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Abstract
We discuss some basic tools for an analysis of one-dimensional quantum
systems defined on a cyclic coordinate space. The basic features of the
generalized coherent states, the complexifier coherent states, are reviewed.
These states are then used to define the corresponding (quasi)densities in phase
space. The properties of these generalized Husimi distributions are discussed,
in particular their zeros. Furthermore, the use of the complexifier coherent
states for a semiclassical analysis is demonstrated by deriving a semiclassical
coherent state propagator in phase space.

PACS numbers: 03.65.−w, 03.65.Sq

1. Introduction

Quantum systems depending on a cyclic coordinate appear in numerous studies. Celebrated
examples of such systems are the particle on a circle, the plane pendulum, the rotor, but also
other systems such as space periodic crystals in a tight-binding approximation, where the
cyclic variable is the quasimomentum [1]. Despite much effort, the theory of quantization of
such systems is still far from complete (see, e.g., [2] and references therein). In the present
paper, we do not aim at a discussion of the still interesting issue of angle operators and related
problems. We will concentrate on an important tool for a theoretical analysis of cyclic quantum
systems, the generalized coherent states.

The coherent states on the real line provide a quite useful tool for a semiclassical analysis
of one-dimensional systems. Their generalization to field theory is the main tool for describing
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laser light and other states of coherently superposed matter. This has raised the question if one
can find states with equally pleasant properties for other systems, such as quantum mechanic
on the circle [2–5], or for other dynamical groups, such as the states defined by Perelomov or
Gilmore [6].

In [7], a method was described to construct coherent states for quantum mechanics on
any compact, connected Lie group G. The mathematical foundation for this was laid in [8–
10]. The procedure relies on the fact that the tangent bundle T ∗G, which can be identified
with the phase space of a particle moving on G, is diffeomorphic to the complexification
GC of G, which named these states ‘complexifier coherent states’. Their general properties
have been exhibited in [11–13]. For G = SU(2), the complexifier coherent states are used
for the semiclassical analysis of loop quantum gravity [11], and the states for G = U(1)

and G = U(1)3 are employed in the semiclassical analysis of quantum cosmology [14] and
linearized quantum gravity [7].

The complexifier procedure could also be used to define coherent states on d-dimensional
spheres Sd [18].

For the special case of G = U(1), i.e. quantum mechanics on the circle, the complexifier
coherent states reduce to the already employed coherent states on the circle, which had either
been derived from a generalization of the harmonic oscillator coherent states [3, 5, 16], or
simply guessed [15, 20]. In [2], one can find an extensive description of these states and their
properties.

In this paper, we will shortly review the most important properties of the complexifier
coherent states for G = U(1) and demonstrate that these states can be used for a semiclassical
analysis of quantum mechanics on the circle, towards which we will pursue two different
ways.

First, we will analyse the Bargmann–Segal representation of states on the circle, defined
by the complexifier coherent states. In particular, this enables one to study the dynamics
of one-dimensional periodic systems by the zeros of the Husimi distribution. For quantum
mechanical systems on the real line the Husimi distribution is a well-developed tool to study,
e.g., quantum chaos [17, 20]. The Husimi distribution for systems with cyclic coordinate is
a special case of a class of phase-space (quasi)densities that have been recently investigated
[21]. It can be defined with the help of the complexifier coherent states in complete analogy
to the Husimi distributions for systems on the real line.

In our work, we will show that one needs even less effort to reconstruct the state from its
zeros than in the case of quantum mechanics on the real line. This could serve as a starting
point of investigating quantum chaotic behaviour of periodic systems, such as happened for
the driven rotor [19].

In the second part of this paper, we derive the semiclassical propagator on a cylindrical
phase space, which is the transition amplitude 〈zF | exp(−iĤ τ )|zI 〉 between complexifier
coherent states. This has already been done for the special case of the freely moving particle
[2, 23, 24], but we will do the analysis for arbitrary Hamiltonians.

