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Numerical implementation of isolated horizon boundary conditions

José Luis Jaramillo™®

Laboratoire de I’Univers et de ses Théories, UMR 8102 du C.N.R.S., Observatoire de Paris, F-92195 Meudon Cedex, France

and Instituto de Astrofisica de Andalucia, CSIC, Apartado Postal 3004, Granada 18080, Spain

Marcus Ansorg’

Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Am Miihlenberg 1, D-14476 Golm, Germany

Frangois Limousin*

Laboratoire de I’Univers et de ses Théories, UMR 8102 du C.N.R.S., Observatoire de Paris, F-92195 Meudon Cedex, France

and Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853, USA
(Received 2 October 2006; published 12 January 2007)

We study the numerical implementation of a set of boundary conditions derived from the isolated
horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More
precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere,
in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish
the consistency of including in the set of boundary conditions a constant surface gravity prescription,
interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently
by Dain et al. for guaranteeing the well-posedness of the conformal transverse traceless equations with
quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a
consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated

with the ingoing null normal at the horizon.
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I. INTRODUCTION

The general study of spacetimes containing a black hole
whose horizon is in quasiequilibrium is of direct interest in
astrophysics and numerical relativity. A particularly im-
portant application is the determination of inner boundary
conditions for the construction of astrophysically realistic
excised initial data for binary black holes in quasicircular
orbits [1-6]. Beyond the construction of initial data, the
analysis of these boundary conditions also provides helpful
insight into the evolution problem. More precisely, a gen-
eralization of these conditions constitutes an integral part
of the modelling of black hole horizons as world tubes of
marginally trapped surfaces, according to the character-
izations in the quasilocal horizon formalisms of trapping
and dynamical horizons (see reviews [7,8]). In this sense,
the quasiequilibrium conditions discussed here offer a test
ground for the general dynamical case, in a better con-
trolled scenario. Lessons acquired in the quasiequilibrium
case can then be applied to the evolution of an excised
black hole in a constrained scheme like the one proposed in
Ref. [9]. In addition, quasiequilibrium conditions them-
selves are of direct interest in slow evolution schemes, like
the minimal no-radiation approximation proposed in
Ref. [10].

The isolated horizon formalism developed by Ashtekar
et al. (see Ref. [7] for a review) provides a particularly
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well-suited framework for studying a black hole in equi-
librium inside a generically dynamical spacetime.' It is an
example of a trapping horizon in which the horizon world
tube is a null hypersurface. This null-like character enc-
odes the quasiequilibrium characterization.

First derivations of quasiequilibrium horizon boundary
conditions were presented in Refs. [2,4] (see also Ref. [3]).
The detailed analysis of isolated horizons in a 3 + 1 de-
scription of spacetime permits the systematization and
extension of these results. Following this line of research,
an ensemble of boundary conditions for the 3 + 1 fields
has been proposed in Refs. [11-13]. In this paper we
address the problem of testing numerically these sets of
boundary conditions. Translating Einstein equations into a
specific system of partial differential equations, for which
the isolated horizon prescriptions become actual analytical
boundary conditions, requires the choice of a particular
resolution scheme for the geometrical field equations. For
concreteness (and also motivated by the fully constrained
scheme in Ref. [9], in which constraints are solved at each
time step), we focus here on the construction of initial data
in a conformal thin sandwich (CTS) approach [14,15].
Making use of an excision technique, i.e. removing a
sphere S of coordinate radius ry from the initial spatial
slice 3, and requiring that S be a spacelike slice of an

"Throughout the paper we abuse the language and use the
expression black hole spacetime to refer to a spacetime contain-
ing an isolated horizon inside, without any reference to the
notion of event horizon.
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isolated horizon, an ensemble of inner boundary conditions
for the CTS elliptic system is determined. Note that
throughout the paper we use dimensionless physical and
geometrical quantities which result from the corresponding
dimensional quantities by rescaling with the appropriate
power of ry.

Regarding index notation, Greek letters denote
Lorentzian indices and are mainly used in Sec. II, where
null and spacelike geometries appear in the same context.
Latin indices refer specifically to objects living on space-
like slices and are used from Sec. III on.

II. BOUNDARY CONDITIONS: GEOMETRICAL
FORM

A. Geometrical boundary conditions

In order to introduce a characterization of the term
quasiequilibrium, we need a notion of time evolution. A
natural evolution vector on a null world tube JH , sliced by
a given family of trapped surfaces {S,}, is provided by the
null-vector € that Lie-drags S, onto S, 5,. We consider the
horizon slicing {S,} as induced by a 3 + 1 spacetime
foliation of spacelike surfaces 3,,. First, we fix the notation.
We denote by n“ the timelike unit normal to 3,, by N the
associated lapse, and by s the unit spacelike normal to S,
lying on 3,. The horizon evolution vector is then expressed
as €* = N - (n® + s%). The ingoing null-vector k% (in the
plane defined by n* and s and normalized as k“€, = —1)
is written as k% = 55 (n® — s%). We denote by (y,z, K*F)
the 3-metric on 3, and the extrinsic curvature (with sign
convention K,z = —1L,y,5 = —v&V,ng). The in-
duced metric on the marginally trapped surface S, is then
given by qo.p = Yap — SaSp- Quasiequilibrium boundary
conditions follow from prescribing certain 3 + 1 fields to
be time independent on the horizon. In addition, other
relevant boundary conditions (not necessarily related to
being in quasiequilibrium) follow from: (i) analytical re-
quirements on the well-posedness of the elliptic system,
(i) numerical control of the horizon slicing taking into
account the geometry of the horizon, and (iii) choice of a
coordinate system adapted to the horizon (ultimately mo-
tivated by numerical considerations). We briefly review
this ensemble of conditions (for their systematic deriva-
tions and justifications, see Refs. [11-13]).

