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Abstract. We present new results on dynamical instabilities in rgpiditating neutron-
stars. In particular, using numerical simulations in fukr@ral Relativity, we analyse the
effects that the stellar compactness has on the thresholiidoonset of the dynamical bar-
mode instability, as well as on the appearance of other dig@rnimstabilities. By using an
extrapolation technique developed and tested in our pue\dtudy([1], we explicitly determine
the threshold for a wide range of compactnesses using fouresees of models of constant
baryonic mass comprising a total of 59 stellar models. Oloutation of the threshold is
in good agreement with the Newtonian prediction and impsdire previous post-Newtonian
estimates. In addition, we find that for stars with suffidigérge mass and compactness,
the m=3 deformation is the fastest growing one. For all of the modelssidered, the non-
axisymmetric instability is suppressed on a dynamical sicae with ann=1 deformation
dominating the final stages of the instability. These resuttgether with those presented
in [T, suggest that am =1 deformation represents a general and late-time featuremf n
axisymmetric dynamical instabilities both in full GeneRalativity and in Newtonian gravity.

PACS numbers: 04.25.Dm, 04.30.Db, 04.40.Dg, 95.30.L3®5f 97.60.Jd

1. Introduction

Non-axisymmetric deformations of rapidly rotating set&gtating bodies are rather generic
phenomena in nature and could appear in a variety of astsigalyscenarios like stellar core
collapse [[2], accretion-induced collapse of white dwaB} pr the merger of two neutron
stars [4]. Over the years a considerable amount of work has Hevoted to the search of
unstable deformations that, starting from a quasi-axisgimimstellar configuration, would
lead to the formation of highly deformed rotating massiveeots (see ref[]1] for a detailed
list of references). One of the main reasons behind thigastas that such deformations
would lead to the intense emission of high-frequency gasigihal wavesi(e., in the kHz
range) which is potentially detectable by ground-basedalets such as LIGO, GEO, Virgo
or the planned resonant detector such as DUAL [5].

Despite such extensive studies, various questions abeutiyhamics of the non-
axisymmetric deformation of rapidly rotating self-gratihg bodies are not yet completely
clarified. Among the most important questions that have laekelnessed only rather recently
it is worth to recall the following onesi) How long do these deformation survive once
they reach their maximum amplitudef) How large is the energy emitted in gravitational
wavesii) Which physical phenomena determine the shortest dampiregstiale and impress
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a signature on the emitted signaikd What is the effect of the stellar compactnédg R,.,
where M and R, are the stellar mass and the proper equatorial radius, atagglg, on the
dynamics of the instability and on the threshold for its dfse

While pointsi)—iii) were first addressed in refl[1] (hereafter paper ), hereameentrate
on providing an answer to questior) supplying new information on the general properties
of the dynamical instability in a very large class of stellaodels that are characterized by
differential rotation and by high compactness and that aeenbers of four sequences of
models with constant baryonic mass.

The main result obtained is that any non-axisymmetric deétion that develops in
our models is damped over a dynamical timescale, througé jmiscid hydrodynamical
nonlinear phenomena. Moreover, for all the models thatldpvdynamical instabilities, the
m=1 deformation eventually becomes the dominant one irres@ect whether the models
are above or below the threshold for the development of thertmale instability (see also
paper 1). This evidence is consistent with the simulatioesggmed in Newtonian gravity
by Ou and Tohline[[B] for stars with a very-low (wheres = T'/|W| is the ratio between
the rotational kinetic enerdy and the gravitational binding energy), thus suggesting that
this may be a general feature of this type of dynamical inlitials. In addition we show
that, in a region of high stellar compactness, other intisi, such as one having an=3
deformation, can develop. Finally, adopting an extrapatetechnique developed and tested
in paper |, we determine the threshaidfor the onset of the bar-mode instability for all of the
sequences considered, thus determining accurately ieshdepce on the stellar compactness.

The paper is organised as follows. In SEEt. 2 we briefly deedtie initial data chosen
and the numerical techniques employed for their evolutignile in Sect[B we review the
tools used in the analysis of the data. Selct. 4 collects multseand there we first discuss the
threshold of the bar-mode instability, its persistence, erentually the onset of higher-mode
dynamical instabilities. Finally, Se¢il 5 contains our dasions and the goals of our future
research. Hereafter we use a space like signdture-, +, +), with Greek indices running
from O to 3, Latin indices from 1 to 3 and the standard coneentor the summation over
repeated indices. Unless explicitly stated, all the qti@stiare expressed in units in which

2. Initial data and numerical evolution method

Our simulations involve the numerical solution in threetedaimensions (3D) of the full set
of Einstein equations coupled to that of a perfect-fluid eratt

Gy = 87T, 1)

where
™ =p <1+6+£> ufu” + pg"” 2
P

and u* is the fluid 4-velocity,p is the fluid pressureg¢ the specific internal energy and
p the rest-mass density, so that= p(1 + ¢) is the energy density in the rest frame of
the fluid. The evolution of the spacetime must be supplendebyethe evolution of the
relativistic hydrodynamics equations: the conservatovsl for the energy-momentum tensor
V,T" = 0 and the baryon numbér,, (pu*) = 0, complemented with an equation of state
(EOS) of typep = p(p, €).
The initial data for our simulations are computed as statipequilibrium solutions for

axisymmetric and rapidly rotating relativistic stars inlggocoordinates[]7]. In generating
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Figure 1. Position on the(M/Re, 3) plane of the considered stellar models. Indicated
respectively with stars and filled circles are the= 2-stable andm = 2-unstable models
belonging to the four sequences of constant rest mass.glemrefer instead to models where
them=3 deformation is the fastest growing one. Indicated with &daie is the threshold

of the bar-mode instability, while the dashed region regmées the region of our estimated
error-bars.

