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1. Introduction

The recent analytic construction by Schnabl [1] (see also [2 – 11]) of an exact solution in

classical open string field theory (OSFT) [12] corresponding to the tachyon vacuum has

given a renewed impetus in using OSFT as a tool in the analysis of open string vacua. In

particular, it allowed for a proof of the first two of Sen’s conjectures [13, 14]. A class of

related solutions based on general projectors has been developed in [15].

This advance raised the hope that other solutions can also be found, such as lump

solutions and marginal deformations. That marginal deformations can be described within

the framework of string field theory was shown by Sen [16 – 18]. There, it was shown that

boundary marginal deformations can be described within OSFT, while bulk marginal de-

formations can be described using a non-polynomial closed string field theory, such as [19].

These solutions were first investigated using level truncation in the Siegel gauge [20]. Other

studies of these solutions appeared in [21 – 29].

More recently, a recursive procedure has been developed by using the techniques em-

ployed in Schnabl’s solution (in particular, the B0 gauge), yielding exactly marginal defor-

mations order by order in a parameter λ parameterizing the exactly flat direction [30, 31].

This approach was generalized [32, 33] to describe also the first analytical solutions of

superstring field theory [34].
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The approach of [30, 31] gives an explicit solution for marginal deformation generated

by current operators which have a regular OPE with themselves. For the more interesting

case, such as the photon marginal deformation, where the OPE of the vertex operator V (z)

defining the marginal deformation with itself is V (0)V (z) ∼ 1/z2, divergences arise as the

separations of the boundary insertions used in constructing the solution go to zero. This

makes it necessary to add counter terms in order to cancel these divergences. However,

the form of these counter terms is known only up to the third order and it is not a priori

clear that counter terms for higher orders exist.

In this work we propose an alternative approach toward the analytical construction

of exactly marginal deformations. It is based on solutions that are formally pure gauge,

but nonetheless nontrivial as the gauge parameter we employ is not in the physical Hilbert

space. As we will show, this method allows us to obtain an explicitly defined solution,

perturbative in the above-mentioned parameter λ. As the insertions of the vertex operator

in our approach remain at a finite distance, the divergences encountered in [30, 31] do not

arise. However, it turns out that the solutions we obtain at first instance are singular in

the sense that there is a non-normalizable dependence on the center of mass coordinate x0.

Only with a carefully chosen set of counter terms is it possible to regularize this unwanted

dependence on x0, such that the solutions are in fact independent of the center of mass

coordinate.

Our approach starts off with the pure gauge solutions for string field theory of the

form [2, 6]

Ψ = (1 − λφ)Q
1

1 − λφ
= Qφ

λ

1 − λφ
, (1.1)

which have the structure of a pure gauge solution generated by the gauge field

Λ = − log(1 − λφ) . (1.2)

This is the case, because the finite gauge transformation in string field theory takes the

form

Ψ → e−Λ(Ψ + Q)eΛ , (1.3)

and we look for a gauge equivalent of the trivial solution Ψ = 0.

It seems that this procedure cannot generate any non-trivial solutions. However, this

solution can become a physical one in several ways. The first option is to have a finite

radius of convergence with respect to λ. By a rescaling of φ this value λcrit can be set to

unity. Then, for |λ| < 1 the solution is indeed a gauge solution, while for |λ| > 1 it is not

well defined. For λ = ±1 the solution can either be gauge solution, not be well defined,

or be a physical solution. Indeed, Schnabl’s solution for the tachyon vacuum [1] is just

of this form. There, the solution at λ = −1 is not well defined, while the λ = 1 case is

the desired solution (after proper regularization). A variant of this method would be to

have λcrit = ∞ such that the solution is well defined, but non-gauge at least in one of the

limits λ → ±∞. Another option would be to have some sort of a singular φ, such that the

solution itself is regular. Then, Qφ is an exact solution in a “large Hilbert space”, but is

a nontrivial element of the cohomology when considering the smaller Hilbert space. This

is the method that we want to employ.
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The rest of the paper is organized as follows. In section 2 we introduce the analytical

solution describing the photon marginal deformation λc∂X. Then, in section 3, we discuss

other similar solutions and the issue of gauge equivalence. Our solution is obtained using

CFT methods. Therefore, we devote section 4 to the oscillator form of the solution. Our

construction is especially useful for solutions whose OPE is singular, such as the photon

marginal deformation. However, it can be used also to describe other marginal deformation.

This issue is studied in section 5. Next, in section 6 we comment on the relation of our

solution to the previously found ones. Finally, we present our conclusions in section 7.

Following are some of the conventions we use in the paper. Schnabl’s solution is based

on the wedge states [35 – 38]

ψn = |n + 1〉 = Ûn+1 |0〉 = e
1−n

2
L̂0 |0〉 , (1.4)

where we use the notations

Ûn ≡ U †
nUn , L̂0 ≡ L0 + L†

0 . (1.5)

Here, L0 is the zero mode of the energy momentum tensor in the coordinates

z = tan−1 ξ , (1.6)

and L†
0 is its conjugate. The ξ coordinate is the standard one, where the local coordinate

patch is half a unit circle. The z coordinate system is natural when working with insertions

over the wedge state |2〉, which is the SL(2) invariant vacuum. A natural generalization is

to the coordinate system of the wedge state |n〉

z(n) =
n

2
z . (1.7)

Throughout the paper we work in the z(n) coordinates, when considering states built as

insertions over the wedge state |n〉. All operators, such as ∂X, c, . . . should be understood

as defined in the relevant coordinate system. Also, throughout the paper we star-multiply

string fields, keeping the star product implicit. Similarly, a function of a string field repre-

sents the Taylor expansion of the function, with products given by star products.