B. Quasiequilibrium conditions

Prescribing the time independence of a particular com-
bination of 3 + 1 fields can represent either an actual
restriction on the geometry of FH as a spacetime hyper-
surface, or it can refer to the manner in which FH is
described in the 3 + 1 slicing. Both cases are relevant in
a numerical relativity context.

(1) The minimal notion of quasiequilibrium is provided

by the nonexpanding horizon condition, namely, the
time independence of the induced metric on S:
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qh q,’éﬁgq uwv = 0. Expressed in terms of the expan-
sion 6(¢) and shear o) associated with the outgoing
null normal €2, i.e.

0(€) = ql-“/vﬂfw (1)

(0-(6))0(,8 = qMaqV3VM€V - %H(K)Qaﬁx (2)

this amounts to ([4,11,16]; see also Ref. [2] for a
heuristic discussion on the vanishing of the shear)

Oy = 0= () ap- 3)

These three conditions [o () is a symmetric traceless
tensor on S2] constitute a true restriction of the
geometry of JH, essentially related to its null-
character via the Raychaudhuri equation.
Physically, they imply that the area of the horizon
remains constant in time.
Another proposed quasiequilibrium condition [11]
consists in prescribing the time- independence of the
vertical (i.e. in the €% direction) component of the
angular variation of the null normal €¢. Explicitly
this translates into L,Q, =0, where Q,:=
—q4(k,V ,€"). Recasting Q, in terms of 3 + 1
fields, this condition means that the combination
Q,=2D,InN — K,,s"q", remains constant in
time (where 2D is the connection associated with
dap)- Its underlying justification uses the weakly
isolated horizon notion (see Ref. [11]). However,
we can heuristically motivate it in two manners:
(i) Given S, with an axial symmetry generated by
¢“ and with volume element %€ = ,/gdx A
dx’, an angular momentum J;; = — % X
[ s, Q, o+ Ze can be associated with the ho-
rizon [17]. The surface density of this momen-
tum, {(),, satisfies a Navier-Stokes-like
evolution equation for a viscous fluid (see
[13,18] for a discussion of each term):

L9, +0Q, =8mq¢",T,, 4" +2D,k
— ZDMa'“a +% ’D,0,
4)

where « is the nonaffinity coefficient of the
null geodesic generated by €%: V€% = k€.
Nonexpanding conditions in Eq. (3) imply the
vanishing of the viscous terms in Eq. (4) (as
well as the force surface density term; see
[13]), which reduces then to the Euler equa-
tion, £,Q, = 2D,«. A natural quasiequili-
brium condition in this fluid analogy is given
by £,Q, = 0, which translates into: >D ,x =
0. This expresses the constancy of « on S.
Writing then « = «, = const, its 3 + 1 de-
composition provides an evolution equation
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for the lapse:

L¢InN = k, — s*D,N + NK,,,s"s”. (5)

Under the gauge choice L,N = 0, this equa-
tion becomes the boundary condition pro-
posed in Ref. [11]:

Ko = s*D,N — NK,, s"s". (6)

This condition does not restrict the geometry
(and therefore the physical features) of the
horizon, but rather chooses a convenient 3 +
1 description.

(ii) From the relation above, L,Q, = 2Dk,
one can motivate the time independence of
), from the Hamiltonian analysis of isolated
horizons (see [7,19]). In this context, the
nonaffinity coefficient « is interpreted as a
surface gravity of the horizon. The constancy
of k turns out to be a very natural equilibrium
condition as the quasilocal zeroth law of
black hole mechanics. In addition, such a
Hamiltonian analysis provides a preferred
time evolution vector on the horizon.
Associated with this vector there is a canoni-
cal constant value for the surface gravity,
namely k, = Kkger(a, J), where a and J are
the area and angular momentum of S,, and
Kgerr(@, J) is the corresponding surface grav-
ity of a Kerr black hole.

C. Other geometrical boundary conditions

Together with quasiequilibrium motivations, some geo-
metrical inner boundary conditions follow from genuine
numerical motivations. As a first instance of such boundary
conditions, in some numerical schemes it is important to
keep the location of the horizon fixed at a given position.
Geometrically this means that the 3 + 1 evolution vector
t* = Nn®* + B* (where B¢ is the shift vector) must be
tangent to the horizon hypersurface J{ . Decomposing the
shift in its normal and tangential parts to S, i.e. B* =
bs* — V& (with V¥s, = 0), it follows % = € — V¢ +
(b — N)s®. Therefore ¢ is tangent to JH if and only if

b—N=0. @)

A second example of a numerically motivated boundary
condition follows from the need of a prescription for the
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lapse that incorporates information about the geometrical
content of the horizon, but still leaves some rescaling
freedom to control the size of N. In other words, a geo-
metrical prescription for the slicing {S,} of {, rather than
for N itself. In Ref. [20] it is shown that specifying
2D#Q),, i.e. the divergence of the 1-form €, introduced
above, fixes the slicing of J{ in an intrinsic manner (see
also Ref. [13] for a 3 + 1 discussion). From the 3 + 1
expression of ), it follows that

2AInN =2D?(g4K,,,s") + 2D*Q,, (8)

that fixes InN up to a constant. As a consequence, the lapse
is specified modulo a multiplicative constant that can be
chosen to keep the slicing under numerical control.