these equilibrium models the metric describing an axisyimmeelativistic star is assumed to
have the form

ds? = —ettdt? + et V12 sin? 0(dg — wdt)? + e®(dr? + r2d6?), (3)
wherey, v, w and¢ are space-dependent metric functions. As in paper |, wenrasshe

matter to be characterized by a non-uniform angular-vetatstribution of the form

2 V2 ain2 Ja—2v
Q, 0= e (Q — w)r*sin” fe

. : 4
A2 |1 —(Q —w)2r2sin? fe—2~ )

wherer, is the coordinate equatorial stellar radius and the coefftcl is a measure of the
degree of differential rotation, which we setto= 1. All the equilibrium models considered
here have been calculated using the relativistic polytr8®@S p = K p") with K = 100 and

I' = 2 and are members of four sequences having a constant restihasgual tol.0 Mg,
1.51 Mg, 2 Mg and2.5 Mg, respectively. The main properties of the four sequences ar
reported in tableEld}4, which report tharyonic massM,, the gravitational mas3/, the
angular momentund, the rotational kinetic energy, the gravitational binding energy/

and the instability parametgr= 7'/|W|, and whose definitions are

M, = /d?’”’ﬁWm M= /d?’“’ (=275 + Tpt) a7, ®)
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Table 1. Main properties of the stellar models of the sequence with = 1M,. Starting
from the left: the name of the simulation, the compactnes&R., the instability parametes,
the central rest-mass densjty, the ratio between the polar and the equatorial coordirzatie r
rp/re, the proper equatorial radiu?., the gravitational mass/, the total angular momentum
J divided by the square of the gravitational mass, the ratatiperiods at the axi&,, and at
the equatoP.. The initial letter in the model's name indicates whethés @n unstable (U) or
a stable (S) configuration.

Mod M/R. Ié; pe (1074 rp/re R. M J/M? P, (ms) Pe (ms)

Ua8 0.0387 0.2814 0.4369 0.21044 2537 0.982 2142 2.283 4549
Ua7 0.0391 0.2790 0.5662 0.23177 25.04 0.980 2.098 2.207 9147
Ua6 0.0394 0.2771 0.6429 0.24288 24.83 0.979 2.070 2.164 024.7
Ua5 0.0398 0.2750 0.7087 0.25173 24.63 0.979 2.044 2.127 264.6
Ua4 0.0401 0.2730 0.7672 0.25918 24.45 0.980 2.021 2.094 5945
Ua3 0.0403 0.2711 0.8168 0.26550 24.29 0.978 2.001 2.068 064.5
Ua2 0.0406 0.2690 0.8668 0.27149 2411 0.979 1.979 2.040 494.4
Ual 0.0408 0.2671 0.9107 0.27684 2395 0.978  1.960 2.017 024.4
Sal 0.0421 0.2580 1.0907 0.29807 2322 0.977 1.878 1.922 094.2
Sa2  0.0424 0.2560 1.1270 0.30236 23.05 0.977 1.861 1.904 724.1
Sa3  0.0427 0.2540 1.1619 0.30655 22.89 0.977 1.844 1.886 354.1

Eine = /dgx VAW, pe, J = /dgx Toan/v, (6)

1
TE§/d3IQT£aﬁ, W =T+ Eip + M, — M, (7

where « is the lapse function,/y is the square root of the three-dimensional metric
determinant andl, = au? is the fluid Lorentz factor. We stress that that the defingif)—

(@ of quantities such ad, 7', W and 3 are meaningful only in the case of stationary
axisymmetric configurations and should therefore be tceatigh care once the rotational
symmetry is lost.

Traditionally, numerical simulations of the dynamical {maode instability have been
sometimes sped up by introducing very large-2 deformations in the initial condition. As
discussed in paper I, the introduction of any perturbatespécially when this is not a small
one) may lead to spurious effects and erroneous interpregatBeing aware of this, we used,
only in some selected simulations below the thresholdairdensity perturbations of the type

2 2
e ®)
TE
whered, is the amplitude of then=2 perturbation (which we set to b ~ 0.01 — 0.04).
This perturbation has then the effect of superimposing erattially symmetric initial model
a bar deformation that is larger than the (unavoidakie)}-mode perturbation introduced by
the Cartesian grid discretization. The introduction oftsperturbation allowed us to estimate
the frequency of thew=2 mode below the threshold for the onset of the instability matblice
considerably the computing costs in a region of the paramsptece where the instability does
not develop.

We solve the Einstein equatios (1) formulated as a firseiofid time) quasi-lineai [8]
system of equations, where the independent variablesatbrie-metrie;; and the extrinsic
curvatureK;;. In particular, we use the conformal traceless reformaitatsf the ADM
system of evolution equations, first suggested in i€f. [@]which the evolved variables
are the conformal factos, the trace of the extrinsic curvatui€ the conformal 3-metric
7:;, the conformal traceless extrinsic curvatutg and theconformal connection functions
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Table 2. Same quantities as in talfle 1 for the sequence of modelsMiith= 1.51 M.

Mod M/R. Jé] pe (1074 rp/re Re M J/M? P, (ms) Pe (ms)

Ub13 0.0601 0.2812 0.5990 0.20012 2431 1.462  1.753 1.723 9103.

