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Abstract
We present new results on dynamical instabilities in rapidly rotating relativistic
stars. In particular, using numerical simulations in full general relativity, we
analyse the effects that the stellar compactness has on the threshold for the
onset of the dynamical bar-mode instability, as well as on the appearance of
other dynamical instabilities. By using an extrapolation technique developed
and tested in our previous study (Baiotti L et al 2007 Phys. Rev. D 75 044023),
we explicitly determine the threshold for a wide range of compactnesses using
four sequences of models of constant baryonic mass comprising a total of 59
stellar models. Our calculation of the threshold is in good agreement with the
Newtonian prediction and improves the previous post-Newtonian estimates. In
addition, we find that for stars with sufficiently large mass and compactness, the
m = 3 deformation is the fastest growing one. For all of the models considered,
the non-axisymmetric instability is suppressed on a dynamical timescale with
an m = 1 deformation dominating the final stages of the instability. These
results, together with those presented in Baiotti L et al (2007 Phys. Rev. D
75 044023), suggest that an m = 1 deformation represents a general and late-
time feature of non-axisymmetric dynamical instabilities both in full general
relativity and in Newtonian gravity.

PACS numbers: 04.25.Dm, 04.30.Db, 04.40.Dg, 95.30.Lz, 95.30.Sf, 97.60.Jd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-axisymmetric deformations of rapidly rotating self-gravitating bodies are rather generic
phenomena in nature and could appear in a variety of astrophysical scenarios such as stellar
core collapse [2], accretion-induced collapse of white dwarfs [3] or the merger of two neutron
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stars [4]. Over the years a considerable amount of work has been devoted to the search for
unstable deformations that, starting from a quasi-axisymmetric stellar configuration, would
lead to the formation of highly deformed rotating massive objects (see [1] for a detailed list of
references). One of the main reasons behind this interest is that such deformations would lead
to an intense emission of high-frequency gravitational waves (i.e., in the kHz range) which is
potentially detectable by ground-based detectors such as LIGO, GEO, Virgo or the planned
resonant detector such as DUAL [5].

Despite such extensive studies, various questions about the dynamics of the non-
axisymmetric deformation of rapidly rotating self-gravitating bodies are not yet completely
clarified. Among the most important questions that have been addressed only rather recently
it is worthwhile to recall the following: (i) how long do these deformations survive once
they reach their maximum amplitude? (ii) how large is the energy emitted in gravitational
waves? (iii) which physical phenomena determine the shortest damping timescale and impress
a signature on the emitted signal? (iv) what is the effect of the stellar compactness M/Re,
where M and Re are the stellar mass and the proper equatorial radius, respectively, on the
dynamics of the instability and on the threshold for its onset?

While points (i)–(iii) were first addressed in [1] (hereafter paper I), here we concentrate
on providing an answer to question (iv) supplying new information on the general properties
of the dynamical instability in a very large class of stellar models that are characterized by
differential rotation and by high compactness and that are members of four sequences of
models with constant baryonic mass.

The main result obtained is that any non-axisymmetric deformation that develops in our
models is damped over a dynamical timescale, through pure inviscid hydrodynamical nonlinear
phenomena. Moreover, for all the models that develop dynamical instabilities, the m = 1
deformation eventually becomes the dominant one irrespective of whether the models are
above or below the threshold for the development of the bar-mode instability (see also paper
I). This evidence is consistent with the simulations performed in Newtonian gravity by Ou and
Tohline [6] for stars with a very-low β (where β ≡ T/|W | is the ratio between the rotational
kinetic energy T and the gravitational binding energy W ), thus suggesting that this may be a
general feature of this type of dynamical instability. In addition, we show that, in a region
of high stellar compactness, other instabilities, such as one having an m = 3 deformation,
can develop. Finally, adopting an extrapolation technique developed and tested in paper I, we
determine the threshold βc for the onset of the bar-mode instability for all of the sequences
considered, thus determining accurately its dependence on the stellar compactness.

The paper is organized as follows. In section 2 we briefly describe the initial data chosen
and the numerical techniques employed for their evolution, while in section 3 we review the
tools used in the analysis of the data. Section 4 collects our results and there we first discuss the
threshold of the bar-mode instability, its persistence and eventually the onset of higher-mode
dynamical instabilities. Finally, section 5 contains our conclusions and the goals of our future
research. Hereafter we use a space-like signature (−, +, +, +), with Greek indices running
from 0 to 3, Latin indices from 1 to 3 and the standard convention for the summation over
repeated indices. Unless explicitly stated, all the quantities are expressed in units in which
c = G = M� = 1.

2. Initial data and numerical evolution method

Our simulations involve the numerical solution in three spatial dimensions (3D) of the full set
of Einstein equations coupled to those of a perfect-fluid matter

Gµν = 8πTµν, (1)
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Figure 1. Position on the (M/Re, β) plane of the considered stellar models. Indicated respectively
with stars and filled circles are the m = 2-stable and m = 2-unstable models belonging to the four
sequences of constant rest mass. Triangles refer instead to models where the m = 3 deformation
is the fastest growing one. Indicated with a solid line is the threshold of the bar-mode instability,
while the dashed region represents the region of our estimated error-bars.

where

T µν = ρ

(
1 + ε +

p

ρ

)
uµuν + pgµν, (2)

and uµ is the fluid 4-velocity, p is the fluid pressure, ε the specific internal energy and
ρ the rest-mass density, so that e = ρ(1 + ε) is the energy density in the rest frame of
the fluid. The evolution of the spacetime must be supplemented by the evolution of the
relativistic hydrodynamics equations: the conservation laws for the energy–momentum tensor
∇µT µν = 0 and the baryon number ∇µ(ρuµ) = 0, complemented with an equation of state
(EOS) of type p = p(ρ, ε).

