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We compute the dilatation generator in the su�2� sector of planar N � 4 super-Yang-Mills theory at
four loops. We use the known world-sheet scattering matrix to constrain the structure of the generator. The
remaining few coefficients can be computed directly from Feynman diagrams. This allows us to confirm
previous conjectures for the leading contribution to the dressing phase which is proportional to ��3�.
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I. INTRODUCTION AND OVERVIEW

The means available for analyzing the AdS/CFT corre-
spondence improved dramatically with the discovery of
perturbative integrability of the gauge theory dilatation
operator [1–3] and that of classical integrability of the
world-sheet sigma model [4,5]. Furthermore, there are
arguments [6] on the string theory side of the correspon-
dence that an infinite family of Becchi-Rouet-Stora-Tyutin
(BRST) invariant, nonlocal currents exists at all orders in
the inverse ’t Hooft coupling expansion suggesting that
integrability persists in the quantum theory. In the absence
of a definitive and constructive proof of all-order integra-
bility, one may nonetheless assume it and study its
consequences.

The fundamental quantity in an integrable (discrete or
continuous) theory defined on infinitely extended spacelike
slices is the scattering matrix of excitations. The Smatrix is
constrained by the symmetries of the theory; integrability
further requires that no particle production occurs in the
scattering process and that the n! n scattering process is
realized by repeated 2! 2 scattering events. A necessary
requirement is that the two-particle S matrix obeys the
Yang-Baxter equation.

For the AdS/CFT correspondence the relevant two-
particle scattering matrix was introduced in [7]; it turns
out that the global symmetries—a centrally extended form
of psu�2j2�2 —determine it up to an overall phase [8]. The
Yang-Baxter equation holds automatically in this case.
Although initially the S matrix was determined in the
gauge theory framework, it was later shown that the tensor
structure agreed with perturbative calculations in the
gauge-fixed world-sheet theory [9] and that it is consistent
with the Zamolodchikov-Faddeev algebra for the string
sigma model [10].

In relativistic quantum field theories the remaining
‘‘dressing factor’’ is determined by crossing symmetry,

information on the spectrum of bound states and perhaps
perturbative calculations. For the AdS/CFT correspon-
dence neither the world-sheet nor the gauge theory inte-
grable system exhibits Lorentz invariance. While on the
gauge theory side there is little reason to require an analog
of crossing symmetry, on the string theory side two-
dimensional Lorentz invariance is only spontaneously bro-
ken. As such, one may expect that some form of crossing
symmetry survives this breaking.

A crossinglike equation was constructed in [11] and
shown in [12] to hold for the known leading [13] and
next-to-leading terms [14,15]. An all-orders solution in a
strong coupling expansion was proposed in [16].

An unfortunate feature of this solution is that it is an
asymptotic series and thus, without additional information,
cannot be directly used to define the dressing phase every-
where in the coupling constant space. In [17] an analytic
continuation scheme was described which allowed a guess
for the weak-coupling expansion of the dressing phase
whose contribution to anomalous dimensions starts at
four-loop order where it predicts a transcendental contri-
bution proportional to ��3�. This prediction remarkably
agrees with the direct calculation of the four-loop cusp
anomalous dimension [18,19]. Subsequently the expan-
sions at weak and strong coupling were shown to be fully
consistent [20], and an integral expression for the phase at
finite coupling was proposed in [21,22].

In fact the above agreement is slightly surprising: The
four-gluon scattering amplitude of [18] is related to the
infinite-spin limit of twist-two anomalous dimensions.
Conversely, the analysis of [17] strictly applies to local
operators of twist three or higher. Because of the asymp-
totic nature of the higher-loop Bethe equations, the twist-
two anomalous dimension can only be predicted reliably
up to three loops; see [23] for further recent developments.
The agreement thus implies that the cusp anomalous di-
mension is universal for operators of all twists. In other
words, the limiting procedure described in [17,24] does not
suffer from potential order-of-limits ambiguities.

As remarkable as it is, this agreement also presents a
puzzle: The universality of the dressing phase implies that
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all anomalous dimensions of N � 4 super-Yang-Mills
theory (SYM) have, at four-loop order, a transcendental
contribution proportional to ��3�. While this is not at all
surprising for noncompact subsectors of N � 4 SYM in
the large-spin limit, it does seem surprising for finite spins
and for compact sectors. Indeed, in the infinite-spin limit
the renormalization group (RG) flow mixes an infinite
number of operators allowing transcendental numbers to
appear even if they are absent at the level of the anomalous
dimension matrix. In the latter cases however, the RG flow
mixes only finitely many operators and thus precludes the
appearance of transcendental numbers. Consequently, for
the conjectured dressing phase to be correct, ��3� must
appear at the level of the anomalous dimension matrix
elements.