Ubl2 0.0622 0.2761 0.9938 0.24151 23,52 1.462 1.679 1.599 6553.

Ubll 0.0626  0.2743 1.0920 0.25012 23.31 1.460 1.660 1.572 5983.

Ub10 0.0633 0.2721 1.1960 0.25858 23.08 1.461 1.639 1.542 5363.

Ub9  0.0638 0.2701 1.2844 0.26554 22.88 1.460 1.621 1517 863.4
Ub8  0.0642 0.2686 1.3465 0.27028 22.73 1.460 1.608 1500 5134
Ub7  0.0646 0.2671 1.4055 0.27474 2259 1.459  1.596 1485 183.4
Ub6  0.0651 0.2651 1.4812 0.28033 2240 1.459 1.579 1.465 773.3
Ub5  0.0656 0.2631 1.5534 0.28560 22.22 1.459 1.564 1446 3933
Ub4  0.0659 0.2621 1.5879 0.28813 22.13 1.458  1.557 1.437 213.3
Ub3  0.0664 0.2595 1.6730 0.29433 2191 1456  1.539 1.416 783.2
Ub2  0.0669 0.2581 1.7233 0.29779 21.78 1.457  1.527 1403 5132
Ubl  0.0674 0.2551 1.8120 0.30450 21.54 1.452  1.509 1.384 103.2
Sb1 0.0682  0.2541 1.8600 0.30691 21.42 1.461  1.497 1.368 793.1
Sh2 0.0682  0.2530 1.8845 0.30915 21.35 1.456  1.492 1364 713.1
Sb3 0.0684  0.2520 1.9155 0.31134 21.27 1.456  1.485 1.357 563.1
Sh4 0.0687  0.2503 1.9620 0.31500 21.14 1.452 1.476 1.348 373.1
Sb5 0.0703  0.2451 2.1280 0.32600 20.70 1.456  1.439 1.308 573.0
Shé 0.0713  0.2403 2.2610 0.33600 20.32 1.449 1.411 1.282 023.0

Table 3. Same quantities as in taffle 1 for the sequence of modelsMijth= 2M .

Mod  M/R. 3 pe (1074 1p/re Re M J/M? P, (ms) Pe (ms)

Uc6 0.0841 0.2790 0.9669 0.21142 22.82 1.920  1.495 1.317 613.1
Uc5 0.0858 0.2761 1.2663 0.23377 22.32 1916 1.460 1.260 423.0
Uc4 0.0880 0.2716 1.6079 0.25516 21.74 1913  1.420 1.200 162.9
Uc3  0.0900 0.2670 1.8982 0.27117 21.23 1911 1.384 1.152 152.8
Uc2 0.0917 0.2631 2.1264 0.28298 20.82 1.908 1.356 1116 4127
Ucl 0.0931 0.2595 2.3176 0.29240 20.48 1.907 1.333 1.088 822.6
Scl  0.0970 0.2500 2.8043 0.31526 19.61 1.902 1.275 1.021 4325
Sc2  0.0980 0.2480 2.9091 0.31987 19.42 1.902 1.263 1.007 1425

I'. The solution of the hydrodynamics equations is obtaineddiyg the general-relativistic
hydrodynamics cod&hi sky, in which the hydrodynamics equations are written as finite
differences on a Cartesian grid and solved using high-uésol shock-capturing schemes, as
described in ref[[10]. During the evolution we use the “idiésid” EOS: p = (I' — 1) pe. Full
details of the numerical scheme and the gauge conditiortsarsereported in paper I.

3. Methodology of the analysis

A number of different quantities are calculated during thel@ion to monitor the dynamics
of the instability. Among them is the quadrupole moment efitiatter distribution, which we
compute in terms of the conserved densjtylV, p rather than of the rest-mass densitgr
of the Ty component of the stress energy momentum tensor

k= /dgx VW, p ok 9)

Of course, the use qf/y WV, p in place ofp or of Ty is arbitrary and all the three expressions
would have the same Newtonian limit. However, we prefer tivenf(3) becausg/7 W, p
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Table 4. Same quantities as in talfle 1 for the sequence of modelsMiith= 2.5 M.

Mod M/R. Jé] pe (1074 rp/re Re M J/M? P, (ms) Pe (ms)

udi5 0.1113 0.2771 1.3117 0.21259 21.29 2.369 1.320 1.025 6302.

Udi4 0.1124 0.2760 1.4608 0.22121 21.07 2.368 1.307 1.005 5882.

Udi3 0.1132  0.2750 1.5826 0.22785 20.90 2.366  1.298 0.990 5552.

udi2 0.1140 0.2740 1.6961 0.23372 20.74 2.364 1.289 0.976 5262.