The initial data for our simulations are computed as stationary equilibrium solutions for
axisymmetric and rapidly rotating relativistic stars in polar coordinates [7]. In generating
these equilibrium models the metric describing an axisymmetric relativistic star is assumed to
have the form

ds2 = −eµ+ν dt2 + eµ−νr2 sin2 θ(dφ − ω dt)2 + e2ξ (dr2 + r2 dθ2), (3)

where µ, ν, ω and ξ are space-dependent metric functions. As in paper I, we assume the
matter to be characterized by a non-uniform angular-velocity distribution of the form


c − 
 = r2
e

Â2

[
(
 − ω)r2 sin2 θ e−2ν

1 − (
 − ω)2r2 sin2 θ e−2ν

]
, (4)

where re is the coordinate equatorial stellar radius and the coefficient Â is a measure of the
degree of differential rotation, which we set to Â = 1. All the equilibrium models considered
here have been calculated using the relativistic polytropic EOS (p = Kρ�) with K = 100
and � = 2 and are members of four sequences having a constant rest mass M∗ equal to
1.0M�, 1.51M�, 2M� and 2.5M�, respectively. The main properties of the four sequences
are reported in tables 1–4. The baryonic mass M∗, the gravitational mass M, the angular
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Table 1. Main properties of the stellar models of the sequence with M∗ = 1M�. Starting from the
left: the name of the simulation, the compactness M/Re , the instability parameter β, the central
rest-mass density ρc , the ratio between the polar and the equatorial coordinate radii rp/re , the
proper equatorial radius Re , the gravitational mass M, the total angular momentum J divided by
the square of the gravitational mass, the rotational periods at the axis Pa and at the equator Pe . The
initial letter in the model’s name indicates whether it is an unstable (U) or a stable (S) configuration.

Mod M/Re β ρc(10−4) rp/re Re M J/M2 Pa(ms) Pe(ms)

Ua8 0.0387 0.2814 0.4369 0.210 44 25.37 0.982 2.142 2.283 4.945
Ua7 0.0391 0.2790 0.5662 0.231 77 25.04 0.980 2.098 2.207 4.791
Ua6 0.0394 0.2771 0.6429 0.242 88 24.83 0.979 2.070 2.164 4.702
Ua5 0.0398 0.2750 0.7087 0.251 73 24.63 0.979 2.044 2.127 4.626
Ua4 0.0401 0.2730 0.7672 0.259 18 24.45 0.980 2.021 2.094 4.559
Ua3 0.0403 0.2711 0.8168 0.265 50 24.29 0.978 2.001 2.068 4.506
Ua2 0.0406 0.2690 0.8668 0.271 49 24.11 0.979 1.979 2.040 4.449
Ua1 0.0408 0.2671 0.9107 0.276 84 23.95 0.978 1.960 2.017 4.402

Sa1 0.0421 0.2580 1.0907 0.298 07 23.22 0.977 1.878 1.922 4.209
Sa2 0.0424 0.2560 1.1270 0.302 36 23.05 0.977 1.861 1.904 4.172
Sa3 0.0427 0.2540 1.1619 0.306 55 22.89 0.977 1.844 1.886 4.135

Table 2. Same quantities as in table 1 for the sequence of models with M∗ = 1.51M�.

Mod M/Re β ρc(10−4) rp/re Re M J/M2 Pa(ms) Pe(ms)

Ub13 0.0601 0.2812 0.5990 0.200 12 24.31 1.462 1.753 1.723 3.910
Ub12 0.0622 0.2761 0.9938 0.241 51 23.52 1.462 1.679 1.599 3.655
Ub11 0.0626 0.2743 1.0920 0.250 12 23.31 1.460 1.660 1.572 3.598
Ub10 0.0633 0.2721 1.1960 0.258 58 23.08 1.461 1.639 1.542 3.536
Ub9 0.0638 0.2701 1.2844 0.265 54 22.88 1.460 1.621 1.517 3.486
Ub8 0.0642 0.2686 1.3465 0.270 28 22.73 1.460 1.608 1.500 3.451
Ub7 0.0646 0.2671 1.4055 0.274 74 22.59 1.459 1.596 1.485 3.418
Ub6 0.0651 0.2651 1.4812 0.280 33 22.40 1.459 1.579 1.465 3.377
Ub5 0.0656 0.2631 1.5534 0.285 60 22.22 1.459 1.564 1.446 3.339
Ub4 0.0659 0.2621 1.5879 0.288 13 22.13 1.458 1.557 1.437 3.321
Ub3 0.0664 0.2595 1.6730 0.294 33 21.91 1.456 1.539 1.416 3.278
Ub2 0.0669 0.2581 1.7233 0.297 79 21.78 1.457 1.527 1.403 3.251
Ub1 0.0674 0.2551 1.8120 0.304 50 21.54 1.452 1.509 1.384 3.210

Sb1 0.0682 0.2541 1.8600 0.306 91 21.42 1.461 1.497 1.368 3.179
Sb2 0.0682 0.2530 1.8845 0.309 15 21.35 1.456 1.492 1.364 3.171
Sb3 0.0684 0.2520 1.9155 0.311 34 21.27 1.456 1.485 1.357 3.156
Sb4 0.0687 0.2503 1.9620 0.315 00 21.14 1.452 1.476 1.348 3.137
Sb5 0.0703 0.2451 2.1280 0.326 00 20.70 1.456 1.439 1.308 3.057
Sb6 0.0713 0.2403 2.2610 0.336 00 20.32 1.449 1.411 1.282 3.002

momentum J , the rotational kinetic energy T, the gravitational binding energy W and the
instability parameter β = T/|W | are defined as

M∗ ≡
∫

d3x
√

γW
L
ρ, M ≡

∫
d3x

(−2T 0
0 + T µ

µ

)
α
√

γ , (5)

Eint ≡
∫

d3x
√

γW
L
ρε, J ≡

∫
d3x T 0

φ α
√

γ , (6)

T ≡ 1

2

∫
d3x 
T 0

φ α
√

γ , W ≡ T + Eint + M∗ − M, (7)
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Table 3. Same quantities as in table 1 for the sequence of models with M∗ = 2M�.