Loop integrals may be interpreted—in a first quantized
language—as a sum over infinitely many intermediate
states producing an analogy with the large-spin sl�2� sector
operator mixing. From this standpoint, one is entitled to
expect the appearance of transcendental numbers at some
sufficiently high loop order in any sector. One of the
building blocks of the calculation of the renormalization
factors of scalar composite operators is the one-loop scalar
bubble diagram. It turns out that, in dimensional regulari-
zation, its � expansion contains ��3� at O��2�; conse-
quently, if this bubble is part of a larger diagram and the
other momentum integrals yield a third-order pole in the �
expansion, ��3� may appear in the coefficient of a first-
order pole and thus may contribute to some entry of the
anomalous dimension matrix. Counting the required num-
ber of inverse powers of the dimensional regulator, we
immediately reach the conclusion that this mechanism
may function first at the four-loop order.

In this paper we shall compute the four-loop dilatation
operator in the su�2� sector and show that the expectations
outlined above are indeed realized. We shall begin in
Sec. II with a review of the constraints imposed by su�2�
symmetry and Feynman diagrammatics. The unknown co-
efficients are parametrized in terms of the first nontrivial
coefficient of the dressing phase. However, unlike earlier
discussions [25,26] we shall not assume that this operator
is part of an integrable Hamiltonian. Instead, we shall
determine in Sec. III the unknown coefficients—and, in
particular, the coefficient related to the dressing phase—
by a direct calculation. The calculation is dramatically
simplified by the observation that the unknown coefficients
may be associated to so-called maximal interactions (i.e.
interactions that reshuffle the spins in a maximal way).
Section IV contains our conclusions. Some technical de-
tails as well as some momentum integrals useful for going
beyond four loops are included in the appendixes.

II. LONG-RANGE HEISENBERG HAMILTONIAN

A full-fledged field theory calculation of the complete
four-loop planar dilatation generator in N � 4 SYM is a

difficult task whose completion clearly requires new, deep
insight in higher-loop technology. The main complications
are the extensive combinatorics and the intricate algebra of
loop momenta inherent to gauge theories at higher pertur-
bative orders. However, our primary goal is to compute the
relevant coefficient of the dressing factor at this order. The
dressing factor can be observed in all closed sectors of the
model and we can conveniently restrict to the simplest one,
the su�2� subsector; cf. [27]. It consists of local operators
which are made from just two complex scalars; let us
denote them by Z and �, or, equivalently, spin up and
spin down. Here the planar dilatation operator turns into
the Heisenberg XXX1=2 Hamiltonian [1] with perturbative
long-ranged deformations [3]

 H �
X1
‘�0

�
�

16�2

�
‘
H ‘: (2.1)

Determining this Hamiltonian at the fourth perturbative
order would provide us with the leading piece of the
dressing phase.

The first few perturbative deformations of the Hamil-
tonian were obtained in [3]: This construction made use of
the fact that the Hamiltonian is some linear combination of
all interactions compatible with su�2� symmetry which
can originate from Feynman diagrams. The coefficients
of the interactions could, in principle, be computed from
perturbative field theory. However, such an elaborate cal-
culation was avoided by matching the coefficients to make
the spectrum of the Hamiltonian agree with some available
data. Together with the further assumption of integrability,
a proposal for the Hamiltonian at the third perturbative
order could be made. The conjecture has since passed
various tests [24,28–31] which prove that it is correct.

Here we shall repeat the above procedure to constrain
the fourth-order Hamiltonian as much as possible without
making any unproven assumptions. The crucial new input
that allows us to go to higher orders is the picture of
asymptotic excitation states [7] and its scattering matrix
[8]. In this picture, spin chain states are replaced by ex-
citations above a ferromagnetic vacuum, the magnons. The
ferromagnetic vacuum consists of a long chain of aligned
spins, say Z,

 j0i � j . . .ZZZ . . .i: (2.2)

This state is protected by a half-Bogomol’nyi-Prasad-
Sommerfeld (BPS) condition from receiving quantum cor-
rections to its energy; the complete cancellation of correc-
tions to two-point functions in field theory at two loops is
demonstrated explicitly in [32–34]. A single-magnon state
has one of these spins flipped to �, say at position k,

 

k
#

jki � j . . .Z�Z . . .i:
(2.3)
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Similarly, one can construct states with two or more mag-
nons,

 

k
#

l
#

...
#

jk; ‘; . . .i � j . . .Z�Z . . . Z�Z . . . Z�Z . . . . . . . . .i:

(2.4)

In the asymptotic coordinate space Bethe ansatz [7] the
magnons are arranged into momentum eigenstates with an
additional phase shift when two magnons move past each
other.

The excitation picture is highly constrained by its resid-
ual symmetry. It was shown in [8] that the form of the one-
and two-magnon states is almost completely determined.
The only degrees of freedom are a finite redefinition of the
coupling constant and the dressing phase. The possibility
to redefine coupling constants by a finite amount is inher-
ent to field theories. We can make a suitable choice and all
other choices can be recovered from it by substitution. A
general analysis [26] shows that the dressing phase starts to
contribute at four loops with a single undetermined coef-
ficient �2;3.