III. CONFORMAL THIN SANDWICH
DECOMPOSITION

A. CTS equations
Fixing a representative2 ¥ij in the conformal class of y;;,
we perform the following decomposition of the 3-metric
and the extrinsic curvature

vii = V74, K = WA +3K77),  (9)

where

- .. 1 - .. ... .,
AU =CIEAY+ 37, K=vUKy  (10)

with ¥ 1= L£,%Y, and
(LB)Y = (D'B/ + DI B" — 3D, B 7Y), (11

where D, is the Levi-Civita connection associated with ¥; i
Inserting this decomposition in the Hamiltonian and mo-
mentum constraints, and prescribing on 2, the time deriva-
tive of the trace of the extrinsic curvature (K := £,K),
results in the CTS equations. This is an elliptic system for
(W, B',N), once the initial free data (¥;; K, YU, K) are
prescribed on the initial 3. If a sphere S is excised in 3,
as is the case here, the boundary conditions for (¥, 8, N)
on S are also a part of the free data. For concreteness, in
this work we focus on free data® with %/ = 0 = K, and
consider different choices for (¥;;, K). Vacaum CTS equa-
tions, after a conformal rescaling of the lapse N = W“N,
have the form

>We use Latin indices from now on to emphasize that equa-
tions are defined on a spacelike slice 2.

3This choice is used in the literature [1,2,4-6] as a quasie-
quilibrium prescription in the bulk. Gauge horizon condition (7)
then has a geometrical meaning, since it links bulk and horizon
quasiequilibrium notions by making the evolution vector r*
tangent to the horizon.

024019-3
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- R 1 S IR |
N + S5—2apn7—2 B ij 245 —
AW =W+ WA ALR) (LAY — S KW =0,

T I y DR 4.
Mg+ 3 D'Dy ! + Ript = N™HLBY*DN — (a = )W~ (LB)Y* DY = ;W NDK,

- o fa- a—4 o +8
AN +2(a + )D* WD, InN + N[;’R + ”‘Tw;@ + ala + )D¥InWD, ln‘I’} - “372\1/4—261N*1(L3),.j(L/3)l-/

= \If4faBkD~kK_

Different choices of the rescaling exponent a have been
considered in the literature: a = 6 for defining the confor-
mal lapse in Refs. [14,15], a = —1 is used in the numerical
implementations of Refs. [4—6], and ¢ = —2 in Ref. [9].
The problem we address in this work is the numerical study
of the elliptic system (12), when completed with the inner
boundary conditions in Sec. II.

B. Inner boundary conditions

Inserting the conformal decompositions4 (9) in the geo-
metrical boundary conditions (3), one finds

45D,V + D5’V = — \I;;a
from the vanishing expansion [2,11,21-23], and
2DV + 2DiVi — (2D, VK)gii]

+ (NP2 = b)(HT - 1G7H)] = 0, (14)

2
(LB),;3'5 +§\II3K, (13)

from the vanishing of the shear [4,11], where B/ = b’ —
Vi, H;j = ¢"D,3; is the (conformal) extrinsic curvature of
S as a hypersurface in 3 (with trace H = ¢ H,,), and we
have used ¥/ = 0. If one enforces boundary condition (7),
the second bracket is zero, and the vanishing of the first line
of Eq. (14) characterizes V' as a conformal Killing vector
of (S, G; j) [4,11]. This provides a Dirichlet condition for V'’
once the conformal isometry has been chosen.

In addition to the geometrical or numerical motivations
for the boundary conditions, we must also consider at this
point the analytical well-posedness of the elliptic problem.
A procedure to establish the uniqueness of the solution of
an elliptic equation (even though not straightforwardly
generalizable to an elliptic system) consists in making
use of a maximum principle [22,23]. This involves the
control of the convexity of the functions we are solving
for (in our case depending on the choice of the exponent a),
and, in particular, on the signs of their radial derivatives at
the boundaries. From condition (13), control of §il§i‘1’ on
the horizon demands the control of the sign and size of
(LP);;5's/, something problematic if only the Dirichlet
condition (7) is imposed. An alternative condition pro-
posed in [12], in the context of a conformal transverse

“We also introduce the rescaled induced metric gijonS: G;; =

\P4‘1ij = :}71J - S:is:j’ with gi = ’\sti.

(12)

[

traceless (CTT) decomposition, consists in prescribing’
W - K,is's/ to satisfy

— H< W0 K;s's/ =0. (15)
Using the notation f; = W° - K, s's/, this is enforced as

2§ka5 - EI:I = 3N\p76f1 -2 Dkvk - 2VkD~§§k — NK.
(16)

If condition (7) is not imposed, the vanishing of the shear
must be fulfilled by choosing, in addition to V' as a
conformal Killing symmetry, free data such that the trace-
less part of H; ; vanishes (umbilical condition). More gen-
erally one could solve condition (14) as an equation for V'
[13]. Extending the well-posedness analysis from the CTT
to the CTS case is an important issue. Difficulties are
twofold. On the one hand, as pointed out in [24] (see
also [25]), signs in Egs. (12) for the (E,B)ij(f,ﬂ)"/ terms
in the W and N equations are problematic for applying a
maximum principle argument. No obvious choice of a
cures the problem. On the other hand, the inclusion of
new nonlinear coupled boundary conditions for N makes
the analytical problem even harder. However, a strong
motivation for boundary condition (15) follows from its
close relation with the characterization of S as a future
trapped surface, i.e. with 6(;) = 0, via the identity