Mod M/Re β ρc(10−4) rp/re Re M J/M2 Pa(ms) Pe(ms)

Uc6 0.0841 0.2790 0.9669 0.211 42 22.82 1.920 1.495 1.317 3.161
Uc5 0.0858 0.2761 1.2663 0.233 77 22.32 1.916 1.460 1.260 3.042
Uc4 0.0880 0.2716 1.6079 0.255 16 21.74 1.913 1.420 1.200 2.916
Uc3 0.0900 0.2670 1.8982 0.271 17 21.23 1.911 1.384 1.152 2.815
Uc2 0.0917 0.2631 2.1264 0.282 98 20.82 1.908 1.356 1.116 2.741
Uc1 0.0931 0.2595 2.3176 0.292 40 20.48 1.907 1.333 1.088 2.682

Sc1 0.0970 0.2500 2.8043 0.315 26 19.61 1.902 1.275 1.021 2.543
Sc2 0.0980 0.2480 2.9091 0.319 87 19.42 1.902 1.263 1.007 2.514

Table 4. Same quantities as in table 1 for the sequence of models with M∗ = 2.5M�.

Mod M/Re β ρc(10−4) rp/re Re M J/M2 Pa(ms) Pe(ms)

Ud15 0.1113 0.2771 1.3117 0.212 59 21.29 2.369 1.320 1.025 2.630
Ud14 0.1124 0.2760 1.4608 0.221 21 21.07 2.368 1.307 1.005 2.588
Ud13 0.1132 0.2750 1.5826 0.227 85 20.90 2.366 1.298 0.990 2.555
Ud12 0.1140 0.2740 1.6961 0.233 72 20.74 2.364 1.289 0.976 2.526
Ud11 0.1149 0.2730 1.8103 0.239 25 20.58 2.364 1.280 0.962 2.496
Ud10 0.1156 0.2721 1.9104 0.243 99 20.44 2.362 1.272 0.950 2.471
Ud9 0.1164 0.2710 2.0153 0.248 68 20.29 2.362 1.264 0.938 2.445
Ud8 0.1171 0.2701 2.1102 0.252 86 20.16 2.360 1.256 0.927 2.423
Ud7 0.1186 0.2680 2.3022 0.260 83 19.89 2.359 1.241 0.906 2.377
Ud6 0.1189 0.2675 2.3534 0.262 91 19.82 2.358 1.238 0.901 2.366
Ud5 0.1196 0.2666 2.4336 0.266 09 19.71 2.357 1.231 0.892 2.348
Ud4 0.1207 0.2650 2.5698 0.271 28 19.52 2.356 1.221 0.878 2.318
Ud3 0.1220 0.2631 2.7402 0.277 60 19.29 2.353 1.208 0.861 2.282
Ud2 0.1254 0.2580 3.1583 0.292 10 18.74 2.349 1.178 0.821 2.198
Ud1 0.1302 0.2510 3.7335 0.310 27 18.00 2.343 1.138 0.772 2.094

Sd1 0.1314 0.2491 3.8899 0.315 03 17.81 2.341 1.127 0.760 2.068
Sd2 0.1321 0.2480 3.9735 0.317 45 17.71 2.340 1.122 0.753 2.054
Sd3 0.1329 0.2470 4.0607 0.319 91 17.61 2.340 1.116 0.746 2.040
Sd4 0.1341 0.2450 4.2188 0.324 50 17.42 2.337 1.106 0.735 2.016
Sd5 0.1376 0.2400 4.6380 0.335 96 16.95 2.333 1.081 0.706 1.955
Sd6 0.1412 0.2350 5.0710 0.347 14 16.49 2.329 1.056 0.678 1.897

where α is the lapse function,
√

γ is the square root of the three-dimensional metric
determinant and W

L
= αu0 is the fluid Lorentz factor. We stress that the definitions (5)–(7) of

quantities such as J, T ,W and β are meaningful only in the case of stationary axisymmetric
configurations and should therefore be treated with care once the rotational symmetry is
lost.

Traditionally, numerical simulations of the dynamical bar-mode instability have
sometimes been sped up by introducing very large m = 2 deformations in the initial condition.
As discussed in paper I, the introduction of any perturbation (especially when this is not a
small one) may lead to spurious effects and erroneous interpretations. Being aware of this,
we used, only in some selected simulations below the threshold, initial density perturbations
of the type

δρ2(x, y, z) = δ2

(
x2 − y2

r2
e

)
ρ, (8)
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where δ2 is the amplitude of the m = 2 perturbation (which we set to be δ2 � 0.01−0.04).
This perturbation has then the effect of superimposing on the axially symmetric initial model a
bar deformation that is larger than the (unavoidable) m = 4-mode perturbation introduced by
the Cartesian grid discretization. The introduction of such perturbation allowed us to estimate
the frequency of the m = 2 mode below the threshold for the onset of the instability and reduce
considerably the computing costs in a region of the parameter space where the instability does
not develop.

We solve the Einstein equations (1) formulated as a first-order (in time) quasi-linear [8]
system of equations, where the independent variables are the three-metric γij and the extrinsic
curvature Kij . In particular, we use the conformal traceless reformulation of the ADM system
of evolution equations, first suggested in [9], in which the evolved variables are the conformal
factor φ, the trace of the extrinsic curvature K, the conformal 3-metric γ̃ij , the conformal
traceless extrinsic curvature Ãij and the conformal connection functions �̃i . The solution of
the hydrodynamics equations is obtained by using the general-relativistic hydrodynamics code
Whisky, in which the hydrodynamics equations are written as finite differences on a Cartesian
grid and solved using high-resolution shock-capturing schemes, as described in [10]. During
the evolution we use the ‘ideal-fluid’ EOS: p = (� − 1)ρε. Full details of the numerical
scheme and the gauge conditions used are reported in paper I.