Note that these results are actually not based on the
(unproven) assumption of higher-loop integrability: inte-
grability or factorized scattering constrains the scattering
of three or more particles. It also implies a constraint on the
two-particle scattering matrix which, however, in this case
is automatically satisfied [8].

We can now match the coefficients of the Hamiltonian to
the zero-, one-, and two-particle states. The analysis pro-
ceeds along the lines of [26], and the most general result is
shown in Table I. The interaction symbols fa; b; c; . . .g
represent a sequence of nearest-neighbor interactions P p

of spins at sites p and p� 1 summed homogeneously over
the spin chain of length L,

 fa; b; c; . . .g �
XL
p�1

P p�aP p�bP p�c � � � : (2.5)

As undetermined parameters it contains the coefficient �2;3

for the dressing phase as well as several irrelevant parame-
ters �. The latter correspond to similarity transformations
of the Hamiltonian which do not affect its spectrum. One
may change their values by applying the similarity trans-
formation H � exp��iX�H exp��iX� with the sec-
ond- and third-order contributions to X given by
 

X2 � ��2�f1; 2g � f2; 1g�;

X3 � i��3a�f2; 1; 3g � f1; 3; 2g� � ��3b�f1; 2; 3g

� f3; 2; 1g� � ��3cf1; 3g � ��3d�f1; 2g � f2; 1g�:

(2.6)

It is worth pointing out that the structure of the
Hamiltonian at fourth order can be fixed uniquely up to
irrelevant terms. In other words, the scattering of three or
more magnons is fixed by the scattering of two magnons.
This feature is related to the su�2� symmetry of the inter-

actions: Interactions at four loops act on at most five
adjacent spins. Any elementary interaction among three
or more magnons (and therefore at most two vacuum spins)
is related to an interaction among at most two magnons
(and at least three vacuum spins) by flipping all five
interacting spins. Starting at five loops this picture breaks
down because interactions of six spins allow for elemen-
tary interactions of three magnons which leave no trace on
the sector with two or fewer magnons. It turns out that our
four-loop Hamiltonian in Table I is integrable, i.e. it is of
the form determined (but not displayed explicitly) in [26].
We have therefore proved four-loop integrability in the
su�2� sector.

The four-loop Hamiltonian in Table I is fixed to a large
extent. To determine the dressing phase coefficient �2;3 it
suffices to compute only a small number of its coefficients.
We see that�2;3 couples to, among others, the very first and
the fifth to last interaction structure in Table I. The first
structure does not redistribute the spins along the spin
chain. There are exceedingly many planar Feynman dia-
grams which do not change flavor, for example, those
containing only interactions of gluons and scalars.
Therefore, a direct computation of this coefficient seems
particularly difficult. In contrast, the coefficients of the last
five interactions can be computed relatively easily. They
form a class of interactions which reshuffle the spins in a
maximal way. At ‘ loops, they contain ‘ permutations of
nearest neighbors; see Fig. 1 for a graphical representation
of their induced permutations. This is the maximum re-
shuffling allowed by planar Feynman diagrams [3] and it

TABLE I. The four-loop Hamiltonian. The coefficient �2;3 is
the leading coefficient of the dressing phase at weak coupling.
We confirm the prediction �2;3 � 4��3� [17] as the principal
result of this paper. The coefficients � correspond to similarity
transformations and do not influence the spectrum.

H 0 � �fg

H 1 � �2fg � 2f1g
H 2 � �8fg � 12f1g � 2�f1; 2g � f2; 1g�
H 3 � �60fg � 104f1g � 4f1; 3g � 24�f1; 2g � f2; 1g�

�4i�2f1; 3; 2g � 4i�2f2; 1; 3g � 4�f1; 2; 3g � f3; 2; 1g�
H 4 � ���560� 4�2;3�fg

���1072� 12�2;3 � 8�3a�f1g
���84� 6�2;3 � 4�3a�f1; 3g
�4f1; 4g
���302� 4�2;3 � 8�3a��f1; 2g � f2; 1g�
���4�2;3 � 4�3a � 2i�3c � 4i�3d�f1; 3; 2g
���4�2;3 � 4�3a � 2i�3c � 4i�3d�f2; 1; 3g
��4� 2i�3c��f1; 2; 4g � f1; 4; 3g�
��4� 2i�3c��f1; 3; 4g � f2; 1; 4g�
���96� 4�3a��f1; 2; 3g � f3; 2; 1g�
���12� 2�2;3 � 4�3a�f2; 1; 3; 2g
���18� 4�3a��f1; 3; 2; 4g � f2; 1; 4; 3g�
���8� 2�3a � 2i�3b��f1; 2; 4; 3g � f1; 4; 3; 2g�
���8� 2�3a � 2i�3b��f2; 1; 3; 4g � f3; 2; 1; 4g�
�10�f1; 2; 3; 4g � f4; 3; 2; 1g�
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will turn out to be generated by the quartic interactions of
the scalars only. In other words, the relevant Feynman
diagrams will be those of a �4 theory.