Udil 0.1149 0.2730 1.8103 0.23925 20.58 2.364 1.280 0.962 4962.

udio 0.1156 0.2721 1.9104 0.24399 20.44 2362 1.272 0.950 4712.

ud9 0.1164 0.2710 2.0153 0.24868 20.29 2.362 1.264 0.938 4524
udg8  0.1171 0.2701 2.1102 0.25286 20.16 2.360 1.256 0.927 2324
ud7  0.1186 0.2680 2.3022 0.26083 19.89 2.359 1.241 0.906 7723
Udé  0.1189 0.2675 2.3534 0.26291 19.82 2.358  1.238 0.901 662.3
ud5 0.1196 0.2666 2.4336 0.26609 19.71 2357 1.231 0.892 4823
Ud4  0.1207 0.2650 2.5698 0.27128 19.52 2.356 1.221 0.878 1823
Ud3  0.1220 0.2631 2.7402 0.27760 19.29 2.353  1.208 0.861 822.2
Ud2  0.1254 0.2580 3.1583 0.29210 18.74 2.349 1.178 0.821 982.1
udl 0.1302 0.2510 3.7335 0.31027 18.00 2.343 1.138 0.772 942.0
Sdi 0.1314 0.2491 3.8899 0.31503 17.81 2.341  1.127 0.760 682.0
Sd2 0.1321  0.2480 3.9735 0.31745 17.71 2.340 1.122 0.753 542.0
Sd3 0.1329  0.2470 4.0607 0.31991 17.61 2.340 1.116 0.746 402.0
Sd4 0.1341  0.2450 4.2188 0.32450 17.42 2.337  1.106 0.735 162.0
Sd5 0.1376  0.2400 4.6380 0.33596 16.95 2.333 1.081 0.706 551.9
Sd6 0.1412  0.2350 5.0710 0.34714 16.49 2.329 1.056 0.678 971.8

is a quantity whose conservation is guaranteed by the formsearh for the hydrodynamics
equations. The quantitfZl(9) can be conveniently used totifydooth the growth time of the
instability » and the oscillation frequency of the unstable bar-mode dineenstability is
fully developedf,. (Hereafter we will indicate respectively with and f; the growth time
and frequency of ther = ¢ unstable mode.)
In practice, we perform a nonlinear least-square fit of themated quadrupolé’* (¢)
and we generally use thg; component, with the trial functions
IR(t) = (I'%)g ¥/ ™2 cos(2m fot + o) - (10)
Furthermore, we define the modullig) of the two components of the quadrupole in the
plane and the distortion parametgt) as
1 I
I=—+/(2I%Y)2 Iz= — Jyy)2 =——. 11
S VeI ( 0= S (12)
and the instantaneous orientation of the bar is given by

¢bar = tan_l (ﬂ> . (12)

Jrz _ Jyy

Finally, as a useful tool to describe the nonlinear propsrtif the development and
saturation of the instability, the rest-mass density iodguosed into its Fourier modés, (t):

P, = /d%peiwﬁ . (13)

The phase,, = arg(P,,) essentially provides the instantaneous orientation ofittta mode
when the corresponding mode has a nonzero power. Note thgiteléheir denomination, the
Fourier moded(13) do not represent proper eigenmodes ifatisn of the star. While, in
fact, the latter are well defined only within a perturbatiegime, the former simply represent a
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Table 5. Least-square fit of the value @fat the threshold for the development of the bar-mode
instability for the four series of models reported in tdhleT8e critical value for the onset of
the instability 3. is the value ofg for 1/7—22 = 0 (7 is measured in ms) and the digits in
brackets represent the error in the fit. The results of theféshown in figurgl3.

M, =10Mg B=0.2598(8)  +0.0379(19) (1/72)?
M, =15Mz [ =0.2558(5)  +0.0236(8) (1/72)?
M, =20My [=02528(15) +0.0161(13) (1/72)?
M, =25Mg [ =0.2494(14) +0.0116(8)  (1/72)?

Table 6. Least-square fit of the value of the frequenfy (in Hz) of the bar-mode (Equation
(I0)) at the threshold for the onset of the bar-mode instylais a function ob = (3—3.)/3c
for the four series of models at constant baryonic mass. @he&\wf the frequencys at the
threshold is the value fdt = 0 and the digits in brackets represent the error in the fit.

M. =10My fg=384(7) —8(25)100  —6(2)1000 62
M. =15Mg fg=>551(8)  —4(3)10060  —6(2) 1000 6>
M, =20Mg fp=7138(32) —7(11)1000 —6(8)1000 6>
M. =25My fg=991(10) —10(3)1000 —9(2) 1000 §2

tool to quantify, within the fully nonlinear regime, whateathe main components of the rest-
mass distribution. Stated differently, we do not expectsiimarmal modes of oscillations
to be present but in the initial and final stages of the initgbfor which a perturbative
description is adequate.

While all quantities[(R)-£(113) are expressed in terms of thardinate timet and do not
represent therefore invariant measurements, the lergjéhstvariation of the lapse function
at any given time is always larger than twice the stellaruadt that time, ensuring that events
on the same timeslice are also close in proper time. As reptasve examples, we note that
for the most compact model the values of the lapse at theecefitine star, at its surface and at
the outer boundary af@67,0.84 and0.95, respectively. Similarly, the corresponding values
for the least compact model abe92, 0.95 and0.98, respectively.

The simulations have been carried out on a grid with a unif@solution ofAz/Mg =
0.625 and outer boundaries at8.75 M, where “radiative” boundary conditions.€.,
Sommerfeld outgoing boundary conditions) are applied édfigdd variables, while the fluid
variables are simply not evolved. Such outer boundariesw#Hfeiently far from the surface
of the star to make the use of mesh refinement#finsky not necessary (see also Section
VIE of paper | for a more detailed discussion of the role ofdhiel size on the evolution of
the instability). Furthermore, for those models used ingkieapolation technique and that
are largely over-critical (see Seci. 4.1), we have impostiitant” symmetry (.e.,z — —2z)
and a ‘r-symmetry” {.e., a180° rotation around the-axis) in order to reduce the size of the
computational domain of a factor of 4.