Semiclassical propagators have a long history and have been studied in detail, e.g.
for systems on the real line, without or with spin (see, e.g., [22, 25–29] and references
therein). They are a main ingredient for the semiclassical analysis of quantum systems and
a powerful tool to investigate the transition from quantum-to-classical behaviour of systems.
The derivation of the semiclassical propagator on the circle follows similar lines as the one for
the propagator on the real line [22]. Finally, the propagator on the circle can be represented
as an infinite sum over propagators on the real line, representing different winding numbers
of paths in U(1), which nicely demonstrates the influence of the global topological properties
of phase space on the quantum dynamics.
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2. Quantum mechanics on the circle

The phase space for a classical particle moving on a circle U(1) is given by T ∗(S1) � S1 ×R.
Since the angle φ is not periodic, it is no phase-space function. So one has to work with exp(iφ),
of which one can compute φ only modulo 2π . Together with the canonical momentum p,
which has the dimension of angular momentum, the Poisson bracket

{f, g} = ∂f

∂φ

∂g

∂p
− ∂g

∂φ

∂f

∂p
(2.1)

implies

{exp(iφ), p} = i exp(iφ). (2.2)

Note that, although a function on phase space, exp(iφ) is not an observable, since it is not
real valued.

Quantization is achieved by replacing observables by self-adjoint operators and Poisson
brackets by commutators divided by ih̄. Since exp(iφ) is not a real-valued function, but takes
values in U(1), we will replace it by a unitary operator exp(iφ̂). The quantization of (2.2)
then yields

[exp(iφ̂), p̂] = ih̄(i exp(iφ̂)) = −h̄ exp(iφ̂). (2.3)

The quantization of (2.2) is nontrivial, since there are infinitely many unitarily inequivalent
representations of (2.3) [2, 3]. The different representations live all on the Hilbert space

H = L2[0, 2π ], (2.4)

with the inner product

〈ψ, ϕ〉 =
∫ 2π

0

dφ

2π
ψ(φ)ϕ(φ), (2.5)

where the operator exp(iφ̂) acts as multiplication

(exp(iφ̂)ψ)(φ) := exp(iφ)ψ(φ), (2.6)

and p̂ as differentiation

(p̂ψ)(φ) = h̄

i

dψ

dφ
(φ). (2.7)

While exp(iφ̂) is a unitary operator, hence bounded by one, it is defined everywhere,
whereas p̂ is unbounded, and one has to worry about domains of definition. In particular, the
inequivalent representations of (2.3) differ by the dense domain of the definition of p̂. They
are labelled by a real parameter 0 � δ < 1. Fixing δ, one defines a basis of H by

|n〉δ = φ �→ exp(i(n + δ)φ), n ∈ Z. (2.8)

The domain of definition for p̂ in the representation labelled by δ is the one given by the
following set of linear combinations of |n〉δ:

Dδ
p̂ :=

{∑
n∈Z

cn|n〉δ
∣∣∣∣∣∑

n

n2|cn|2 < ∞
}

. (2.9)

Note that in each representation δ, p̂ has basis (2.8) as a complete set of eigenvectors:

p̂|n〉δ = (n + δ)h̄|n〉δ. (2.10)

Equation (2.10) shows that representations for different δ are in fact unitarily inequivalent.
The parameter δ determines the fraction of 2π , the phase of a particle acquires, if it runs once
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round the circle. In periodic crystals, the parameter δ can be seen as the quasimomentum of
the Bloch waves [2]. The meaning of the parameter δ will be illustrated later in more detail,
when we derive the semiclassical propagator on the circle, which heavily depends on δ, since
it keeps track of different paths with different winding number, where the relative phase is
crucial.

In [3], it was reasoned that the cases δ = 0 and δ = 1/2 are the most important ones,
since in these representations the systems are invariant under time-reversal symmetry. In these
representations one cannot distinguish between a wave running clockwise or anti-clockwise
around the circle, since the first one acquires a phase of e2π iδ and the other one a phase of e−2π iδ ,
which is not the same for δ 	= 0, 1

2 . Still, one could imagine systems where nontrivial phase
shifts occur due to complicated interactions, which explicitly distinguish between clockwise or
anti-clockwise moving waves. In particular, the topic of fractional optical angular momentum
(OAM) is discussed in [2]. So in what follows, we will not fix δ ∈ [0, 1) to keep the results as
general as possible.