K;js's) — K = % + NOgy =NOu = 0, 17)
where k¢ := %(n"‘ — s%). More importantly, condition (15)
is not specifically tied to quasiequilibrium; in fact, 6y = 0
is part of the very definition of dynamical horizons, in order
to guarantee the horizon area increase law [7]. Moreover,
such a condition on the sign of 6y, permits the exclusion of
certain pathologies in the evolution of the horizon, e.g. the
appearance of self-intersections [26] of the surface S,,
something to be avoided during the nonmerger phase of
the black hole evolution. The present quasiequilibrium
context offers a controlled test bed for studying this con-
dition. Numerical techniques seem to be an appropriate
tool for a first analysis of this problem.

SNotation here differs from that in Ref. [12]. Objects with tilde
in Ref. [12] represent physical quantities, whereas here they refer
to conformal counterparts according to (9).
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IV. NUMERICAL RESULTS

We make use of two independent codes for solving
Egs. (12), both using pseudospectral methods: the first
one employs the elliptic solvers described in Refs. [27—
29] and implemented in the C + + library LORENE [30].
The second code has been specifically designed for the
purpose of this paper. It uses a single domain technique for
solving elliptic boundary value problems in the exterior of
an excised spherical shell.

In order to determine the elliptic system, we complete
Egs. (12) with a specific combination of five of the bound-
ary conditions reviewed in the previous section. Different
possibilities arise, but all of them must incorporate
Egs. (13) and (14). For concreteness, in this paper we
will restrict ourselves to axially symmetric excised spheres
(with azimuthal symmetry ¢), and impose as a Dirichlet
boundary condition for the tangential part of the shift:
Vi=Q, - ¢, with Q)  a constant [vanishing of the shear
requires then appropriate additional boundary conditions
or suitable free initial data in order to cancel the second
line in Eq. (14)]. Equations (13) and (14) fix three of the
five boundary conditions. The remaining two will be
chosen among Eqgs. (6)—(8) and (16). At this stage of the
analysis it is methodologically useful to interpret each
condition as associated with a specific equation of the
system, even if this makes no strict sense due to the
(nonlinear) coupled character of the boundary con-
ditions. Table I summarizes this strategy, followed in
Refs. [2,4,11,12]. The numerical implementations show
that, keeping the conditions fixed for ¥ and Vi the differ-
ent combinations of conditions for b and N actually lead to
the existence of solutions, at least for appropriate ranges of
the free parameters (and independently of ¥;; and K). The
solutions are generically unique or finite in number, and
only very particular (nongeneric) choices of the functions
f1 and f, lead to the appearance of an infinite number of
solutions.

A. Combination (b = N, k = const)

The main goal of this section is to assess the existence
and uniqueness properties of those solutions to the CTS
elliptic system which implement the constant surface grav-
ity prescription (6), together with the adaptation (7) of the
coordinate system to the horizon. Note that this set of
boundary conditions realizes the vanishing of the shear
for any choice of y;;. As a secondary objective, and fol-

TABLE I. Methodological assignment of boundary conditions
to constrained fields. We keep fixed conditions for ‘If and V' and
study different combinations of the conditions for b and N.

v Vi
9({):0 Vizﬂo'd)i
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lowing the proposal in Ref. [11], we also study the well-
posedness of employing the preferred notion of horizon
time evolution that emerges from the isolated horizon
Hamiltonian analysis, in order to fix the foliation by im-
posing the canonical choice k, = kgex(a, J). In this case,
condition (6) becomes

s'D;N — NK;;s's) = kyen(a, J), (18)

where ke(a, J) is a functional of (W, B/, N). We start by
considering the spherically symmetric case, (), = 0. First
we note that the elliptic system implementing condition
(18) admits an infinite number of solutions, since maximal
slicings of Schwarzschild provide the 2-parameter
Estabrook-Wahlquist family of solutions [31], as pointed
out in Ref. [4]. Fixing the coordinate radius of the excised
sphere only fixes one of these parameters, leading to a
degenerate problem. The very nature of this degeneracy
suggests the way out, since setting the surface gravity to a
given constant k, fixes the representative of the Estabrook-
Wahlquist family. As a code test, we have confirmed
numerically that the system (b = N, k = k,) determines
a unique solution, leading to a well-posed problem. In
addition, the a posteriori evaluation of the quantity
Kier(@, J) on the constructed solution, results in
Kgerr(@, J) = k,. This is in agreement with the degeneracy
of the system [b = N, k, = kger(a, J)], meaning that the
operators on the left- and right-hand sides of Eq. (18)
become identical on the space of solutions of this elliptic
system. We conclude that, in the spherically symmetric
case, a well-posed problem is actually defined by imposing
that the coordinate system be adapted to the horizon (b =
N) together with prescribing a given constant value for the
surface gravity. In this system, the Hamiltonian canonical
value for the surface gravity k = kge,(a, J) cannot be
imposed as a boundary condition, but it is actually recov-
ered in the solution. Regarding the range of possible values
of k,, this parameter is bounded by below, k, = 1/8. In
particular, this lower bound is associated with the vanish-
ing of the lapse function on the horizon. No maximum
value exists for «,. However, the quadratic growth of the
lapse when «k, increases, makes N reach very large values
very rapidly. For this reason the convergence of our codes
is limited to a maximum value of «,.

