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Abstract. The accurate modelling of astrophysical scenarios inmglvtompact objects
and magnetic fields, such as the collapse of rotating magmetstars to black holes or
the phenomenology of-ray bursts, requires the solution of the Einstein equatimgether
with those of general-relativistic magnetohydrodynamié¢e present a new numerical code
developed to solve the full set of general-relativistic metghydrodynamics equations in
a dynamical and arbitrary spacetime with high-resolutitlock-capturing techniques on
domains with adaptive mesh refinements. After a discussidheoequations solved and of
the techniques employed, we present a series of testbetsdcaut to validate the code and
assess its accuracy. Such tests range from the solutioratiigtic Riemann problems in
flat spacetime, over to the stationary accretion onto a Sasehild black hole and up to the
evolution of oscillating magnetized stars in equilibriundaonstructed as consistent solutions
of the coupled Einstein-Maxwell equations.

PACS numbers: 04.25.Dm, 95.30.Qd, 04.40.Dg, 97.60.J809%5f

1. Introduction

Magnetic fields are ubiquitous in astrophysical objects aad play an important role,
especially in those scenarios involving compact objeath s neutron stars and black holes.
An accurate and consistent modelling of these scenarioghwdre extreme both for the
gravitational and the electromagnetic fields, cannot beedamalytically and perturbative
methods are also of limited validity. In the absence of symnie® in fact, no dynamical
and analytic solutions are known and it is only through thié dalution of the equations
of general-relativistic magnetohydrodynamics (GRMHD3ttbne can hope to improve our
knowledge of these objects under realistic conditions.

As in general-relativistic hydrodynamics, the work in thiga of research has started,
more than 30 years ago with the pioneering work of Wilsdn filfower spatial dimensions
(see[[2] for a review of the technical and scientific progtieseelativistic hydrodynamics).
Unlike general relativistic hydrodynamics, however, whieoth technical issues and scientific
investigations have now reached an advanced stage of foptigs and accuracy, progress in
GRMHD has yet to reach a comparable level of maturity. Indéeehs only over the last few
years that the slow but steady progress in GRMHD has seereaeerburst of activity, with a
number of groups developing a variety of numerical codedsglthe equations of GRMHD
under different approaches and approximations. This idypdume to the considerable added
complexity of the set of equations to be solved in GRMHD aratdtlp, to the fact that only
recently sufficient computational resources have becoradale to tackle this problem in
two or three spatial dimensions and with sufficient resotuti
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It does not come as a surprise, therefore, that most of theenicah codes developed in
the last decade have been based on the same non-consefwatiwéation of the GRMHD
equations introduced by Wilson, solving them on a fixed beamlgd to study accretion
disks around black holes. Inl[3] 4], for instance, the effeat a Kerr black hole on
magnetohydrodynamical accretion have been studied, vatticplar attention being paid
to the transfer of energy and angular momentum. Keital. [5], on the other hand, have
developed a numerical code based on the artificial-viscagiproach proposed by Davis [6]
to perform the first simulations of jet formation in General&ivity [7] and to study the
possibility of extracting the rotational energy from a Kétack hole [8] 9]. Furthermore,
a distinct numerical code has been constructed by De \dllieard Hawley[[10] using the
formulation proposed in [11, 12] to carry out a series of &siabn accretion flows around
Kerr black holes[[13, 14, 15].

It is only rather recently that different groups have strte recast the system of
GRMHD equations into a conservative form in order to bendfihe use of high-resolution
shock-capturing schemes (HRSC)I[16,(17,/18[ 19, 20]. Suvhrses, we recall, are essential
for a correct representation of shocks, whose presencepicted in several astrophysical
scenarios and in particular in those involving compact cisje Two mathematical results
corroborate this view, with the first one stating that a gtadtheme converges to a weak
solution of the hydrodynamical equations[21], and with $keond one showing that a non-
conservative scheme will converge to the wrong weak salutishe presence of a shock[22].

All of these newly developed codés [16, 17] 18, 19] that made af HRSC methods
have been so far applied to the study of accretion problertstdack holes, for which the
self-gravity of the accreting material introduces very Broarrections to the spacetime and
fixed spacetime backgrounds can be used satisfactorily.

Approaches alternative to that of constructing GRMHD cdug instead been based
on the use of a modified Newtonian gravitational potentiahtionic general relativistic
effects without having to solve numerically Einstein edquas (see[[23] for an application
to magnetorotational collapse of stellar cores) or on tleaiglifferent numerical methods,
such as smoothed particle hydrodynamics and artificiabgisy, to study the merger of binary
neutron star systems as a possible engine for shay bursts[[24]. Although the use of these
approximations has made it possible to investigate thioplsysical scenario for the first
time including details about the microphysics, it is cldzattequally important corrections
coming from the dynamical evolution of the spacetime nedgktintroduced when trying to
model the phenomenology that is thought to be behjndy bursts. As a first step in this
direction, two codes were recently developed to solve tHesét of GRMHD equations on
a dynamical background [25, 26]. These codes, in particulare used to perform the first
study, in two spatial dimensions, of the collapse of mageetidifferentially rotating neutron
stars|[[27] 28, 29] which are thought to be good candidatestiort-y-ray bursts.

Here, we presenthi skyVHD, a new three-dimensional numerical code in Cartesian
coordinates developed to solve the full set of GRMHD equmabio a dynamical background.
The code is based on the use of high-resolution shock-dgagtiachniques on domains with
adaptive mesh refinements, following an approach alreagjeimented with success in the
general-relativistic hydrodynamics coddi sky [30], and which has been used in the study
of several astrophysical scenario with particular attento gravitational-wave emission from
compact objects.

The paper is organized as follows: in Séct. 2 we recall theggps of GRMHD and the
form they assume when recast in a conservative form, whieirt[B we discuss in detail the
numerical methods adopted for their solution. Sedfion 4ichted to the series of testbeds
the code has passed both in special and in general relativistditions. Finally, Sedt]5 offers
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a summary of the results and an overview on our future praject

Throughout the paper we use a spacelike signdture-, +, +) and a system of units in
whichec = G = Mg = 1. Greek indices are taken to run from O to 3, Latin indices ffota
3 and we adopt the standard convention for the summationrepeated indices. Finally we
indicate 3-vectors with an arrow and use bold letters to tieievectors and tensors.