4. Effects of the compactness

4.1. Threshold of thex=2 instability

The determination of the dependence @rof the frequencies and of the growth times
of the m = 2 bar-mode instability in the region near the threshold igipalarly delicate
as the models are only slightly over-critical, with very d$ihgrowth rates and hence the
simulations are computationally very expensive. For thippse we here use an extrapolation
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Figure 2. Critical diagram as constructed with the frequencies apd/tr times relative to the
unperturbed models of tallé 8. The solid lines representvibefitted curves for2(3) and
72(3), while the dotted lines the corresponding extrapolatioglsv the threshold. Triangles
refer to the unperturbed models of table 8 that have not beed for the fit, squares to the
perturbed models of tabld 7 (squares), and open circlesetthth models dominated by the
m=3 deformation.

technique already described in paper |, where it was showbetdoth accurate and
robust. In essence, we exploit the results of the classiealtdhian study of the bar-mode
instability of Maclaurin spheroids of incompressible aradf-gravitating Newtonian fluid
in equilibrium [11], extrapolating, via suitable fits, itsqulictions to a general-relativistic
context. We recall, in fact, that in the classical scendr@digenfrequency of the=2 bar-
mode can be expressed in terms of two real and differentfablgions of5: Q = 27 f, and
1/73, in a relation of the type
o=Q(f) £ —— . 14
(B) =0 (14)
The bar-mode becomes unstable when the fundtjoij changes sign, with the square root
going from being imaginary to being real. The valuéaft which this change of sign happens
represents then the threshold for the onset of the ingtaBili clearly, for models above the
threshold Q2/47 and, represent the pattern speed and the growth time of the Uadiab
deformation of the considered star model, respectively.
With the rather reasonable assumption that the two funstiband 1/77 are regular
also in full General Relativity, we expand them in a Taylorie around the threshold and
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Table 7. For models below the threshold for the onset of the-2 bar-mode instability the

table reports the measured frequendie®f the bar deformation as well as the frequendigs

and growth timess of them=3 deformation. For each model we also indicate the valuyg, of
the grid resolutionAz /M, and the initial bar-mode perturbatiga. All models have been
evolved without ar-symmetry.

Model g Az/Mg 5o f2 (Hz) fs(Hz) 73 (ms)

Sa3 0.254 05 030 424739 * *
Sa2 0.256 05 0.0l 409728 * *
Sal 0.258 05 001 401735 * *
She  0.240 05 004 736138 * *
Sbs  0.245 05 004 694720 * *
Sb4 0.250 05 004 636129 * *
Sb3  0.252 05  0.04 604728 * *
Sh2 0.253 05 004 588FC0 * *
Sh1 0.254 0.5  0.04 576725 * *
Ubl  0.255 05 004 564750 * *
Sbl 0254 05 00 60675,  1302,12 38
Ubl 0255 05 00 586714 1284712 100
Scl 0.250  0.625 0.01 782770 * *
Sc2 0.248 0625 0.01 818770 * *
Sc2 0.248 0625 0.0 * 1746113 4.0
Sdé 0.235 0625 0.01 1400735 2454752 2.7
Sds 0.240 0625 0.01 1304752 23127122 1.4
Sd4 0.245 0625 0.01 1262750  224875% 2.9
Sd3 0.247 0625 0.01 1098725 2200752 2.5
Sd1 0.249 0625 0.01 104873  213677¢ 3.5
Sd6 0235 0625 0.0 * 2474718 2.7
Sds 0.240 0625 0.0 * 2372739 2.7
Sd4 0.245  0.625 0.0 * 2296715 2.2
Sd2 0.248 0625 0.0 * 2228725 2.5
Sd1 0.249 0625 0.0 1446732 2174733 2.2
Udl 0251 0625 0.0 1022735  2158T3 2.9

* A dynamicalm=3 deformation instability cannot be detected.
* The frequency of then=2 bar-mode cannot be measured.

expressed them in terms of five unknown coeﬁicid@t#c(l), §2), k, B, 1.e.

— _ 2
% G 5&) L ﬂfa OB—-B)). 1)
o~ (8- B + OB~ 8.)). 16)

2

Expressions[{15) and{116) represent very good approximstio the actual data and
the five parameters can be determined straightforwardlyttiygithe pattern speeds and the
growth times obtained in the largely over-critical modefr these models, we recall, the
development of then=2 bar-mode deformation is very rapid, the extraction of tteahility
parameter is robust and it can be safely simulated evenharriiw resolutions (see paper I).

In practice, using the data obtained from the simulatiorthefour sequences of initial
models with constant baryonic mass, we have computed thev&br f, and, by means of
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Table 8. For models above the threshold the table reports the mehfeguenciesf, and
growth timesry of the m=2 deformation as well as the value gf All models have been
evolved with a grid resolutiol\z /M = 0.625 and no initial perturbation; furthermore a
m-symmetry has been used for all models with the exceptionazfets Ub1 and Ud1 that are
closer to the threshold.

