same answers. The integral of
hr,s in the form (3.25) can be performed in closed form for all (r, s)

c(0)
r,s =

8(r − 1)(s − 1) sin[π(r − s)]

π(s − r − 1)(s − r + 1)(s + r − 3)(s + r − 1)
= δr+1,s (C.20)

and one obtains full agreement with the AFS phase (3.5) [20] using that r, s are integers
with r ≥ s + 1. For the next order one can use the representation (A.10) of hr,s(z) at
z = ∞

c(1)
r,s = ζ(0)2 cos

[
1

2
π(s − r − 1)

]
(r − 1)(s − 1)

∫ ∞

0

dt

t
Jr−1(2 t) Js−1(2 t)

= − cos

[
1

2
π(s − r − 1)

]
(r − 1)(s − 1)

2 cos[1
2
π(s − r − 1)]

π(s − r)(s + r − 2)

= −1 − (−1)r+s

π

(r − 1)(s − 1)

(s − r)(s + r − 2)
. (C.21)

This is again in full agreement with the HL phase (3.5) [34].
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