2. Formulation of the equations

We adopt the usual 3-dimensional foliation of the spacemthat the line element reads

ds? = —(a® — B'B;)dt? + 26;da’dt + v;;dr'da’ | (1)
where3' is theshift vector,a is thelapsefunction andy;; are the spatial components of the
four-metricg,,,,.

As its predecessovhi sky [30], the Whi skyMHD code benefits of theCact us
computational toolkit[[3[1] which provides an infrastrueifor the parallelization and the
I/O of the code, together with several methods for the sofudif the Einstein equations. As
a result, at each timestep our new code solves the MHD eansatibile Cactus provides the
evolution of the metric quantities. The evolution of thediebmponents is done using the
NOK formulation [32] 33| 34] and details about its numericaplementation can be found
in [35,36,37].

Here too we make use of the so-called “Valencia formulatif88, [39] which was
originally developed as & + 1 conservative Eulerian formulation of the general relatiei
hydrodynamic equations, but which has been recently erttmthe case of GRMHD [18].
Following [18] we define the Eulerian observer as the one mpwiith four velocityn
perpendicular to the hypersurfaces of constaatteach event in the spacetime. This observer
measures the following three-velocity of the fluid

, Rt ut B
7 H
= = — — 2
v —uktn, W + a’ 2)
whereh,, = g., + n,n, is the projector orthogonal te, u is the four-velocity of the
fluid and —u"n, = au’ = W is the Lorentz factor which satisfies the usual relation
W = 1/v1 -2, wherev? = v;;0%07. The covariant components of the three-velocity
are simply given by; = u;/W.

2.1. Maxwell equations
The electromagnetic field is completely described by thadray electromagnetic tensor field
F*¥ obeying Maxwell equations (cfr [40])

V., F" =0 ; (3)

V,F* =dgJH | 4)
whereV is the covariant derivative with respect to the four-medti¢7 is the charge current
four-vector andF is the dual of the electromagnetic tensor defined as

1

Y inuu)\éF)\é , (5)
n***% peing the Levi-Civita pseudo-tensor. A generic observeh viaur-velocity U will
measure a magnetic fiel® and an electric field” given by

E* = FaﬁUﬂ , (6)

B = *FaﬁUﬁ , @)
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and the charge current four-vectdrcan be in general expressed as
J" = qut + o, (8)

wheregq is the proper charge density aads the electric conductivity.

Hereafter we will assume that our fluid is a perfect condu@tieal MHD limit) and so
thato — oo and F**u, = 0 (i.e. the electric field measured by the comoving observer is
zero) in order to keep the current finite. In this limit, the@tomagnetic tensor and its dual
can be written exclusively in terms of the magnetic fielsheasured in the comoving frame

F77 = n*bou,, , TR = b — bYut . 9
with the Maxwell equations taking the simple form
1
V., F* = ——09, (v—g (b"u” —b"ut)) =0, (10)

In order to express these equations in terms of quantitiesured by an Eulerian observer,
we need to compute the relation between the magnetic fieldumed by the comoving and by
the Eulerian observers, respectivélgnd B. To do that we introduce the projection operator
P, = g +uyu, orthogonal tau. If we apply this operator to the definition of the magnetic
field B measured by an Eulerian observer, we can easily derive Hlog/fog relations

WBi i . Bi bO 7 B2 2 bO 2
:J,blzﬂ,bgzb“buzﬁ, (11)
o %4 W2
where B2 = B'B;. The time component of equatioris{10) provides the divargdree
condition

bO

9;B'=0, (12)

whereB’ = /7B’ andy is the determinant of;;. The spatial components of equations (10),
on the other hand, yield the induction equations for thewianh of the magnetic field

d:(B%) = 9;(2"B? — ¥ BY) , (13)

whered? = av® — L.

2.2. Conservation equations

The evolution equations for the rest-mass dengjtyhe specific internal energyand for
the three-velocityv can be computed, as done in relativistic hydrodynamicanfthe
conservation of the baryon number

Vo (pu”) =0, (14)
from the conservation of the energy-momentum
vV, T" =0, (15)

and from an equation of state (EOS) relating the gas pregstoahe rest-mass densipy
and to the specific internal energyWe also assume that the fluid is perfect so that the total
energy momentum tensor, including the contribution fromragnetic field, is given by

b2
T = (ph +b?) ufu” + <p + 5) g — b, (16)

whereh = 1 + ¢ + p/p is the specific relativistic enthalpy.
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Following [1&] and in order to make use of HRSC methods, weitevequations[{14),
(@5) and[(IB) in the following conservative form

1 )
—— [0,(\AF%) 4 0;(vV—gF)] =S, (17)
whereF? = (D, S;, 7, B¥)T is the vector of the conserved variables measured by thei&ule
observerF? are the fluxes

D'/
} Sjv' o+ (p+b?/2) 6 — b; B /W
F' = , (18)
70 Ja+ (p+b%/2) v' — b’ BY /W

B*o'/a — B'oF Ja
andS are the source terms
0

T (Ougvi = T0,985)

S = , (19)
o (T“Oaﬂ Ina — T’“’Fgﬂ)
Ok
where
D = pW , (20)
S; = (ph + b*)W?v; — ab’b; | (21)
2
P o= (ph W2 — (p+ D)~ 0?0 - D, (22)

2

and 0 = (0,0,0)T. While ready to make use of arbitrary EOS, the ones presently
implemented in the code have a rather simple form and arendiyeeither the polytropic
EOS

p=Kp", (23)
p
€= ——, 24
o 1) (24)
or by the ideal-fluid EOS
p=(-1)pe, (25)

where K is the polytropic constant andl is the adiabatic exponent. In the case of the
polytropic EOS[(ZB)I" = 1 + 1/N, whereN is the polytropic index.