3. Methodology of the analysis

A number of different quantities are calculated during the evolution to monitor the dynamics
of the instability. Among them is the quadrupole moment of the matter distribution, which we
compute in terms of the conserved density

√
γW

L
ρ rather than of the rest-mass density ρ or

of the T00 component of the stress energy momentum tensor

I jk =
∫

d3x
√

γW
L
ρxjxk. (9)

Of course, the use of
√

γW
L
ρ in place of ρ or of T00 is arbitrary and all three expressions

would have the same Newtonian limit. However, we prefer the form (9) because
√

γW
L
ρ

is a quantity whose conservation is guaranteed by the form chosen for the hydrodynamics
equations. The quantity (9) can be conveniently used to quantify both the growth time of the
instability τ2 and the oscillation frequency of the unstable bar-mode once the instability is
fully developed f2. (Hereafter we will indicate respectively with τi and fi the growth time
and frequency of the m = i unstable mode.)

In practice, we perform a nonlinear least-squares fit of the computed quadrupole I jk(t)

and we generally use the xy component, with the trial functions

I jk(t) = (I jk)0 et/τ2 cos(2πf2t + φ0). (10)

Furthermore, we define the modulus I (t) of the two components of the quadrupole in the xy

plane and the distortion parameter η(t) as

I ≡ 1

2

√
(2I xy)2 + (I xx − I yy)2, η ≡ I

2(I xx + I yy)
, (11)

and the instantaneous orientation of the bar is given by

φbar = tan−1

(
2I xy

I xx − I yy

)
. (12)

Finally, as a useful tool to describe the nonlinear properties of the development and
saturation of the instability, the rest-mass density is decomposed into its Fourier modes Pm(t):

Pm ≡
∫

d3x ρ eimφ. (13)
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The phase φm ≡ arg(Pm) essentially provides the instantaneous orientation of the mth mode
when the corresponding mode has a nonzero power. Note that despite their denomination, the
Fourier modes (13) do not represent proper eigenmodes of oscillation of the star. While, in
fact, the latter are well defined only within a perturbative regime, the former simply represent
a tool to quantify, within the fully nonlinear regime, what are the main components of the
rest-mass distribution. Stated differently, we do not expect quasi-normal modes of oscillations
to be present except in the initial and final stages of the instability, for which a perturbative
description is adequate.

While all quantities (9)–(13) are expressed in terms of the coordinate time t and do not
represent therefore invariant measurements, the lengthscale of variation of the lapse function
at any given time is always larger than twice the stellar radius at that time, ensuring that events
on the same timeslice are also close in proper time. As representative examples, we note that
for the most compact model the values of the lapse at the centre of the star, at its surface and at
the outer boundary are 0.67, 0.84 and 0.95, respectively. Similarly, the corresponding values
for the least-compact model are 0.92, 0.95 and 0.98, respectively.

The simulations have been carried out on a grid with a uniform resolution of
�x/M� = 0.625 and outer boundaries at 48.75M�, where ‘radiative’ boundary conditions
(i.e., Sommerfeld outgoing boundary conditions) are applied to the field variables, while the
fluid variables are simply not evolved. Such outer boundaries are sufficiently far from the
surface of the star to make the use of mesh refinements in Whisky not necessary (see also
section VI E of paper I for a more detailed discussion of the role of the grid size on the evolution
of the instability). Furthermore, for those models used in the extrapolation technique and that
are largely over-critical (see section 4.1), we have imposed a ‘bitant’ symmetry (i.e., z → −z)
and a ‘π -symmetry’ (i.e., a 180◦ rotation around the z-axis) in order to reduce the size of the
computational domain by a factor of 4.

4. Effects of the compactness

4.1. Threshold of the m = 2 instability

The determination of the dependence on β of the frequencies and of the growth times of
the m = 2 bar-mode instability in the region near the threshold is particularly delicate
as the models are only slightly over-critical, with very small growth rates and hence the
simulations are computationally very expensive. For this purpose we here use an extrapolation
technique already described in paper I, where it was shown to be both accurate and robust.
In essence, we exploit the results of the classical Newtonian study of the bar-mode instability
of Maclaurin spheroids of incompressible and self-gravitating Newtonian fluid in equilibrium
[11], extrapolating, via suitable fits, its predictions to a general-relativistic context. We recall,
in fact, that in the classical scenario the eigenfrequency of the m = 2 bar-mode can be
expressed in terms of two real and differentiable functions of β, 
 ≡ 2πf2 and 1

/
τ 2

2 , in a
relation of the type

σ = 
(β) ± i√
τ 2

2 (β)

. (14)

The bar-mode becomes unstable when the function 1
/
τ 2

2 changes sign, with the square root
going from being imaginary to being real. The value of β at which this change of sign happens
represents then the threshold for the onset of the instability βc; clearly, for models above the
threshold, 
/4π and τ2 represent the pattern speed and the growth time of the unstable bar
deformation of the considered star model, respectively.
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Table 5. Least-squares fit of the value of β at the threshold for the development of the bar-mode
instability for the four series of models reported in table 8. The critical value for the onset of
the instability βc is the value of β for 1/τ 2

2 = 0 (τ is measured in ms) and the digits in brackets
represent the error in the fit. The results of the fits are shown in figure 3.