3. Coherent states

3.1. Definition

On the circle, as well as on any other compact, connected Lie group, one can define the
‘complexifier coherent states’ [7], which for the case of the circle are different for every
δ. They are furthermore labelled by a squeezing parameter s > 0 and a complex number
z = φ + ip/h̄:

|z〉δ =
∑
n∈Z

exp

(
−(n + δ)2 s2

2
−i(n + δ)z

)
|n〉δ

=
∑
n∈Z

exp

(
−(n + δ)2 s2

2
+ (n + δ)

p

h̄
−i(n + δ)φ

)
|n〉δ

= exp

(
−δ2 s2

2
− iδ(z − φ)

)
ϑ3

(
φ − z

2π

∣∣∣∣i s2

2π

)
, (3.1)

where

ϑ3(z|τ) =
∑
n∈Z

exp(π in2τ + 2π inz) (3.2)

is the Jacobi-theta function of the third kind. These functions and their properties are well
known (see, e.g., [34]) and serve as an analogue of the Gaussian curve for periodic functions.
The coherent states as well as inner products between them can be expressed in these functions.

We will not use the form of the coherent states as Jacobi-theta functions, but will rather
stay with the explicit form (3.1) as series over integer numbers. This form will prove to be
better for the explicit manipulations we will perform in chapters 4 and 5.

Note that the map z �→ |z〉δ is periodic in the sense that

|z + 2π〉δ = e−2π iδ|z〉δ. (3.3)

The states (3.1) are not normalized, but instead we have

‖zδ‖2 := δ〈z|z〉δ =
∑
n∈Z

exp

(
−(n + δ)2s2 + 2(n + δ)

p

h̄

)
. (3.4)
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The infinite sum in (3.4) can be brought into a nicer form by the so-called ‘Poisson
summation formula’ (see e.g. [30]), given by∑

n∈Z

f (an) = 1

a

∑
n∈Z

f̃

(
2πn

a

)
, (3.5)

where f̃ is the Fourier transform of f :

f̃ (k) =
∫

R

dx f (x) e−ikx . (3.6)

Choosing f (x) = exp(−x2s2 + 2xp/h̄), with

f̃ (k) =
√

π

s2
exp

(
p2

s2h̄2 − k2 − 4ikp/h̄

4s2

)
, (3.7)

equation (3.4) can be rewritten as

‖zδ‖2 =
√

π

s2
exp

(
p2

s2h̄2

)∑
n∈Z

exp

(
−2πnδi−π2n2 − iπnp/h̄

s2

)

=
√

π

s2
exp

(
p2

s2h̄2

)1 +
∑
n	=0

(
−2πnδi − π2n2 − iπnp/h̄

s2

) . (3.8)

One can easily show the inequality∣∣∣∣∣∣
∑
n	=0

exp

(
−2πnδi − π2n2 − iπnp/h̄

s2

)∣∣∣∣∣∣ � 2
e− π2

s2

1 − e− π2

s2

, (3.9)

which tends to zero faster than any power of s. Therefore, we denote it as O(s∞) and write

‖zδ‖2 =
√

π

s2
exp

(
p2

s2h̄2

)
(1 + O(s∞)). (3.10)

The inner product between two coherent states |z〉δ and |w〉δ can be obtained by a similar
calculation, using again the Poisson summation formula

δ〈z′|z〉δ =
√

π

s2

∑
n∈Z

exp

[
2π inδ −

(
nπ − z′ − z

2

)2 1

s2

]

=
√

π

s2
exp

[(
p + p′

2sh̄

)2
]∑

n∈Z

exp

[
2π inδ −

(
φ′ − φ − 2πn

2s

)2

+ 2i

(
φ′ − φ − 2πn

2s

)
p′ + p

2sh̄

]
. (3.11)

Note that this overlap can also be brought into the form of a Jacobi-theta function, in
particular