More generally, we have also found that the system (b =
N, k = k,) is well-posed in the rotating case, ), # 0. On
the other hand, the situation regarding the canonical value
of the surface gravity changes with respect to the spheri-
cally symmetric case: the a posteriori evaluation of
Kgerr(a, J) does not provide identically k,. This means
that, in the case where there exists a solution to the system
[b =N, k= kger(a, J)], the problem is not infinitely
degenerate. In particular such a solution only exists if,
when screening the solutions obtained by prescribing k,
there is a value «, for which kg..(a, J) = k, holds. Our
numerical implementations seem to rule out this possibil-
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FIG. 1.

Relative difference between g, (a, J) and k,, as a
function of «,, for solutions to (b = N, k = k) for different
values of (), in the rotating case.

ity, as illustrated by Fig. 1. This figure (implemented in
conformal flatness, for concreteness) shows the relative
difference between the prescribed value of «,, and the
evaluation of kg, (a, J) in the constructed solution. As in
the spherically symmetric case, a minimum value for «, is
found, whereas the growth of the lapse limits the upper
values we can numerically implement. In this range, and
for (), = 0.06, a nonvanishing minimum difference be-
tween k, and kge.(a, J) is actually found. A similar be-
havior is found for bigger values of ()., even though the
numerical limitations prevent us from determining the
minimum.

Therefore, in the rotating case ), # 0, we conclude
that: (i) given a fixed constant k,, the system (b = N, k =
K,) determines a unique solution of the CTS elliptic sys-
tem; and (ii) the Hamiltonian canonical choice [b = N,
K = Kgerr(a, J)] seems to lead to an ill-posed problem, but
because of the nonexistence of solutions rather than be-
cause of the presence of infinitely many, as in the spheri-
cally symmetric case.

B. Extending the well-posedness analysis from CTT to
CTS: W° - K;;s's/ versus 0 prescription

One of the main goals of this work is the study of
condition (15) and (16) in the CTS system. In Ref. [12] it
was shown that this condition, together with (13) and (14),
defined a well-posed problem in the CTT construction of
initial data. A natural question is to study how this result
generalizes to the elliptic system enlarged with an addi-
tional equation for the lapse. In a strict sense, this question
is not properly formulated, since its answer will depend on
the fifth boundary condition “for the lapse.” The aim here
is rather to assess if a qualitative conclusion (independent
of the details of the fifth boundary condition), can be
formulated about the possible range of values of W° -

PHYSICAL REVIEW D 75, 024019 (2007)

K;;s's/, with a focus on the negative ones. Our intention
is not to perform a merely formal (numerical) extension of
the CTT analytical result: we are ultimately motivated by
probing some technical issues that will arise in the dynami-
cal regime of the horizon. Indeed, given the relation with
0 via Eq. (17), and the need to control the sign of 6 ;) in a
dynamical horizon, it is fundamental to know the range of
values we can actually prescribe on S,.

(a) Nonrotating case: £, = 0. Let us first consider the
spherically symmetric case. In addition to the
boundary conditions in the first two columns of
Table I, and in order to probe the possible values
of WO - K;;s's/, let us prescribe K;;s's/ = A <0,
with A a negative constant on S. We then complete
the elliptic system with different boundary condi-
tions ““for the lapse,” and for each of them we screen
the (negative) values of A for which we can construct
a solution. Finally for each found solution, i.e. for
each value of A, we plot the dimensionless quantity
(VS - K,;s's/)/H against (0(,;))/1:1. In Fig. 2 we
present the resulting curve where, for completeness,
an extension to positive values of A has been in-
cluded. The curve proves to be independent of the
“lapse”” boundary condition and, even though nu-
merically we can only reach finite values of A, in the
spherically symmetric case an analytical expression
can in fact be obtained (see the appendix). For this
reason, a compactification with the function arctan
has been implemented for plotting Fig. 2.

The existence in Fig. 2 of a minimum §,,;, for W° -
K;;s's’/ and of an asymptotic value

Basym = AE@W\PG “Kys'sl = =2H <0

SIE
—

isi/H

0.5

0.0
-0.5 j
)

-1.4 -1.2 -1. -0.8 -0.6 -0.4 -0.2 0.0

arctan <\I/6 K s

o
S
&
S

~

arctan (K,-,- sis-f/l?>

FIG. g Numerica~l analysis of congition (15). Values of
04/H = Ki;s's’/H and W° - K;;s7s//H in the spherically sym-
metric case, after compactification by means of the arctan
function.
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show that: (i) the possible negative values of WO -
K;js's’ are bounded by below: 8y, = W6 - K;js's/;
and (ii) there is a range 8,5, = W - K;;s's/ = 0 for
which the prescription of the value of W - K;s's/
determines a unique solution of the elliptic system,
exactly as was concluded analytically in the CTT
case. Let us also note that uniqueness is lost when
the value W°- K;s's/ is prescribed between the
values i, < WO+ K;s's/ < §yqym, for which two
solutions exist. This is just another example of the
nonuniqueness issue associated with solutions of the
CTS equations, already pointed out in Ref. [24].
This is in contrast to the prescription of a negative
nonconformally rescaled K;s's/ = 6 in the
spherically symmetric case, for each negative value
of 6 ;) (not bounded by below) there exists a unique
solution. This suggests 6 ;) as the function to be
prescribed on S, since no knowledge additional to
the sign of 6 is needed for consistency (see
below).

