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We present accurate simulations of the dynamical bar-mode instability in full general relativity focusing
on two aspects which have not been investigated in detail in the past, namely, on the persistence of the bar
deformation once the instability has reached its saturation and on the precise determination of the
threshold for the onset of the instability in terms of the parameter 8 = T/|W|. We find that generic
nonlinear mode-coupling effects appear during the development of the instability and these can severely
limit the persistence of the bar deformation and eventually suppress the instability. In addition, we observe
the dynamics of the instability to be strongly influenced by the value B and on its separation from the
critical value B, marking the onset of the instability. We discuss the impact these results have on the
detection of gravitational waves from this process and provide evidence that the classical perturbative
analysis of the bar-mode instability for Newtonian and incompressible Maclaurin spheroids remains
qualitatively valid and accurate also in full general relativity.
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I. INTRODUCTION

It is well known that rotating neutron stars are subject to
nonaxisymmetric instabilities for nonradial axial modes
with azimuthal dependence e™¢ (with m =1,2,...)
when the instability parameter 8 = T/|W| (i.e. the ratio
between the rotational kinetic energy 7 and the gravita-
tional binding energy W) exceeds a critical value S3,.

An exact and perturbative treatment of these instabilities
exists only for incompressible self-gravitating fluids in
Newtonian gravity (see Refs. [1,2]) and this predicts that
a dynamical instability should arise for the ‘“‘bar-mode”
(i.e. the one with m = 2) when 8 = . = 0.2738. On the
other hand, the accurate study of the dynamical bar-mode
instability, of its nonlinear evolution and of the determi-
nation of the threshold for the instability demands the use
of numerical simulations with the solution in three spatial
dimensions (3D) of the fully nonlinear hydrodynamical
equations coupled to the Einstein field equations.

Despite these requirements, much of the literature on
this process has so far been limited to a Newtonian or post-
Newtonian (PN) description. While this represents an ap-
proximation, these studies have provided important infor-
mation on several aspects of the instability that could not
have been investigated with perturbative techniques. In
particular, these numerical studies have shown that (.
depends very weakly on the stiffness of the equation of
state (EOS) and that, once a bar has developed, the for-
mation of spiral arms is important for the redistribution of
the angular momentum (see Refs. [3—11]). More recently,
instead, it was shown that the threshold for the onset of the
dynamical instability can be smaller for stars with a high
degree of differential rotation, and a weak dependence on
the EOS was confirmed in Refs. [12-16]. Finally, these
Newtonian analyses have also provided the first evidence
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that an m = 1-mode dynamical instability may play an
important role for smaller values of the critical parameter.
This is also referred to as the “low-3"" instability [17,18],
and it will not be considered here.

Only very recently it has become possible to perform
simulations of the dynamical bar instability for old neutron
stars in full general relativity [19]. These studies have
shown that within a fully general-relativistic framework
the critical value for the onset of the instability is smaller
than the Newtonian one (i.e. B, = 0.24-0.25) and this
behavior was confirmed by PN calculations [20,21] which
also suggested that B, varies with the compactness M /R of
the star.

The bar-mode instability may take place in young neu-
tron stars, either as the result of the accretion-induced
collapse of a white dwarf [22] or in the collapse of a
massive stellar core. Indeed, recent simulations investigat-
ing axisymmetric stellar-core collapse in full general rela-
tivity [23] have pointed out that for sufficiently differ-
entially rotating progenitors, it is, at least in principle,
possible to obtain toroidal protoneutron-star cores with
masses between 1.2 and 2.1M, which are unstable against
bar-mode deformations (It should be mentioned that it is
still unclear how likely these high rotation-rates and
strongly differential-rotation profiles actually are in na-
ture). Besides pointing out this alternative interesting sce-
nario, the work in Ref. [23] has also suggested that more
realistic EOS and neutrino cooling could enhance the
process; this scenario has also been considered in the PN
approximation in Ref. [24]. An important common feature
in all these investigations is that the development of the
bar-mode instability was obtained introducing very strong
ad hoc m = 2-mode perturbations.

The recent general-relativistic studies, together with
their Newtonian and PN counterparts, have been very help-
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ful in highlighting the main features of the instability.
However, several fundamental questions remain unan-
swered. Most notably: (i) What is the role of the initial
perturbation? (ii) What is the effect of the symmetry con-
ditions often used in numerical calculations? (iii) How are
the dynamics influenced by the value of the parameter 3,
especially when this is largely overcritical? Finally and
most importantly: (iv) How long does a bar survive, once
fully developed?

Clearly, the last question has important implications for
the possible observational relevance of the gravitational-
wave signal emitted through the bar-mode instability as the
signal-to-noise ratio (SNR) can increase considerably in
the case of a long-lived bar since the SNR grows as the
square root of the number of the effective cycles of the
signal available for detection. Earlier work on this subject
basically suggested that once a bar was formed it would
tend to be persistent on the radiation-reaction timescale.
Indications and evidences in this direction were presented
in a Newtonian framework in Ref. [5] as well as in a PN
one in Ref. [21]. In contrast, fully general-relativistic re-
sults, either using suitable symmetry boundary conditions
(i.e. the so-called m-symmetry boundary conditions) [19]
or not [23], show a nonpersistent bar.

In this work we try to find answers to these important
open questions by exploring, in a systematic way, the bar-
mode instability for a large number of initial stellar mod-
els. In doing this, we intend to go beyond the standard
phenomenological discussion of the nonlinear dynamics of
the instability often encountered in the literature.

The main results of our analysis can be summarized as
follows: (i) The initial perturbation (either in the form of an
m =1 mode or of an m =2 mode) can play a role in
determining the duration of the bar-mode deformation, but
not in determining the growth time of the instability; the
only exception to this is represented by models near the
threshold. (ii) For moderately overcritical models (i.e. with
B = B.), the use of a 7-symmetry can radically change the
dynamics and extend considerably the persistence of the
bar; this ceases to be true for largely overcritical models
(i.e. with 8 > B.), for which even the artificial symme-
tries are not sufficient to provide a long-lived bar. (iii) The
persistence of the bar is strongly dependent on the degree
of overcriticality and is generically of the order of the
dynamical timescale. (iv) Generic nonlinear mode-
coupling effects (especially between the m = 1 and the
m = 2 modes) appear during the development of the in-
stability and these can severely limit the persistence of the
bar deformation and eventually suppress the bar deforma-
tion. (v) The dynamics of largely overcritical models are
fully determined by the excess of rotational energy and the
bar deformation is very rapidly suppressed through the
conversion of kinetic energy into internal one. In addition,
we have also assessed the accuracy of the classical
Newtonian stability analysis of Maclaurin spheroids for
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incompressible self-gravitating fluids [1]. Overall, and de-
spite having applied it to differentially rotating and rela-
tivistic models, we have found it to be surprisingly accurate
in determining both the threshold for the instability and the
complex eigenfrequencies for the unstable models.

The paper is organized as follows. In Sec. II we give
details on the evolution methods used, while in Sec. III we
discuss the initial models and their properties. In Sec. IV
we introduce the methodology used to analyze the numeri-
cal results of the simulations, which are then discussed in
Sec. V in terms of the general dynamics of the instability
and of the general properties. In Sec. VI, we present the
features of the instability that are specific to different
treatments of the initial conditions, while in Sec. VII we
illustrate two different methods for the determination of
B.. Finally, in Sec. VIII we discuss the impact of our
results on the emission of gravitational waves from the
unstable models and present in Sec. IX our conclusions and
the prospects of future research.

We have used a spacelike signature (—, +, +, +), with
Greek indices running from O to 3, Latin indices from 1 to 3
and the standard convention for the summation over re-
peated indices. Furthermore, we indicate as (x, y, z) the

Cartesian coordinates and we define r = /x> + y*> + 72,

@ = /x> +y?, 0 = arctan(w/z), ¢ = arctan(y/x) for the
axial and spherical coordinates. Unless explicitly stated, all
the quantities are expressed in the system of adimensional
units in whichc = G = My = 1.

II. EVOLUTION OF FIELDS AND MATTER

The code and the evolution method are the same as the
ones used in Baiotti ef al. [25,26] and therein described.
For convenience we report here the main properties and
characteristics of the employed simulation method. We
have used the general-relativistic hydrodynamics code
Whisky, in which the hydrodynamics equations are writ-
ten as finite differences on a Cartesian grid and solved
using high-resolution shock-capturing (HRSC) schemes (a
first description of the code was given in [26]).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equa-
tions into a first-order (in time) quasilinear [27] system of
equations. The dependent variables are the three-metric y;;
and the extrinsic curvature K;;, with first-order evolution
equations given by

Bt'yij = —ZaKU + V,,B, + V,B,,

ijs
2.1)

1
- 87T<Sl~‘,~ - 5711,'5) - 47TPADM’}’U} + B"V,K;

+ K, V,;B" + K,,;V, 5" (2.2)
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Here, « is the lapse function, B; is the shift vector, V;
denotes the covariant derivative with respect to the three-
metric y;;, R;; is the Ricci curvature of the three-metric,
K = yK;; is the trace of the extrinsic curvature, S;; is the
projection of the stress-energy tensor onto the spacelike
hypersurfaces and § = yS; ; (for a more detailed discus-
sion, see [28]). In addition to the evolution equations, the
Einstein equations also provide four constraint equations to
be satisfied on each spacelike hypersurface. These are the
Hamiltonian constraint equation

GR + K? — K; ;K" — 167papm = 0, (2.3)
and the momentum constraint equations
V,KY — yV,K — 8mj' = 0. 2.4)

In Egs. (2.1), (2.2), (2.3), and (2.4), papm and j' are the
energy density and the momentum density as measured by
an observer moving orthogonally to the spacelike
hypersurfaces.