M∗ = 1.0M� β = 0.2598(8) +0.0379(19) (1/τ2)
2

M∗ = 1.5M� β = 0.2558(5) +0.0236(8) (1/τ2)
2

M∗ = 2.0M� β = 0.2528(15) +0.0161(13) (1/τ2)
2

M∗ = 2.5M� β = 0.2494(14) +0.0116(8) (1/τ2)
2

Table 6. Least-squares fit of the value of the frequency fB (in Hz) of the bar-mode (10) at the
threshold for the onset of the bar-mode instability as a function of θ ≡ (β − βc)/βc for the four
series of models at constant baryonic mass. The value of the frequency f2 at the threshold is the
value for θ = 0 and the digits in brackets represent the error in the fit.

M∗ = 1.0M� fB = 384(7) −8(25)10 θ −6(2)1000 θ2

M∗ = 1.5M� fB = 551(8) −4(3)100 θ −6(2)1000 θ2

M∗ = 2.0M� fB = 738(32) −7(11)100 θ −6(8)1000 θ2

M∗ = 2.5M� fB = 991(10) −10(3)100 θ −9(2)1000 θ2

With the rather reasonable assumption that the two functions 
 and 1
/
τ 2

2 are regular also
in full general relativity, we expand them in a Taylor series around the threshold and express
them in terms of five unknown coefficients fc, f

(1)
c , f (2)

c , k, βc, i.e.


(β)

2π
≈ fc + f (1)

c

(β − βc)

βc

+ f (2)
c

(β − βc)
2

β2
c

+ O((β − βc)
3), (15)

1

τ 2
2

≈ 1

k2
(β − βc) + O((β − βc)

2). (16)

Expressions (15) and (16) represent very good approximations to the actual data and
the five parameters can be determined straightforwardly by fitting the pattern speeds and the
growth times obtained in the largely over-critical models. For these models, we recall, the
development of the m = 2 bar-mode deformation is very rapid, the extraction of the instability
parameter is robust and it can be safely simulated even at rather low resolutions (see paper I).

In practice, using the data obtained from the simulations of the four sequences of initial
models with constant baryonic mass, we have computed the values for f2 and τ2 by means of a
nonlinear least-squares fit to the trial form of equation (10). Making use of these results, which
are collected in table 8, we have then computed the unknown coefficients fc, f

(1)
c , f (2)

c , k and
βc through a least-squares fit of the values for f2 and τ2 once expressed as functions of β as
in equations (15) and (16).

The results of these fits are reported in tables 5 and 6 and summarized in figure 2. In
particular, for each of the four sequences this figure shows with solid lines the two fitted curves
for 
(β) and τ2(β), and with dotted lines the corresponding extrapolations for models below
the threshold. In addition, different symbols are used to mark the results of the numerical
simulations, with ‘bare’ error bars denoting the unperturbed unstable models (as reported in
table 8 and which have been used for the fits), triangles denoting the unperturbed models (as
reported in table 8 and not used for the fits because of the large error in determining their
evolution parameters), squares denoting the stable perturbed models (as reported in table 7)
and open circles denoting the models dominated by the m = 3 instability (and again reported
in table 7). It is worth noting that for these last models the frequency of the m = 2 mode is
considerably altered by the growing m = 3 deformation, which rapidly dominates the small
initial m = 2 bar-mode perturbation used for the simulation of these models.
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Figure 2. Critical diagram as constructed with the frequencies and growth times relative to the
unperturbed models of table 8. The solid lines represent the two fitted curves for 
(β) and τ2(β),
while the dotted lines the corresponding extrapolations below the threshold. Triangles refer to the
unperturbed models of table 8 that have not been used for the fit, squares to the perturbed models
of table 7 (squares), and open circles to the models dominated by the m = 3 deformation.

We also note that the error bars in table 8 are computed in different ways for the growth
rates and for the frequencies. In the first case they are computed as the difference between the
minimum and maximum values of d log(I (t))/dt in the time intervals in which the quadrupolar
deformation lies between the 5% and the 35% of its maximum amplitude. In the second
case, instead, the error bars are determined using the minimum and maximum values, in
the same time interval, of the pattern speeds extracted from the collective phase φbar(t)

(cf equation (12)). The frequencies and the error bars for the stable models reported in
table 7 and figure 2, on the other hand, are computed using Lomb’s power spectrum analysis
[12], which is better suited to study a signal spanning over a short time interval and which is
comparable with the main frequency of the Fourier transform. In particular, they refer to the
frequency at which the Fourier transform of the imaginary part of Pm(t) has its maximum,
while the error bars to the interval in frequencies where the Fourier transform is above 1/2 of
its maximum value.

The left panel of figure 3 offers a different view of the data already reported in figure 2
by showing β as a function of 1/τ 2 for the four sequences considered and thus highlighting
the very good approximation in the ansatz (16). Indicated with open circles are also the
extrapolations of the critical value βc and these are then reported in the right panel of
figure 3 as a function of the baryonic mass M∗ of the four sequences. Clearly, they show a
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Table 7. For models below the threshold for the onset of the m = 2 bar-mode instability the
table reports the measured frequencies f2 of the bar deformation as well as the frequencies f3 and
growth times τ3 of the m = 3 deformation. For each model we also indicate the value of β, the
grid resolution �x/M� and the initial bar-mode perturbation δ2. All models have been evolved
without a π -symmetry.