Model 8 T2 (MS) f2 (Hz) Model 8 T2 (MS) f2 (Hz)
Ual 0.2671 22357000 3777] Ucl 0.2596 1.5647757r 717157
Ua2  0.2690 2.019707; 3733 Uc2 02631 1.2777097  6947;®
Ua3 02711 1.838T07; 36873 Uc3  0.2670 1.0557005 67977
Uad 02730 17027070 364771 Ucd 02716 0.9157005 65012
Ua5  0.2750 1.6007070 35973 Ucs 02761 0.8297007 6217
Ua6 02771 1482700, 3521 Ucé  0.2790 0.7957005 5937
Ua7  0.2790 1.405707; 34573 Udl 02510 ~4.2 10097 g%
Ua8 02814 1.3137000 33573 Ud2 02580 1.193702% 945727
Ubl  0.2551 * 5867 15 Ud3 02631 0938705  907T¢
Ub2 02581 3.21577%7  55211) Uda  0.2650 0.8467005 89173
Ub3  0.2595 2.758T1%2 544757 Uds  0.2666 0.8007007 88173
Ub4  0.2621 1.9207037 54013 Ude 02675 0.813700%  87T11;?
UbS  0.2631 1.803700T 53573 Ud7  0.2680 0.774T00F 8657
Ube  0.2651 1.591F700% 52773 Udg  0.2701 0.7357002 847t
Ub7 02671 1.4417030 52077 Ud9 02710 0.7247005 83210
Ub8  0.2686 1.3357070 51673 Udlo  0.2721 0.7167005 82672
Ub9 02701 1.2907007 50973 Udll  0.2730 0.6977005 81675
Ublo  0.2721 1.214700% 50213 Udl2  0.2741 0.6907005 8047
Ubll 02743 1.126%00) 49272 Udi3 02750 0.67910t5 7937
Ubl2  0.2761 1.0871005 48373 Udl4  0.2760 0.6607005 78271
Ubl3  0.2812 0.9597070 45073 Udls 02771 0.6547005 76713

* The growth rate of then=2 bar-mode cannot be reliably measured for this model.

a nonlinear least-square fit to the trial form of €gJ(10). Mgkuse of these results, which are

collected in tabl€18, we have then computed the unknown cosffisf.., W2 andg.
through a least-square fit of the values farand once expressed as functions®fs in
eqgs. [I5) and (16).

The results of these fits are reported in Takbles 5[@nd 6 and atised in Fig[R. In
particular, for each of the four sequences this figure shaittsswlid lines the two fitted curves
for 2(8) and(3), and with dotted lines the corresponding extrapolationsfodels below
the threshold. In addition, different symbols are used tokntlae results of the numerical
simulations, with “bare” error bars denoting the unperéationstable models (as reported in
Table[8 and which have been used for the fits), triangles demtite unperturbed models (as
reported in Tabl&l8 and not used for the fits because of the kemgr in determining their
evolution parameters), squares denoting the stable pedunodels (as reported in Table 7)
and open circles denoting the models dominated byithe3 instability (and again reported
in Table[T). It is worth noting that for these last models trezmjtiency of then=2 mode is
considerably altered by the growimg=3 deformation, which rapidly dominates the small
initial m=2 bar-mode perturbation used for the simulation of these fsode

We also note that the error bars in Table 8 are computed ierdift ways for the
growth rates and for the frequencies. In the first case theycamputed as the difference
between the minimum and maximum valuesidbg(I(t))/dt in the time intervals in which
the quadrupolar deformation lies between the 5% and the 35% maximum amplitude.
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Figure 3. Left panel: Indicated with triangles are the data already reported @ [Bibut
shown here as a function a@f/72 for the four constant-rest-mass sequences considered. The
open circles indicate instead the extrapolatior{o The numerical values of the four fits are
reported in tablEJ5Right panel:The open circles are the same as in the left panel but shown as
a function of the baryonic mas¥.; the filled circle, on the other hand, represents the limit of
zero rest-mass and can be compared with the threshold valitidated in Newtonian gravity

and with a linear stability analysis in ref_J13].

In the second case, instead, the error bars are determimegthe minimum and maximum
values in the time interval over which the pattern speedsatected from the collective
phasepy., (t) [cf. eq. [I2)]. The frequencies and the error bars for the stabliefs reported
in Table[T and Figl]2, on the other hand, are computed usintidh’s power spectrum
analysis[[12], which is better suited to study a signal spanover a short time interval and
which is comparable with the main frequency of the Fouriansform. In particular, they
refer to the frequency at which the Fourier transform of thaginary part of?,,(¢) has its
maximum, while the error bars to the interval in frequeneibgre the Fourier transform is
abovel /2 of its maximum value.

The left panel of Figl13 offers a different view of the dataeally reported in Fid.]2
by showingg as a function ofl /72 for the four sequences considered and thus highlighting
the very good approximation in thensatz(18). Indicated with open circles are also the
extrapolations of the critical valué. and these are then reported in the right panel of[Hig. 3
as a function of the baryonic mads, of the four sequences. Clearly, they show a linear
dependence o, which can be expressed phenomenologically as

Be(M,) = 0.266(1) — 0.0070(3) <M* ) , a7)
Mg

and allows us to extrapolate the value of the threshold fdrérlimit of a zero baryonic mass.
Interestingly, the resulting numbgr (M. = 0) = 0.266 is in very good agreement with the
value of 3. = 0.266 obtained in Newtonian gravity [13] but through a linear dtgbanalysis
for a sequence of equilibrium models with the same polytroiex and degree of differential
rotation used here. This agreement represents an additiem@rmation of the accuracy and
robustness of our extrapolation method in determining thgétipn of the threshold.