2. The photon marginal deformation

Every marginal solution has a free parameter, which we mark as λ. It is natural to expand

the solution in orders of λ,

Ψ =

∞∑

n=1

λnψn . (2.1)

Plugging this into the equation of motion and comparing terms with the same power of λ

gives the recursive relations

Qψn = −
n−1∑

k=1

ψkψn−k . (2.2)

– 3 –
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For (formally) pure-gauge solutions (1.1) we get

ψn = (Qφ)φn−1 . (2.3)

We will attempt to generate the photon marginal solution by making a singular choice

of φ

φ = ǫµXµ(0) |0〉 = ǫµxµ
0 |0〉 ⇒ ψ1 = −i

√
2ǫµαµ

−1c1 |0〉 . (2.4)

Here, we work in the α′ = 1 convention. Moreover, we are interested in boundary operators.

Thus,1

∂X(z)boundary = 2∂X(z)bulk . (2.5)

In particular we have

∂X(0) |0〉 = −i
√

2α−1 |0〉 . (2.6)

The description of ψ1 as a formal exact state (2.4) does not contradict the fact that

ψ1 is a physical state, i.e. non-exact. The reason is that φ is not in the Hilbert space, since

a state whose representation in position space is

φ(x0) = 〈x0|φ〉 = x0 , (2.7)

is not a normalizable state. It is therefore clear that our choice of φ generates a non-trivial

solution. Still, to show that this solution is legitimate we have to show that all the ψn’s

are regular, i.e. x0 independent.2 The first order, ψ1 is regular by construction. The higher

orders, however, have factors of φn−1 in their definition (1.1) and are therefore singular,

with O(xn−1
0 ) |0〉 terms. To correct these singularities we have to add counter terms to φ,

i.e. terms of the form

φn ≈ Xn , (2.8)

where we need to specify the location of each X insertion. The gauge parameter φ becomes

itself λ dependent

φ =

∞∑

n=1

λn−1φn . (2.9)

For expressions of the form (2.8) to make sense, they should be normal ordered. Henceforth,

normal ordering of operator insertions at the same point is implicit. The relevant normal

ordering scheme is boundary normal ordering. In particular, all the variables that we use

are defined only on the boundary.

To calculate these counter terms we need the commutation relation of Q with X(z)n

We use the relation

[Q, eipX(z)] =
(
p2∂ceipX + ipc∂XeipX

)
(z) , (2.10)

1We shall henceforth omit the polarization vector ǫµ and the µ index over X for simplicity.
2An alternative procedure, which we don’t pursue in this work, would be the construction of solutions

with nontrivial but normalizable x0 dependence. We believe that this line of thought may be of help in the

construction of lump solutions.
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and derive it n times to get

[Q,Xn] = (−i∂p)
n[Q, eipX ]

∣
∣
∣
p=0

= (−i)n
(

2in−2

(
n

2

)

∂cXn−2 + i(i)n−1

(
n

1

)

c∂XXn−1

)

= nc∂XXn−1 − n(n − 1)∂cXn−2 . (2.11)

Had we used (2.3) to construct the solution we would get

ψ2 = (Qφ1)φ1 = Û3c∂X

(

− π

4

)

X

(
π

4

)

|0〉 . (2.12)

This is obviously singular, in the sense that the coefficient of x0 is non-zero. To remedy

this problem we add to φ a counter term of the form

φ2 = −1

2
Û3X

2

(

− π

4

)

|0〉 . (2.13)

This gives a regular solution

ψ2 = (Qφ1)φ1 + Qφ2

= Û3

(

c∂X

(

− π

4

)(

X

(
π

4

)

− X

(

− π

4

))

+ ∂c

(

− π

4

))

|0〉

≡ (c∂X,X) − (c∂XX, 1) + (∂c, 1)

= (c∂X, 1)
(
(1,X) − (X, 1)

)
+ (∂c, 1) . (2.14)

Here, a new notation has been introduced. As we consider here the wedge state |3〉 (formed

by acting with Û3 on the vacuum) with two possible insertion sites, we specify the insertions

in these sites in a vector form, where the 1 stands for the identity insertion, i.e., no insertion.

The multiplication in the last equality acts point wise.

At order n we shall have to deal with n insertions over the wedge state |n + 1〉, sym-

metrically distributed around z(n+1) = 0, with a distance of π
2 between two consecutive

insertion sites. There, we use an n-vector notation. Since the wedge state number is

correlated with the number of insertion sites this notation is unambiguous.

The expression for ψ2 seems regular since there is no x0 dependence in (1,X)− (X, 1),

but this analysis is a bit too naive. One has to remember that we have normal ordering

only for operators at the same site. Therefore,

(c∂X, 1)
(
(1,X) − (X, 1)

)
=: c∂X

(

− π

4

)

:: X

(
π

4

)

: |0〉− : c∂XX

(

− π

4

)

: |0〉 . (2.15)

It is easy to normal order this term and see that there is no x0 dependence. This case is

trivial since the new term that appears in the normal ordering has no X dependence. For

higher order terms, normal ordering Xn will introduce Xn−2 and lower order operators.

However, let P (X1, . . . ,Xn) be a polynomial in Xi, such that in each monomial operators

at different sites are ordered from left to right. If P is x0 independent,

∂x0P =

n∑

k=1

∂Xk
P = 0 , (2.16)

– 5 –
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then the normal ordered expression given by

: P := e
1
2

P

i6=j f
(n)
i,j ∂Xi

∂Xj
+

P

i6=j g
(n)
i,j ∂(∂Xi)

∂Xj P , (2.17)

is also x0 independent. This stems from the fact that the normal ordering operator inside

the exponent commutes with the operator
∑n

k=1 ∂Xk
. This result is independent of the

form of the structure functions f
(n)
i,j , g

(n)
i,j , as long as they are Xi-independent.3 Notice that

the fully normal ordered polynomial : P : can be manipulated as a standard polynomial,

since all of its components commute with each other.