Model β �x/M� δ2 f2 (Hz) f3 (Hz) τ3 (ms)

Sa3 0.254 0.5 0.30 424+59
−62 ∗ ∗

Sa2 0.256 0.5 0.01 409+58
−50 ∗ ∗

Sa1 0.258 0.5 0.01 401+59
−49 ∗ ∗

Sb6 0.240 0.5 0.04 736+46
−46 ∗ ∗

Sb5 0.245 0.5 0.04 694+48
−50 ∗ ∗

Sb4 0.250 0.5 0.04 636+50
−54 ∗ ∗

Sb3 0.252 0.5 0.04 604+56
−56 ∗ ∗

Sb2 0.253 0.5 0.04 588+56
−56 ∗ ∗

Sb1 0.254 0.5 0.04 576+58
−56 ∗ ∗

Ub1 0.255 0.5 0.04 564+60
−58 ∗ ∗

Sb1 0.254 0.5 0.0 606+8
−21 1302−12

+12 3.8

Ub1 0.255 0.5 0.0 586+14
−12 1284−12

+16 10.0

Sc1 0.250 0.625 0.01 782+70
−70 ∗ ∗

Sc2 0.248 0.625 0.01 818+70
−70 ∗ ∗

Sc2 0.248 0.625 0.0 � 1746+12
−14 4.0

Sd6 0.235 0.625 0.01 1400+44
−24 2454+52

−58 2.7

Sd5 0.240 0.625 0.01 1304+62
−58 2312+122

−100 1.4

Sd4 0.245 0.625 0.01 1262+30
−26 2248+66

−76 2.9

Sd3 0.247 0.625 0.01 1098+26
−20 2200+62

−54 2.5

Sd1 0.249 0.625 0.01 1048+32
−30 2136+74

−50 3.5

Sd6 0.235 0.625 0.0 � 2474+18
−20 2.7

Sd5 0.240 0.625 0.0 � 2372+20
−18 2.7

Sd4 0.245 0.625 0.0 � 2296+16
−16 2.2

Sd2 0.248 0.625 0.0 � 2228+22
−20 2.5

Sd1 0.249 0.625 0.0 1446+32
−26 2174+28

−28 2.2

Ud1 0.251 0.625 0.0 1022+32
−56 2158+12

−16 2.9

* A dynamical m = 3 deformation instability cannot be detected.
� The frequency of the m = 2 bar-mode cannot be measured.

linear dependence on M∗, which can be expressed phenomenologically as

βc(M∗) = 0.266(1) − 0.0070(3)

(
M∗
M�

)
, (17)

and allows us to extrapolate the value of the threshold in the limit of a zero baryonic mass.
Interestingly, the resulting number βc (M∗ = 0) = 0.266 is in very good agreement with the
value of βc = 0.266 obtained in Newtonian gravity [13] through a linear stability analysis for
a sequence of equilibrium models with the same polytropic index and degree of differential
rotation as used here. This agreement represents an additional confirmation of the accuracy
and robustness of our extrapolation method in determining the position of the threshold.
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Table 8. For models above the threshold the table reports the measured frequencies f2 and growth
times τ2 of the m = 2 deformation as well as the value of β. All models have been evolved with a
grid resolution �x/M� = 0.625 and no initial perturbation; furthermore, a π -symmetry has been
used for all models with the exception of models Ub1 and Ud1 that are closer to the threshold.

Model β τ2 (ms) f2 (Hz) Model β τ2 (ms) f2 (Hz)

Ua1 0.2671 2.235+0.16
−0.09 377+7

−4 Uc1 0.2596 1.564+0.07
−0.17 717+10

−6

Ua2 0.2690 2.019+0.14
−0.13 373+3

−1 Uc2 0.2631 1.277+0.07
−0.12 694+18

−6

Ua3 0.2711 1.838+0.11
−0.14 368+4

−3 Uc3 0.2670 1.055+0.08
−0.10 679+7

−7

Ua4 0.2730 1.702+0.10
−0.06 364+1

−3 Uc4 0.2716 0.915+0.08
−0.02 650+2

−5

Ua5 0.2750 1.600+0.10
−0.06 359+2

−4 Uc5 0.2761 0.829+0.07
−0.02 621+1

−8

Ua6 0.2771 1.482+0.11
−0.02 352+1

−4 Uc6 0.2790 0.795+0.06
−0.03 593+4

−6

Ua7 0.2790 1.405+0.11
−0.04 345+4

−2 Ud1 0.2510 ≈4.2 1009+48
−96

Ua8 0.2814 1.313+0.10
−0.04 335+2

−2 Ud2 0.2580 1.193+0.25
−0.11 945+24

−14

Ub1 0.2551 ∗ 586+14
−12 Ud3 0.2631 0.938+0.05

−0.02 907+6
−6

Ub2 0.2581 3.215+2.62
−0.61 552+40

−11 Ud4 0.2650 0.846+0.06
−0.03 891+4

−4

Ub3 0.2595 2.758+1.32
−1.17 544+37

−17 Ud5 0.2666 0.800+0.07
−0.05 881+5

−7

Ub4 0.2621 1.920+0.17
−0.25 540+3

−5 Ud6 0.2675 0.813+0.05
−0.06 871+13

−6

Ub5 0.2631 1.803+0.07
−0.15 535+4

−3 Ud7 0.2680 0.774+0.07
−0.03 865+7

−4

Ub6 0.2651 1.591+0.08
−0.04 527+4

−2 Ud8 0.2701 0.735+0.05
−0.05 847+7

−13

Ub7 0.2671 1.441+0.10
−0.09 520+4

−1 Ud9 0.2710 0.724+0.05
−0.02 832+6

−3

Ub8 0.2686 1.335+0.10
−0.03 516+2

−3 Ud10 0.2721 0.716+0.05
−0.02 826+2

−7

Ub9 0.2701 1.290+0.07
−0.05 509+5

−3 Ud11 0.2730 0.697+0.06
−0.02 816+3

−9

Ub10 0.2721 1.214+0.08
−0.05 502+3

−4 Ud12 0.2741 0.690+0.05
−0.03 804+1

−6

Ub11 0.2743 1.126+0.09
−0.02 492+2

−5 Ud13 0.2750 0.679+0.05
−0.02 793+4

−11

Ub12 0.2761 1.087+0.08
−0.03 483+4

−3 Ud14 0.2760 0.660+0.06
−0.01 782+1

−8

Ub13 0.2812 0.959+0.10
−0.01 450+4

−3 Ud15 0.2771 0.654+0.05
−0.02 767+2

−8

� The growth rate of the m = 2 bar-mode cannot be reliably measured for this model.