The situation is reversed for positive values of A,
where only small values for 6 ;) can be prescribed,
leading always to a degenerate solution. An appro-
priate parameter is then W - K;;s's/. However, these
solutions do not describe a future marginally trapped
surface and their interest in the present context is
only formal.

(b) Rotating case: ), # 0. The independence of the
curve WO - K;;s's/ vs 6 on the “lapse boundary
condition” disappears in the rotating case. This is
illustrated in Figs. 3-5, where different boundary

N = b boundary condition

min(\We- K s's//H)

N
o
T

-3.5 L

Kys'si/H

FIG. 3. Values of WS- K;;s's//H and 0(,;)/1:1, for boundary
conditions K;;s's’ = A, b=N and Q,=0,0.10,0.11,0.12,
...,0.20. Curves depart from the spherically symmetric case
(dotted curve corresponds to ), = 0) as the rotating parameter
increases. Solutions exist for every prescribed 6 and are
unique.
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K;s'si =A,N=0.2

oF T T T T T e

isi/H)

min(‘{’(’ . K,/ N

K sisi/H

FIG. 4. Values of W®- K;s's//H and 6 /H, for boundary
conditions  K;;s's’ = A, N =02 and €,=0.00,0.01,
0.02,...,0.15. If the rotating parameter is smaller than Q, =
0.126 20, the curves reach the coordinate origin, otherwise they
diverge to —oo as 0(12)/151 — 0.

Kys'sl =\ k,=0.3

-2.6 T T T T T T T T T

265 | e

isi/H)

min(¥¢-K; s

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

K,:]' SiSj/f{

FIG. 5. Values of W®- K;;s's//H and 6 /H, for boundary
conditions Kj;s's’ = A, k, = 0.3 and €, = 0.00,0.02, 0.04,
...,0.18,0.20. Curves with , # 0 do not pass through the
origin: conclusions in Ref. [12] do not extend to the rotating
case. On the other hand, ), # 0 curves become indistinguish-
able of the spherically symmetric curve (dotted line) for suffi-
ciently negative values of K;s's/.

conditions for N have been implemented® (due to
the angular dependence, we plot now the minimum
of WO - K;;s's)).

The most dramatic qualitative change in the rotating
case is the existence of a certain value of (), such
that, for bigger values of this rotation parameter, the
curve does not pass through the origin (in the case of

°In order to implement quasiequilibrium, and according to
Eq. (14), we restrain here to a flat ¥;; (this guarantees the
umbilical condition AV — 1'H = 0).
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Figs. 3 and 5 this is true for any (), # 0). Arbitrarily
negative values of WO - K;s's/ are found for small
values of 6. Therefore in this range of (),, and in
contrast to the spherically symmetric case, the nega-
tive values of WO - K;s's/ are only bounded from
above. This shows that conclusions in Ref. [12] for
the CTT case do not extend to the CTS one for
arbitrary values of V! = Q- ¢'. Given the variety
of behaviors in Figs. 3-5, it is difficult to extract
generic conclusions, i.e. independent of the bound-
ary conditions on N, about the possible values of 6,y
and WO - K;;s's/. Our numerical simulations do not
provide a complete understanding, but rather some
restricted insight, of the boundary condition proper-
ties in the case of a rotating black hole.

Having stated this clearly, we highlight Fig. 3 cor-
responding to the interpretation of boundary condi-
tion (7) as the lapse boundary condition, N = b. In
this case, we can actually formulate a concrete state-
ment about the parameter to be prescribed: for all
values of (), there exists a (small) negative value
K;js's/ = Aq, = 0 such that the prescription of 6,
to A < Agq_ determines a unique solution. It is very
difficult to determine numerically if Aq_ /H is ac-
tually zero or a very small value depending on ().
At this value K;;s's/ = Ag_ the conformal factor
seems to have a pole and the quantity W° - K;ss/
diverges to negative values. As a consequence,
curves in Fig. 3 for (), # 0 do not reach the origin,
as pointed out above, changing the qualitative be-
havior discussed in the spherically symmetric case.
Still there exists a critical value (= 0.15) such
that, in the range Q, < ., all curves present a
local minimum &, and an asymptotic value 8,4
at K;;s's/ — —oo. However, uniqueness (if exis-
tence at all) is lost when prescribing W° - K ;s's/ >
Oasym> because of the negative divergence of Po .
K;;s's/, either there are two or no solutions. The
ultimate reason for focusing on this “fifth”” bound-
ary condition, is that it presents some geometrical/
physical advantages with respect to the other ones:
(1) it implements the NEH condition for any choice
of ¥;; without the need of relying on the umbilical
condition (see footnote 6); and (ii) by enforcing the
evolution vector % to be tangent to JH, which is in
quasiequilibrium, a coordinate system is chosen on
the horizon in which no time-dependence is artifi-
cially introduced as a gauge effect (see also foot-
note 3 for actual physical consequences in the
binary case).

We conclude that W - K, ;s's/ is not an appropriate
function to be prescribed in a CTS approach. The
present numerical analysis suggests that adaptation
of the coordinate system to the horizon (boundary

PHYSICAL REVIEW D 75, 024019 (2007)

condition b = N) and the prescription of 6 to a

sufficiently negative value determines a unique so-
lution. This is relevant information for the dynami-
cal’ case, in particular in a constrained evolution
scheme in which the elliptic system (12) is solved at
each time step (see Ref. [9]).