In particular, we use a conformal traceless reformulation
of the above system of evolution equations, as first sug-
gested by Nakamura, Oohara, and Kojima [29] (NOK
formulation), in which the evolved variables are the con-
formal factor (¢), the trace of the extrinsic curvature (K),
the conformal 3-metric (¥;;), the conformal traceless ex-
trinsic curvature (A, ;) and the conformal connection func-

tions (f’i), defined as

¢ = 1log(Jy), 2.5)

K = YK, 2.6)
¥ii=e "y 2.7

Ay =e (K — v;K), (2.8)
ri=y. (2.9)

The code used for evolving these quantities is the one
developed within the Cactus computational toolkit [30]
and is designed to handle arbitrary shift and lapse condi-
tions. In particular, we have used hyperbolic K-driver
slicing conditions of the form

9, = —f(a)a*(K — K,), (2.10)

with f(a) > 0 and K, = K(¢t = 0). This is a generalization
of many well-known slicing conditions. For example, set-
ting f = 1 we recover the “harmonic” slicing condition,
while, by setting f = g/a, with g an integer, we recover
the generalized ““1 + log” slicing condition [31]. In par-
ticular, all the simulations discussed in this paper are done
using condition (2.10) with f = 2/a. This choice has been
made mostly because of its computational efficiency, but
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we are aware that ““‘gauge pathologies’” could develop with
the “1 + log” slicings [32,33].

As for the spatial gauge, we use one of the “Gamma-
driver” shift conditions proposed in [34], that essentially
acts so as to drive the I" to be constant. In this respect, the
“Gamma-driver”” shift conditions are similar to the
“Gamma-freezing” condition 8,fk = 0, which, in turn,
is closely related to the well-known minimal distortion
shift condition [35].

In particular, all the results reported here have been
obtained using the hyperbolic Gamma-driver condition,

2Bl = Fo I — no,B (2.11)
where F and 7 are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is
crucial to add a dissipation term with coefficient 7 to avoid
strong oscillations in the shift. Experience has shown that
by tuning the value of this dissipation coefficient it is
possible to almost freeze the evolution of the system at
late times. We typically choose F = %a and 7 = 2 and do
not vary them in time.

B. Evolution of the hydrodynamics equations

The stellar models are here treated in terms of a perfect
fluid with stress-energy tensor

T = phu*u” + pg*?, (2.12)
h=1+e+2, (2.13)
o

where £ is the specific enthalpy, e the specific internal
energy and p the rest-mass density, so that e = p(1 + €) is
the energy density in the rest-frame of the fluid. The
equations of relativistic hydrodynamics are then given by
the conservation laws for the energy, momentum and
baryon number

VT =0,  V,(pu*) =0, (2.14)

once supplemented with an EOS of type p = p(p, €).
While the code has been written to use any EOS, all the
simulations presented here have been performed using
either an isentropic “‘polytropic’> EOS

p=Kp", 2.15)
where K is the polytropic constant and I' the adiabatic
exponent, or a nonisentropic “‘ideal-fluid” (I'-law) EOS

p=0—1pe (2.16)

Note that, with the exception of the polytropic EOS (2.15),
the entropy is not constant and thus the evolution equation
for € needs to be solved.

An important feature of the Whisky code is the imple-
mentation of a conservative formulation of the hydrody-
namics equations in which the set of Egs. (2.14) is written
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in a hyperbolic, first-order and flux-conservative form of
the type

a9 + 9,£9(q) = s(q), (2.17)

where f(i)(q) and s(q) are the flux-vectors and source
terms, respectively (see Ref. [36] for an explicit form of
the equations). Note that the right-hand side (the source
terms) depends only on the metric, and its first derivatives,
and on the stress-energy tensor. In order to write system
(2.14) in the form of system (2.17), the primitive hydro-
dynamical variables (i.e. the rest-mass density p and the
pressure p (measured in the rest-frame of the fluid), the
fluid three-velocity v’ (measured by a local zero-angular-
momentum observer), the specific internal energy € and the
Lorentz factor W = au®) are mapped to the so-called
conserved variables q = (D, S', 7) via the relations

D = [yWp, Si= ﬁpthvi,
7= /y(phW? — p) — D.

As previously noted, in the case of the polytropic EOS
(2.15), one of the evolution equations (namely the one for
7) does not need to be solved as the internal energy density
can be readily computed by inverting the relation (2.16).
Additional details of the formulation we use for the hydro-
dynamics equations can be found in [36].

(2.18)

IIL. INITIAL DATA

The initial data for our simulations are computed as
stationary equilibrium solutions for axisymmetric and rap-
idly rotating relativistic stars in polar coordinates [37]. In
generating these equilibrium models we assumed that the
metric describing an axisymmetric and stationary relativ-
istic star has the form
ds* = —ettdr? + e* ' r%sin?0(d ¢ — wdt)?

+ €2 (dr* + r*d6?) (3.1)

where u, v, w and ¢ are space-dependent metric functions.
Similarly, we assumed the matter to be characterized by a
nonuniform angular velocity distribution of the form

2 NV 2ein2 A =2
QC_Q=£[ (Q — w)r*sin’fe

A2 1 — (Q — w)*r’sin’fe %"

} 32)

where r, is the coordinate equatorial stellar radius and the
coefficient A is a measure of the degree of differential
rotation, which we set to A =1 in analogy with other
works in the literature. Once imported onto the Cartesian
grid and throughout the evolution, we compute the angular
velocity () (and the period P) on the (x, y) plane as

6 W cosd — utsi ’
u u’ Cos u” s v
Q=" _ ¢ d’, p==:"

u° W2 V2 [0)

and other characteristic quantities of the system, such as

3.3)
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the baryonic mass M, the gravitational mass M, the an-
gular momentum J, the rotational kinetic energy T and the
gravitational binding energy W as

M= ]d3x(—2T8 + Th) a7, (3.4)

M, = [ &xD, 3.5)

Ey = f d*xDe, (3.6)

J= fd3ngaﬁ, 3.7)

T= ! BxQT° (3.8)
=5 X Y .

W=T+E,+M,—M, (3.9)

where «a,/y is the square root of the four-dimensional
metric determinant. We recall that the definitions of quan-
tities such as J, T, W and 8 are meaningful only in the case
of stationary axisymmetric configurations and should
therefore be treated with care once the rotational symmetry
is lost.

All the equilibrium models considered here have been
calculated using the relativistic polytropic EOS (2.15) with
K = 100 and I' = 2 and are members of a sequence having
a constant amount of differential rotation with A = 1 and a
constant rest mass of My = 1.51M, (a part of this sequence
has also been considered in Refs. [38,39] as models
A8-A10). These are collected in Fig. 1 in a compactness/
instability-parameter plot, where we have indicated with
stars the stable models (S1-S8) and with filled circles the
unstable ones (U1-U11). In addition, in order to compare
with previous results, we have also considered three other
models (D2, D3, D7), first investigated in Ref. [19], which
have larger masses and compactnesses. These models are
unstable and are marked by circles in Fig. 1. Finally, the
inset shows a magnification of the region where the thresh-
old (indicated with a dashed line) of the instability has been
located for the members of the sequence.

The main properties of all the considered models are
reported in Table I, while we show in Fig. 2 the profiles of
the rest-mass density p (left panel) and of the rotational
angular velocity () (right panel) for some of the models in
the constant—rest-mass sequence. Note that the position of
the maximum of the rest-mass density coincides with the
center of the star only for models with low S3; for those with
a larger 8, the maximum of the rest-mass density resides,
instead, on a circle on the equatorial plane. Finally, indi-
cated with a dot-dashed line in Fig. 2 is the profile for the
first unstable model (U1) with 8 = 0.255. Note that this is
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FIG. 1 (color online). Position on the (M/R, B) plane of the
stellar models considered. Indicated, respectively, with stars and
filled circles are the stable and unstable models belonging to a
sequence of constant rest mass M, = 1.51M,. Open circles refer
instead to models which do not belong to the sequence, are also
unstable and were first investigated in Ref. [19]. Finally, the inset
shows a magnification of the region where the threshold of the
instability has been located for the sequence of models inves-
tigated.

TABLE 1.
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not the first model having an off-centered maximum of the
rest-mass density.

As mentioned in the Introduction, numerical simulations
of the dynamical bar-mode instability have traditionally
been sped up by introducing sometimes very large initial
m = 2 deformations. The rationale behind this is simple
since a seed perturbation has the effect of reducing the time
needed for the instability to develop and thus the computa-
tional costs. However, as we will discuss in detail in
Sec. VIC, the introduction of any perturbation (especially
when this is not a small one) may lead to spurious effects
and erroneous interpretations. Although in almost all of our
simulation we have evolved purely equilibrium models and
simply used the truncation errors to trigger the instability,
we have also considered models which are initially per-
turbed so as to determine the effect of these perturbations
on the evolution of the instability. In these cases, we have
modified the equilibrium rest-mass density p, with a per-
turbation of the type

2 _ 2
Xy
8ps(x,y,2) = 52TP0:

e

(3.10)

where 6, is the magnitude of the m = 2 perturbation
(which we usually set to be d, =~ 0.01-0.3). This perturba-

Main properties of the stellar models used in the simulations. Starting from the left the different columns report: the

central rest-mass density p,, the ratio between the polar and the equatorial coordinate radii r,/r,, the proper equatorial radius R,, the
rest mass M, the gravitational mass M, the compactness M/R,, the total angular momentum J, the rotational periods at the axis P,
and at the equator P,, the rotational energy 7 and the binding energy W, and their ratio 8 (instability parameter).