Moreover, the individual maximal interactions are
uniquely identifiable by acting on special states: Assume
that the Hamiltonian density maps a state

 H 4j . . .��ZZ . . .i � cj . . .ZZ�� . . .i � . . . : (2.7)

There is a single interaction which achieves this particular
reshuffling of spins: f2; 1; 3; 2g; cf. Fig. 1. Therefore we
could infer that c equals the coefficient of this interaction,
c � �12� 2�2;3 � 4�3a. The same is true for the other
maximal interactions: If all lines going right are associated
with � and the others with Z then a � will move past a Z
towards the right at each elementary crossing. The effect
will thus uniquely identify the corresponding interaction.

Being the representation of the dilatation generator on
the gauge invariant operators in the su�2� sector, the spin
chain Hamiltonian in Table I is also the anomalous dimen-
sion matrix of operators in this sector. In any conformal
field theory the eigenvalues of the anomalous dimension
matrix are independent of the renormalization scheme. Its
matrix elements, however, do not need to have this prop-
erty. At the level of the Hamiltonian in Table I this is
reflected by the fact that the undetermined coefficients �
do not affect its eigenvalues [25].

III. FOUR-LOOP CALCULATION

With these preparations we are now in a position to
compute the undetermined coefficients that appear in the
spin chain Hamiltonian. Among the various approaches to
finding the anomalous dimension matrix, we shall consider
the renormalization of composite operators. It was success-
fully used in [35] to determine the two-loop and [under the
assumption of proper Berenstein-Maldacena-Nastase
(BMN) scaling for one-excitation BMN states] the all-
loop dispersion relations.

The renormalization of composite operators and the
subtraction of subdivergences proceeds by introducing
renormalization factors and counterterm diagrams analo-
gous to the Bogoliubov R-operation. For our purpose this
procedure was systematized in [3] where an iterative sub-
traction scheme was developed that allows the subtraction
of entire subdiagrams. This is the scheme we shall use.

We are therefore to compute Feynman diagrams with
one vertex being the composite operator of interest and
additional vertices dictated by the N � 4 SYM
Lagrangian. As described in detail in the previous section,
our goal is to find the entries of the four-loop anomalous
dimension matrix that reshuffle scalar fields in a maximal
way. Besides scalar fields, the internal lines of these dia-
grams may a priori also be fermions and gauge fields. Two
simple observations imply, however, that the situation is
substantially simpler.

By inspection of the diagrams in Fig. 1 it is easy to see
that Feynman diagrams containing gauge fields cannot lead
to such maximal reshuffling (in the sense described pre-
viously) of scalar fields. Indeed, using the fact that the
gauge field interactions are flavor blind, one may see that
replacing any of the four-point vertices by scalar-vector
interactions leads to diagrams not exhibiting maximal
reshuffling.

Let us consider next scalar-fermion interactions.
R-charge conservation implies that any diagram with ex-
ternal fermion fields and an insertion of an operator in the
su�2� sector vanishes identically. Diagrams with internal
fermion lines have a similar fate. To see this let us note that
the Yukawa interactions of the N � 4 SYM Lagrangian
are proportional to the SO�6� Dirac matrices. Since the
fields of the su�2� sector are complex, the Dirac matrices
appearing in these vertices will also carry complex vector
indices. Their algebra, f� �a;�bg � � �ab, implies that holo-
morphic matrices square to zero. Therefore the flavor of
scalar fields coupling to fermionic loops must alternate. It
is then easy to see that for 2n flavors at most n pairs can be
interchanged. This does not lead to a maximal permutation
and we can thus disregard fermion loops as well.

0 p

1: {1}

0 0 p

2: {2, 1}

0 − p 0 + p

3a: {1, 3, 2}

0 0 p 0

3b: {2, 1, 3}

0 0 0 p

3c: {3, 2, 1}

0 0 p 0

4a: {2, 1, 3, 2}

0 0 − p 0 + p

4b: {2, 1, 4, 3}

0 − p 0 0 + p

4c: {1, 4, 3, 2}

0 0 0 p 0

4d: {3, 2, 1, 4}

0 0 0 0 p

4e: {4, 3, 2, 1}

FIG. 1. Maximal planar interactions up to four loops. Below the diagrams the permutation symbols are indicated. Solid and dashed
lines correspond to two complex scalars in N � 4 SYM. Above the diagrams suitable momenta to remove IR singularities are
indicated.
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The conclusion is therefore that the Feynman diagrams
contributing to the entries of the four-loop anomalous
dimension matrix describing a maximal reshuffling of
spins are scalar diagrams in which each vertex contains
two types of scalar fields and the interaction interchanges
them. These are the diagrams listed in Fig. 1.