Using the phenomenological dependence of the thresholoin the stellar rest mass
given by expressior {17), we have also reconstructed thendigmce of3. on the stellar
compactness//R.. In practice, for a large number of valuesidf. betweerd and2.5M, we
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Figure 4. Comparison of the evolution of the distortion parametgrfer a low-mass, low-
compactness model Ub4 and a high-mass, high-compactnessl tdd2. Indicated with a
dotted and solid line are the simulations for Ub4 and Ud2gisin-symmetry, while indicated
with a dashed lines is the evolution for model Ud2 withausymmetry. All the evolutions
have been suitably shifted in time so as to have the maximdanrdation att = 0.

have computed the value of the proper equatorial rafiuand of the gravitational masg

of the corresponding stellar model in equilibrium and theadieq.[(1]7) to estimate the value
of 3.. The result of this is shown as a solid line in Hij. 1, with tleslded band representing
the estimated error obtained using the least-square fitfiugthermore, a good polynomial

reconstruction of the median of the error bar in Eig. 1 sutpg@sjuadratic dependence of the
threshold on the compactness, with coefficients given by

M M\?
B. = 0.266 — 0.18 (R—> +0.36 (R—> . (18)

Once perturbative calculations will be developed in theimegof rapid and differential

rotation considered here, expressiénl (18) can be used asdaliga to the perturbative
approach and the numerical measurements of the threshetttosassess the validity and
accuracy of the perturbative approximation.

Overall, these results represent the first quantitativerdehation of the dependence of
the critical 3 on the compactness of the star for a selected profile of diifiéal rotation and
EOS. A similar investigation was carried out also in ref][tding the post-Newtonian (PN)
approximation and rather large initial=2 perturbations withi,=0.1. While the results of
that analysis had the limitation of the PN approximation eede affected by the large initial
perturbations, they also provided the first evidence thattiineshold is smaller for stellar
models with larger compactness.
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4.2. Persistence of the bar

As mentioned in the Introduction and for all of the models sidared here, any non-
axisymmetric deformation that develops as a result of a olycal instability is also
suppressed over a time comparahle.(of the order of a few) dynamical timescales. In
addition, we have found that the persistence of the bar deftion increases as— . tends

to zero. Besides confirming what already discussed in paghisl behaviour matches the
expectation that the persistence of the bar is related tdeéhece of overcriticality, with the
duration of the saturation increasing as the threshold psagzhed. For a star with a small
compactness this time would tend to the radiation-readtitio@scale for a model with = 3,

and to zero for a model witfy > .. For a star with large compactness, on the other hand,
the persistence near the threshold can be further reducmlsyronger gravitational fields.

Here, we also intend to gain insight on the role played by takéas compactness on the
persistence of the bar deformations and, to this scope, weedxdended the time over which
the simulations are carried out for some selected modeltpur&id summarizes the results
of these extended simulations by reporting the evolutiahefdistortion parameterfor two
modelsj.e., Ub4 (dotted line) and Ud2 (solid line) having different m@s and compactnesses
(e, M = 1.5Mgy, M = 2.5 Mg andM /R, ~ 0.066, M /R, ~ 0.125, respectively), but
with a similar distance from the thresholde(, 5 — 5. ~ 0.007 — 0.008). The two evolutions
have been suitably shifted in time so as to have the maximdorrdation att = 0.

Both of these models have been evolved usinggymmetry in order to remove the
effect of the odd-mode coupling on the suppression of thelbarmation and yet they show
a remarkable difference. The low-mass, low-compactnesteidb4 reaches and maintains
a rather large bar deformation over several millisecondsvofution. The high-mass, high-
compactness model Ud2, on the other hand, reaches compadefbimations but these are
rapidly suppressed over a few milliseconds, despite theitber-symmetry. This behaviour
underlines something that was already remarked in papemhety that, depending on the
specific stellar properties, the bar deformation can beragspd also by factors other than
the mode coupling which is most effective for models nearttineshold. In particular, for
low-mass models (such as model U13 in paper 1) this effeciriplg the excess of rotational
kinetic which is efficiently converted into internal onedsiiscussion in Sect. VIB of paper ).
For high-mass and high-compactness models (such as modalliddie), on the other hand,
the strength of the gravitational field, together with theass kinetic energy, are very efficient
in suppressing the bar-deformation. This was not evidetitarstellar models considered in
paper |, which all had//,, = 1.5 M.

To confirm that then =1-mode coupling plays no significant role in the dynamics of
model Ud2, we show with a dashed line in Figlile 4 the evolutibie bar deformation for
model Ud2 in a simulation in which the-symmetry was not enforced. As it is obvious in
the comparison between the solid and dashed lines, the tagkronetry does not change the
suppression of the bar-mode deformation and a differeneegas only at ~ 5 ms, when the
simulation withm-symmetry tends to revive the bar deformation, while thissinot happen
in the simulation without the-symmetry.

4.3. Unstable deformations with=3

While studying the dynamics of models witli, > 2M, and values of; near the threshold
for the development of the bar-mode instability, we have &sind stellar models that show
the development of a dynamical instability with a dominant3 deformation. Interestingly,
this instability developed without the introducing of any=3 initial perturbation as was
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Figure5. Left panel:Rest-mass isodensity model Sd4. Starting from the cengesdhd lines
represent respectively: 80%, 70%, 60% and 50% of the maxinhemsity. Dotted lines are

1/2™ times the maximum density, with = 2, ..., 11. The snapshot was taken at t=20.8 ms.
Rigth panel:Evolution of the global rest-mass density modes defined ir{i&) for the same
simulation.

instead done in ref[[15]. More precisely, we found four med&c2, Sd6, Sd5, Sd4) for
which them=3 mode is the fastest growing dynamically unstable deformnatin addition,
we also see evidence of a dynamical unstable growth ofthd mode for models Sb1, Ub1,
Sd3, Sd2, Sd1 and Ud1. However, because all the above mageisrly close to the threshold
for the onset of the bar-mode instability, nonlinear modegtings may be very important in
this region and the cause of the observed growths.