δ〈z′|z〉δ =
√

π

s2
exp

(
− (z̄′ − z)2

4s2

)
ϑ3

(
−i

z̄′ − z

2s2
+ δ

∣∣∣∣ i

πs2

)
. (3.12)

From (3.11) and (3.10), we obtain the overlap of two coherent states as

δ〈z′|z〉δ
‖z′

δ‖‖zδ‖ = exp

[
−
(

p′ − p

2sh̄

)2
]∑

n∈Z

exp

[
2π inδ −

(
φ′ − φ − 2πn

2s

)2

+ 2i

(
φ′ − φ − 2πn

2s

)
p′ + p

2sh̄

]
(1 + O(s∞)). (3.13)
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From formula (3.13), one can see that coherent states |z〉δ and |z′〉δ with z 	= z′, i.e. states
labelled by different points, z = φ + ip/h̄ and z′ = φ′ + ip′/h̄, have an overlap that tends to
zero faster than any power of s, so the overlap function (3.13) is peaked at z = z′, the peak
becoming sharper as s → 0. If φ′ 	= ±π and s � π , then all terms with n 	= 0 in the infinite
sum (3.13) are of order O(s∞), so we get

δ〈z′|z〉δ
‖z′

δ‖‖zδ‖ = exp

[
−
(

p′ − p

2sh̄

)2

−
(

φ′ − φ

2s

)2

+ 2i

(
φ′ − φ

2s

)
p′ + p

2sh̄

]
(1 + O(s∞)).

(3.14)

In particular, the overlap for fixed z′ is—up to small corrections in s—a Gaussian in the
complex z-plane centred at z = z′, with width s.

Note that (2.8) defines a φ-representation via 〈φ|n〉δ = exp[−i(n + δ)φ]. Using (3.5), one
can show that in this representation the coherent states are infinite superpositions of Gaussian
wavepackets with a width s, each translated by φ → φ + 2πn, ensuring that the resulting
function is 2π -periodic in φ. This shows that the complexifier coherent states on the circle are
the periodically continued harmonic oscillator coherent states, which have been used earlier
[15, 19]. As long as the width s of these wavepackets is much smaller than the period 2π , the
different Gaussians interfere little with each other, and one can restrict oneself to one Gaussian
in calculations. But if the spreading s exceeds, say, π , one has to take the infinite mutual
interference of the Gaussians into account, which makes calculations quite difficult.

Since the parameter s measures the spreading of the wavefunction ψz(φ) = 〈φ|z〉δ
compared to the circumference of the circle on which the system propagates, the complexifier
coherent states only describe systems being ‘close to classical point particles’ if s is small:
s � π . This feature is quite natural, since, if a particle moves on a circle with a de Broglie
wavelength the same order of magnitude as the circumference of the circle, one cannot expect
this particle to behave classically. The wavefunction of the particle will interfere with itself
‘around the circle’, which is not possible in classical mechanics. This is why the states are
called ‘coherent’ rather than ‘semiclassical states’, and is simply due to the compact topology
of configuration space. The limit in which quantum mechanics on the real line is recovered is
then performed as s → 0.

3.2. Properties

The complexifier coherent states (3.1) have a number of properties they share with ordinary
harmonic oscillator coherent states, which have been exhibited in [2, 3, 11–13, 21] and are
listed for the sake of completeness.

• Reproduction of classical values. The expectation values of certain operators in the
coherent states labelled by z = φ + ip/h̄ agree—up to small corrections in s—with
the value of the corresponding classical phase-space functions, evaluated at the points
(φ, s−2p). This will be demonstrated with the basic operators exp(iφ̂) and p̂. We start
with exp(iφ̂). For this we remember (2.6) and (2.8), in particular

exp(iφ̂)|n〉δ = |n + 1〉δ. (3.15)

With z = φ + ip/h̄ and the definition of the coherent states (3.1), we get

δ〈z| exp(iφ̂)|z〉δ =
∑
n∈Z

exp

(
−(n + δ)2 s2

2
− (n − 1 + δ)2 s2

2
+ (2n + 2δ − 1)

p

h̄
+ iφ

)
.