We now continue with the third order,

ψ3 = (Qφ1)φ1φ1 + (Qφ2)φ1 + (Qφ1)φ2 + Qφ3

= (c∂X, 1, 1)

(

(1,X,X) − (X, 1,X) − 1

2
(1,X2, 1)

)

+ (∂c, 1,X) + Qφ3 . (2.18)

The counter term φ3 is obviously needed. There is an X(0) insertion multiplying ∂c(−π
2 ),

and the coefficient of the (c∂X)(−π
2 ) insertion also has an x2

0 dependence. However, by

setting

φ3 =
1

6
Û4X

3

(

− π

2

)

|0〉 =
1

6
(X3, 1, 1) , (2.19)

we are led to

ψ3 = Qφ1φ1φ1 + Qφ2φ1 + Qφ1φ2 + Qφ3

= (c∂X, 1, 1)

(

(1,X,X) − (X, 1,X) − 1

2
(1,X2, 1) +

1

2
(X2, 1, 1)

)

(2.20)

+ (∂c, 1, 1)
(
(1, 1,X) − (X, 1, 1)

)
.

The coefficient of ∂c is obviously regular and it is also clear that there is no x2
0 term in

the coefficient of c∂X. There could have been a linear x0 term there, though. In order to

see that it is absent, we write X at site k, as x0 + X̃k, where X̃k is the regular part of the

operator. Then, we see that

(x0 + X̃2)(x0 + X̃3) − (x0 + X̃3)(x0 + X̃1) +
1

2
(x0 + X̃1)

2 − 1

2
(x0 + X̃2)

2

= X̃2X̃3 − X̃3X̃1 +
X̃2

1

2
− X̃2

2

2
, (2.21)

so the linear term drops out as well, and the result is regular.

Continuing to higher orders, we guess that the general form of the counter terms is

φn =
1

n!
(−1)n−1(Xn, 1, . . . , 1) . (2.22)

3While one can ignore the normal ordering issues for proving x0-independence, they are relevant in some

computations. The explicit structure functions will be needed for writing down the fully normal ordered

solution.
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With this ansatz we have to check as before that all the x0 coefficients vanish, without

considering the issue of normal ordering. We prove this regularity condition by induction.

Suppose that ψk is regular for all k < n. The state ψn is composed of all ways to partition

the n sites among the various φk’s, with Q acting on the first site. We concentrate on the

last φ in any given partition and write ψn in terms of the ψk’s as

ψn = Qφn +
n−1∑

k=1

(ψn−k, φk) . (2.23)

We introduced a new notation here of composing two vectors into one longer vector. This

is exactly the operation of the star product. Now,

∂x0ψn = Q∂x0φn +
n−1∑

k=1

(

(∂x0ψn−k, φk) + (ψn−k, ∂x0φk)
)

. (2.24)

The first term inside the sum drops out according to the induction hypothesis, while

from (2.22) we see that

∂x0φk = −(φk−1, 1) . (2.25)

Thus, we are left with

∂x0ψn = −
(

Q(φn−1, 1) − (ψn−1, 1) +

n−1∑

k=2

(ψn−k, φk−1, 1)
)

= −
(
(ψn−1, 1) − (ψn−1, 1)

)
= 0 , (2.26)

where in the first equality we separated the k = 1 term and in the second equality composed

the first term with the sum as in (2.23). This completes the proof.

3. Gauge-choice independence

In this section we generalize our construction and find a large family of solutions. All these

solutions should be gauge equivalent. Thus, we study the gauge equivalence of these solu-

tions. First, in subsection 3.1 we consider gauge freedom ignoring counter terms. There,

φ represents a given formal gauge generator of a specific marginal deformation, not nec-

essarily the photon. As already mentioned, this construction fails to produce well defined

solutions without introducing counter terms. In subsection 3.2 we study the consequences

of adding them for the photon marginal deformation.

3.1 Ignoring counter terms

It is clear that the linearized equation of motion ψ1 = Qφ does not uniquely define the

solution to be of the form (1.1), in which the Q operates only on the leftmost φ at each

order (2.3). For example, we could have considered instead

ΨR =
λ

1 + λφ
Qφ , (3.1)

– 7 –
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which is generated by the gauge field

Λ = log(1 + λφ) . (3.2)

Here, Q acts only on the rightmost φ.

Do these solutions describe the same physical state? When several marginal directions

exist, the non-linear (that is, finite) extension of the initial infinitesimal deformation is not

unique, and can “point” in various (possibly λ-dependent) directions in the vector space of

infinitesimal marginal deformations. However, it seems that in our construction the only

marginal deformation considered is related to the zero mode of a single X coordinate. Thus,

all the solutions should be gauge equivalent. Indeed, at the second order, the difference

between the two solutions is

ψL
2 − ψR

2 = Q(φ2) . (3.3)

So they are indeed gauge equivalent to this order.

One can also consider other extensions of the solution. If we restrict ourselves to

solutions, which depend only on φ and have a total nth power of φ at order n, then a

general ansatz can be written as

Ψ =

∞∑

n=1

λn
n∑

k=1

γn,kφ
k−1(Qφ)φn−k , (3.4)

and the requirement that Ψ is a solution imposes restrictions on the values of the coefficients

γn,k. The general solution for γn,k amounts to the freedom of adding Q(φn) at order n to

the solution. This is a straightforward generalization of (3.3), with one gauge parameter

at each order.

Another way to represent the gauge freedom is by specifying Λ. Any Λ that agrees to

first order with the original one and depends only on powers of φ should be equivalent to

it. Such a Λ has a Taylor expansion

Λ = λφ +
∞∑

n=2

an(λφ)n , eΛ = 1 + λφ +
∞∑

n=2

bn(λφ)n , (3.5)

with obvious relations between the coefficients an, bn. Two solutions which agree up to

order n − 1, differ by

e−Λ1QeΛ1 −e−Λ2QeΛ2 = λn(a(1)
n −a(2)

n )Q(φn)+O(λn+1) = λn(b(1)
n −b(2)

n )Q(φn)+O(λn+1) .