To compute the contribution to the anomalous dimen-
sion matrix we need to compute the amplitudes in Fig. 1
and isolate the overall ultraviolet divergence by subtracting
all their UV subdivergences. While, in general, it is con-
venient to use a variant of dimensional regularization
which preserves supersymmetry, in the context of our
calculation, making a definite choice is not an issue since
all our diagrams have only scalar internal lines. However,
since all fields are massless we must be careful to separate
the UV divergences from IR divergences. To this end we
shall assign off-shell momenta to some of the external
fields1; they are chosen such that the number of momenta
is minimal while all IR divergences are eliminated. It turns
out that up to four-loop order it suffices that only two of the
external fields carry momentum; an appropriate choice is
depicted in Fig. 1.

All momentum integrals may be computed easily by
reduction to a small set of master integrals. Common
building blocks are bubble diagrams with arbitrary
exponents for the two propagators; their expressions are
(here and elsewhere the dimensionality of space-time is
d � 4� 2�)2

 

where a12 � a1 � a2. Indeed, diagrams 1, 2, 3b, 3c, 4d,
and 4e may be computed exactly by repeated identification
of one-loop bubble subdiagrams. Once a bubble subinteg-
ral is evaluated, the exponent of the propagator carrying the
momentum p flowing through the bubble is shifted by an
integer multiple of the dimensional regulator.

A similar iterative identification of bubble subintegrals
reduces diagrams 3a and 4c to special cases of the two-
loop master bubble integral

 

with some arbitrary powers of propagators. For integer
exponents a1;...;5 such integrals have been computed in
the past (e.g. [36,37]). We are, however, interested in
situations when some of the exponents are not integers
(special cases have been previously analyzed in [38,39]),
being dependent on the dimensional regulator. Perhaps the
most effective way of computing such integrals is to use the
Mellin-Barnes (MB) parametrization [36,37]. The identity

 

1

�a� b�	
�

1

2�i

Z �i1
�i1

dw
���w���w� 	�

��	�
aw

b	�w
(3.3)

allows a straightforward evaluation of the Feynman pa-
rameter integrals and expresses the result of the momentum
integral in terms of multiple contour integrals which can
be evaluated through the residue theorem. This method
has the advantage of producing explicit integral represen-
tations for the coefficients of the various powers of the
dimensional regulator. The algorithm of [40] for the ana-
lytic continuation �! 0 as well as the numerical evalu-
ation of the resulting coefficients has been successfully
automated [41,42]. An MB parametrization of
T�a1; a2; a3; a4; a5� is

 

T�a1; a2; a3; a4; a5� �
�4���d

��a1���a4���a5���d� a145�

Z �i1
�i1

dw1dw2

�2�i�2
��a145 �

d
2� w12�

��a1245 �
d
2� w12�

� ���w1����w2���a4 � w12���d� a1245 � w12�

�
��d2� a14 � w1���a12345 � d� w1�

��3d2 � a12345 � w1�

��d2� a45 � w2���
d
2� a3 � w2�

��a3 � w2�
(3.4)

with the notation aijk... � ai � aj � ak � . . . and similarly for wijk.... While this parametrization does not manifestly
exhibit the symmetries of the original diagram, they are restored after the remaining integrals are performed. It is possible
(though perhaps less efficient in terms of the necessary number of MB parameters) to construct a Mellin-Barnes
parametrization manifestly exhibiting the �Z2�

2 symmetries of (3.2). The � expansions of the two-loop integrals we shall
require read

2We extract the overall momentum dependence for the sake of notational convenience.

1The external fields can either belong to the operator being renormalized or be attached to the vertices of the N � 4 SYM
Lagrangian.
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T�1; 1; 1; 1; �� � L�1; 1�2
�
1

3
�

1

3
��

1

3
�2 �

�
�

7

3
�

14

3
��3�

�
�3 � . . .

�
;

T�1; 1; 1; �; 1� � L�1; 1�2
�
1

6
�

1

2
��

13

6
�2 �

�
�

55

6
�

23

3
��3�

�
�3 � . . .

�
;

T�1; 1; 1; 1; 2�� � L�1; 1�2
�
1

6
�

1

3
��

1

3
�2 �

�
�

17

3
�

31

3
��3�

�
�3 � . . .

�
;

T�1; 1; 1; 1� �; �� � L�1; 1�2
�

5

24
�

5

12
��

25

24
�2 �

�
�

5

12
�

19

6
��3�

�
�3 � . . .

�
;

T�1; 1; 1; 2�; 1� � L�1; 1�2
�

1

12
�

5

12
��

29

12
�2 �

�
�

161

12
�

71

6
��3�

�
�3 � . . .