C. Prescription of the divergence of €);

Since the solution InN, of Eq. (8) is defined up to a
constant on S, the value N = C - ¢V provides a Dirichlet
condition for the lapse, which takes into account the man-
ner in which § is embedded in the spacetime and permits
one to control the magnitude of N via the free choice of the
constant C. The multiplicative character of the latter is a
good feature on numerical grounds. Of course, condition
(8) must be completed with a choice of 2D*(), (an arbitrary
function on S = §? with vanishing ¢ = 0 mode). This
makes this condition an effective one, in the sense dis-
cussed in Ref. [4] for “lapse boundary conditions.”
However, for specific problems natural choices exist, e.g.
2DkQ, = 0 for perturbations of the spherically symmetric
case (see [7,13] for a Pawlowski gauge, motivated by Kerr-
Schild-like slicings). More importantly, a part of the ex-
trinsic geometry is incorporated into this boundary condi-
tion, which thus goes beyond a merely numerically
convenient choice. Once 2D¥Q),(= 0) has been chosen,
the slicing is completely fixed, and all the freedom is
reduced to a single constant C that controls the rate of
motion across the slicing. We have numerically verified the
existence of unique solutions when combining this condi-
tion with the ones in the third column of Table I.

D. General comments

Other possible combinations. Table 1 presents an asso-
ciation between boundary conditions and constrained
fields. Even though this can be useful to organize the
discussion, it must again be emphasized that this is only
a methodological option. Insisting on such an association
can be misleading and can obscure some useful choices. As
an example, since condition (13) provides an expression
for K;;s's/, it could be interpreted as a condition® for b via
Eq. (16). Then, interpreting b — N = 0 as a condition for
N, we can think of prescribing a value for ¥ on S by a
Dirichlet condition. This particular example has two rele-
vant applications: (i) it permits one to prescribe the area of
S (since the conformal part is a free data) and (ii) it
provides an alternative strategy for the analytical study of
the well-posedness of the marginally trapped condition
(Refs. [22,23] focus on the control of the radial derivative

"In the dynamical case, the boundary condition b = N is
generalized by solving an elliptic equation on S; see [32,33].

In particular, together with (14) as a condition on V', this
means that nonexpanding conditions can be fully fulfilled by an
appropriate choice of the shift.
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of ¥ in order to apply a maximum principle to the
Hamiltonian constraint equation; the alternative of a
Dirichlet condition for W shifts the focus to the momentum
constraint).

Effective boundary conditions. At the end of the day,
quasiequilibrium conditions (3) together with b — N = 0
leave a single function to be specified on S. Following
[2,4,11] this fifth function can be seen as a condition ‘‘for
the lapse,” either geometrically motivated or purely effec-
tive. But it must be underlined (see also in this sense the
discussion in Sec. III.C of Ref. [4]), that it can be more
generally interpreted as an effective condition on any scalar
combination of fields, e.g. the conformal factor or 2D*(),.

Generic well-posedness. Finally, we have commented
that combining conditions in Table I leads to well-posed
problems for generic choices of f; and f,. By this we mean
that only for some critical f| and f, the problem admits an
infinite number of solutions. For instance, condition
L6 = 0in [2] can be recast as a prescription f for po .
K;;s's/, and also as 2D¥Q; = f,. If these particular ex-
pressions are used for conditions (16) or (8) in the spheri-
cally symmetric case, this leads to an ill-posed problem, as
shown in Ref. [4]. By generic we mean here that a small
perturbation of these critical cases makes the problem
well-posed.

V. CONCLUSIONS

This work represents the numerical counterpart of
Refs. [11-13], where isolated horizon boundary conditions
were proposed. As a first result, the prescription of a
constant value k = k, on an instantaneously nonexpand-
ing horizon, using a coordinate system adapted to the
horizon [i.e. conditions (3), (6), and (7)], defines a well-
posed problem. If « is set to kg (a, J), as proposed in [11],
the problem is degenerate (infinite number of solutions) in
the spherically symmetric case and admits no solution
when rotation is introduced. The only freedom in this
system is the choice of the constant «,. The k=
constant condition does not enforce a quasiequilibrium
restriction on the geometry of the horizon. This means
that it does not increase the physical degree of stationarity
of the associated initial data (consistently with [4], where it
is shown that physical quantities do not depend on the
chosen lapse boundary condition). Its interest is rather in
the evolution of such initial data, since it provides a slicing
where the lapse function must be initially time indepen-
dent, something desirable numerically.

Second, the results in Ref. [12] on the prescription of
W . K,;s's/ in the CTT system, do not extend straightfor-
wardly to the CTS case, except in spherical symmetry. In
this particular case, there exists a negative bound 0,em
such that for 8,y = WO - K;;s's//H =< 0 there is a unique
solution. There exists a second bound J,,;, such that the
prescription 8 i, < WO - Kijs's//H < 8,y admits two
degenerate solutions. For WO - K ;s's//H < 8, no solu-
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tion exists. In the rotating case, the strong dependence on
the fifth boundary condition prevents us from deriving
general bounds for W - K;;s's/. However, for the particu-
lar choice of a coordinate system adapted to the horizon
(b = N condition), the prescription of 6, to a sufficiently
negative value guarantees the existence and uniqueness of
a solution to the CTS elliptic system. Therefore, rather than
WO - K;;s's/, the parameter to be prescribed is 6,;. This
represents important information for the implementation of
evolving black holes as regular future trapping/dynamical
horizons [7,8,26] in a constrained evolution scheme.
Finally we have underlined the fact that prescribing
nonexpanding and adapted-coordinate-system conditions
leave one free function to be specified on the horizon.
Because of the (nonlinear) coupled nature of the boundary
conditions, this fifth condition is not specifically related to
a particular field and, even though it can be useful to
interpret it as a lapse boundary condition, other choices
(e.g. a Dirichlet condition on W) can prove to be useful.
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APPENDIX A: COMMENTS ON FIGURE 2

In this appendix we derive some analytical relations that
are valid for CTS data in the conformally flat, maximal,
spherically symmetric case. In particular we prove that the
graph displayed in Fig. 2 is independent of a specific
choice of inner boundary conditions on N and b (the
prescription K;;s/s/ = A determines one point in the
curve), and give a parametric analytical expression through
which this curve is defined.