(3.6)

Thus, we see that choosing the expansion coefficients an or bn is equivalent to choosing

γn,k consistently. In particular it is easy to see that

bn = γn,1 . (3.7)

The two simple solutions described above correspond to

γL
n,k = δk,1 , γR

n,k = (−1)n−1δk,n . (3.8)

– 8 –
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The gauge freedom described above allows for a more symmetric solutions, such as

γS
n,k =

1

2n−1
(−1)k−1 , (3.9)

which is generated by

Λ = log
(1 + λφ

2

1 − λφ
2

)

= 2 tanh−1
(λφ

2

)

. (3.10)

Another, relatively symmetric combination that we found is

γn,k =







1
1
2 −1

2
1
2 0 1

2
3
8 −1

8
1
8 −3

8
3
8 0 1

4 0 3
8

5
16 − 1

16
1
8 −1

8
1
16 − 5

16
5
16 0 3

16 0 3
16 0 5

16
35
128 − 5

128
15
128 − 9

128
9

128 − 15
128

5
128 − 35

128
35
128 0 5

32 0 9
64 0 5

32 0 35
128

. .
. · · · . . .

(3.11)

This expansion is generated by

Λ =
1

2
log

(
1 + λφ

1 − λφ

)

= tanh−1(λφ) , (3.12)

and the expansion coefficients have the peculiar property

n∑

k=1

γn,k =

{

0 n ≡2 0

1 n ≡2 1
. (3.13)

With the richness of gauge descriptions one may wonder whether they all have the

same range of validity in parameter space. Here, we have a single parameter λ, and it is

clear on physical grounds that its value can be arbitrary. However, since we should not

expect a gauge choice to be globally valid, it is possible that as we increase λ the boundary

of validity is attained for some of the gauge choices. There may be a subtlety here, since

there can be a non-trivial relation

λSFT = f(λCFT) = λCFT + . . . , (3.14)

with f a monotonic function. It can happen that as λCFT goes to infinity, λSFT reaches a

finite value. If this is the case, it can happen that the radius of convergence with respect

to λSFT would always be finite. Also, note that the function f generally depends on

the solution. We saw that for our ansatz this reparametrization is absent for the leading

order (3.6), but it can appear at higher ones. We assume for now that this does not happen.

As all the gauge choices that we explicitly considered so far are described by functions

of λφ with a finite radius of convergence, it seems plausible that the gauge choice would
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break down at some stage.4 One may hope that a wider range of validity is attained by

choosing a function Λ such that e±Λ are complete. The simplest example of the form (3.6)

is

Λ = λφ . (3.15)

With this choice one gets

γn,k =
(−1)k−1

n(k − 1)!(n − k)!
. (3.16)

These coefficients have the peculiar property that

∀n > 1

n∑

k=1

γn,k = 0 . (3.17)

3.2 Including counter terms

In the previous subsection we have been ignoring counter terms. Now, we want to address

the question of the uniqueness of the solution including the counter terms for the case of

the photon marginal deformation. Any two solutions that are the same up to a given order

Ψ1 −Ψ2 = O(λn), are gauge equivalent at the next order, provided that their difference is

Q-exact to this order, Ψ1 − Ψ2 = λnQ(Υ) + O(λn+1), as in (3.6). Recall that Q acting on

a singular expression should not be considered as Q-exact, but only as Q-closed. In this

subsection we study the gauge freedom at the leading order and find the full (all order)

gauge transformation between ΨL and ΨR.

With the counter terms taken into account, the two simple solutions ΨL,ΨR defined

by equations (1.1) and (3.1) are generated by

φL = (X) − λ

2!
(X2, 1) +

λ2

3!
(X3, 1, 1) + . . . +

(−λ)n−1

n!
(Xn, 1, . . . , 1) + . . . , (3.18)

φR = (X) +
λ

2!
(1,X2) +

λ2

3!
(1, 1,X3) + . . . +

λn−1

n!
(1, . . . , 1,Xn) + . . . . (3.19)

The difference between the solutions ΨL−ΨR, before counter terms are taken into account

is given at the second order by (3.3)

∆2 = Q(φ2) = Q(X,X) . (3.20)

This is obviously Q acting on a singular expression. However, with counter terms taken

into account the difference is in fact

∆2 = Q

(

(X,X) − 1

2
(X2, 1) − 1

2
(1,X2)

)

, (3.21)

which is Q on a regular expression. So the solutions are gauge equivalent at this order.

This is the most general regular expression at this order, which is of the form of our ansatz.

4One should keep in mind, though, that the relevant product is the star product. So the series expansion

should break down when an eigenvalue in some relevant space with respect to this product attends a critical

value.
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The most general third order difference, between solutions of the form we consider

here, that agree up to the second order, is

∆3 =Qφ3 (3.22)

φ3 =α1,1,1(X,X,X) + α3,0,0(X
3, 1, 1) + α0,3,0(1,X

3, 1) + α0,0,3(1, 1,X
3)

+ α2,1,0(X
2,X, 1) + α2,0,1(X

2, 1,X) + α1,2,0(X,X2, 1) + α0,2,1(1,X
2,X) (3.23)

+ α1,0,2(X, 1,X2) + α0,1,2(1,X,X2) .

The ten parameters αi,j,k should be chosen such that ∆3 is regular. To that end, we should

require that the coefficients of c∂Xx2
0, c∂Xx0X̃i and ∂cx0 in the three sites should be zero.

Thus, there are totally 3 + 3 × 3 + 3 = 15 linear equations restricting the values of the

αi,j,k’s. Twelve homogeneous linear equations in ten variables are of course dependent. It

turns out that the general solution forms a four-dimensional space. That we have here

four free parameters, whereas only a single gauge parameter was advocated in (3.4), stems

from the fact that we are dealing here with a more general ansatz due to the appearance of

counter terms. Now, to verify that all the solutions are the same also at the third order, we

have to check the form of φ3 in this four-dimensional space. It turns out that it is indeed

regular.