�
:

(3.5)

Here it was convenient to factor out two powers of the one-loop bubble L�1; 1� which has the expansion

 L�1; 1� � �4���
�����2�1� ��

16�2��2� 2��
�

1

16�2�
�4�e�
��

�
1� 2��

�
4�

1

12
�2

�
�2 �

�
8�

1

6
�2 �

7

3
��3�

�
�3 � . . .

�
: (3.6)

In both of the last two integrals, 4a and 4b, it is trivial to
isolate a factor L�1; 1�. The remaining three-loop integrals
may be computed in several ways. One approach makes
use of integration by parts identities, known in this case as
the triangle rule, to reduce them to combinations of one-
and two-loop bubble integrals with various exponents (see
Appendix A for details). A second approach directly eval-
uates the three-loop integrals and in the process tests that
the infrared region is nonsingular. We list the necessary
Mellin-Barnes integrals and the � expansions of all dia-
grams in Appendix B. Needless to say, the two calculations
lead to the same answer.

For a vector of operators O, the relation between the
bare and renormalized operators is given by the renormal-
ization factor Z,

 O bare � Z �Oren: (3.7)

The ‘-loop contribution to Z is found from the overall
divergence of ‘-loop diagrams with exactly one insertion
of a member of the vector O. To isolate the overall diver-
gence it is necessary to include counterterm diagrams
which are generated recursively by the lower-loop renor-
malization factor. These diagrams also eliminate the non-
local momentum dependence. The relation between the
renormalization factor and the anomalous dimension ma-
trix (a.k.a. dilatation generator or spin chain Hamiltonian)
H is standard:

 �H � lim
�!0

�Z�1 d
d lngYM

Z: (3.8)

This expression implies an exponential-like structure for
the renormalization factor Z3; in particular, the derivative
of Z must be left-proportional to Z and, in order that the
�H be well defined in the �! 0 limit, the factor of
proportionality can only have additional simple poles.4

A subtraction scheme that enforces these constraints and
at each loop order isolates directly the contribution to the
anomalous dimension matrix was described in [3] for use
in two-point functions. An adapted version for use in
operator renormalization diagrams is presented in
Appendix C where the explicit rules are given and then
applied to the relevant diagrams.

Finally, in this scheme Eq. (3.8) reduces to the simple
operation of picking the residue of the 1=� pole of the
subtracted diagrams,

 

~I � 2�16�2�‘lim
�!0

� �I���: (3.9)

The factor of �16�2�‘ corresponds to the normalization of
the ‘-loop Hamiltonian H ‘ and allows for a direct com-
parison of the quantity ~I to the coefficients in (2.1). In our
case this leads to

 

~I1 � �2; ~I4a � �4� 4��3�;

~I2 � �2; ~I4b � �10� 12��3�;

~I3a � �4; ~I4c � �2� 8��3�;

~I3b � �4; ~I4d � �10� 4��3�;

~I3c � �4; ~I4e � �10;

(3.10)

which represent the coefficients relating the structures
listed in Fig. 1 and the spin chain Hamiltonian
(cf. Table I). Clearly, ~I1, ~I2, ~I3c, and ~I4e reproduce the
coefficients of f1g, f2; 1g, f3; 2; 1g, and f4; 3; 2; 1g, respec-
tively. The coefficients undetermined by symmetry consid-
erations are fixed by our calculation to be5

 i�2 � �1; �3a � �2� 3��3�;

i�3b � �3� ��3�
(3.11)

3For operators which do not mix under RG flow the relation is
Z � exp���1

R
1
0 dtt

�1
�tgYM�	.
4It is, in principle, possible that in a different renormalization

scheme individual matrix elements could have divergent terms;
however these terms should be removable by similarity
transformations.

5The conventional factors of i indicate that the Hamiltonian is
not manifestly Hermitian. With a proper choice of scalar prod-
uct, however, it becomes quasi-Hermitian as it should.
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and

 �2;3 � 4��3�: (3.12)

In particular, we are able to uniquely fix the leading
coefficient �2;3 for the dressing phase. It is in full agree-
ment with the results of [17–19].

IV. CONCLUSIONS AND OUTLOOK

In this paper we have computed the four-loop dilatation
operator in the su�2� sector of N � 4 SYM. The main
observation which led to substantial technical simplifica-
tions is that the coefficients undetermined by symmetry
constraints can be chosen to correspond to ‘‘maximal
interactions’’—i.e. interactions that reshuffle the spins in
a maximal way. For appropriately chosen gauge theory
operators these interactions are entirely determined by
Feynman diagrams with only scalar interactions. We found
that, starting at four-loop order, the anomalous dimensions
of long operators become transcendental; this may be
traced to the dilatation operator acquiring transcendental
coefficients. We have extracted the relevant coefficient of
the dressing phase and found it identical to the one repro-
ducing the four-loop cusp anomalous dimension computed
in [18,19]. Our result confirms the particular analytic con-
tinuation used to guess the dressing phase at weak coupling
[17].