3. Numerical methods

As in theWhi sky code, the evolution equations are integrated in time udirgrethod of
lines [41], which reduces the partial differential equai¢1T) to a set of ordinary differential
equations that can be evolved using standard numericabagtbuch as Runge-Kutta or the
iterative Cranck-Nicholson schemes|42] 43].
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3.1. Approximate Riemann solver

As mentioned in the Introductionphi sky MHD makes use of HRSC schemes based on
the use of Riemann solvers to compute the fluxes between tireenizal cells. More
specifically, we have implemented the Harten-Lax-van LEefeldt (HLLE) approximate
Riemann solvel[44] which is simply based on the calculatibtihe eigenvalues of eq$. (17)
and it does not require a basis of eigenvectors. In the HLLUifdation the flux at the
interface between two numerical cells is therefore compate

i i 0 0
Fi _ Cmian« + CmawF; — CmazCmin (FT - Fl)

: (26)

Cmaz + Cmin

whereF# andF/ are computed from the values of the primitive variables nstwicted at
the right and left side of the interfad®,. and P;, respectively. The coefficients,,,., =
max(0, ¢4+ r, €1 1), Cmin = —min(0, c_ »,c_ ;) andcy , ¢+ ; are instead the maximum left-
and right-going wave speeds computed frétn and P;. In our implementationP,. and
P, are computed using a second order TVD slope limited methadhwdan be used with
different limiters such as minmod, Van Leer and MCI[41].

An alternative to the use of ampproximateRiemann solver could have been the use
of the exactRiemann solver recently developed in GRMHD. We recall tinatelativistic
hydrodynamics the exact solution is found after expresalhgf the quantities behind each
wave as functions of the value of the unknown gas pressuatethe contact discontinuity.
In this way, the problem is reduced to the search for the vafube pressure that satisfies
the jump conditions at the contact discontinuity (de€ [45/4%,[48] for the details). The
procedure for the exact solution of the Riemann problemlativéstic MHD is based instead
on the use of an hybrid approach that makes use of differenf seknowns depending on the
wave. In the case of fast-magnetosonic waves, both shodks&factions, all the variables
behind the waves are rewritten as functions of the totalgomesi.e. p + b2/2, while behind
slow magnetosonic shocks or rarefactions the componetiteohagnetic field tangential to
the discontinuity are used to compute all the other vari@ablEhe use of this strategy was
essential in order to reduce the problem to the solution dbsed system of equations that
can be solved with standard numerical routines such as MeRéphson schemes (séel[49]
for the details). The numerical code computing the exacitsni is freely available from the
authors upon request and it is now becoming a standard toloéitesting of both special and
general relativistic MHD codes.

While the use of an exact Riemann solver could provide thetiswol of the discontinuous
flow at each cell interface with arbitrary accuracy, the éxatver presented in [49] is still
computationally too expensive to be used in ordinary mmitahsional codes and we have
found the HLLE algorithm to be sufficiently accurate for tleselution used in our tests.

3.1.1. Calculation of the eigenvalues An important difference with respect to relativistic-
hydrodynamic codes is that in GRMHD the calculation of thgeaewvalues required by
the HLLE solver is made more complicated by the solution ofuartic equation. The
characteristic structure of GRMHD equations is analyzedétail in [40] and we simply
report here the expressions for the calculation of the sexsa® speeds associated with the
entropic, the Alfvén, the fast and slow magnetosonic waves

More specifically, the characteristic spekdf the entropic waves is simply given by
7 = av® — 3¢, while the values for the left- and right-going Alfvén wavare

. b/ (ph+b?)u’

B2 0 £ /(ph + 2)ud

(27)
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Similarly, the four speeds that are associated with thesfagislow magnetosonic waves,
and that are required in the calculation of the fluxes, canttaimed by the solution of the
following quartic equation in each directiarior the unknowm

2
ph (%—1) at — (ph+b—2) a’G +B*G =0, (28)

Cg Cs

where
a = W (-A+av' =), (29)
@

B=0b -\, (30)

1 . g
= E [—(/\+ﬂl)2 —|—O¢2’}/“] ’ (31)

andc; is the sound speed (Note that the convention on repeatetemahould not be used
for the last term in the expression faf, i.e. 7). In the degenerate case in whiéh = 0,
eg. [28) can be reduced to a simple quadratic equation teahised analytically. In the more
general case, however, eQ.](28) cannot be reduced to thegirofitwo quadratic equations
as in Newtonian MHD and different methods are implementetthéncode in order to solve
it. The first one simply makes use of the analytic expressioa fjuartic equation [50], while
the other two search the solution numerically either throaig eigenvalue method or through
a Newton-Raphson iteration [51]. The latter has shown tdvbe@rtost accurate and robust and
it is the one used by default.

We have also implemented an approximate method for theletiloo of the eigenvalues
associated with the fast magnetosonic waves (which arerlyaéwo roots needed by HLLE)
which was introduced in [52] and which reduces the origingrtjc to a quadratic equation,
that can be solved analytically, by imposiftj = 0 and B/v; = 0 in equation[(2B). The
values computed in this way differ by less thH with respect to the exact values and we
have used them in those situations in which the solution@fjthartic can be complicated by
the presence of degeneracies or when two of the roots arelaesgy to each other.

3.2. Constrained-Transport Scheme

Although an exact solution of eqé. {13) would guaranteetti@tonstraint conditioi (12) is
also satisfied identically and all times, any numerical Sofuof the induction equationg{1L3)
will inevitably produce a violation of the divergence-freendition which, in turn, may lead
to unphysical results or even to the development of indtegsil[53]. To avoid this problem
several numerical methods were developed in the pastregdrom the so-called “staggered
mesh magnetic field transport algorithm” first proposed by [&!] and then implemented in
an artificial-viscosity scheme with the name of “constrditieansport” scheme (CT) by Evans
& Hawley [55].

A maodified version of the CT schemeg_|55] which is based on the afsthe fluxes
computed with HRSC methods has been proposed by BalsaracgiSb] (“flux-CT”) and
is the one implemented in our code because of its simplicitiy@mputational efficiency. An
interested reader is referred o [57] for other possiblenms to enforce the divergence-free
condition with HRSC schemes.