The general behavior of the mode dynamics is reported inGrfgr the representative
model Sd4, where in the left panel we show the rest-masshisigieontours in the equatorial
plane and at = 20.8 ms, while in the right one the evolution of the global modedefined
in eq. [I3) but as measured with respect to the centre of niidise system (see discussion in
Sect. IV of paper | for the definition of the centre of mass is tontext). When looking at this
panel it is evident that thew=3 unstable deformation is the fastest growing one. Furthezmo
them=2 does not show any sign of an unstable growth, which is instead/n by then=1
deformation. Such a growth starts roughly at the time whemtk-1 andm=2 modes have
powers comparable with the backgroumd=4, i.e. att ~ 20 ms, and it continues for the
rest of the simulation. The results on the frequengieand the growth times; of them=3
instability are collected in Tablg 7 and have been compusathithe same analysis discussed
for the m=2 deformation. It should be noted that the properties ofithe3 instability are
much more difficult to estimate accurately as the corresppgdeformations are smaller than
those measured for the bar-mode instability.

Itis probably worth stressing that this is the first time thiatilar instabilities are seen in
fully general relativistic simulations of stellar modelghwva stiff EOS and a moderate degree
of differential rotation. In a recent work carried out in Newian physics([6], in fact, the
development of deformations witth =3 was also found but for stellar models with lower
values of/3 and with a stronger differential rotation. Furthermore;dogse the models were
studied by imposing an initial artificiah=2 perturbation that could alter the global dynamics,
itis indeed difficult to understand if the origin of this uabkte deformation is purely dynamical
or triggered by a nonlinear coupling of modes. Nevertheliéss interesting to note that in
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all the simulations reported in][6] as well as in those présgere then=1 deformation
becomes the dominant one in the final stages of the evolutidns lends support to the
idea that the suppression of non-axisymmetric deformatamer a dynamical timescale is a
generic feature of these instabilities for isolated stau @ot necessarily restricted to stellar
models with high values af.

At the moment and besides the classicak2 bar-mode instability, a proper
understanding of the conditions that lead to the developroEdynamical instabilities is
still lacking. The first attempts of interpreting these aislities, and especially the loyi-
m=1 instability, have been made recently by several autho®dp, However, further work
is needed to clarify the role of, of the differential rotation law, of the EOS and of the
compactness in determining the growth times, the maximumplitudes and the persistence
of these unstable deformations. Most importantly, workl w#¢ needed to finally reach
sufficient conditions for the onset of these instabilitidsose development has been revealed
by numerical simulations.

5. Conclusions

We have presented accurate simulations of the bar-moderdgakinstability in full General
Relativity. The main motivation behind this work was to agll some important open
guestions about the nonlinear features of non-axisymmeymiamical instabilities in rapidly
rotating compact stars. The most important among thesetiiqnesbecause of the impact
it has on the global detectability of these stars as sourtegavitational waves, is the
determination of the timescale over which the non-axisytnimdeformations persist once
these are fully developed.

In order to reach a better understanding of the physics govgdynamical instabilities,
we have analysed the onset and development of the bar-ms@ility for a large number
of stellar models spanning a wide range of masses and angolaenta. The initial models
have been calculated as stationary equilibrium solutionaxXisymmetric and rapidly rotating
neutron stars modeled as relativistic polytropes with lzalia indexI" = 2 and polytropic
constantX’ = 100. All the stars have been constructed with a differentigé&tion profile
havingA = 1 and as members of four sequences of constant rest-mass)wita 1M,
1.51 Mg, 2M and2.5M, respectively. This large set of initial data containingtk of 59
models has allowed us to confirm and extend the results pgeabsanpaper |. More precisely,
we have analysed the effects that the stellar compactnessthe threshold for the onset of
the dynamical bar-mode instability as well as of other dyitahinstabilities. Moreover, using
an extrapolation technique developed and tested in paperhave determined the threshold
with great accuracy and for a wide range of compactnessebndira good agreement with
the Newtonian prediction and improving the previous PNneates made in ref._[14].

While studying the dynamics of models withl, > 2M and values of3 near the
threshold for the development of the bar-mode instability,have also found stellar models
that show the development of a dynamical instability withcemihantm =3 deformation,
and without any seed perturbation of that type. The appearahthese instabilities, whose
growth-time and frequency have been computed using the saatteodology developed for
the bar-mode instability, may be rather generic in starh high mass and deserve additional
attention.

Finally, we remark that for all the simulated models, theodefations generated by the
non-axisymmetric instabilities are suppressed over a mycel time-scale either as a result
of nonlinear mode-couplings or as a result of the conversfdhe excess rotational kinetic
energy into internal one. In all cases we have observed tlegance of a residuah=1
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deformation in the final stages of the instability and befaneaxisymmetric configuration
is recovered. These results confirm our previous findingsemted in paper | and are in
agreement with those recently reported [in [6], thus lendingport to the idea that the
suppression of non-axisymmetric deformations over a dycaitimescale is a generic feature
in isolated stars. Further work is clearly needed to confirmegect this conjecture and to
derive the sufficient conditions for the onset of these “odtinstabilities.
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