The main obstacle for computing higher-loop anoma-
lous dimensions in any sector of N � 4 SYM and thus
directly computing the S-matrix dressing phase is, as in all
off-shell calculations, the proliferation of Feynman dia-
grams. In compact sectors the symmetries of the theory
restrict (sometimes substantially) the structure of the
anomalous dimension matrix. At any loop order the maxi-
mal interactions enjoy the same technical simplifications
as the ones employed in the calculations described here;
moreover, it is possible that some of the relevant momen-
tum integrals exhibit a recursive structure.6 It would be
interesting to identify and compute them, thus providing a
direct evaluation of important parts of the dressing phase.
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APPENDIX A: THE TRIANGLE RULE

Consider the Feynman integral

 

This integral may be part of a larger Feynman diagram and
the labels a1;...;5 represent the exponents of the propagators
of the corresponding internal lines. Inserting the operator
l�@=@l�, where l� is the loop momentum, in the integral
representing this diagram and equating the results of the
action of the derivative on the original integrand and the
result of the integration by parts leads to
 

�d� a2 � a3 � 2a5�F � �a22��5� � 1��

� a33��5� � 4���F (A2)

where, for example, 1
F�a1; a2; a3; a4; a5� � F�a1 

1; a2; a3; a4; a5�.

The various terms in such a decomposition may acquire,
however, spurious infrared divergences which are regular-
ized by the dimensional regulator and—provided that the
IR of the original integral was properly regularized—can-
cel when all terms are assembled.

The triangle rule together with the straightforward
evaluation of bubble integrals leads to the following ex-
pressions for the diagrams in Fig. 17:
 

I1 � �p
2���L�1; 1�;

I2 � �p
2��2�L�1; 1�L�1� �; 1�;

I3a � �p
2��3�L�1; 1�T�1; 1; 1; 1; ��;

I3b � �p
2��3�L�1; 1�2L�1� �; 1� ��;

I3c � �p
2��3�L�1; 1�L�1� �; 1�L�1� 2�; 1�;

I4a � �p2��4� L�1; 1�
1� 3�

�L�2; ��T�1; 1; 1; 2�; 1�

� L�2; 3��T�1; 1; 1; �; 1�	;

I4b � �p2��4�L�1; 1�2T�1; 1; 1; 1� �; ��;

I4c � �p
2��4� L�1; 1�

1� 3�
�L�2; ��T�1; 1; 1; 1; 2��

� L�2; 1�T�1; 1; 1; 1� �; ��

� �L�1; 1� ��T�1; 1; 1; 1; 2��

� �L�1; 1� ��T�1; 1; 1; 2�; 1�	;

I4d � �p2��4�L�1; 1�2L�1� �; 1�L�1� 2�; 1� ��;

I4e � �p2��4�L�1; 1�L�1� �; 1�L�1� 2�; 1�L�1� 3�; 1�:

(A3)

6A candidate for this property is fm; . . . ; 1; m� 1; . . . ;
2; . . . ; n�m� 1; . . . ; n� 1; n�m . . . ng.

7It is trivial to identify in the expressions of I4a and I4c the IR
divergent components mentioned above.
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Note that the integrals T�1; 1; 1; �; 1� and T�1; 1; 1; 2�; 1�
can be evaluated further using the triangle rule
 

T�1; 1; 1; �; 1� �
L�1; 1�
1� 3�

�L�2; �� � L�2; 2��

� �L�1; 1� �� � �L�1� �; 1� ���;

T�1; 1; 1; 2�; 1� �
L�1; 1�
1� 4�

�L�2; 2�� � L�2; 3��

� 2�L�1; 1� 2��

� 2�L�1� �; 1� 2���:

(A4)

For compactness, we left them unexpanded in (A3); The

integral I4a can thus be evaluated as an analytic expression
in �.

APPENDIX B: THREE-LOOP INTEGRALS

The three-loop integral that remains after one identifies a
one-loop bubble subintegral in I4a may be evaluated di-
rectly, thus testing the application of the triangle rule and
the correct infrared regularization of the contributions to
the anomalous dimension matrix. A Mellin-Barnes pa-
rametrization of a master integral containing I4a is

 

Then,

 I4a � �p2��4�L�1; 1�BM�1; �; 1� (B2)

and its evaluation leads to the result listed in Eq. (B6).
Similarly, I4c is a special case of the master integral

 