In a similar way at order n we consider

∆n =Qφn , φn =
n∑

i1,...,in=0
i1+...+in=n

αi1,...,in(Xi1 , . . . ,Xin) . (3.24)

Here, the number of coefficients is

#α~i
=

(
2n − 1

n

)

. (3.25)

Let us note that there are restrictions coming from the expansion of c∂XPn−1(X̃i, x0)

and ∂cPn−2(X̃i, x0), in the n sites, where Pn−1 and Pn−2 are homogeneous polynomials of

degrees n − 1, n − 2 respectively. A rank-k homogeneous polynomial with m variables is

composed of

Ck,m ≡
(

k + m − 1

k

)

(3.26)

monomials. The constraints we have amount to requiring that the two polynomials depend

only on n out of their n + 1 variables. Thus, the total number of equations is

#eq = n
(

(Cn−1,n+1 − Cn−1,n) + (Cn−2,n+1 − Cn−2,n)
)

= (3n − 4)

(
2n − 3

n − 1

)

. (3.27)

For n > 3 the number of equations keeps being larger than the number of variables, just

as is the case for n = 3. At the fourth order only 20 out of a total of 80 equations (in 35

variables) are independent. Thus, the space of allowed φ4 is 35 − 20 = 15-dimensional. It

turns out that when restricted to this space of solutions φ4 is regular.
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We want to prove this result for the general case, that is, we want to show, that given

α~i
such that Qφn is regular, so is φn itself. In the expression

Qφn =

n∑

i1,...,in=0
i1+...+in=n

αi1,...,in

n∑

k=1

(Xi1 , . . . , ikc∂XXik−1 − ik(ik − 1)∂cXik−2, . . . ,Xin) , (3.28)

we have to demand that the coefficient of each c∂X and each ∂c, is x0 independent. We

write the coefficient of c∂X at site k as

ξk = ∂Xk

n∑

i1,...,in=0
i1+...+in=n

αi1,...,in(Xi1 , . . . ,Xin) = ∂Xk
φn , (3.29)

while that of ∂c can be written as

ζk = −∂2
Xk

n∑

i1,...,in=0
i1+...+in=n

αi1,...,in(Xi1 , . . . ,Xin) = −∂2
Xk

φn , (3.30)

It is clear that ∂x0ξk = 0 implies ∂x0ζk = 0, so it is enough to consider the former and what

we have to show is that

∂x0ξk =

n∑

i=1

∂Xi
ξk = 0 ∀k ⇒ ∂x0φn =

n∑

k=1

ξk = 0 . (3.31)

Now, consider

0 =

n∑

k=1

Xk

n∑

i=1

∂Xi
ξk

=

n∑

i=1

∂Xi

n∑

k=1

Xk∂Xk
φn −

n∑

k=1

∂Xk
φn

= (n − 1)

n∑

i=1

∂Xi
φn

= (n − 1)∂x0φn , (3.32)

where we used Euler’s homogeneous function theorem. We see that for n > 1 regularity of

the coefficients indeed implies that of φn, so all the solutions are indeed gauge equivalent,

at least up to the first order where they differ.

It is clear that any gauge field φ that is x0 independent produces an x0 independent

Qφ. We have just prove also the opposite direction. Thus, we can now characterize the

φ space in this way. This enables us to calculate the dimension of this space, since for a

homogeneous polynomial of degree n,

∂x0P (xk) =
∑

∂Xi
P (xk) = 0 ⇒ P =

∑

ki2,...,in(x1 − x2)
i2 · · · (x1 − xn)in , (3.33)

with ki2,...,in a set of coefficients. From (3.26), we see that

dim(φn) =

(
2n − 2

n

)

, (3.34)
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which agrees with the quoted results for n < 5. Moreover, we see that the most general

solution can be found from (2.25), while in this subsection we studied the homogeneous

version of this equation.

One of the gauge degrees of freedom is related to a change in γn,k. This is generated by

Q(φn), that is, by (X, . . . ,X). When one wants to consider a change in the gauge within

a choice of γn,k (or Λ), one should constrain the gauge parameter to the orthogonal space

to this direction, say, by setting the coefficient of (X, . . . ,X) to zero. However, it is not

clear to us in which sense the inner product that we use in the space of α~i
’s is canonical.

Thus, this choice of “orthogonal direction” is somewhat arbitrary.

This brings us back to the discussion regarding the range of validity of the different

gauge choices. It is hard to disentangle the choice of counter terms from the choice of γn,k.

Moreover, with counter terms taken into account, the gauge parameter φ is itself λ depen-

dent. Thus, it is possible that the solutions ΨL,R have an infinite radius of convergence. It

can also happen that the solution (3.15) would have a finite radius of convergence with an

appropriately chosen set of counter terms and the radius can also depend on the specific

choice. The easiest way in practice to generate an appropriate set of counter terms for

a given γn,k, is by imposing (2.25), while fixing the coefficients α1,...,1 that generate the

specific choice of γn,k. We try to estimate the radius of convergence of the solution ΨL in

section 4.

We now want to prove that the two solutions that we found explicitly ΨL,ΨR, which

differ at the second order, are indeed exactly gauge equivalent. To that end we first note

that (1.3) implies that when two finite gauge transformations are combined, the resulting

transformation is given by

eΛ = eΛ1eΛ2 . (3.35)

We now combine the singular gauge transformations that send ΨL to the trivial solution

and the trivial solution to ΨR, to get the gauge transformation from ΨL to ΨR,

eΛ = e−ΛLeΛR

= (1 − λφL)(1 + λφR)

=

∞∑

n=0

(−λ)n

n!

∞∑

m=0

λm

m!
(Xn, 1, . . . , 1,Xm)
︸ ︷︷ ︸

n+m

=

∞∑

n=0

λn
n∑

m=0

(−1)m

(n − m)!m!
Xm

1 Xn−m
n

=

∞∑

n=0

λn

n!
(Xn − X1)

n , (3.36)

where in the second line we suppressed the irrelevant sites. However, one should remember

that the expression at order n is defined over the wedge state |n〉. We see that the resulting

transformation is manifestly regular, so ΨL,R are truly gauge equivalent to all orders.
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4. Evaluating coefficients in the oscillator representation

Next we want to calculate the coefficients of the different fields in the oscillatory expansion

for the photon marginal solution. This requires normal ordering our expression.