Model p. (107%)  r,/r, R, M, M M/R, J P,(ms) P,(ms) T (1072 W 107?) B

U13 05990 020010 2431 1505 1462 00601 3.747 1723 3.910 2.183 7.764 0.2812
Ul12 09940 024150 2352 1508 1.462 00622 3591  1.599 3.654 2.272 8.228 0.2761
Ull 1.0920 025010 2331 1.507 1460 0.0627 3.541  1.572 3.597 2.284 8.327 0.2743
U10 1.1960 025860 23.08 1.508 1.460 0.0633 3496  1.542 3.536 2.302 8.461 0.2721
U9 1.2840 026550 22.88 1.508 1.460 00638 3457  1.517 3.486 2.316 8.575 0.2701
U8 1.3470 027030 2273 1.508 1460 0.0642 3428  1.500 3.450 2.325 8.659 0.2686
U7 14060 027470 2259 1.509 1460 0.0647 3402  1.484 3.417 2334 8.741 0.2671
U6 14810 028030 2240 1.508 1.459 0.0651 3363  1.465 3.377 2.341 8.832 0.2651
(5] 1.5530 028560 2222 1.508 1.458 0.0656 3326  1.446 3.339 2.346 8.920 0.2631
U4 1.5880 028810 2213 1.508 1.458 0.0659 3310  1.437 3.321 2.351 8.970 0.2621
U3 1.6720 029430 21.92 1.506 1456 0.0664 3.261  1.417 3.279 2.352 9.061 0.2596
U2 1.7230 029780 21.78 1.508 1.457 0.0669 3241  1.404 3.251 2.360 9.146 0.2581
Ul 1.8120 030500 21.54 1499 1448 00672 3.164 1.386 3.214 2.336 9.167 0.2549
S1 1.8600 030700 21.42 1512 1460 00682 3.191  1.368 3.180 2.384 9.388 0.2540
S2 1.8850 030900 21.35 1.510 1.458 0.0683 3.170 1.364 3.170 2.378 9.396 0.2531
S3 19160 031100 2127 1512 1459 00686 3.160 1.356 3.153 2.385 9.458 0.2522
S4 1.9620 031500 21.14 1504 1.452 00687 3.111  1.348 3.137 2.363 9.439 0.2503
S5 21280 032600 2070 1.510 1.456 0.0703 3.050  1.308 3.057 2.386 9.736 0.2451
S6 22610 033600 2032 1.505 1.449 00713 2965 1282 3.002 2.369 9.859 0.2403
S7 27540 037040 19.03 1.506 1.447 00760 2741  1.189 2.812 2.360 10.56 0.2234
S8 3.8150 044370 1670 1.506 1.439 00862 2322  1.048 2,531 2.255 11.96 0.1886
D2 3.1540 027500 1829 2771 2587 0.1414 7.620  0.735 2.051 9.256 35.28 0.2624
D3 3.7250 030000 17.85 2.640 2466 0.1382 6.827  0.731 2.026 8.450 33.11 0.2544
D7 27960 030000 19.56 2,188 2.075 0.1061 5386  0.959 2.442 5.390 21.06 0.2561
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0.03

0.02

0.01

Initial profiles of the rest-mass density p (left panel) and of the angular velocity () (right panel) for models S8, S7, S2, Ul,

U3, Ul1 and U13. Indicated with a dot-dashed line is the profile for the first unstable model (U1) with 8 = 0.255. Note that this is not
the first model having an off-centered maximum of the rest-mass density.

tion has then the effect of superimposing on the axially
symmetric initial model a bar-mode deformation that is
much larger than the (unavoidable) m = 4-mode perturba-
tion introduced by the Cartesian grid discretization. In
addition to a bar-mode deformation and in order to test
the effect of a pre-existing m = 1-mode perturbation we
also used in some cases (cf. Sec. VIC) an m = 1-mode
density perturbation of the type

2
8p1(x, 3, 2) = B, sin<</> T TD)PO’ G.11)

e
with §; = 0.01. Finally, after the addition of a perturbation
of the type (3.10) or (3.11), we have re-solved the
Hamiltonian and momentum constraint equations, in order
to enforce that the initial constraint violation is at the
truncation-error level.

IV. METHODOLOGY OF THE ANALYSIS

A number of different quantities are calculated during
the evolution to monitor the dynamics of the instability.
Among them is the quadrupole moment of the matter
distribution, which we compute in terms of the conserved
density D rather than of the rest-mass density p or of the
Ty, component of the stress-energy momentum tensor

[k = f d>xDx’ xk. 4.1
Of course, the use of D in place of p or of T\ is arbitrary
and all the three expressions have the same Newtonian

limit. However, we prefer the form (4.1) because D is a
quantity whose conservation is guaranteed by the form
chosen for the hydrodynamics equations (2.17). The time
variation of (4.1) (or, rather, suitable combinations of its
second time derivatives) will then be used in Sec. VIII to
characterize the gravitational-wave emission from the
instability.

Once the quadrupole moment distribution is known, the
presence of a bar and its size may be usefully quantified in
terms of the distortion parameters [21]

X =y
= 42
n+ IXX + Iyyr ( )
2%
M = Ty 4.3)
n =4/1n% + 1%, 4.4)

In addition, the quantity (4.2) can be conveniently used to
quantify both the growth time 7y of the instability and the
oscillation frequency fg of the unstable bar once the
instability is fully developed. In practice, we perform a
nonlinear least-square fit of the computed distortion 7 ()
with the trial function

1+(1) = moe’™ cosmfyt + bo).

Note that all quantities (4.2), (4.3), and (4.4) are expressed
in terms of the coordinate time ¢ and do not represent
therefore invariant measurements at spatial infinity.

4.5)
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However, for the simulations reported here, the lengthscale
of variation of the lapse function at any given time is
always larger than twice the stellar radius at that time,
ensuring that the events on the same timeslice are also
close in proper time.

Unless stated differently, we generally do not impose
any boundary condition enforcing certain symmetries. As a
result, during the evolution the compact star is not con-
strained to be centered at the origin of the coordinate
system and, in order to monitor the relative motion of the
rest-mass density distribution with respect to the coordi-
nate system, we compute the first momentum of the rest-
mass density distribution

i1 3oyl
X W [d xpx', (4.6)
where M = [ d*xp. These quantities are reminiscent of
the Newtonian definition of the center of mass of the star
but, because they are not gauge-invariant quantities, they
are not expected to be constant during the evolution.
However, since in a Newtonian framework a time-variation
of one of the X/, would signal a nonzero momentum in
that direction, we monitor these quantities as a measure of
the overall accuracy of the simulations. Note also that,
since the concept of the center of mass is well defined in
a Newtonian context only, equivalent definitions to (4.6)
could be made in terms of D or of Ty,. We have verified
that in our simulations no significant quantitative differ-
ences are present among the possible alternative
definitions.

In addition, as a fundamental tool to describe and under-
stand the nonlinear properties of the development and
saturation of the instability, we decompose the rest-mass
density into its Fourier modes so that the “power” of the
m-th mode is defined as

P, = fd3xpeim¢ @.7n
and the ‘““phase” of the m-th mode is defined as
b = arg(P,). (4.8)

The phase ¢,, essentially provides the instantaneous ori-
entation of the m-th mode when this has a nonzero power
and is expected to have a harmonic time dependence when
the corresponding mode has a fully developed mode-
component.

An important clarification to make is that, despite their
denomination, the Fourier modes (4.7) do not represent
proper eigenmodes of oscillation of the star. While, in fact,
the latter are well defined only within a perturbative re-
gime, the former simply represent a tool to quantify, within
a fully nonlinear regime, what are the main components of
the rest-mass distribution. Stated differently, we do not
expect that quasinormal modes of oscillations are present
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but in the initial and final stages of the instability, for which
a perturbative description is adequate.

Note also that the diagnostic quantities (4.7) are closely
related to the dipole diagnostic D = P,/M and quadru-
pole diagnostic Q = P,/M of Ref. [17]. For some selected
models we have restricted the integration domain in
Egs. (4.7) and (4.8) to the equatorial [i.e. (x, y)] plane and
performed an integration in the azimuthal angle ¢ only. In
this way the corresponding quantities

B (w) = [ _ ddplaeos(d), wsin(@)ed,  @49)

é (@) = arg(P,, (@), (4.10)

have an explicit dependence on the cylindrical radial co-
ordinate @ only. The quantities (4.10) have the advantage
that they can be used to check the coherence of the mode
since ¢,,(w) should be independent of @ when the m-th
mode is a global property of the matter distribution. As an
example we show in Fig. 3 the phases for the m = 1,2 and
m = 4 modes for model Ul1l when the bar is still fully
developed, just before the bar loses its coherence. Note that
the m = 1 mode shows a spiral-like pattern inside the star,
while both ¢, and ¢, acquire a radial dependence in the
outer parts of the star, where the bar deformation is absent.
A similar behavior for the ¢,,(w) has been observed in all
the performed simulations.

40 IIIT"I T 1 { T T T { T T T

740 | ‘ | ‘ I . J |
—40

FIG. 3 (color online). Mode-phases (solid line for the m = 2
mode, dashed for the m = 4 mode and dot-dashed for the m = 1
mode) at different values of @ overlapped with isocontours of
the rest-mass density for model Ul1 at 25.7 ms.

044023-7



BAIOTTI, DE PIETRI, MANCA, AND REZZOLLA

40

20

=20

—40

40

20

-20

-40

PHYSICAL REVIEW D 75, 044023 (2007)
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FIG. 4 (color online).

Snapshots of the evolution of models U3, Ul1 and U13 at various times. The different columns refer to the

three models and show isodensity contours for p = 0.9, 0.8, 0.7, 0.6, 0.5"% X p,..«, where j = 1,...,6 and p,,,, is the maximum
value of p in each panel. The above models were evolved on a 193 X 193 X 68 grid with grid coordinate resolution of 0.5Mg
(0.74 km) and imposing equatorial symmetry. The time evolution of some quantities characterizing these models is reported in Figs. 5—

7.
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V. GENERAL FEATURES OF THE DYNAMICS
A. The tests on stable models

Before investigating the nonlinear dynamics of unstable
stellar models, we have carried out a systematic investiga-
tion of the ability of our code to perform long-term stable
and accurate evolutions of stable stellar models. In par-
ticular, we have considered the time evolution of two of the
differentially rotating models discussed in Refs. [38,39],
namely models S7 and S8, and have followed their dynam-
ics for 24 and 35 axial rotation periods, respectively. In
both cases the stellar models remain stable and the density
and velocity fluctuations in the stellar interior are smaller
than 2% during the whole simulation. This is a rather
remarkable result in fully 3D simulations and it is worth
stressing that the simulations reported in Ref. [40] were not
able to go beyond 3 orbital periods for similar values of the
grid size and spacing (we recall that in [40] a second-order
TVD method with the MC limiter was used in place of the
third-order PPM method used here).

In addition, for a more quantitative check of the accu-
racy of our simulations, we have computed the frequency
of the f-mode using the normalized power spectrum
(Lomb’s method [41]) of the coordinate time evolution of
the central rest-mass density. The calculated values of
791 Hz for model S8 (A9) and of 674 Hz for model S7
(A10) are in very good agreement, with the values of
809 Hz and 685 Hz reported in Ref. [39] and computed
using a 2D grid in spherical coordinates but in the con-
formally flat approximation of general relativity.