A Mellin-Barnes parametrization is
 

BL�a1; a2; a3; a4; a5� � �4���3d=2
Z i1

�i1

dw1dw2dw3dw4

�2�i�4
���w1����w2���1�

d
2� a12 � w12���1� w12�

��a1���a2���d� 1� a12�

�
���w3����w4���1�

d
2� a34 � w34���1� w34�

��a3���a4���d� 1� a34�
�
�
d
2
� 1� a1 � w1

�
�
�
d
2
� 1� a2 � w2

�

� �
�
d
2
� 1� a3 � w3

�
�
�
d
2
� 1� a4 � w4

�
��2� a123456 �

3d
2 � w13�

��2d� 2� a123456 � w13�

��d2� a5 � w24�

��a5 � w24�

�
��3d2 � 2� a12346 � w1234�

��2� a12346 � d� w1234�
: (B4)
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Then

 I4c � �p2��4�L�1; 1�lim
	!0

BL�1; �; 1; 1; 	; 1� (B5)

whose evaluation leads to the result listed in Eq. (B6).
The integrals listed here are useful for the calculation of the coefficients of the higher-loop Hamiltonian in the su�2�

sector. The resulting � expansions of the integrals in Fig. 1 read

 

I1 �
1

16�2�

�
4�e�


p2

�
�
�
1� 2��

�
4�

1

12
�2

�
�2 �

�
8�

1

6
�2 �

7

3
��3�

�
�3 � . . .

�
;

I2 � �I1�
2

�
1

2
�

1

2
��

3

2
�2 �

�
9

2
� 3��3�

�
�3 � . . .

�
;

I3a � �I1�
3

�
1

3
�

1

3
��

1

3
�2 �

�
�

7

3
�

14

3
��3�

�
�3 � . . .

�
;

I3b � �I1�
3

�
1

3
�

2

3
��

8

3
�2 �

�
32

3
�

22

3
��3�

�
�3 � . . .

�
;

I3c � �I1�
3

�
1

6
�

1

2
��

13

6
�2 �

�
55

6
�

11

3
��3�

�
�3 � . . .

�
;

I4a � �I1�
4

�
1

12
�

1

3
��

19

12
�2 �

�
43

6
�

10

3
��3�

�
�3 � . . .

�
;

I4b � �I1�
4

�
5

24
�

5

12
��

25

24
�2 �

�
5

12
�

19

6
��3�

�
�3 � . . .

�
;

I4c � �I1�
4

�
1

8
�

1

3
��

9

8
�2 �

�
10

3
�

3

2
��3�

�
�3 � . . .

�
;

I4d � �I1�
4

�
1

8
�

1

2
��

21

8
�2 �

�
27

2
�

13

2
��3�

�
�3 � . . .

�
;

I4e � �I1�
4

�
1

24
�

1

4
��

37

24
�2 �

�
107

12
�

13

6
��3�

�
�3 � . . .

�
:

(B6)

APPENDIX C: SUBTRACTION SCHEME

Here we describe the subtraction scheme used to extract
the contributions to the anomalous dimensions without
having to insert counterterms at each stage of the calcu-
lation. For each connected diagram drawn with the com-
posite operator as the lowermost vertex, one

(i) partitions it in all possible connected subdiagrams
(including the trivial partition into a single subdia-
gram) and interprets those diagrams as contributing
to the renormalization of a composite operator,

(ii) discards all partitions which are interconnected hor-
izontally (all partial diagrams must be ‘‘dropped’’
onto the composite operator from above in a well-
defined sequence, in similarity to a famous arcade
game),

(iii) discards all partitions for which there are two or
more topmost diagrams,

(iv) evaluates the momentum integrals for the remaining
partitions,

(v) sums the products of the momentum integrals for
each partition weighted by ‘��1�n (n is the number

of partial diagrams and ‘ is the loop number of the
topmost diagram in the partition).8

Applying this scheme to the diagrams in Fig. 1 we find
the following subtracted integrals �I,
 

�I1 � �I1;

�I2 � �2I2 � I
2
1 ;

�I3a � �3I3a � 2I2I1;

�I3b � �3I3b � 4I2I1 � I
3
1 ;

�I3c � �3I3c � 3I2I1 � I
3
1 ;

�I4a � �4I4a � I3aI1 � 3I3bI1 � 4I2
2 � 6I2I2

1 � I
4
1 ;

�I4b � �4I4b � 3I3aI1 � I3bI1 � 2I2
2 � 2I2I2

1 ;

�I4c � �4I4c � I3aI1 � I3cI1 � 2I2
2 � I2I2

1 ;

�I4d � �4I4d � 3I3bI1 � 3I3cI1 � 2I2
2 � 5I2I2

1 � I
4
1 ;

�I4e � �4I4e � 4I3cI1 � 2I2
2 � 4I2I2

1 � I
4
1 :

(C1)

8It is easy to see that this weight is related to a derivative with
respect to the loop-counting parameter, as in Eq. (3.8).
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It is not hard to find that the quantities �I exhibit only a
simple pole in the � expansion. A strong crosscheck of the
correctness of the subtraction is the cancellation of non-

local and divergent momentum dependence that arises in
(B6).
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