We recall that the flux-CT method is based on the relation éxéts in ideal MHD
between the fluxes of the magnetic fighdand the value of the electric fiel = —7 x B. In
particular, if we defind™ = a,/7F" then the following relations hold

E* — F* (By) — _FvY (Bz) : (32)



Whi sky MHD: a new numerical code for general relativistic magnetologhmamics 8
EY — —F* (Bf) — F® (BZ) : (33)
E* = v (Bw) — @ (By) : (34)

whereF (Bj) = ¢"BJ — 9 B'. The induction equatioi {13) can then be written as

OB +VxE=0. (35)

Taking the surface integral df (B5) across a surfadeetween two numerical cells, Stokes’
theorem yields

at/é-diJr E-T=0, (36)
b 0%

wherel is the unit vector parallel to the surface boundaly. Considering for simplicity the
z-direction, with the surfacE as located ati + 1, j, k) and the integer§, j, k) denoting the
cell centers on our discrete grid (see figure 1), we can define

~ . 1 = _
By = M/EB-dE, (37)

and use the finite-difference expression of Egl (36) to abtai

DT _ Y Y z z
atBiJr%J,k - (Ei+%7j,k7% N Ei+%,j7k+%) Az = (Ei+%,j+%,k B Ei+%,jf%7k) /Ay,
(38)
where the values of the electric field on the edges of the seiidiae simply computed taking
the arithmetic mean of the fluxes across the surfaces thatthavedge in common [df(B2)—

@4, eq.

1. . . .
B 7 (Foy s+ FEo - F

i+3.5k+L T i+1.d, it gkl T ikttt z+1,j7k+%) ) (39)

where the fluxeg™ are those computed with the approximate Riemann solver.

Since we are using HRSC methods, all the quantities areddctcells centers but in
equation[(3B) we are effectively evolving the magnetic ftithe surfaces between the cells.
The relation between these two different values of the mégfield is given by a simple
average

. 1/~ -
ik T g (Bi+%,j.,k + Bi—%,j,k) ’ (40)
- 1/~ .
Y — Y Y
Bi,ch 9 (Bi,jJr%,k +Bi,j7%7k) ) (41)
- 1/~ -
ik =5 (Bi,j,k—&-% + Bi,j,k—%) : (42)

To demonstrate that this method guarantees¥haf3 = 0 and will not grow in time,
we can integrate over the volume of a numerical cell this trairg and then using the Gauss
theorem we obtain

6
V. BdV = /B-di, (43)
»/AV ; pN

where the sum is taken over all the six faégsthat surround the cell. Taking now the time
derivative of this expression and using €q.(36) we obtain

6
8 | V-BdV=- / E-l, (44)
' AV ; 0%;
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Figure 1. Schematic diagram of the data needed for the CT scheme. Tdletiem of
Bz+1/2 ., Is determined by the values of the electric figllat the edges of the surface

Y located at(s + 1/2, 7, k).

and the sum on the right-hand side gives exactly zero sireceatue ofE - [ for the common
edge of two adjacent faces has a different sign.

3.3. Primitive-variables recovery

Because the fluxds’ depend on the primitive variabldzand not on the evolved conservative
variablesF?, the values for the primitive variables need to be recovaftet each timestep
and at each gridpoint. With the exception of the magnetid fi@riablesB?, the complexity
of the system of equations to be solved prevents from an &naplution relating the
primitive to the conservative variables through simpleshlgic relations and thus the system
of equations[(Z0)E(22) needs to be solved numerically. B¢wveethods are available for
this, the most obvious (and expensive) one consisting eirgplthe full set of 5 equations
given by the expressions f¢iD, S;, 7) in the 5 unknowngp, v*, €); we refer to this as to
the 5D method. Alternatively, and under certain conditjdinis possible to reduce the set of
equations to be solved to a couple of nonlinear equationsi{@ihod) or even to a single one
(1D method). We review them briefly in the following Sectidng a more detailed discussion
can be found in[[58].

3.3.1. 2D method The following procedure is the same used in [18] and it is daresion to
full General Relativity of the method developediin[59] iresfal relativity. The idea is to take
the modulusS? = $75; of the momentum instead of the expression for its three compts
reducing the total number of equations that one has to sdlgng the relationd(11) it is
possible to writeS? as

W2 —
W2

(B'Si)®

S% = (Z + B? 2

—(2Z + B?)

(45)
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whereZ = phW?2. Itis also possible to rewrite the equation for the totalrggén a similar
way

r=Z+B*—p-—_"Y _p. (46)

Using then the definition ob = pW, egs. [4b) and (46) form a closed system for the two
unknownsp andW, assuming the functioh = h(p, p) is provided. When using a polytropic
EOS [i.e. eq.[(2ZB)], the integration of the total energy eiguais not necessary (the energy
density can be computed algebraically from other quasjitd the system reduces to the
numerical solution of the equatidn {45). Once the rootd¥arp andp = D/W are found, it
is possible to compute the valuesigfusing the definition of the momentuf
B,(B’S;) + S:Z
= 47

Y Z(B2+ Z) (47)
3.3.2. 1D method The basic idea of this method is to consider also the gasymesss a
function of W reducing the total number of equations that must be solvetknigally. When
using an ideal-fluid [i.e. eq_{25)F can in fact be rewritten as

Z=DW + %p(W)W2 . (48)
Using equation(48) it is possible to rewrife46) as a culojigation forp(W) which admits
only one physical solution. So at the end we need only to setuetion[(4b) for the only
unknownW. Having obtained?’, we can then compute = p(W) and the other quantities
in the same way as done in the 2D method.

3.4. Atmosphere treatment

As already done in th&hi sky code and in other full GRMHD codes [26,125] we avoid
the presence of vacuum regions in our domain by imposing a flalne to the rest-mass
density. This is necessary because the routines that nettev@rimitive variables from the
conservative ones may fail to find a physical solution if thetimass density is too small.
The floor value used for the tests reported heggis = 10~7 x max(pg), with po being the
value of the rest-mass densitytat 0, but a floor which is two orders of magnitude smaller
works equally well. In practice, for all of the numericallseht whichp < patm, we simply
setp = pawm, v/ = 0, and do not modify the magnetic field. This is different fromat done

in other codesd.g.,[26,[25]), which set to zero the initial value of the magnéigtd in the
low density regions.