The easiest way to work with the (non-primary) Xn fields is by their defining expression

Xn(z) ≡ (−i∂p)
neipX(z)

∣
∣
∣
p=0

. (4.1)

These fields are normal ordered in the sense of the z coordinates. To find the OPE of two

X(z(n)) operators we recall first that in the ξ plane

∂X(ξ1)∂X(ξ2) =: ∂X(ξ1)∂X(ξ2) : − 2

ξ2
12

, (4.2)

where the factor of 2 comes from the fact that we are working with boundary operators as

in (2.6). The conformal transformation

z(n) =
n

2
tan−1 ξ (4.3)

gives

∂X(z
(n)
1 )∂X(z

(n)
2 ) =: ∂X(z

(n)
1 )∂X(z

(n)
2 ) : −

( 2

n

)2 2

sin2( 2
n
z
(n)
12 )

. (4.4)

Integrating we get

∂X(z
(n)
1 )X(z

(n)
2 ) = : ∂X(z

(n)
1 )X(z

(n)
2 ) : − 4

n
cot

(
2

n
z
(n)
12

)

, (4.5)

X(z
(n)
1 )X(z

(n)
2 ) = : X(z

(n)
1 )X(z

(n)
2 ) : −2 log

(

sin
∣
∣
∣
2

n
z
(n)
12

∣
∣
∣

)

(4.6)

Other than giving the form of the singular part of the OPE, these equations also define

what we mean by normal ordering in the z(n)-plane.

The Xm operators are not primaries. We would need their transformation properties

for going between the z(n) and the ξ planes. From their definition, it follows that

Xm(ξ) = (−i∂p)
meipX(ξ)

∣
∣
∣
p=0

= (−i∂p)
m

((n

2
cos2(z(n))

)p2

eipX(z(n))

)∣
∣
∣
∣
p=0

=

⌊m
2
⌋

∑

j=0

m!

(m − 2j)!j!
Xm−2j(z(n)) logj

( 2

n cos2(z(n))

)

= e− log
(

n
2

cos2(z(n))
)
∂2

X Xm(z(n)) , (4.7)

where in the second equality we used Leibnitz’ formula, as well as the fact that only an

even number of p-derivatives on cp2
gives a non-zero result at p = 0. Hence, also the

floor-function on the sum. Similarly,

Xm(z(n)) =

⌊m
2
⌋

∑

j=0

m!

(m − 2j)!j!
Xm−2j(ξ) logj

( n

2(1 + ξ2)

)

= e− log
(

2
n

(1+ξ2)
)
∂2

X Xm(ξ) . (4.8)
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Equations (4.7) and (4.8) relate powers of X at the same point that are normal ordered

in the sense of the ξ coordinates to those that are normal ordered in the sense of the z(n)

coordinates, and vice-versa (we note again that normal ordering is taken to be implicit

for operators inserted at the same point). We can now use an argument analogous to the

one following (2.17) to show that our construction, which leads to x0-independence in the

sense of the z(n) coordinates, automatically implies x0-independence in the sense of the ξ

coordinates. Indeed, noting that

∂x0X
m = ∂XXm , (4.9)

the fact that the final expression of (4.8) involves the exponent of an operator independent

of m commuting with ∂X shows that x0-independent expressions constructed using the z(n)

coordinates translate to x0-independent expressions in the sense of the ξ coordinates.

We also need the normal ordering coefficients for (2.17). In the z(n) coordinate they

are

f
(n)
i,j = −2 log

(

sin
∣
∣
∣
2

n
z
(n)
ij

∣
∣
∣

)

, g
(n)
i,j = − 4

n
cot

(
2

n
z
(n)
ij

)

, (4.10)

while in the upper half plane

fUHP
i,j = −2 log |ξij | , gUHP

i,j = − 2

ξij
. (4.11)

We want to calculate the coefficients of the lowest state, i.e. the tachyon state c1 |0〉,
as well as that of the photon in the direction in which we induce the marginal deformation,

i.e. the state α−1c1 |0〉. This corresponds to calculating the expectation values

T (λ) =
∞∑

n=1

λnTn , Tn =
2

n + 1
〈∂cc, ψn〉n+1 , (4.12)

A(λ) =

∞∑

n=1

λnAn , An =
i√
2
〈∂cc∂X,ψn〉n+1 , (4.13)

where the prefactor n+1
2 in the first equation comes from the conformal transformation to

C (n+1)π
2

, the cylinder with circumference (n+1)π
2 and in the second expression we took into

account (2.6). Symmetry dictates that for T (λ) only the even powers are nontrivial, while

for A(λ) only the odd powers are non trivial.

For the ghost sector the only correlators that we need are

〈
∂cc, c, 1, . . . , 1

︸ ︷︷ ︸

n−2

〉
=

n2

4
sin2

(
π

n

)

, (4.14)

〈
∂cc, ∂c, 1, . . . , 1

︸ ︷︷ ︸

n−2

〉
=

n

2
sin

(
2π

n

)

. (4.15)

Here we introduced a new notation for the expectation value of a wedge state n with the

n possible canonical insertion points. For the matter sector only the constants that arise
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from the normal ordering procedure as well as expressions that are a priori X independent5

can contribute.

The first coefficient is6

A1 =
i√
2
〈∂cc, c〉 〈∂X, ∂X〉 = −i

√
2 , (4.16)

where we used (4.4). This result is trivial, since this is nothing but the initial condition for

the solution (2.4). Next, we have

T2 =
2

3

(

〈∂cc, c, 1〉
(
〈1, ∂X,X〉 − 〈1, ∂XX, 1〉

)
+ 〈∂cc, ∂c, 1〉

)

, (4.17)

where we substituted the result for ψ2 (2.14). The second term does not contribute, since

it contains only X insertions at the same point, which are already normal ordered. The

first term contributes the normal ordering constant and the third term is the unique case,

where there is no X dependence. All in all we get

T2 =
2

3

(
9

4
sin2

(
π

3

)(

− 4

3

)

cot

(
2

3

(

− π

2

))

+
3

2
sin

(
2π

3

))

=
√

3 . (4.18)

Here, we used (4.5).