B. Common feature of unstable models

In this subsection, we discuss some of the general fea-
tures of the dynamics of unstable models, postponing to the
following sections the discussion of more detailed aspects
of the instability. Here we will focus, in particular, on the
dynamics of three representative unstable models, namely,
U3, Ull and U13, which have been selected so that their
increasing values for the 8 parameter cover the whole
range of interest. For these simulations, we have used a
spatial resolution Ax = 0.5M, and a grid of 193 X 193 X
68 cells and imposed a reflection symmetry with respect
the (x, y) plane. As a result, between 80 and 90 gridpoints
cover the stars along the x and y axes at time ¢ = (. Note
that all the simulations reported here make use of a uniform
grid with the location of the outer boundary being rather
close to the stellar surface; this makes the extraction of
gravitational waves difficult and accounts for a very small
but nonzero loss of mass and angular momentum (because
of matter escaping the computational box).

In Fig. 4 we show some representative snapshots of the
rest-mass density at four different times for three different
unstable models (one column for each model). In particu-
lar, each row refers to one of the four representative stages
in which the dynamics of the bar can be divided. These are:
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(a) exponential growth of the m =2 mode and m =3
mode (first row); (b) saturation of the instability, develop-
ment of spiral arms and progressive attenuation of the bar
deformation (second row); (c) crossing of m = 3 mode and
m = 4 mode and consequent attenuation of the bar, emer-
gence of the m = 1 mode as the dominant one (third row);
(d) suppression of the bar deformation and emergence of
an almost axisymmetric configuration (fourth row). Note
that while these stages are present in all these three models,
the coordinate times at which they take place (indicated in
the upper part of each panel), as well as the amplitude of
the deformation, depend on the parameters defining the
initial models, most notably 8 and M,,.

Understanding the occurrence of these four stages dur-
ing the onset, development and suppression of the bar
deformation represents our effort to go beyond the standard
phenomenological discussion of the nonlinear dynamics of
the instability often encountered in the literature. An im-
portant tool in this discussion will be offered by the time
evolution of the Fourier mode-decomposition (4.7) dis-
cussed in Sec. IV. As we will show below, relating the
evolution of these quantities to the evolution of the mode
phases ¢,, and to the changes in the deformation of the star
7+, Nx will allow us to provide a consistent description of
the four stages of the instability.

LIRS O L L L L A B B B
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FIG. 5 (color online). Time evolution of the instability for
model U3. The top panel shows the behavior of the quadrupole
distortion parameter 1, [cf. Equation (4.4)], the middle panel
reports the behavior of the power in the Fourier modes m = 1, 2,
3 and 4, while the bottom panel displays the phase of the m = 2
mode.
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FIG. 6 (color online). The same as Fig. 5 but for model Ul1.

We start our discussion by reporting in Figs. 5-7 the
history of the instability for models U3, U1l and U13.
Starting from the upper panels, these figures show: the time
evolution of the distortion parameter 1, (a very similar

T T T [ T T T T [ T T T T [ T T T T [ T T 1T

U1s3

T T T T

~ —4r
E L
o i
N E
g R IR
— -8 A0 ) Pl —
L TPl H : 4
1y : :
r Ay : o __.m-=1 m = 3
r m; m =2 m = 4]
—-12 i :1 | TR | 1: P I S SR B S R R
1 T T T LIPS Pa PR T T T LraL—
~~ " ! : 3
& | E
< :
0Ok
n H
o 51
) i :
-1 MELTLENLIETLEN L AR T v, v, LU L
0 10 20 30 40 50

t (ms)

FIG. 7 (color online). The same as Fig. 5 but for model U13.
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behavior can be shown for the other distortion parameter
1), the power P, in the first four m-modes and the
evolution of the phase of the m = 2 mode. Note that at
the beginning of the simulation, as a result of the Cartesian
discretization, the m = 4 mode has the largest power.
While this can be reduced by increasing the resolution,
the m = 4 deformation plays no major role in the develop-
ment of the instability, which is soon dominated by the
lower-order modes.

The initial phase of the instability [stage (a) in the
previous classification] is clearly characterized by the ex-
ponential growth of the m = 2 mode and m = 3 mode, the
latter one having a smaller growth rate. A first interesting
mode-coupling takes place when the exponentially grow-
ing m = 3 mode reaches the same power amplitude of the
m = 4 mode, at which point the two modes exchange their
dynamics, with the m = 4 mode growing exponentially
and the m = 3 mode reaching saturation. At approximately
the same time, the m = 1 mode also starts to grow expo-
nentially but with a growth rate which is smaller than that
of the other modes. Note that this ‘““mode-amplitude cross-
ing” between the m = 3 and m = 4 modes also signals the
time when collective phenomena start to be fully visible.
(We stress that this mode-amplitude crossing is distinct
from the “avoided-crossing” observed when studying
mode eigenfrequencies along sequences of stellar models.)
This is shown with the first vertical dotted line in Figs. 5-7,
marking the time when the distortion parameter starts
being appreciably different from zero (upper panel) and
the m = 2 phase assumes a harmonic time dependence
(lower panel). This stage continues until the m = 2 mode
reaches its maximum power and the bar has reached its
largest extension. During the following phase [stage (b)]
the bar instability has reached a nonlinear saturation, ac-
companied by the development of spiral arms which are
responsible for ejecting a small amount of matter and for a
progressive attenuation of the bar extension (see discussion
in Sec. VI A). Furthermore, when the exponentially grow-
ing m = 1 mode reaches the same power amplitude of the
m = 3 mode, the latter, whose growth had slowed down for
a while, returns to grow exponentially.

The following phase of the instability [stage (c)] sees
modes m = 1, 3 and 4 reach comparable powers and this
marks the time when the bar deformation has a sudden
decrease. As a result of this crossing among the three
modes, only the m = 1 mode will continue to grow, while
the m = 3 and the m = 4 modes are progressively damped.
Finally, stage (d) starts when the growing m = 1 mode
reaches power amplitudes comparable with those of the
m = 4 mode and the final mode-amplitude crossing takes
place. This marks a distinct loss of the bar deformation and
the emergence of an almost axisymmetric rapidly rotating
star. This is shown with the second vertical dotted line in
Figs. 6 and 7, highlighting when the distortion parameter is
significantly reduced (upper panel) and the m = 2-mode
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FIG. 8 (color online). Schematic evolution of the collective
modes [Eq. (4.7)] of the rest-mass density p. In this diagram the
instability is distinguished in four representative stages:
(a) exponential growth of the m = 2 mode and m = 3 mode;
(b) saturation of the instability, development of spiral arms and
progressive attenuation of the bar deformation; (c) crossing of
m = 3 mode and m = 4 mode and consequent attenuation of the
bar, emergence of the m =1 mode as the dominant one;
(d) suppression of the bar deformation and emergence of an
almost axisymmetric configuration.

phase loses its harmonic time dependence (lower panel). A
schematic and qualitative diagram summarizing the evolu-
tion of the power in the first four m-modes as discussed
above is shown in Fig. 8 and can be used as an aid for the
interpretation of the quantities computed in Figs. 5-7.

We note that the lack of a perturbative study of this
process beyond the linear regime leaves the origins of this
interaction between modes still unclear. Furthermore, since
the growth of the m = 1 mode is not clearly exponential,
especially for slightly overcritical models (cf. Figure 5 for
model U3), we have referred to this process as ‘“‘mode-
coupling” rather than considering it as the evidence of an
m =1 instability. Additional perturbative work in this
respect will help clarify this aspect.

The general and common features of the dynamics of the
bar-mode instability as deduced from the numerical simu-
lations can be summarized as follows:

(i) the bar deformation is, in general, not a persistent
phenomenon but is suppressed rather rapidly and
over a timescale which is of the order of the dynami-
cal one (see also the following Section for an addi-
tional discussion on this);

(i1) nonlinear mode couplings take place during the evo-
lution and these allow for the growth of other modes
besides the fastest-growing m = 2 mode;

(iii) the growth of other modes has the overall impact of
progressively attenuating the m = 2 mode and, con-
sequently, the bar deformation, after the instability
has saturated;
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(iv) for slightly supercritical models (e.g. U3), when the
power amplitude of the m = 1 mode has become
comparable with the one in the m = 2 mode, the
bar deformation is suppressed and the star evolves
towards an almost axisymmetric configuration;

(v) for largely supercritical models (e.g. U13), the dy-
namics of the instability are so violent and the stellar
model so far from equilibrium that the strong bar
deformation is lost even in the absence of mode-
coupling effects (see discussion in Sec. VIB).

VI. DETAILED FEATURES OF THE DYNAMICS

In this Section we discuss some detailed aspects of the
instability, concentrating our attention on the impact that
different values of B, different boundary conditions, differ-
ent values of the initial perturbations, different EOSs and
different grid resolutions or boundary locations have on the
onset and development of the instability. We note that
while many of these different prescriptions do not induce
qualitative changes, some of them do change the initial
relative amplitude of the different modes [and hence the
simulation time needed for the instability to develop and
the orientation of the bar in the (x, y) plane at a given time
during the instability]. In these cases, in order to make
meaningful comparisons, we remove these offsets by
choosing a suitable shift in time Af and in phase A¢ in
such a way that the distortion parameters of the reference
model 7% and of the new one 7, have the maximal over-
lap and are related as

nP(0) = an, (t + A1) + Bny(t + Ao), (6.1)

where a = cos(A¢), B = sin(A¢p).

A. Dependence on

The parameter 8 plays a very important role in deter-
mining the properties of the nonlinear dynamics of the
instability both with regard to the growth rate 75 and to
the duration 7 of the saturation stage [stage (b) of Fig. 8].
While the relation between 8 and 7 will be discussed in
more detail in Sec. VII, we here concentrate on how the
dynamics of the bar, once formed, depend on the degree of
overcriticality, i.e. on 8 — 8., where B, marks the sepa-
ration between stable and unstable models. To illustrate
this we will consider two models which are representative
of the whole set considered in Table I and which have very
different values of 8 and consequently very distinct be-
haviors: the largely overcritical model U13 and the slightly
overcritical model U3.

Model U13 has 8 = 0.2812 and is the most unstable of
the studied models, since equilibrium models with larger 8
cannot be produced along the constant—rest-mass se-
quence chosen here. The most apparent feature shown in
Fig. 7 for this model is its very rapid growth rate (almost 3
times larger than the one for U3 as reported in Table II), but
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also its very effective suppression of the bar deformation.
Indeed, the evolution is so rapid that it is very little affected
either by initial perturbations or by the imposition of addi-
tional symmetries (see next subsections). In this case, in
fact, the crossing between the m = 2 mode and m = 1
mode is less evident and the bar deformation goes through
large variations, as shown by the large oscillations in P,
after ¢ = 16 ms, during which time the bar seems to dis-
appear and then form again soon after. At about # = 20 ms
the bar deformation starts disappearing in coincidence with
the mode-amplitude crossing. Again as a result of the very
violent dynamics, the saturation stage is rather short and
the bar is essentially lost after about 8 ms.