3.5. Excision

Many interesting astrophysical scenarios involve thegmes of black holes and so of regions
of spacetime where singularities are present. These regiancausally disconnected from
the rest of the physical domain and the values of the fielddénshould not affect the zone
outside the event horizon. This is not true in numerical sosleere it can happen that some
information from inside the event horizon is used to comphte values of the variables
outside. In order to avoid this, excision algorithms wergaii@oed in general relativistic
hydrodynamics and they are based on the use of some kind oidboy condition applied
to the boundary between the excised zone, where the egsatiemo more solved, and the
domain outside. As already done in ki sky code we apply a zeroth-order extrapolation
to all the variables at the boundary, i.e. a simple copy ofNi¢D variables across the
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Table 1. Initial conditions for the Riemann problems used to testcibae.

Test type State P P ¥ v v BY BY B

Balsara Test 1

Tr=2) left 1.000 1.0 0.0 0.0 00 05 1.0 0.0
right 0.125 0.1 0.0 0.0 00 05 -1.0 0.0

Balsara Test 2

(T'=5/3) left 1.0 30.0 0.0 0.0 00 50 6.0 6.0
right 1.0 1.0 0.0 0.0 00 50 07 0.7

Balsara Test 3

(T'=5/3) left 1.0 1000.0 0.0 0.0 00 100 70 7)
right 1.0 0.1 0.0 0.0 00 10.0 0.7 OJ

Balsara Test 4

(T'=5/3) left 1.0 0.1 0999 00 00 100 7.0 70
right 1.0 0.1 -0999 00 0.0 100 -7.0 -7|0

Balsara Test 5

(T'=5/3) left 1.08 0.95 0.40 0.3 02 20 03 0]

right 1.00 1.0 -045 -02 02 20 -0.7 0p

excision boundary. A different method, based on the useiokat extrapolation, has instead
been implemented in_[25] and although it can lead to impraezliracy for smooth flows
(and especially when the MHD variables change rapidly neaekcision boundary), it also
leads to significantly incorrect results when shocks arsgne(see Sedi. 4.2). Great care
must therefore be paid at the properties of the flow near thisiex boundary and the code
presently includes both algorithms.

It is important also to note that other methods, not basedxaisien techniques, are
being developed to improve the stability of numerical codeen black hole are present in
the domain. One of these approaches is based on the use déa-Ki@er dissipation for the
field variables inside the apparent horizbnl[60] and it castbeightforwardly extended also
to the MHD case.

3.6. Mesh Refinement

The developments madeVhi sky for handling non-uniform grids have been extended also
to Whi sky VHD which can therefore use a “box-in-box” mesh refinementagyi61]. This
allows to reduces the influence of inaccurate boundary tiondiat the outer boundaries and
for the wave-zone to be included in the computational domiaimpractice, we have adopted
a Berger-Oliger prescription for the refinement of meshesliffarent levels[[62] and used
the numerical infrastructure described [inl[6ilé., the Car pet mesh refinement driver for
Cact us (see [63] for details). In addition to this, a simplified fowh adaptivity is also

in place and which allows for new refined levels to be addededgfined positions during
the evolution or for refinement boxes to be moved across theadoto follow, for instance,
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regions where higher resolution is needed.

4, Tests

Code-testing represents an important aspect of the dewelopof any newly developed
and multidimensional code because it validates that alhefalgorithms are implemented
correctly and represent a faithful and discretized repriagi®on of the continuum equations
they are solving. In what follows we report the results foedes of testbeds ranging from
the solution of relativistic Riemann problems in flat spanet over to the stationary accretion
onto a Schwarzschild black hole and up to the evolution datsd and oscillating magnetized
stars. We note that in the tests involving a polytropic EOS rtacovery of the primitive
variables has been made using the “2D-method” (see [Sed) 3uwhile a “1D-method” has
been used when adopting an ideal-fluid EOS (see 3.3.2).

4.1. Riemann problems

As customary in the testing of hydrodynamics and magnetadyhamics codes we have
first validatedwWhi sky MHD against a set of Riemann problems in a Minkowski spacetime
following the series of initial conditions proposed by Baks [64]. All these tests were run on
a grid of unit length with 1600 grid points with the initialstiontinuity located at the center
of the grid. An ideal equation of state with= 5/3 was used with the exception of the first
test withT" = 2 and the initial conditions for all the tests are reportedab/&1.

In all of the tests presented here the numerical solutiothiedifferent MHD variables
has been compared with the exact one computed with the exactaRn solver discussed
in [49]. This represents an important difference with whamelin the past by similar codes
as it allows, for the first time, for a quantitative assesdnuérihe code’s ability to evolve
correctly all the different waves that can form in relatiidMHD. In figured2 and13 the exact
solution is represented with a solid line, while the nunmarane with different symbols.

In figurel2, in particular, we show the comparison betweemtimaerical and the exact
solution att = 0.4 for several MHD variables as computed for the relativistialague of the
classical Brio-Wu shock tube problem [65, 66]. The initisdabntinuity develops a left-going
fast rarefaction, a left-going slow compound wave, a cdrdscontinuity, a right-going slow
shock and fast rarefaction. Note that besides presentingalution witha = 1 ands® = 0,
we have exploited the freedom in choosing these gauges diddteal the code also for less
trivial values of the lapse and shift [18]. More specificalihown with different symbols
in figure[2 are the numerical solutions with= 2 at time¢ = 0.2 and with3* = 0.4 after
the latter has been shifted in space®it. Clearly, all the symbols overlap extremely well,
coinciding with the exact solution also in the presence afrag discontinuities. Note that
only 160 of the 1600 data points used in the simulation arevehend that the difference
between the numerical solution and the exact one at the contbwave is due to the fact
that, by construction, our exact solver assumes compouwndsagever form. We have indeed
adopted the same standpoint of Ryu and Jdneés [67] in theaj@welnt of their exact Riemann
solver in nonrelativistic magnetohydrodynamics. We alsmark that it is not yet clear
whether compound waves have to be considered acceptabdéecphgolutions of the ideal
MHD equations and a debate on this is still ongoing (see nfstaince,[68, 69, 70, 71]).