Using the phenomenological dependence of the threshold βc on the stellar rest mass
given by expression (17), we have also reconstructed the dependence of βc on the stellar
compactness M/Re. In practice, for a large number of values of M∗ between 0 and 2.5M�
we have computed the value of the proper equatorial radius Re and of the gravitational
mass M of the corresponding stellar model in equilibrium that lies on the line defined by
equation (17). The result of this is shown as a solid line in figure 1, with the dashed band
representing the estimated error obtained using the least-squares fitting. Furthermore, a good
polynomial reconstruction of the median of the error bar in figure 1 suggests a quadratic
dependence of the threshold on the compactness, with coefficients given by

βc = 0.266 − 0.18

(
M

Re

)
+ 0.36

(
M

Re

)2

. (18)

Once perturbative calculations are developed in the regime of rapid and differential rotation
considered here, expression (18) can be used as a guideline to the perturbative approach and
the numerical measurements of the threshold can be used to assess the validity and accuracy
of the perturbative approximation.

Overall, these results represent the first quantitative determination of the dependence of
the critical β on the compactness of the star for a selected profile of differential rotation and
EOS. A similar investigation was carried out also in [14] using the post-Newtonian (PN)
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Figure 3. Left panel: indicated with triangles are the data already reported in figure 2 but shown
here as a function of 1/τ 2 for the four constant-rest-mass sequences considered. The open circles
indicate instead the extrapolation to βc . The numerical values of the four fits are reported in table 5.
Right panel: the open circles are the same as in the left panel but shown as a function of the baryonic
mass M∗; the filled circle, on the other hand, represents the limit of zero rest-mass and can be
compared with the threshold value calculated in Newtonian gravity and with a linear stability
analysis in [13].

approximation and rather large initial m = 2 perturbations with δ2 = 0.1. While the results of
that analysis had the limitation of the PN approximation and were affected by the large initial
perturbations, they also provided the first evidence that the threshold is smaller for stellar
models with larger compactness.

4.2. Persistence of the bar

As mentioned in the introduction and for all of the models considered here, any non-
axisymmetric deformation that develops as a result of a dynamical instability is also suppressed
over a time comparable (i.e., of the order of a few) dynamical timescales. In addition, we have
found that the persistence of the bar deformation increases as β − βc tends to zero. Besides
confirming what is already discussed in paper I, this behaviour matches the expectation that
the persistence of the bar is related to the degree of overcriticality, with the duration of the
saturation increasing as the threshold is approached. For a star with a small compactness this
time would tend to the radiation-reaction timescale for a model with β = βc and to zero for
a model with β 
 βc. For a star with large compactness, on the other hand, the persistence
near the threshold can be further reduced by the stronger gravitational fields.

Here, we also intend to gain insight on the role played by the stellar compactness on the
persistence of the bar deformations and, to this scope, we have extended the time over which
the simulations are carried out for some selected models. Figure 4 summarizes the results of
these extended simulations by reporting the evolution of the distortion parameter η for two
models, i.e., Ub4 (dotted line) and Ud2 (solid line), having different masses and compactnesses
(i.e., M = 1.5M�,M = 2.5M� and M/Re � 0.066,M/Re � 0.125, respectively), but with
a similar distance from the threshold (i.e., β − βc � 0.007 − 0.008). The two evolutions have
been suitably shifted in time so as to have the maximum deformation at t = 0.

Both of these models have been evolved using a π -symmetry in order to remove the
effect of the odd-mode coupling on the suppression of the bar deformation and yet they
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Figure 4. Comparison of the evolution of the distortion parameters η for a low-mass, low-
compactness model Ub4 and a high-mass, high-compactness model Ud2. Indicated with a dotted
and a solid line are the simulations for Ub4 and Ud2 using π -symmetry, while indicated with a
dashed line is the evolution for model Ud2 without π -symmetry. All the evolutions have been
suitably shifted in time so as to have the maximum deformation at t = 0.

show a remarkable difference. The low-mass, low-compactness model Ub4 reaches and
maintains a rather large bar deformation over several milliseconds of evolution. The high-mass,
high-compactness model Ud2, on the other hand, reaches comparable deformations but these
are rapidly suppressed over a few milliseconds, despite the use of the π -symmetry. This
behaviour underlines something that was already remarked in paper I, namely that, depending
on the specific stellar properties, the bar deformation can be suppressed also by factors other
than the mode coupling, which is most effective for models near the threshold. In particular, for
low-mass models (such as model U13 in paper I) this effect is simply the excess of rotational
kinetic energy which is efficiently converted into internal energy (see discussion in section
VIB of paper I). For high-mass and high-compactness models (such as model Ud2 above), on
the other hand, the strength of the gravitational field, together with the excess kinetic energy,
are very efficient in suppressing the bar deformation. This was not evident in the stellar models
considered in paper I, which all had M∗ = 1.5M�.

To confirm that the m = 1-mode coupling plays no significant role in the dynamics of
model Ud2, we show with a dashed line in figure 4 the evolution of the bar deformation for
model Ud2 in a simulation in which the π -symmetry was not enforced. As is obvious in the
comparison between the solid and dashed lines, the lack of symmetry does not change the
suppression of the bar-mode deformation and a difference emerges only at t ∼ 5 ms, when the
simulation with π -symmetry tends to revive the bar deformation, while this does not happen
in the simulation without the π -symmetry.