Model U3, on the other hand, has 8 = 0.2596 and shows
dynamics which are in many respects the opposite of the
ones discussed for model U13. As shown in Fig. 5, the
mode evolution is very smooth and, once formed, the bar
persists without significant losses in power. The growth
rate is clearly smaller and the stage of saturation is much
longer (about 30 ms) and the growth of the m = 1 mode
plays a major role in the damping of the m = 2 mode. The
transition that leads to the disappearance of the bar is
smooth and it requires many rotation periods. Differently
from model Ul13, in this case, the properties of the bar
dynamics in the first stage are sensitive to the use of

TABLE II.
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perturbations or to the imposition of additional symmetries
(see next subsections).

Overall, it is reasonable to expect that the persistence of
the bar is strictly related to the degree of overcriticality,
with the duration of the saturation 7 tending to the
radiation-reaction timescale for a model with 8 = B,
and to zero for a model with 8 > ., for which the excess
of kinetic rotational energy may well produce a rapid
disruption of the star (see Fig. 11). The numerical values
for p have been estimated through a nonlinear fit to the
evolution of P, with 3 separated single exponential func-
tions in the three intervals [2, #,], [7,, t,] and [}, £.], where
t, and t, are two free parameters and ¢, marks the end of
the simulation. The estimates for 7, reported in Table II are
still too sparse to be able to delineate its dependence,
beyond the evidence that 7, « |8 — B.| ™", where n is a
positive number. Furthermore, the reported values have an
error of about 1 ms, as a result of the used fitting procedure.

B. The role of symmetries

As mentioned in the Introduction, the issue of the per-
sistence of the bar deformation has been rather controver-
sial over the years.

Main properties of the initial part of the instability for the stellar models used in the simulations. Starting from the left the

different columns report: the grid spacing Ax/M,, the amplitudes of the initial perturbations in the m = 1 and m = 2 modes 8 ,, the
EOS, the symmetry and the grid size used, the time shift Az [cf. Equation (6.1)], the times ¢, and f, between which the growth times 75
and the frequencies fp are computed, the maximum value of the distortion parameter 7, and the duration of the bar deformation 7.

Model Ax/M, &, 5, EOS m-sym grid size At (ms) ¢, (ms) t, (ms) 7 (ms) fg (Hz) =7 (max) 7p (ms)
U3 0500 0.0 0.0 polytropic no medium  0.76 21 26 2.79 552 0.48 13.8
U3 0500 0.0 0.0 ideal fluid no medium 0 21 26 2.69 547 0.47 12.9
U3 0500 0.0 0.01 ideal fluid no medium —15.94 21 26 242 548 0.53 13.0
u3 0625 0.0 0.0 ideal fluid yes medium —1.00 21 26 2.82 543 0.43 24.4
U3 0625 0.0 001 ideal fluid yes medium —16.28 21 26 2.52 547 0.54 245
Ull 0500 0.0 0.0 polytropic  no medium  5.35 11 14 1.12 497 0.78 8.6
Ull 0500 0.0 0.0 ideal fluid no medium 0 11 14 1.15 494 0.78 9.4
Ull 0500 0.0 0.01 ideal fluid no medium —8.55 11 14 1.11 494 0.79 9.9
Ull 0375 0.0 00 ideal fluid no medium  1.64 11 14 1.11 492 0.79 10.5
Ull 0625 0.0 0.0 ideal fluid no medium  1.79 11 14 1.15 492 0.78 9.0
Ull 0625 00 0.0 ideal fluid no large 2.54 11 14 1.15 492 0.78 9.8
Ull 0625 0.0 00 ideal fluid yes medium 1.39 11 14 1.12 494 0.77 13.8
Ull 0750 0.0 00 ideal fluid no medium  3.79 11 14 1.17 493 0.76 10.8
Ull 0.625 005 000 ideal fluid no medium  6.20 11 14 1.14 495 0.78 6.6
Ul13 0500 0.0 0.0 polytropic no medium  1.69 10 13 0.94 457 0.86 5.7
Ul13 0500 0.0 0.0 ideal fluid no medium 0 10 13 0.95 454 0.85 6.2
Ul13 0500 0.0 0.01 ideal fluid no medium —8.55 10 13 0.93 454 0.86 6.3
Ul13 0625 0.0 0.0 ideal fluid yes medium —0.16 10 13 0.96 453 0.86 6.5
Ul13 0625 0.0 001 ideal fluid yes medium —8.71 10 13 0.94 454 0.86 6.2
D2 0500 0.0 00 ideal fluid no medium 0 9 10.5 0.90 1053 0.59 e
D2 0500 000 001 ideal fluid no medium —6.54 9 10.5 0.78 1052 0.67

D2 0500 0.0 0.04 ideal fluid no medium —7.57 9 10.5 0.77 1056 0.67

D3 0500 0.0 0.0 idea fluid no medium 0 9 12 1.54 1086 0.38

D7 0500 0.0 0.0 ideal fluid no medium 0 11 14 1.74 821 0.48
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While previous calculations carried out in Newtonian
physics and in the absence of symmetries have highlighted
that the bar deformation can be rapidly suppressed as a
result of the growth of an m = 1-mode deformation [8],
subsequent studies have attributed the growth of the odd
mode to inaccurate numerical methods and supported the
idea that the bar should be persistent over a radiation-
reaction timescale and that the use of suitable symmetry
conditions that remove the growth of the odd mode pro-
vides a more realistic description of the bar dynamics [9].
In addition, it has been argued that once an m = 2-mode
perturbation has developed, only couplings with even
modes should be expected and that the growth of any
odd mode should therefore be considered a spurious nu-
merical artifact.

We believe the above argument not to be valid, except in
a linear regime and in the very idealized case in which it is
possible to inject exclusively an m = 2 perturbation. In
practice, however, any initial perturbation, either intro-
duced ad hoc or by the truncation error, will excite both
even and odd modes and all of these will couple once a
nonlinear regime is reached.

Having said this, it is nevertheless important to verify
that the growth of the m = 1 mode detected in our simu-
lations is not a numerical artifact (this is further discussed
in Sec. VIE) and that the argument made about the non-
persistence of the bar deformation continues to hold also
when boundary conditions with symmetries are intro-
duced. For this reason, we evolved the models discussed
in the previous Sections also with the use of the so-called
ar-symmetry, ensuring that f(w, ¢, z) = f(w, ¢ + 7, 2)
for any variable f(x’). Clearly, the presence of any odd
mode is in this way impossible by construction. We report
in Figs. 9 and 10 the results of the simulations for models
U3 and U13 using this symmetry. The first two panels from
the top show the deformation parameter 7(¢) and the power
in the m = 2 mode (solid line when the 7-symmetry is
enforced and dotted line otherwise) and in the m = 1 mode
(dashed line).

Figure 9 clearly shows that the bar deformation is es-
sentially persistent in model U3 when the symmetry
boundary conditions are applied, its power amplitude being
just slowly attenuated, mostly because of the entropy pro-
duction via the nonisentropic EOS (2.16) and a possible
small contribution due to the use of a tenuous atmosphere
outside the star. However, it is important to note that,
besides being convergent and stable, the solution without
-symmetry is also accurate, as well as the one without
m-symmetry. This is shown by the second panel from the
bottom in Fig. 9, reporting the evolution of the position of
the ““ center of mass” as defined in Eq. (4.6), in the absence
of mr-symmetry. The two horizontal dashed lines in that
panel mark the edges of the central cell and indicate that up
to t = 50 ms the position of the center of mass does not
leave the central cell of the grid and that the exponential
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FIG. 9 (color online). The role of the z-symmetry on the
dynamics for model U3. Shown from the top are the deformation
parameter 7, the power in the m = 2 mode and in the m = 1
mode (dashed line), the evolution of the position of the “‘center
of mass” (the horizontal dashed lines mark the edges of the
central cell) and that of the rest mass. The dotted and continuous
lines refer to simulations without and with 77-symmetry, respec-
tively.

growth of the m = 1 mode (which becomes significant
from ¢ = 15 ms) cannot be related to a spurious numerical
effect. After # = 50 ms the center of mass starts to move
away from the center of the grid and also in this case the
motion is not due to numerical accuracy but rather to the
fact that a small amount of matter (about 2% of the initial
one) is being lost from the grid as a result of the develop-
ment of extended spiral arms. This is shown in the lower
panel of Fig. 9, which reports the evolution of the rest mass
when normalized to the initial value and which clearly
shows that the motion of the center of mass is related to
the loss of rest mass through the grid and thus consistent
with the conservation of linear momentum. As we will
further discuss in Sec. VIE, the mass loss and the conse-
quent motion of the center of mass can be reduced consid-
erably when moving the outer boundary to larger positions.
As mass leaves the grid, so does angular momentum, with
losses that vary according to the model considered and
ranging from ~3% for model U3 up to ~20% for the more
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violent model Ul3. Note, however, that much smaller
angular-momentum losses (i.e. less than 1% for all models)
are in general measured before the mass is shed across the
computational boundaries; as a result, angular momentum
can be conserved to reasonable accuracy by using more
distant outer boundaries (this has been tried and a discus-
sion on the changes introduced is presented in Sec. VIE).

Interestingly, the use of a 77-symmetry does not produce
a significant change in the case of model U13. This is true
for the dynamics of the bar (cf. the solid and dotted lines in
Fig. 10) and also for the values of 75 and fy. We believe
this is because the dynamics of this largely overcritical
model are not dominated by the mode-coupling, but rather
by efficient conversion of rotational kinetic energy into
internal energy. As shown in Fig. 11, which reports the
time evolution of the internal and rotational kinetic ener-
gies when normalized to their initial values, model U13
experiences a dramatic and rapid increase in the internal
energy at the expense of the kinetic one. This conversion of
energy is the largest among the simulated models and so
effective that mode-coupling effects do not have time to
develop. This explains why the use of symmetry conditions
slightly reduces the attenuation of the bar, but cannot
prevent its rapid disappearance.
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FIG. 10 (color online).
Ul13.