Similarly, shown in figur€13 are the comparisons between thmearical solution for the
rest-mass density and tipecomponent of the magnetic field for the tests number 2 (fins) r
3 (second row), 4 (third row) and 5 (fourth row) of Balsara.eTfst 3 are computed at a
time ¢t = 0.4 while the test number 5 is computedtat= 0.55. Clearly, our code is able
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Figure 2. Numerical solution of the test number 1 of Balsara with défe values for the lapse
« and the shift3*. The solid line represents the exact solution, the cro$seaumerical one

at timet = 0.4, the open triangle at time = 0.2 but with « = 2 and the open squares at

t = 0.4 but with 3% = 0.4, in this last case the solution is shifted on thexis by the amount
B*t. Note that only 160 of the 1600 data points used in the nurmles@ution are shown.
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Figure 3. Numerical solution of the tests number 2 (first row), 3 (secmw), 4 (third row)
and 5 (fourth row) of Balsara. The first 3 are computed at a time0.4 while the test number
5is computed at = 0.55. The solid line represent the exact solution while the opprares
the numerical one. Note that only 160 of the 1600 data poisgsi in the numerical solution

are shown.
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Figure4. Numerical solution of the test number 2 of Balsara at a time0.4 with an excision
boundary (dashed vertical line) locatedvat 0.25; the region at the right of this boundary is
not evolved. In the two left panels a zeroth-order extrafmiai.e. a simple copy, was used,
while in the two right panels the values of the different abfes at the excision boundary
were obtained with a linear extrapolation. The solid linpresents the exact solution while
the open squares the numerical one. The solution is commdsed left-going fast and slow
rarefactions, of a contact discontinuity and of two rigbtrg fast and slow shocks. Only 160
of the 1600 data points used in the numerical solution aressho

to resolve all the different waves present in MHD, showingeay\good agreement with the
exact solution. Other Riemann problems have been carrienh aifferent directions (either
along coordinate axes or along main diagonals) and theyalige the same level of accuracy
discussed in figurds 2 ahd 3.

4.2. Excision tests on a flat background

We next show the code’s ability to accurately evolve shotgs when an excised region is
present in the domain. To this scope, we have used the tedverutnof Balsara excising
the regionz® € [0.25,0.5] and using the zeroth-order extrapolation scheme. In thge ca
the fast and slow shocks moving to the right go inside thesextiregion and the solution
outside is not affected. This is shown in the left panels airfd which report with small
squares the numerical solution feend B,, of the test number 2 of Balsara with an excision
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boundary (dashed vertical line) locatedrat 0.25. The data refers to time= 0.4, when the
right-going waves have already gone through the excisiemdary as indicated by the exact
solution (continuous line).

As a comparison, and to underline its incorrectness in tise o non-smooth flows,
we have also considered boundary conditions involving ealirextrapolation of the MHD
variables across of the excision boundary as suggestedi This is illustrated in the right
panels of figuré€l4 which are the same as the left ones but fatiffeeent boundary condition
at the excision boundary. Clearly, in this case the solutiaiside the excision region is badly
affected and a left-going wave is produced which rapidlyilspbe solution. Because this
happens only when the discontinuity crosses the excisiamdbary, it is clear that a linear
extrapolation is not adequate in this case as it provides@oriiect information on the causal
structure of the flow near the boundary. As we will discusifbllowing Section, however,
a linear extrapolation remains a good, and sometimes pig#srchoice in the case of smooth
flows.

4.3. Magnetized spherical accretion

This second test proves the ability of the code to evolve rately stationary accretion
solution in a curved but fixed spacetime. In particular, wesiter the spherical accretion of
a perfect fluid with a radial magnetic field onto a Schwarasdbiack hole (this is sometimes
referred to as a relativistic Bondi flow). The solution tcsthroblem is already known for the
unmagnetized case, but it is simple to show that its form isaffected if a radial magnetic
field is added[[10]. The initial setup for this test is the samsed in [10[ 16 25, 18] and
consists of a perfect fluid obeying a polytropic EOS with= 4/3. The critical radius of
the solution is located at. = 8M and the rest-mass densitysatis p. = 6.25 x 1072,
These parameters are sufficient to provide the full desoripif the accretion onto a solar
mass Schwarzschild black hole as described in [72]. We sblwgroblem on a Cartesian
grid going fromz? = 0toz? = 11M.

To avoid problems at the horizon, locatedrat 2M, the metric is written in terms of
ingoing Eddington-Finkelstein coordinates. The excidionndary has the shape of a cubical
box of lengthA/ so that the domaif®, M] x [0, M] x [0, M] is excluded from the evolution.
Furthermore, as a boundary condition across the excisee webhave considered both a
zero-th and a first-order extrapolation, finding the latbeyield sligthly more accurate results
(e.g., the overall error is smaller ef 3% for a test case with?/p = 25, whereb?/p is the
dimensionless magnetic field strength as measured=aRM). As discussed earlier, this is
indeed to be expected for smooth flows as the ones considereddr the relativistic Bondi
flow.

We measure the order of accuracy of the code by usind theorm of the relative error
on the rest-mass density

110p[l1 = Zm;k |pi gk = Pexact (i, Yj, 2k)| ' (49)

llol]1 Ei,ng /)exact(xivijzk)
We plot this quantity in the left panel of figuré 5 as a functadriihe magnetic-field strength
and as computed at timte= 100/ for two different resolutions of00* and1502 gridpoints,
respectively. In addition, the error from the high-resimotsimulation is multiplied byt .52
so that the two curves should overlap if the code were seocotier convergent. Clearly, the
code does not show the expected convergence rate but ftiveblaveak magnetizations,
i.e. b?/p < 4 (we recall that these corresponds nevertheless to ratiyer taagnetic fields of
~ 109 G). This behaviour is indeed similar to what found by Deéal.[25] and has a rather
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Figure5. Left panel: L1 norm of the relative error in the rest-mass density for thgmetized
spherical accretion test, shown for different values ofrtragnetic field. Results fror003
and 150% runs are compared at time = 100M, with the high-resolution curve being
multiplied by1.52 so that with a second-order convergence the two lines wawddap. Right
panel: Relative error computed at poiet= 4M, y = 0, z = 0; also in this case the high-
resolution line is scaled to produce an overlap in the caseaind-order convergence. In both
cases the insets offer a magnification for small values ofrtagnetic field.

simple explanation. It is due to the rather large error idoints near the excision boundary,
i.e., for 2¢ € [M,2M], which spoil the overall behaviour of thie, norm (admittedly not a
good measure of the convergence for a solution which is sdlyaparying near the excision
boundary). To clarify this, we show in the right panel of figiir the same as in the left panel
but for the relative error computed at a single gridpdiet,atx = 4M,y = 0,z = 0. Clearly
the convergence is much closer to second-order in this thse(ecise order beirg 1.8)
and for much larger range in magnetizations.