(3.16)
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With the help of the Poisson summation formula (3.5), we obtain after some
straightforward computation:

δ〈z| exp(iφ̂)|z〉δ =
√

π

s2
exp

(
iφ − s2

4
+

p2

s2h̄2

)
×
∑
n∈Z

exp

(
2πnδi − π2n2 + inπp/h̄ − iπn

s2

)
. (3.17)

By using (3.10) and again estimating all terms with n 	= 0,∑
n	=0

(
2πnδi − π2n2 + inπp/h̄ − iπn

s2

)
= O(s∞), (3.18)

we arrive at the result

δ〈z| exp(iφ̂)|z〉δ
δ〈z|z〉δ = exp

(
iφ − s2

4

)
(1 + O(s∞))

= exp(iφ)(1 + O(s2)). (3.19)

So, up to order O(s2), the expectation value of exp(iφ̂) in coherent states labelled by the
complex number z = φ + ip/h̄ agrees with the value of the classical phase-space function
exp(iφ) at this point. By a similar calculation, one can even show that the expectation
value of the relative phase between two particles in coherent states labelled by z, z′ is
exp[i(φ − φ′)], up to O(s∞) corrections.

We continue with p̂. From (2.10) and (3.5), we get

δ〈z|p̂|z〉δ = h̄
∑
n∈Z

(n + δ) exp
(
−(n + δ)2s2 + 2(n + δ)

p

h̄

)
=
√

π

s2
exp

(
p2

s2h̄2

)∑
n∈Z

( p

s2
− πnh̄

)
exp

(
2πnδi − π2n2 + ipn/h̄

s2

)
. (3.20)

With this and (3.10) we obtain the result

δ〈z|p̂|z〉δ
δ〈z|z〉δ = p

s2
(1 + O(s∞)). (3.21)

So the coherent state labelled by the complex number z = φ + ip/h̄ is peaked around the
phase-space point (φ, s−2p).

Note that the expectation values of the operators exp(iφ̂) and p̂ give the classical
values exp(iφ) and s−2p, respectively, only up to corrections in s. If s → 0 and s−2p is
held fixed, the corrections go to zero, which corresponds to the radius of the circle going
to infinity, suppressing the self-interference of the wavefunction. Quantum mechanics on
the real line is recovered in that limit. In particular, the expectation values of the operators
X̂ and P̂ in the coherent states |z〉 = |q + ip〉 on the real line reproduce the classical
values q and p exactly.

• Resolution of the identity. Apart from reproducing classical phase-space function values,
the coherent states form an overcomplete system of vectors (see section 4). With
z = φ + ip/h̄, we get

1√
πsh̄

∫
R

dp

∫ π

−π

dφ

2π
exp

(
− p2

s2h̄2

)
|z〉δδ〈z| = 11, (3.22)

which can be shown easily by calculating the action of the left-hand side of (3.22) on a
basis vector |n〉δ .
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• Ladder operator eigenstates. Both operators exp(−s2p̂2/2h̄2) and exp(iφ̂) are bounded,
so the operator

ĝ = exp

(
−s2 p̂2

2h̄2

)
exp(iφ̂) exp

(
s2 p̂2

2h̄2

)
(3.23)

is well defined on the domain of definition of p̂ (2.9). We have

ĝ|n〉δ = exp

[
s2

2
((n + δ)2 − (n + δ + 1)2)

]
|n + 1〉δ. (3.24)

With this one obtains

ĝ|z〉δ =
∑
n∈Z

exp

(
−(n + δ)2 s2

2
− i(n + δ)z

)
ĝ|n〉δ

=
∑
n∈Z

exp

(
−(n + 1 + δ)2 s2

2
− i(n + δ)z

)
|n + 1〉δ

= eiz|z〉δ. (3.25)

So the coherent states labelled by z are eigenvectors of ĝ with eigenvalue eiz. With
(3.24) one can see that ĝ and ĝ† are in fact ladder operators, although their commutator
is not proportional to unity. Note that, by formally using the Baker–Campbell–Hausdorff
formula, one can bring ĝ into the form of ĝ = exp i(φ̂ + ip̂/h̄).