The same as in Fig. 9 but for model
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FIG. 11 (color online). Dynamics of the rotational kinetic
energy T [cf. Equation (3.8)] and of the internal energy E,;
[cf. Equation (3.6)] for models U3, U11 and U13, when normal-
ized to their initial values.

As a final remark we note that the use of a 77-symmetry
produces only small changes in the values of the bar-
pattern frequency fp or of the growth time 7 when
compared with the corresponding values computed in the
absence of symmetries (cf. Table II). This is essentially
because these boundary conditions do not alter the dynam-
ics of the stage of exponential growth of the bar. They can
therefore be used to reduce the computational costs and
pursue the systematic search for the threshold of the in-
stability discussed in Sec. VIIB.

C. The role of the initial perturbation

Another common feature of previous works on the bar-
mode instability has been the introduction of a sizeable
m = 2-mode perturbation of the type shown in Eq. (3.11)
with the goal of triggering the instability [15,16,19—
21,23]. This approach clearly reduces the computational
costs but it is fully justified only when the triggered mode
is the only unstable one. However, if other unstable modes
exist, their development may be altered or even suppressed
in the presence of a strong m = 2-mode perturbation. This
is particularly relevant for the analysis carried out in this
work, which has pointed out that nonlinear mode couplings
may trigger the growth of other modes and significantly
modify the dynamics of the instability.

We have therefore considered with care how the intro-
duction of an m = 2-mode perturbation influences the
onset and the development of the instability. More specifi-
cally, we have added an m = 2-mode perturbation of the
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type shown in Eq. (3.11) with 6, = 0.01, solved again the
constraint equations and observed that the impact this has
on the development of the instability depends on the degree
of overcriticality. In particular, for models near the thresh-
old, such as U3, the perturbation does not induce changes
in the saturation phase nor in the persistence of the bar, but
it does have the effect of slightly altering the first part of the
evolution, with an increase in the maximum distortion
(which at saturation is ~10% larger) as well as with an
increase in the growth rate (the growth time 7y is reduced
by ~10%); see the top panel of Fig. 12 and Table II for a
quantitative comparison.

On the other hand, for models that are largely over-
critical, such as U13, and in analogy with what discussed
in the previous Section for the use of symmetric boundary
conditions, the introduction of a perturbation does not have
a significant effect and the dynamics are essentially unal-
tered (see the lower panel of Fig. 12). Finally, for models
which are overcritical but not close to the threshold, such
as U11, the initial perturbation has a much smaller impact
on both the growth rate and the maximum distortion (cf.
Table II), but it does increase the duration of the bar. This is
due to the fact that the growth of the m = 1 mode is closely
related to the one in the m = 2 mode and its growth can be
delayed and reduced if the latter has initially a non-
negligible power. Because of this, the time at which the
two modes have comparable power will be different and, in
particular, will be postponed in the perturbed case (see the
upper panel of Fig. 13). Of course, the converse is also true
and modified dynamics for this model are observed also
when an m = 1-mode perturbation of the type shown in
Eq. (3.11) is introduced with 6; = 0.05. This is summa-
rized in the lower panel of Fig. 13, which shows that in this
case the perturbation reduces the duration of the saturation
stage.

In summary, while the introduction of a seed perturba-
tion (either in the form of an m = 1 mode or an m = 2
mode) does not produce significant qualitative changes in
the dynamics of the instability, it can result into quantita-
tive changes, most notably in the growth rate, in the
maximum distortion and in the persistence of the bar.
The persistence of the bar, in particular, is enhanced
when an m = 2-mode perturbation is present. The rele-
vance of these results will need to be evaluated for those
astrophysical scenarios in which long-lasting bars were
simulated, but which were triggered through the introduc-
tion of a perturbation [15,23].

D. The role of the EOS

Besides nonlinear mode-coupling, another process that
could in principle limit the persistence of the bar is the
formation of shocks (either macroscopical or on smaller
scales) that would convert the excess kinetic energy into
internal one. In order to assess the importance of this
process we have compared the evolution of the relevant
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FIG. 12 (color online). Effect of an initial m = 2-mode per-
turbation on the dynamics of the deformation parameter 7(z)
(top subpanels) and of the modes P,(r) and P, () (bottom
subpanels) for model U3 (top panel) and U13 (bottom panel),
respectively. The continuous lines represent the evolution of the
perturbed model after a suitable phase and time shifts.

unstable models when these are evolved using the non-
isentropic EOS (2.16) and when using the (isentropic)
polytropic EOS (2.15) with K = 100 and " = 2.

The results of this comparison are summarized for
model Ul1 in Fig. 14 and indicate that the nonisentropic
changes are indeed very small and that these do not pro-
duce any significant variations on the development of the
instability and on the growth of the m = 2 mode. Larger
differences are seen in the growth of the m = 1 mode, but
also these are very small and do not produce a qualitative
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FIG. 13 (color online). Effect of an initial perturbation on the
dynamics of the deformation parameter 7 (top subpanels) and of
the mode powers P,(t), P;(f) for model Ull. The top panel
shows the effects of an initial m = 2-mode perturbation, while
the bottom one those of an m = 1-mode perturbation.

change. Quantitative assessment of the changes produced
by a different EOS are reported in Table II, but these are,
overall, comparable with the error bar for the determina-
tion of 75 and f3. Finally, all the considerations made here
for model U1l apply also to models Ul3 and U3, with
model U3 being slightly more sensitive to the change in
EOS (cf. Table II). These results indicate therefore that the
effects of shock heating are likely to be unimportant at
least for the development and evolution of the bar in
isolated and old neutron stars.
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FIG. 14 (color online).
mation parameter 7 (top subpanels) and the modes P,(r) and
P,(?) (bottom subpanels) of model Ull caused by: (top panel)
the use of the adiabatic polytropic EOS; (bottom panel) the use
of a larger simulation grid, where the distance of the outer
boundary from the center is increased from 48M to 66M on
the (x, y)-plane and from 32M, to 47M along the z direction.

Effects on the evolution of the defor-

E. The role of grid spacing and size

We finally report on the influence of the grid spacing and
of the grid size on the development of the instability. To
assess this we have performed several simulations of the
intermediate model U11 differing either in grid resolution
or in the location of the outer boundaries. In particular, we
have considered grid resolutions Ax/M, = 0.375,
Ax/My = 0.5 and Ax/My = 0.625 and found the code
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to be second-order convergent, with the coarsest resolution
being just on the limit of the convergence regime (the
results with Ax/Mg = 0.75 are in fact not convergent at
the expected rate).

As summarized in Table II we have found that the
computed values of the instability parameters 75 and fg
do not vary significantly across the range of resolutions
considered, with differences that are at most of about 3%.
The same Table also contains information on the results
obtained when comparing simulations performed with
Ax/Mg = 0.625 but with a larger computational domain,
namely, going from a computational box, at this resolution,
with extents [157 X 157 X 56] to one with extents [211 X
211 X 80]. Also in this case the changes in the dynamics
are very small (see also the bottom panel of Fig. 14) and
essentially amount to a smaller loss of mass and angular
momentum as some of the matter in the spiral arms is
thrown out of the computational grid (see also discussion
in Sec. VIB).

F. Comparison with previous studies

To conclude this Section describing the dynamics of the
instability, we comment on the important validation of the
accuracy of our simulations that comes from a comparison
with results previously published in the literature. We have
focused, in particular, on the fully general-relativistic
simulations published in Ref. [19] and repeated those
relative to the models D2, D3 and D7 discussed there.
These stars have instability parameters S rather close to
the critical one, but are also more massive, with gravita-
tional masses between 2 and 2.6M, and have larger com-
pactnesses (cf. Table I). The development of the instability
for one of these models (D2) is summarized in Fig. 15 and
the computed distortion parameter is qualitatively very
similar to the one presented in Ref. [19] and shows that
in this compact star the bar [i.e. stage (b) of the classifica-
tion made in Sec. V B] is very rapidly attenuated as a result
of the development of spiral arms, which are also respon-
sible for a small loss of mass.

The frequencies and the growth times found for these
models are also in good agreement with those reported in
Ref. [19], but are not identical; differences are of about
10% (see Table 1II for a close comparison). While there are
several differences in the numerical codes used, it should
be noted that the simulations reported in Ref. [19] made
use of a substantial perturbation in the m = 2 mode, with
an equivalent 6, = 0.3. Although we were not able to
reproduce exactly the dynamics of these models (no con-
vergent solution of the constraint equations was found once
such a large perturbation was introduced), we recall that
large perturbations for models near the threshold do induce
a change in the growth rates and effectively reduce the
growth times (see discussion in Sec. VIC).

We believe therefore that the use of a smaller or zero
perturbation is the largest source of the difference with the
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FIG. 15 (color online). The same as in Fig. 9 but for model D2.
In addition, the bottom panel shows the evolution of the phase
for the m = 2 mode.

corresponding simulations in Ref. [19], which we can
nevertheless reproduce to very good precision.

VII. DETERMINATION OF THE THRESHOLD

An important consequence of the high accuracy of our
simulations it that it has allowed for a rather precise
determination of the stability threshold for the sequence
of models considered here. Of course, the determination of
the threshold to the third significant figure has little but
academic interest, as it is expected not to be universal, but
rather to depend (although weakly) on properties such as
the degree of differential rotation, the compactness, the
EOS, etc. Nevertheless, this is a useful exercise for at least
two different reasons. Firstly, it helps in characterizing the
dynamics of slightly supercritical models and, secondly, it
allows for a direct comparison with perturbative studies,
highlighting when the latter cease to be accurate and how
they can be improved.
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In what follows we discuss two different methods we
have used to this aim. The first one simply selects the initial
model with the lowest value of 8 for which an exponential
growth in the distortion parameter is seen. The second one,
on the other hand, uses the classical Newtonian stability
analysis of Maclaurin spheroids for incompressible self-
gravitating fluids in equilibrium [1] to extrapolate the
position of the threshold also in a fully general-relativistic
regime. Interestingly, the results of the two approaches
agree to high precision.