In a similar manner we can calculate higher order terms. The only limitation is that

the number of terms increases very fast and the analytic expressions become extremely

cumbersome. We calculated the following values numerically:

T4 =1.39848, T6 = 0.863328, T8 = 0.477264,

T10 =0.243907, T12 = 0.117105, T14 = 0.0534555, (4.19)

A3 = − 5.2229i, A5 = −6.61142i, A7 = −5.84034i,

A9 = − 4.23182i, A11 = −2.67936i, A13 = −1.53481i. (4.20)

These numbers seem to indicate that we have a finite radius of convergence.

A different choice of counter terms would have produced different coefficients. It seems

that the number of degrees of freedom in choosing the counter terms grows fast with the

level. Thus, one may hope that it would be possible to choose them in a way that would

minimize the coefficient at each level. One has to remember though, that there are also an

infinity of other coefficients, that we did not evaluate. For the series to converge, we have

to impose convergence on the whole infinite set, and a gauge that minimizes one coefficient

can be less adequate for minimizing the others. This issue deserves further study.

Note, however, that the change of a gauge at level n cannot modify the coefficient

of An. This results from the closeness of the bra state used for extracting the photon

coefficient. Let the gauge change be given in the leading order by Qφn. The change it

induces is

〈∂cc∂X,Qφn〉 = −〈Q(∂cc∂X), φn〉 = 0 . (4.21)

5The only such case is the operator ∂c that arises at the second order.
6We work in conventions in which λ is imaginary. Thus, odd coefficients appear to be imaginary.

– 16 –



J
H
E
P
0
9
(
2
0
0
7
)
1
0
1

This, however, raises a puzzle, as we are using a similar form for our initial condition,

ψ1 = QX(0) |0〉. So it may seem that A1 = 0, which is obviously wrong. This stems from

the fact that X |0〉 lies outside the Hilbert space. The operator x0 turns the usual infinite

volume factor δ(p) into δ′(p). This works as follows, we add momentum dependence to the

bra state. Now,

〈
(∂cc∂X)(z1)e

ipX(z2), QX
〉

= −
〈
(∂cc∂X)(z1)Q(eipX)(z2),X

〉

= −
〈
(∂cc∂X)(z1)

(
p2∂ceipX + ipc∂XeipX

)
(z2),X

〉
. (4.22)

Here, we use point split regularization due to the appearance of the ∂X term. The ∂X∂X

singularity is exactly canceled by the ghosts and we are left with the matter correlator

2ip
〈
eipX ,X

〉
= −2p∂q

〈
eipX , e−iqX

〉 ∣
∣
q=0

= 2pδ′(p) = −2δ(p) ,

in agreement with (4.16). All the other coefficient calculations that we performed are not

affected by this subtlety, since there the zero mode cancels out.

5. Other marginal deformations

The solution that we constructed is for the marginal deformation related to the ∂X oper-

ator. However, we can generalize to other deformations with the same OPE, such as the

cos(X) deformation. To realize how should the generalization look like we recall the logic

of our construction. To find the ∂X solution we introduced a primitive for ∂X, including

a zero mode x0, such that QX = c∂X. This enlargement of the Hilbert space allowed us

to treat closed, non-exact states as if they were exact. Next we required that the solution

does not depend on this zero mode, i.e., that it is well defined in the small Hilbert space.

To that end we had to add counter terms of the form of powers of the primitive.

All that works exactly the same for cos(X). We first define the primitive

Ξ(z) = Ξ0 +

∫ z

0
cos(X(z̃))dz̃ . (5.1)

The form of the solution is the same as before, and the Ξn
0 terms drop out for same

reasons. Since the result is Ξ0 independent, it is given just by integrals of the cos(X)

operator. Interestingly, in this representation, which can also be applied to the ∂X case,

there are n− 1 integrals at order n, just like in the solutions [31, 30]. However, while there

the integrals represent changing the size of a wedge state, here the wedge state is fixed and

the integrations are over the positions of the insertions.

This analysis is, however, too naive. The problem is related to the issue of normal

ordering. While the OPE’s ∂X∂X and cos(X) cos(X) have the same singular structure,

they have different finite contributions, which alters the form of the solution. A possible

resolution is to work with the cos(X) operator using a different normal ordering scheme,

related to the modes in the expansion of its primitive. However, there are some subtleties

in this route as well. We believe that these subtleties are of a technical nature, especially in

light of the fact that the operators ∂X and cos(X) are related by an SU(2) transformation

and have the same form of commutation relation with Q.
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We would face similar problems in generalizing the construction to deformations such

as eX0 , whose OPE is regular. Again, it seems that defining a primitive and modifying the

normal ordering scheme should be enough for defining a solution. We hope to return to

these issues in the near future.

Our construction should work only for deformations which are exactly marginal. At

first instance it may seem that we could generalize the construction also for vertex operators

whose OPE behaves like

V V ∼ z−2 + z−1V . (5.2)

The caveat here is that the structure functions associated with normal ordering V are

V dependent. Therefore, the proof below (2.17) regarding the regularity of the normal

ordered expression, does not generalize to this case.

The one case where our construction can be directly generalized is ∂X+. Inspect-

ing (2.10) for this case shows that (2.11) is replaced in this case by

[Q,Xn
+] = nc∂X+Xn−1

+ . (5.3)

The form of the solution is the same, except that there are no ∂c terms. Also, the terms

that arose from normal ordering are now absent. This leads to a simplification in the

evaluation of coefficients. In particular, for the tachyon and the light-cone photon we get

An = 0 ∀n > 1 , Tn = 0 ∀n . (5.4)

It would be interesting to compare this solution to the recently found one [32].