• Minimal uncertainty relationship. As demonstrated in [7] or [3], the fact that the coherent
states are eigenvectors of ĝ immediately implies that the coherent states saturate the
Heisenberg inequality for the operators

Q̂ = ĝ + ĝ†

2
, P̂ = ĝ − ĝ†

2i
, (3.26)

that is

	zQ̂	zP̂ = 1
2 〈[Q̂, P̂ ]〉z, (3.27)

where 〈·〉z and 	z denote expectation value and standard deviation in |z〉δ , respectively.

4. Bargmann–Segal representation and Hadamard decomposition

In quantum mechanics on the real line, the harmonic oscillator coherent states |z〉 provide the
Bargmann–Segal representation ψ(z) = 〈ψ |z〉 for Hilbert space states ψ . From this one can
construct the Husimi distribution [20, 31]

ρHusimi(q, p) = exp(−p2 − q2)|ψ(q + ip)|2. (4.1)

This phase-space density provides a way to analyse dynamical properties of systems, in
particular the behaviour of classically chaotic quantum systems [20, 32]. It is possible to
reconstruct the state ψ from the zeros of its Husimi distribution and the specification of three
complex numbers C0, C1, C2 [32], which have to be derived from ρHusimi.

In the following, we will describe the analogous construction for the complexifier coherent
states on the circle and show that the condition of periodicity in one phase-space variable poses
significant limitations to the form of the Bargmann–Segal representation. In particular, the
zeros of the Husimi distribution of a state determine this state apart from normalization and
specification of an integer, which can be computed from ρHusimi.



Quantum mechanics on a circle 3967

The Bargmann–Segal representation of a state ψ on the circle, provided by the
complexifier coherent states, is given by the function

ψδ(z) = 〈ψ |z〉δ =
∑
n∈Z

exp

(
−(n + δ)2 s2

2
− i(n + δ)z

)
〈ψ |n〉δ. (4.2)

The map (4.2) is entire holomorphic. Note that (3.22) guarantees that

1√
πsh̄

∫
R

dp

∫ π

−π

dφ

2π
exp

(
− p2

s2h̄2

)
|ψδ(z)|2 = 〈ψ |ψ〉, (4.3)

which shows that the map between the vector |ψ〉 and the function z �→ ψδ(z) is an anti-
unitarity between the Hilbert space L2[0, 2π ] and the Hilbert space HL2(S1 × R, dµ). With
the latter we mean the Hilbert space of periodic, holomorphic functions of z = φ + ip/h̄ that
are square integrable with respect to the measure

dµ(z) = 1√
πsh̄

dp
dφ

2π
exp

(
− p2

s2h̄2

)
. (4.4)

That (4.2) is holomorphic has an important corollary. The set of coherent states |z〉δ
spans the Hilbert space, hence it is complete. It is even overcomplete in the sense that smaller
subsets of it also span the Hilbert space. Let {zn}n∈N be a sequence of distinct complex
numbers converging to z ∈ C. Then the set of coherent states {|z〉δ}n∈N is complete. This is
quite easy to show by noting that, if ψ is orthogonal to the span of the |zn〉δ , then ψδ(zn) = 0
for all n. But since ψδ(z) is holomorphic and the zn converge, then ψδ ≡ 0 by the identity
theorem for holomorphic functions. So the linear span of the |zn〉δ is dense in L2[0, 2π ].

With this one can define the Husmi distribution of a state ψ ∈ H to be

ρ
(δ)
Husimi(φ, p) := 1

〈ψ |ψ〉 |ψδ (φ + ip/h̄)|2 , (4.5)

in complete analogy to (4.1). Note that (4.5) is a special case of a broader class of phase-
space (quasi)densities investigated in [21] for the case δ = 0, which also includes densities
analogous to the Wigner– and the Glauber–Sudarshan functions.