A. First method: dynamical evaluation

The approach followed here is straightforward and con-
sists in performing a number of simulations for models
with decreasing values of the instability parameter 8 and in
determining the critical value S, as the smallest one for
which an exponential growth of the distortion parameter 7
is observed. More specifically, we have performed a set of
10-ms simulations of models characterized by values of 8
between B8 = 0.24 and B8 = 0.255, interval in which the
instability was reported to develop [19-21]. In order to
remove a possible contamination by the Cartesian discre-
tization through the power in the m = 4 mode, all the
models had a very small m = 2-mode perturbation with
6, = 0.04, making this the largest mode power initially.
Furthermore, since this kind of initial m = 2-mode pertur-
bation always generates, at least temporarily, a growth of
the distortion, we classified as unstable those models for
which an exponentially growing bar deformation was ob-
served for the whole simulated 10 ms.

As a result of this set of simulations and of additional
refinements of the bracketing interval for the instability, we
have concluded that the threshold had to be found between
models U2 and S2, although it was not yet obvious whether
any or all of these models were unstable. A more precise
determination of the nature of these models has therefore
required much longer simulations to be performed and that
no initial perturbation was introduced. A summary of these
long-term simulations is reported in Fig. 16, which shows
the evolution for models Ul and S1. The upper panel, in
particular, shows the amplitude of the distortion parameter
1 for model S1 (continuous line) and Ul (dotted line),
respectively, while the lower panel shows the evolution of
the power in the m = 2 mode; indicated with a dashed line
is the average value of the m = 4-mode power for model
S1, which does not show an appreciable growth.

While it is evident that model U1 develops an instability
over the timescale of the simulation, S1 does not, implying
that the threshold for the onset of the dynamical bar-mode
instability for the sequence under investigation is S, =
0.255. We are aware that it may be argued that model S1
is also unstable but with a much smaller growth rate;
assessing in practice this would require simulations which
are prohibitive with the present computational facilities.
However, confidence that the result obtained is correct is
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FIG. 16 (color online). Dynamics of the instability near the
threshold. The two panels summarize two long-term evolutions
for model S1 (continuous line) and U1 (dotted line) and show the
distortion parameter and the power in the m =2 and m =4
modes.

also provided by critical-fit analysis, which will be dis-
cussed in the following Section.

B. Second method: critical fit

The classical Newtonian study of the bar-mode insta-
bility is based on the stability analysis of Maclaurin sphe-
roids for an incompressible and self-gravitating fluid in
equilibrium [1]. We recall that by considering the linear-
ized form of the second-order virial equation, which gov-
erns the small oscillations around the -equilibrium
configuration, it is possible to show that the toroidal m =
2 perturbations have complex eigenvalues given by (we
here use Chandrasekhar’s notation of Ref. [1])

g = Q(e) + 1[4311(6) - Qz(e),

where e is the eccentricity of the Maclaurin spheroids
relative to an incompressible Newtonian star (¢ = 0 for a
spherical star) and

3e — 53 + 2¢° + 1 — e%(4e? — 3) arcsin(e)

4¢3 ’
_6(e? = 1) N 2(3 — 2¢%)+/1 — €* arcsin(e)
- . )

62 e

(7.1)

By, =

QZ

(7.2)

As customary in perturbative studies, the real part of the
eigenfrequency o represents the characteristic frequency
of the small perturbation, while its imaginary part mea-
sures the exponential growth time of the m = 2 mode and
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is nonzero if 4B,;(e) — Q?(e) < 0, with the threshold for
the instability being marked by the value of the eccentricity
for which 4B,,(e) — Q%(e) = 0. In the case of an incom-
pressible Newtonian star, the eccentricity e and the insta-
bility parameter B are related as

3 31— ¢é?

FR A S
2¢* 2earcsin(e)

Ble) = —1 (7.3)
Equation (7.1) is most conveniently rewritten in terms of
the instability parameter 3 as

i

o= QB =g

(7.4)

where

1/7 = —4B;(B) + Q*(B).

With this in mind it is natural to ask how accurate is the
Newtonian description of an incompressible Maclaurin
spheroid in describing the nonlinear dynamics of a relativ-
istic differentially rotating star. Of course also in full
general relativity the transition between stable and dynami-
cal unstable bar-modes will be described by a change from
real to imaginary of the m = 2-mode eigenfrequency and it
is therefore reasonable to expect that the frequencies and
the growth times depend on 3 as

(7.5)

%%2zﬂ+f9w—ﬂa+ﬂ%ﬁ—ﬁy, (7.6)

1 1

Using this ansatz, we have performed a series of simula-
tions for models U2-U13 using a 7-symmetry and a grid
resolution of Ax/Mg = 0.625, through which we have
computed the values for fp and 75 by means of a nonlinear
least-square fit to the trial form of Eq. (4.5). Making use of
these results, which are collected in Table IV, we have then
again used a least-square fit of the values fg and 7 to the
expected 8 dependence of Egs. (7.6) and (7.7) to obtain the

unknown coefficients f, El), f(cz), k and B,:

fo=554Hz, f{"=—1668Hz, (¥ =-85635Hz,
B.=02554, k=0.153ms.

In the top panel of Fig. 17 we summarize the results of
this fit for the models U2-U13 and show the corresponding
error bars. In particular, we denote with triangles the un-
perturbed models reported in Table IV, while with squares
the perturbed models in Table III. In addition, the continu-
ous lines represent the two fitted curves for (1(8) and 7(3),
while the dotted line refers to the corresponding extrapo-
lations below the threshold. We note that the error bars in
Fig. 17 are computed in different ways for the growth rates
and the frequencies. In the first case they are computed as
the difference between the minimum and maximum values
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FIG. 17 (color online). Top panel: critical diagram as con-
structed with the frequencies and growth times relative to the
unperturbed models of Table IV (triangles) and to the perturbed
models of Table III (squares). The continuous lines represent the
two fitted curves for (8) and 7(8), while the dotted line the
corresponding extrapolations below the threshold. Bottom panel:
same data as in the top panel but magnified around the critical
threshold and expressed in terms of 1/72 to highlight the very
good fit.

of dlog(n(r))/dt in the time intervals between ¢, and ¢,
reported in Table IV. In the second case, instead, the error
bars are determined using the minimum and maximum
values over the time intervals between ¢, and ¢, reported
in Tables III and IV of the pattern speeds extracted from the
collective phase ¢,(r) of Eq. (4.8).
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TABLE III. The Table reports for some models near the in-
stability threshold: the ratio 8 of the rotational kinetic energy to
the gravitational binding energy; the initial m = 2-mode pertur-
bation 8,; the bounds #; and ¢, of the considered time interval,
the maximum distortion 7; the growth rate 75 and the frequency
fB of the bar-mode during the initial part of the instability. For
these models, Ax/Mgy = 0.5 and 7-symmetry is not used. The
growth rate 75 and the frequency fy of the bar-mode are
obtained making a least-square fit of 7, (7) (Eq. (4.5)) between
t; and t,. The * indicates that 7 did not reach a maximum before
the simulation was stopped.

Model S 6, t;(ms) t, (ms) m(ms) 7 fp (Hz)
S6 0240 004 3 9 0.02 --- 740%H
S5 0245 004 3 9 002 --- 705713
S4 0250 0.04 3 9 003 --- 65677
S3 0252 004 3 9 0.04 --- 611'%
S2 0253 0.04 3 9 005 --- 588°%
S1 0254 004 3 9 * 971 578%h
Ul 0255 004 3 9 ¥ 526 56718
S1 0.254 00 45 63 002 --- 599%3%
Ul 0255 00 45 63 % 221 588738

A number of comments are worth making. Firstly, it is
clear that the Newtonian description of the instability in
terms of incompressible Maclaurin spheroids is surpris-
ingly accurate also in full general relativity and for differ-
entially rotating stars. It is especially so for models which
are far from the instability threshold, for which the error
bars are very small and below 5%. Secondly, as the models
approach the critical threshold from above (i.e., unstable
models), the growth times become increasingly large and
the numerical errors increasingly more important for the

TABLE IV. Same quantities as in Table III, but referring to the
models evolved with a grid size of Ax/Mg = 0.625, with
m-symmetry and no perturbation. The growth rate 7z and the
frequency fg of the bar mode are obtained making a least-square
fit of 1. (¢) (Eq. (4.5)) between ¢, and #,. The interval [, t,] is
here determined, differently from the previous tables, as the one
in which 7() is between 5% and the 25% of its first maximum.
These models were used to determine the threshold.

Model B  t; (ms) t, (ms) n (max) 75 (ms) fp (Hz)
U2 02581 169 224 03734 3.4387%23) 55272
U3 02595 199 242 04241 2.678%137 544789
U4 02621 153 183  0.5496 1.854013 540714
US 02631 162 190 05788 1.7487%12 538%9,
U6 02651 145 17.1 06305 1.57475% 528*§
U7 02671 142 164  0.6694 1408709 5228,
Us 02686 122 143 07027 1.319%9% 518*7
U9 02701 132 152 07223 1.269708%; 512°3
U0 02721 137 156 07482 1.184%003 503118
Ull 02743 129 147 07749 1.11673%1 493+
Ul2 02761 120 137 07999 1.066%5% 486*3
Ul3 02812 112 127 08551 0.952%902 453*3
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resolutions we could use. Yet, even in this regime the
perturbative predictions are accurate to better than 15%.
Finally, as the models approach the critical threshold from
below (i.e., stable models), the frequencies of the oscilla-
tions triggered by the use of an initial perturbation are
similar to the spin frequencies, making the determination
of the eigenfrequencies increasingly difficult and hence
inaccurate (cf. the large error bars for models denoted by
squares in the top panel of Fig. 17).

Finally we note that the independent determination of
the threshold for the instability provided by the fit to
Eq. (7.7) (i.e. B, = 0.2554) is in surprisingly good agree-
ment with the one obtained in the previous Section, i.e.
B. = 0.255, confirming the accuracy of the dynamical
determination and suggesting that model S1 is indeed
stable. The very good fit of the data is shown in the bottom
panel of Fig. 17, which reports the same data as in the top
panel but magnified around the critical threshold and
shown in terms of 1/72 to highlight the functional depen-
dence as expressed by Eq. (7.7).