6. Comparing with former solutions

In this section we comment on the relation of our construction to that of Kiermaier, Okawa,

Rastelli and Zwiebach and of Schnabl [30, 31]. The construction of these authors starts

with any BRST-closed state in the Schnabl gauge

Qψ1 = 0 B0ψ1 = 0 . (6.1)

Alternatively, one could work in the Siegel gauge or any other gauge, but the choice of

Schnabl’s gauge simplifies later calculations. A one-parameter family of solutions can be

defined through

Ψ =
∞∑

n=1

λnψn , (6.2)

with

ψn ≡ −B0

L0

n−1∑

k=1

ψkψn−k . (6.3)

This solution might be ill defined because the 1/L0 operation is not a priori well defined,

as L0 has a nontrivial kernel. Consequently, B0/L0 is only well-defined up to an addition

of an arbitrary BRST-closed state. In fact, in the construction of [30, 31] adding such a

term in some cases becomes necessary in order to cancel singularities.
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Adding BRST-closed states at each order is equivalent to adding them all at the first

stage, provided that an explicit λ dependence of ψn is allowed. That is, given

ψ̃n ≡ −B0

L0

n−1∑

k=1

ψ̃kψ̃n−k + χn , (6.4)

where χn are closed and ψ̃n are λ-independent, we obtain a solution Ψ̃ which equals the

state Ψ built from ψn(λ), where

ψn>1 = −B0

L0

n−1∑

k=1

ψkψn−k , ψ1 =

∞∑

n=1

λn−1χn . (6.5)

This should be clear, since it simply amounts to a λ expansion. A rigorous proof is given

in appendix A.

The identity for ψ1 in (6.5) expresses exactly the way two solutions that are identical

at lowest order (i.e., have identical χ1) may differ at higher levels. Namely, we are free

to take χn>1 equal to any BRST-closed state. Adding to χn a term proportional to χ1 is

equivalent to a redefinition of the deformation parameter as in (3.14). Adding to χn another

BRST-closed state (corresponding to a linear combination of other linearized marginal

deformations) leads, however, to a physically inequivalent solution. Only the addition of

a BRST-exact state leads to a solution that is gauge equivalent to the original one. It is

useful to note at this point that fixing the gauge only removes the ambiguity of adding

a BRST-exact state, not of a more general, BRST-closed one. However, the B0 operator

does not fix the gauge completely. Indeed, a pure gauge state satisfying the B0 gauge is

the basis of Schnabl’s solution.

In light of these considerations it is interesting to try and compare our solution to the

solutions of [30, 31]. The latter obey the Schnabl gauge by construction. While this gauge

choice breaks down when counter terms are added, it is true for the regular solutions. Our

solutions on the other hand do not obey the B0 gauge. The general form of our solution

is Ûn+1 acting on a combination of c and ∂c insertions at various points acting on matter

insertions. The commutation relations

B0Ûn = Ûn

(4 − n

2
B0 +

2 − n

2
B†

0

)

, [B0, c(z)] = z , (6.6)

imply that already φ2 does not obey the gauge condition even before counter terms are

added, and adding them cannot alter this result.

Consequently, our solution and those of [30, 31] are in different gauges. Nevertheless,

both solutions are built only by using the original linearized marginal solution ψ1 and string

field products thereof, and don’t involve other linearized marginal solutions. For this reason

we expect that these solutions are gauge equivalent, possibly after a λ reparametrization.

7. Conclusions

We have presented the first explicit analytic solution corresponding to the photon marginal

deformation ∂X. Our method leads, at first instance, to a non-normalizable dependence
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of the solution on the center of mass coordinate. Key part of our construction is that it

is carefully tuned in order to cancel this dependence, leading to a solution in the physical

Hilbert space. For a compact spatial direction, this deformation corresponds to giving

a vev to the Wilson loop. The center of mass coordinate x0 should be regarded in this

context as a formal extension of the algebra.

One issue that remains open is the determination of the radius of convergence of the

series defining the solution. Examination of the lowest-order coefficients for the tachyon

state and the photon state suggests that this radius of convergence is finite. Another related

issue is to find the functional relation between λCFT and λSFT used here.

While we presented explicitly the photon marginal deformation, is should also be

possible to use our method for other operators with the same OPE, such as cos(X) or

cosh(X0). It would be interesting to identify the periodicity with respect to λCFT in terms

of λSFT. Also, since this marginal deformation connects the perturbative and the true

vacua, it should give a new representation of the true vacuum and it may even be possible

to explore the physics around it. Our method is particularly advantageous for operators

that have a singular OPE in the coincidence limit, as it avoids corresponding singularities

in the solution. However, it is also possible to use it for describing marginal deformations

with regular OPE.

An interesting extension of our method would be to try and construct space-time

dependent solutions, with a nontrivial but normalizable dependence on the center of mass

coordinate. Another exciting possibility would be to use it in the context of supersymmetric

string field theory. This may prove to be quite natural in light of the recent findings

of [32, 33].
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A. Proving the equivalence of (6.4) and (6.5)

To prove that adding BRST-closed states order by order is equivalent to adding them all

at the first stage, we expand

ψn =
∞∑

k=0

ψn,kλ
k . (A.1)
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By expanding (6.5) with respect to λ we get that these states obey the recursion relation

ψn>1,k = −B0

L0

n−1∑

j=1

k∑

l=0

ψj,lψn−j,k−l . (A.2)

We now define

ψ̃n ≡
n∑

m=1

ψm,n−m . (A.3)

What we have to prove is that these states obey the recursion relation (6.4). For n = 1

this hold trivially. For n > 1, we plug (A.2) into (A.3) and get

ψ̃n = −B0

L0





n∑

m=2

m−1∑

j=1

n−m∑

l=0

ψj,lψm−j,n−m−l



 + χn , (A.4)

where we separated the contribution from m = 1. Comparing to (6.4), we see that what

we have to prove is that the expression in the square brackets equals
∑n−1

k=1 ψ̃kψ̃n−k. Note

that nowhere did we use the equation of motion or any property of the operator in front

of the square brackets other than being linear and well defined. Neither did we use the

closeness of the χn’s. Now write this expression as

n−1∑

j=1

n−j
∑

r=1

n−j−r
∑

l=0

ψj,lψr,n−j−r−l =

n−1∑

j=1

n−1∑

k=j

n−k∑

r=1

ψj,k−jψr,n−k−r =

n−1∑

k=1

ψ̃kψ̃n−k , (A.5)

where we first interchanged the order of the first and second sums and defined r = m − j.

Then, we defined k = l + j and interchanged the second and third sums. Finally, we

interchanged the order of the first two sums and used the definition (A.3). This completes

the proof.
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