A closer look at the behaviour of the relative error is ofteia figure[®, where it
is shown as measured along thelirection for a magnetization df?/p = 25 (i.e., with
Pmag/Pgas = 97) @nd at timef = 100M. Also in this case, the high-resolution relative error
is multiplied by1.52 so that the two lines overlap if second-order convergentardy this
does not happen but also only for a small number of gridpaiets the excision boundary
located atr = M.

As a final remark, we point out that the simulations of splaraccretion flows
performed here span a range of magnetizations well beyoatl @amsidered in the past with
codes using Cartesian coordinates (the results report@djnfor instance, were limited to
b?/p < 30). Indeed, no sign of instability has been found and only aenaie loss of accuracy
has been measured for magnetic fields as largé/as< 160.

4.4. Evolution of a stable magnetized neutron star

As a final test validating the code in a fully dynamical evidotof both the MHD variables
and of the spacetime, we now consider the evolution of a etataignetized neutron star.
Although this initial data represents a stationary sotutemall oscillations can be triggered
by the small but nonzero truncation error. Such oscillaiare sometimes considered a
nuisance and even suppressed through the introductiortifi¢ial-viscosity terms. On the
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Figure 6. Relative error of the rest-mass density for the magnetipégrgcal-accretion flow
with 82 /p = 25 (i.e., With Prmag/Pgas = 97) along thex-axis att = 100M. The high-
resolution error is multiplied by.52 so that the two lines would overlap with a second-order
convergence. Clearly, this does not happen near the endisiondary located at = M.

contrary, since they represent the consistent responge aftar to small perturbations, they
should considered as extremely useful. The eigenfunctmaseigenfrequencies of these
oscillations, in fact, can serve both as a test of the codenvedompared with the expectations
coming from perturbation theory (see Appendix B [of|[37] forepresentative example), or
to extract information on the properties of the star, whemstaering regimes which are not
yet accessible to perturbative studies (e.g., in the caserdinear oscillations or very rapidly

rotating stars).

Two options are possible for the construction of the initlata. A first and simpler
one was employed extensively in_[27,]1 28, 29] and consistsookidering a background
purely-hydrodynamical solution in stable dynamical eitpuilm and of “adding” a poloidal
magnetic field in terms of a purely toroidal vector potentidBesides being essentially
arbitrary, the vector potential is chosen to be proportie@ahe pressure so as to lead to
a magnetic field entirely confined within the star. While igfidforward, this approach does
not construct a magnetized stellar model which is condistntion of the Einstein equations
and thus inevitably introduces violations of the Hamileomand momentum constraints. Such
violations, however, are in general negligible for reasbynpamall magnetic fields.

A second option, and the one employed here, consists of ciimghe initial conditions
as a consistent and accurate solution of the Einstein ensaftbr a stationary, axisymmetric
and magnetized star. We have done this by using the speotial developed by Bocquet
et al. [73], which solves the full set of Einstein and Maxwell eqaas to high precision.
Assuming an axisymmetric model with a poloidal magnetiafiehving the dipole moment
aligned along the rotation axis, the code is used to builigintonfigurations of uniformly
rotating magnetized neutron stars with different angulalogities and magnetic field
strengths.
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Figure 7. Magnetic field lines of the oscillating magnetized and ntaiting neutron star
considered in this paper. The solid thick line represergsstar surface.

For simplicity we here consider a nonrotating magnetizagnoa star with masa/ =
1.3M endowed with a poloidal magnetic field with magnetic dipdtng thez-axis and a
central magnetic field3, = 2.4 x 10'* G, corresponding t@ = pmag/Peas = 107 (this
3, which should not be confused with the shift vectdris always monotonically decreasing
inside the initial equilibrium model, and is much larger lretatmosphere, where it reaches
values~ 106). A polytropic equation of state with = 2 and K = 372 was used both for
the calculation of the initial model and during the evolaticA representative image of the
initial model is presented in figufé 7, which shows the maigrfietid lines together with the
stellar surface (thick solid line). Note that although tker $s nonrotating, the presence of a
magnetic field replaces the spherical symmetry for an axisgtrical one.

As a first test, we consider the evolution of the star withia #o-called “Cowling
approximation”,i.e. by holding the metric fixed to its initial value and by evolgitthe
MHD variables onto this background spacetime (the evafuigonot made only at the outer
boundaries, where we use Dirichlet-type boundary comubjioT he results of these evolutions
are summarized in figuriel 8, with the left panel showing thelwian of the maximum
of the rest-mass density when normalized to its initial value. The three differemtels
(dotted, dashed and continuous) refer to the three resokitised ofV = 602, 903, and
1203, respectively. The coordinate time on the horizontal axiexpressed in terms of the
characteristic “dynamical timescale”= /R3/M, whereR is the coordinate radius of the
star.

In analogy with what observed in the purely hydrodynamieskd[37], the magnetized
star is set into oscillation by the small truncation errotraduced by the mapping
onto a Cartesian coordinate system of the stationary soluibund in spherical polar
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Figure 8. Left panel: Maximum of the rest-mass densitynormalized to its initial value and
expressed in terms of the dynamical timeseale \/R3 /M. The magnetized star is evolved
within the Cowling approximation, with different lines esfing to different resolutions:
N = 603 (dotted), N = 903 (dashed line) andv = 1203 (solid line). Right panel: The
same as in the left one but for a longer timescale.

coordinates [73] (no perturbation coming from the outerrmtaries was seen to influence the
dynamics of the oscillations). Because of its stochastigneathe initial perturbation triggers
a variety of modes, most of which however decay rather rgdedving, aftert ~ 257,
an essentially harmonic oscillation in the fundamental enodly. This is shown in the right
panel of figuréB which shows the evolution over a longer titats Furthermore, in the linear
regime considered here, the amplitude of the oscillatismsdportional to the magnitude of
the truncation error and one expects the former to decreabe aesolution is increased. This
is clearly the case for the oscillations shown in figdre 8, twedvery good overlap among the
different timeseries is an indication that the oscillaé@mdeed correspond to eigenmodes and
that the code is tracking them correctly at these resolstion