VIII. GRAVITATIONAL-WAVE EMISSION AND
DETECTION OF THE UNSTABLE MODELS

One of the goals of this study is to assess whether a
dynamical bar-mode instability triggered in a neutron-star
model could be a good source of gravitational radiation for
the detectors presently collecting data (LIGO, GEO), in the
final stages of construction (Virgo) or in the planning phase
(Dual) [42]. The use of uniform grids in these calculations
has prevented us from placing the outer boundaries at
distances sufficiently large to allow a gauge-invariant ex-
traction of the gravitational waves [43—45]. However, a
reasonable measure of the amplitude of the expected gravi-
tational radiation and of the consequent SNR is still pos-
sible by making use of the standard quadrupole formula
[46]. A number of comparative tests have been carried out
among the various ways in which the gravitational-wave
amplitudes can be estimated (see, for instance,
Refs. [23,47,48]) and we expect the error in this case to
be O(M/R) [49] and thus of a few percent only.

In this approximation, the observed waveform and am-
plitude for the two polarizations measured by an observer
situated at infinity along the z-axis are
ixy(t/)

() — ()
= =22
x r

r

h

(8.1)

where ¢ = r — r is the retarded time. The total gravita-
tional wave luminosity is then given by

E = §<Il]1ij>, (82)
while the angular-momentum loss is
J i = Kep ). (8.3)
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L bar differ only by a phase, since the emission is circularly
0 F 1 polarized.) Clearly, the gravitational-wave signal mimics
F ] (modulo a factor of 2 in the frequency) the dynamical
-5 F = behavior of the bar deformation, with signals that are
5 longer for models near the stability threshold (i.e. model
F U3), and with amplitudes which increase for the more
o OF compact model D2.
S A convenient measure of the strength of the signal can
% S FE be given in terms of the root-sum-square amplitude of, say,
x > 3 the plus polarization
‘0 f +o0 1/2
£ o h, = [ f ’ dth%r(t)} ) 8.5)
Sl = R I T RN BRI R
10 ? L T L ‘D‘ZX ‘é since A, has the same units as the strain-noise amplitude
F ] of the detectors and it is therefore possible to obtain a
OF B rough estimate of the SNR simply dividing it by the
_10 E 3 strain-noise amplitude at the frequency where the signal
= P is the strongest. In Table V we report the values of &, for a
0 10 20 30 40 50 60

t (ms)

FIG. 18. Gravitational-wave signals along the z-axis for the
cross polarization as computed in the Newtonian quadrupole
approximation for models U3, U11, U13 and D2.

We note that the definition of the quadrupole tensor is
not unique as p and D coincide in a Newtonian approxi-
mation and either of them could be used. Following
Ref. [19], we adopt the definition expressed in Eq. (4.1),
as this allows us to exploit the conservation equation for D
to perform analytically the first time derivative of the
quadrupole tensor and obtain that

17 = fd3xD[xi(avj + B+ x(av' + B (84

from which we compute the second I/ and third I time-
derivatives using first-order finite differencing. This ap-
proach not only is simpler, but it is indeed the only possible
one, since our second-order-accurate scheme would not
allow for an accurate direct calculation of 7%/ (see discus-
sion in Appendix A of Ref. [45]).

In Fig. 18 the we show the waveforms for the “cross”
polarization computed in this way, as measured along the
z-axis for models U3, U11, U13 and D2. (We recall that the
cross and “plus” waveforms for a stationary and rotating

signal coming from a source at 10 kpc, together with the
SNR computed assuming the optimal use of match-
filtering techniques and given by

S _ oo s (NS
N 2\/f0 dlogfw,

where &, (f) is the Fourier transform of 4 (¢) and S,,(f) is
the designed sensitivity of either Virgo (V), LIGO (L),
Advanced LIGO (AL) or of the planned resonant detector
Dual. Of course, the SNR is inversely proportional to the
distance from the source and the values reported in Table V
indicate that, while an instability developing in a rapidly
rotating star in our Galaxy would yield an extremely strong
signal, the SNR is still expected to be O(1) also for a source
as far as about 10 Mpc if measured by Advanced LIGO. A
different representation of the results summarized in
Table V is offered in Fig. 19, which shows a spectral

(8.6)

comparison between the designed sensitivity A, (f) =
S, (f) of Virgo, LIGO and Advanced LIGO and the power
spectrum |4 (f)|f'/% of the expected signals for models
U3 and U13.

It is interesting to note the significant differences in the
power spectrum of the two signals, with the one relative to
model U3 having a larger and narrower peak as a result of a
more persistent bar. Yet, the SNR for model U3 is signifi-

TABLE V. List of the representative gravitational-wave quantities computed in the Newtonian quadrupole approximation for models
U3, Ul1, U13 and D2. From the left the different columns report: the fractional amounts of the energy and angular momentum carried
by the gravitational radiation (AM/M and AJ/J, respectively), the root-sum-square of /. for a source at 10 kpc, and the SNRs for
Virgo, LIGO, Advanced LIGO and Dual.

Model AM/M (1079) AJ/J (1073) By (10720) SNR V SNR L SNR AL SNR Dual
U3 175 3.82 1.39 117 82.5 1590 19
Ull 9.48 4.84 1.74 155 119 2040 23
U13 6.23 3.18 1.51 138 114 1780 30
D2 52.6 10.2 2.50 136 79.8 2270 892
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FIG. 19 (color online). Comparison between |i(f)|f'/? for
models U3 and U13 at 10 kpc and the square-root of the power
spectrum of the noise of Virgo (dashed line), LIGO (dotted line),
Advanced LIGO (dotted line) and the planned resonant detector
Dual (dot-dashed line). Note the significant difference in the
power spectrum of the two signals, with the one relative to model
U3 having a larger and narrower peak at about 600 Hz, produced
by the more persistent bar deformation.

cantly smaller than the one for both models U11 and U13
and a number of different factors are behind this somewhat
surprising result. Firstly, while the bar is indeed more
persistent for U3, the amplitude of the bar distortion is
larger for models Ul1 and U13, thus larger is the corre-
sponding gravitational-wave signal. Secondly, the fre-
quency of the power-spectrum maximum is smaller for
models Ul1 and U13 and thus better fitting the sensitivities
of the detectors. Finally, the idealised assumption that
match-filtering techniques can be used at all frequencies
implies that all of the power spectrum contributes to the

PHYSICAL REVIEW D 75, 044023 (2007)

final SNR and the large wings of the spectra of models U11
and U13 can significantly increase the SNR. Indeed, when
evaluating Eq. (8.6) in a narrow window of 100 Hz around
the peak, the SNR of the different models is comparable.

Of course, a strong SNR is just a necessary condition for
the detection and the possibility of measuring the
gravitational-wave signal from this process will depend
significantly on its event rate, which is still largely uncer-
tain. In the case in which the instability develops in a hot
protoneutron star resulting from the collapse of a stellar
core, the event rate is strictly related to the supernova event
rate, which is of 1 or 2 supernova per century per galaxy.
About 60% of the remnants of the explosion should be
neutron stars, but the requirement of rapid rotation in the
progenitor makes the event rate of dynamical instabilities
considerably lower [50], although such prospect may be
more optimistic according to recent studies [51]. On the
other hand, in case the bar is produced as a result of a
binary merger of neutron stars, the most optimistic scenar-
ios suggest that such mergers may occur approximately
once per year within a distance of about 50 Mpc [52].
Finally, the event rate of the classical scenario in which the
instability is triggered in an old neutron star spun up by
accretion in a binary system, still remains difficult to
quantify.

IX. CONCLUSIONS

We have presented accurate simulations of the dynami-
cal bar-mode instability in full general relativity. An im-
portant motivation behind this work is the need to go
beyond the standard phenomenological discussion of the
instability and to find answers to important open questions
about its nonlinear dynamics. Among such open problems
there are, for instance, the determination of the role of the
initial perturbation or of the symmetry conditions, or the
influence on the dynamics of the value of the parameter 3,
or, most importantly, the determination of the timescale of
the persistence of the bar deformation once this is fully
developed. Clearly, this latter question is a very pressing
one in gravitational-wave astronomy, as it bears important
consequences on the detectability of the whole process.

In order to provide answers to these questions we have
explored the onset and development of the instability for a
large number of initial stellar models. These have been
calculated as stationary equilibrium solutions for axisym-
metric and rapidly rotating relativistic stars in polar coor-
dinates. More specifically, the evolved models represent
relativistic polytropes with adiabatic index I' = 2 and are
members of a sequence having a constant amount of dif-
ferential rotation with A = 1 and a constant rest mass of
My~ 1.51M,.

The simulations have been carried out with the general-
relativistic hydrodynamics code Whisky, in which the
hydrodynamics equations are written as finite differences
on a Cartesian grid and solved using HRSC schemes
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[25,26]. The Einstein, equations, on the other hand, have
been solved within the conformal traceless formulation
implemented within the Cactus computational toolkit
[30].

The main results of our analysis can be summarized as
follows: (i) An initial m = 1 or m = 2-mode perturbation
can play a role in determining the duration of the bar-mode
deformation, but not the growth time of the instability; the
only exception to this is represented by models near the
threshold. (ii) For moderately overcritical models the use
of a m-symmetry can radically change the dynamics and
extend considerably the persistence of the bar; this ceases
to be true for largely overcritical models. (iii) The persis-
tence of the bar is strongly dependent on the degree of
overcriticality and is generically of the order of the dy-
namical timescale. (iv) Generic nonlinear mode-coupling
effects (especially between the m =1 and the m =2
mode) appear during the development of the instability
and these can severely limit the persistence of the bar
deformation and eventually suppress the bar deformation.
(v) The dynamics of largely overcritical models (i.e. with
B > B.) are fully determined by the excess of rotational
energy and the bar deformation is very rapidly suppressed
through the conversion of kinetic energy into internal one.
Interestingly, a similar dynamics for the odd and even
modes has been observed also in the case of the low-8
instability in recent Newtonian simulations [53]. In this
case, however, the growth rate of the m = 1 mode is much
smaller and hence the persistence of the bar longer.

PHYSICAL REVIEW D 75, 044023 (2007)

Finally, we have considered whether the classical
Newtonian stability analysis of Maclaurin spheroids for
incompressible self-gravitating fluids is accurate also for
differentially rotating and relativistic stars. Overall, we
have found the perturbative predictions to be surprisingly
accurate in determining the threshold for the instability as
well as the complex eigenfrequencies for the unstable
models.

While the features of the bar-mode instability discussed
here are expected to be rather generic, they have been
deduced from the analysis of a small region of the space
of parameters. Work is now in progress to extend the
present analysis by considering stellar models with differ-
ent and larger compactnesses and that are regulated by
more realistic EOSs.
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