(a) Independence of Fig. 2. In spherical symmetry, with
(r, 0, @) being spherical coordinates in which the
apparent horizon is located at r = ry, the maximal
slicing CTS Eqgs. (12) [with a = 0] reduce to:

LY 24V W rd
—t—-—"+ re| —
dr’ rdr 12N? [dr

<r-13r>f 0,
dZ

L+ %(r'ﬁ’)[i: - %[log(N\If6)]:| —0,

d? 2d4d(NY) 7P d 2
+ = _ 2 —1 pr —
dr? (V) r dr 12Nr [dr(r B )} 0,

(AD)

and the apparent horizon boundary condition (note
that B¢ = 8% = 0) is given by
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(b)

+—+——@"1p"

v v W d .
|:dr 2r 6N dr l—,H '

With the introduction of the compactified radial
coordinate s = ry/r, we get
\1,5

SV + B =0, (A3)

2
B — B’(; + 1og[N\1f*6]/> =0, (A4

2 '\P " 12 \IIS
N — 7B =0, A5
S(NY) o (A3)
and
v Pl
V- —+ _—B = (), A6
|: 2 6N :|s—1 ( )

where ' = d/ds and B" = B/s. Equation (A4) can
be solved explicitly:
B =c-s2NW¥, (A7)

where c is a constant of integration, closely related
to WO - K;;s's/ [see Eq. (16) and below]. Using (A7)
we obtain

2
W+ 2T =g (A8)
12
together with the boundary condition
W c
V- — = 0. A9
[ 2 6\1’31_1 (A9)

The system (AS8) and (A9) uniquely defines a se-
quence of solutions W(s; ¢) which is independent of
a specific choice of inner boundary conditions for B
and N. Moreover, the horizon quantity (cf. Eq. (16)
in the spherically symmetric case)

- 2 -6

= —%C\PH } (A10)
where

Yy = V(s = 1;¢), (A11)

is a function of ¢ alone. Thus also the graph dis-
played in Fig. 2 is independent of a specific choice
of inner boundary conditions on 8" and N. The
prescription K;;s's/ = A determines a point in this
curve.

Analytic representation of Fig. 2. In order to obtain
explicit mathematical expressions that describe the
graph displayed in Fig. 2, we consider the spatial
metric as well as the extrinsic curvature of the
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family of time-independent maximal slicings of
the Schwarzschild solution [31], i.e.

R R4\ -1
ds2=<1——H+c2 ”) dR?

R R*
+ R*(d#? + sin*0d¢?) (A12)
and
. R2 -2 00
K;.=CR—’; 0 1 0} (A13)
0 0 1
which gives in particular
- 2C
[KijSlS]]R=RH = _R— (A14)
H

In these coordinates (R, 6, ¢), the radius of the black
hole horizon is given by R = Ry = 2M, where M is
the black hole mass. The constant C parametrizes
the family of maximal slicings.
The coordinate transformation r = r(R), leading to
a conformally flat line element

ds? = WHdr* + r*(d6* + sin’0d¢?)],  (A15)
is described by

S do
s = ex R Al6)
p(fl oVl — o+ C20'4> (
where
R
s="H and §=2H (A17)
r R

The conformal factor ¥ which satisfies the bound-
ary value problem (A8) and (A9), can be obtained
from the comparison of the line elements (A12) and
(A15):

R R
g2 =" =S (A18)
r rg S
As a consequence
R
v = (A19)
ry

and by imposing the asymptotic boundary condi-
tion, limg_y W = 1, we can write W2, in terms of the
parameter C:

P2 (C = 0)

ldo 1
~oof), e )
0 o lJ1I -0+ Co*
(A20)
The formula (A20) only describes W for non-

negative values of C. An extension of this expres-
sion into the realm of negative C-values yields, for
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0> C> —33/16

ldo 1
W2 (C < 0) = ex (f —[——1}
H( ) P 0 0 [J1— o+ C2c*
51(C)
do ),(Azn
1 o1 -0+ C**

where 5,(C) is the real zero of

fls)=1—5+ C%s*,

with
1= SI(C) = %

Note that ¥%(C) tends to +o as C — —3+/3/16
since f(s) has a double zero, s; = 4/3, in this limit.
With (A14) and H = 2/ry, we finally obtain the
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desired parametric description of the curve dis-
played in Fig. 2 [a parametrization in terms of ¢ in
Eq. (Al1) can be also obtained from the relation
between C and c¢ provided by Eqs. (A10) and
(A14)]:

Abscissa: K;js's//H = —CV2,

, S (A22)
Ordinate: W§, - K;;s's//H = —C¥},.
A particular consequence of this analysis is
lim ¥¢, - K;;s's/ = —2H, (A23)

C—

providing the asymptotic value when K;;s's//H —
— .
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