Next, we consider the evolution of the same initial modetd$sed above but including
also the solution of the Einstein equations so as to makeygters fully dynamical (Dirichlet-
type boundary conditions are used at the outer boundarigsfdHD variables and radiative
ones for the fields). Also in this case, oscillations aregeigd by the truncation error, with
an amplitude that converges to zero with the increase ofabaution and with an harmonic
content that becomes more evident after the initial tramiggdso in this case, no perturbation
coming from the outer boundaries was seen to influence thandigs of the oscillations). In
addition, and in analogy with what observed in the purelyrbggnamical case [74, 75, 137],
the oscillations are accompanied by a secular growth whsthanverges away at the correct
rate with increasing grid resolution and that does not imitegthe long-term evolutions. This
is shown in figuré® which reports the same quantities as imd@but for a fully dynamical
evolution. Note also that the secular evolution of the a@mé&st-mass density varies according
to the EOS adopted: when using the ideal-fluid EOS, in faetstcular drift of the central
rest-mass density is towards lower densities. Howevdgifadiabatic condition is enforced,
the opposite is true and central rest-mass density evobweartls larger values. Both the
evolutions in the Cowling approximation and in dynamica&gtimes, have not shown signs
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Figure 9. Left panel: Maximum of the rest-mass densjtynormalized to its initial value and
expressed in terms of the dynamical timeseate \/ R3 /M. The magnetized star is evolved
together with the spacetime, with different lines refegrio different resolutionsN = 603
(dotted), N = 903 (dashed line) an&v = 1203 (solid line). Right panel:The same as in the
left one but for a longer timescale.

of instability at all resolutions considered and up to sel&ns of dynamical timescales.

As a final remark we underline that the convergence rate irattly second-order
but slightly smaller, (i.e., 1.7-1.8), because the reaoicsibn schemes are only first-order
accurate at local extremad. at the centre and at the surface of the star) thus increaséng t
overall truncation error. Similar estimates were obtaiaks® in the purely hydrodynamical
casel([37].

5. Conclusions

We have presented a new three-dimensional numerical cod@aitesian coordinates
developed to solve the full set of GRMHD equation on a dynaiimckground. The
code is based on high-resolution shock-capturing teclesiqas implemented on domains
with adaptive mesh refinements. This code represents trenggh to MHD of the
approach already implemented with success in the genaedivistic hydrodynamics code
Wi sky [30].

The code has been validated through an extensive seriestloétis both in special and in
general relativity scenarios. In particular, we have fistsidered a set of Riemann problems
in a Minkowski spacetime following a variety of initial coitidns. In all of the tests presented,
the numerical solution has been compared with the exact4@ie jproviding, for the first
time, a quantitative assessment of the code’s ability tdvevoorrectly and accurately all
of the different waves that can form in relativistic MHD. Eugrmore, as a demonstration
of the proper handling of continuous and discontinuous flmwthe presence of an excision
region, we have extended the Riemann-problems tests aamaosscised boundary. In doing
so we have revealed the importance of correct boundary ttonsliand pointed out that those
recently proposed in [25] can lead to incorrect solutionsifin-smooth flows.

Next, to investigate magnetized fluids in a curved but fixedcsfime, we have
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considered the spherical accretion of a perfect fluid witradial magnetic field onto a
Schwarzschild black hole (relativistic Bondi flow). Alsotimis case, the code has been shown
to accurately reproduce the stationary solution and to Imvergent at the correct rate for
small and large magnetizations. For very large magnebizatihowever, the very rapidly
varying behaviour of the MHD variables near the excisionaegrevents from a correct
convergence near the horizon, although the code remaiosdemnvergent away from the
horizon and is convergent overall. Also for these extreniiyh values of the magnetic field,
the code has shown to be robust and accurate at regimes wherecodes were reported to
fail [25].

Finally, we have considered the evolution of magnetizednoetstars in equilibrium and
constructed as a consistent solutions of the coupled Emstaxwell equations. Such initial
models represent an important difference from those censitby other authors, which were
not consistent solution of the Einstein equations inijialhd whose magnetic field is totally
confined within the staf [25]. In analogy with what observedhe purely hydrodynamical
case([3V], these magnetized stars are set into oscillayidhebsmall truncation error. These
pulsations, which have been studied both in fixed (Cowlingragimation) and in dynamical
spacetimes, have been shown to have the correct behavider cimanges of spatial resolution
and to correspond to the eigenmodes of relativistic and etépd stars. Both evolutions in
the Cowling approximation and in dynamical spacetimes mateshown signs of instability
at all resolutions considered and up to several tens of digstimescales.

A number of projects are expected to be carried out with theaoale. Firstly, we plan
to extend the study on the oscillations of rotating and ntatirog neutron stars with a detailed
analysis of the effect of magnetic fields on the frequencysofitations. It is important to note
that only recently some results were obtained in pertushétieory and within the Cowling
approximation[[76]. Our code will be a complementary toothe perturbative approaches,
using the latter as testbeds and carrying them beyond tlmesgf slow rotation and weak
magnetizations. Such a study, and the comparison with #dtgiéncies observed in objects
such as the soft gamma-repeaters, will provide usefulim&ion on the mass and magnetic-
field strength of magnetars.

Secondly, we plan to us&hi skyMHD to study the collapse of uniformly and
differentially rotating magnetized neutron stars with &im of extending further the work
done in[37| 77, 60] and to highlight the role that this pracesy have in the phenomenology
of shorty-ray bursts. We are especially interested in the calculatfdhe gravitational-wave
signal emitted by these sources and on the influence thatetiadields may have on it.

Finally, and in view of the total generality with which it heen developed, the code will
be used to study the dynamics of binary systems of neutromatal mixed binaries, with the
aim of extending the work carried out in [78] and of considgiin a fully general-relativistic
context the Newtonian results obtained[ini[24].
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