4.3. Unstable deformations with m = 3

While studying the dynamics of models with M∗ � 2M� and values of β near the threshold
for the development of the bar-mode instability, we have also found stellar models that show
the development of a dynamical instability with a dominant m = 3 deformation. Interestingly,
this instability developed without the introduction of any m = 3 initial perturbation as was
instead done in [15]. More precisely, we found four models (Sc2, Sd6, Sd5, Sd4) for which
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Figure 5. Left panel: rest-mass isodensity for model Sd4. Starting from the centre the solid
lines represent respectively: 80%, 70%, 60% and 50% of the maximum density. Dotted lines are
1/2n times the maximum density, with n = 2, . . . , 11. The snapshot was taken at t = 20.8 ms.
Right panel: evolution of the global rest-mass density modes defined in equation (13) for the same
simulation.

the m = 3 mode is the fastest-growing dynamically unstable deformation. In addition, we
also see evidence of a dynamical unstable growth of the m = 3 mode for models Sb1, Ub1,
Sd3, Sd2, Sd1 and Ud1. However, because all the above models lay very close to the threshold
for the onset of the bar-mode instability, nonlinear mode-couplings may be very important in
this region and the cause of the observed growths.

The general behaviour of the mode dynamics is reported in figure 5 for the representative
model Sd4, where in the left panel we show the rest-mass isodensity contours in the equatorial
plane and at t = 20.8 ms, while in the right one the evolution of the global modes as defined in
equation (13) but as measured with respect to the centre of mass of the system (see discussion
in section IV of paper I for the definition of the centre of mass in this context). When looking
at this panel it is evident that the m = 3 unstable deformation is the fastest growing one.
Furthermore, the m = 2 does not show any sign of unstable growth, which is instead shown
by the m = 1 deformation. Such growth starts roughly at the time when the m = 1 and
m = 2 modes have powers comparable with the background m = 4, i.e. at t ∼ 20 ms, and
it continues for the rest of the simulation. The results on the frequencies f3 and the growth
times τ3 of the m = 3 instability are collected in table 7 and have been computed using the
same analysis discussed for the m = 2 deformation. It should be noted that the properties
of the m = 3 instability are much more difficult to estimate accurately as the corresponding
deformations are smaller than those measured for the bar-mode instability.

It is probably worth stressing that this is the first time that similar instabilities are seen
in fully general relativistic simulations of stellar models with a stiff EOS and a moderate
degree of differential rotation. In a recent work carried out in Newtonian physics [6], in fact,
the development of deformations with m = 3 was also found but for stellar models with
lower values of β and with a stronger differential rotation. Furthermore, because the models
were studied by imposing an initial artificial m = 2 perturbation that could alter the global
dynamics, it is indeed difficult to understand if the origin of this unstable deformation is purely
dynamical or triggered by a nonlinear coupling of modes. Nevertheless, it is interesting to
note that in all the simulations reported in [6] as well as in those presented here the m = 1
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deformation becomes the dominant one in the final stages of the evolution. This lends support
to the idea that the suppression of non-axisymmetric deformations over a dynamical timescale
is a generic feature of these instabilities for isolated stars and not necessarily restricted to
stellar models with high values of β.

At the moment and besides the classical m = 2 bar-mode instability, a proper
understanding of the conditions that lead to the development of dynamical instabilities is
still lacking. The first attempts at interpreting these instabilities, and especially the low-β
m = 1 instability, have been made recently by several authors [6, 16]. However, further
work is needed to clarify the role of β, of the differential rotation law, of the EOS and of the
compactness in determining the growth times, the maximum amplitudes and the persistence
of these unstable deformations. Most importantly, work will be needed to finally reach
sufficient conditions for the onset of these instabilities whose development has been revealed
by numerical simulations.

5. Conclusions

We have presented accurate simulations of the bar-mode dynamical instability in full general
relativity. The main motivation behind this work was to address some important open questions
about the nonlinear features of non-axisymmetric dynamical instabilities in rapidly rotating
compact stars. The most important among these questions, because of the impact it has on
the global detectability of these stars as sources of gravitational waves, is the determination
of the timescale over which the non-axisymmetric deformations persist once these are fully
developed.

In order to reach a better understanding of the physics governing dynamical instabilities,
we have analysed the onset and development of the bar-mode instability for a large number
of stellar models spanning a wide range of masses and angular momenta. The initial models
have been calculated as stationary equilibrium solutions for axisymmetric and rapidly rotating
relativistic stars modelled as polytropes with adiabatic index � = 2 and polytropic constant
K = 100. All the stars have been constructed with a differential-rotation profile having Â = 1
and as members of four sequences of constant rest-mass, with M∗ = 1M�, 1.51M�, 2M�
and 2.5M�, respectively. This large set of initial data containing a total of 59 models has
allowed us to confirm and extend the results presented in paper I. More precisely, we have
analysed the effects that the stellar compactness has on the threshold for the onset of the
dynamical bar-mode instability as well as of other dynamical instabilities. Moreover, using
an extrapolation technique developed and tested in paper I, we have determined the threshold
with great accuracy and for a wide range of compactness, finding good agreement with the
Newtonian prediction and improving the previous PN estimates made in [14].

While studying the dynamics of models with M∗ � 2M� and values of β near the
threshold for the development of the bar-mode instability, we have also found stellar models
that show the development of a dynamical instability with a dominant m = 3 deformation,
without any seed perturbation of that type. The appearance of these instabilities, whose
growth time and frequency have been computed using the same methodology developed for
the bar-mode instability, may be rather generic in stars with high mass and deserve additional
attention.

Finally, we remark that for all the simulated models, the deformations generated by the
non-axisymmetric instabilities are suppressed over a dynamical timescale either as a result
of nonlinear mode-couplings or as a result of the conversion of the excess rotational kinetic
energy into internal energy. In all cases we have observed the emergence of a residual m = 1
deformation in the final stages of the instability and before an axisymmetric configuration
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is recovered. These results confirm our previous findings presented in paper I and are in
agreement with those recently reported in [6], thus lending support to the idea that the
suppression of non-axisymmetric deformations over a dynamical timescale is a generic feature
in isolated stars. Further work is clearly needed to confirm or reject this conjecture and to
derive the sufficient conditions for the onset of these ‘odd-m’ instabilities.
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