Of particular interest are the zeros of the Husimi distribution (4.5), which coincide with
the zeros of ψδ(z) (4.2). These functions will be investigated further. Just as in the case of
harmonic oscillator coherent states, the holomorphic functions ψδ(z) are entire and of order
at most 2.

Proposition 4.1. Let |ψ〉 ∈ H. Then there exist constants A,B > 0, such that

|ψδ(z)| = |〈ψ |z〉δ| � A exp(B|z|2). (4.6)

Proof. With z = φ + ip/h̄, we get using the Poisson summation formula (3.5),

|ψδ(z)| exp

(
−|z|2

2s2

)
� |ψδ(z)| exp

(
− p2

2s2h̄2

)
=
∣∣∣∣∣∑
n∈Z

exp

(
−(n + δ)2 s2

2
− i(n + δ)z − p2

2s2h̄2

)
〈ψ |n〉δ

∣∣∣∣∣
�
∑
n∈Z

exp

(
−(n + δ)2 s2

2
+ (n + δ)

p

h̄
− p2

2s2h̄2

)
|〈ψ |n〉δ|

�
∑
n∈Z

exp

[
−
(
n + δ − p

s2h̄

)2 s2

2

]
ψmax
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= ψmax

√
2π

s2

∑
n∈Z

e2π inδ exp

(
−2π2n2 + 2πnip/h̄

s2

)

� ψmax

√
2π

s2

∑
n∈Z

exp

(
−2π2n2

s2

)
, (4.7)

with ψmax = max{|〈ψ |n〉δ|, n ∈ Z}, and therefore

|ψ(z)| � ψmax

√
2π

s2

∑
n∈Z

exp

(
−2π2n2

s2

)
exp

( |z|2
2s2

)
, (4.8)

what was to be shown. �

In fact, 2 is the best estimate one can give for the order of the holomorphic functions
ψδ(z). Although there are functions that are of order 1 (in particular z �→ δ〈n|z〉δ), there are
also examples of functions of order 2 (for instance the one belonging to |ψ〉 = ∑

n	=0 n−2|n〉δ).
Each entire holomorphic function can be expressed in terms of its zeros. This

representation is called the Hadamard decomposition (see, e.g., [33]). In particular, for ψ(z)

being entire holomorphic and of order at most 2, there are constants m ∈ N, C0, C1, C2 ∈ C

such that

ψ(z) = zm eC0+C1z+C2z
2
∏
n

(
1 − z

zn

)
exp

[
z

zn

+
1

2

(
z

zn

)2
]

, (4.9)

where the {zn} are the zeros of ψ(z).
The entire holomorphic functions ψδ(z) (4.2) have the following properties:

ψδ(z + 2π) = e−2π iδψδ(z). (4.10)

Therefore, their number of zeros can only be zero or infinity. On the other hand, one only
has to know the zeros in the strip [0, 2π) × iR ⊂ C to know all zeros of ψ(z).

Since ψδ is of order at most 2 (which relates to the growth behaviour), the sequence of
its zeros {zn}n∈N is also of order at most 2. For sequences, this means that the number of
sequence members contained in a circle of radius R goes not faster than R2, as R grows large
[33]. It follows that the sequence of zeros lying inside the strip [0, 2π) × iR ⊂ C is of order
at most 1, which will be needed later.

Periodicity now restricts the possible values of C1, C2 in (4.9), as the following proposition
shows.

Proposition 4.2. Let ψδ(z) be entire holomorphic in z, of order at most 2 and ψδ(z + 2π) =
e−2π iδψδ(z) . Then there are constants C ∈ C and m, l ∈ Z such that

ψδ(z) = eC+i(l−δ)z
[
sin

z

2
exp

(
−i

z

2

)]m ∏
k

[
sin z−ak

2

sin −ak

2

exp
(
−νki

z

2

)]
, (4.11)

where ak are the zeros in the strip [0, 2π) × iR ⊂ C, apart from 0, and νk := sgn Im ak the
sign of the imaginary part of ak .

Proof. We start with (4.9) and note that the zeros are {zk + 2πn|n ∈ Z}, because of (4.10).
Then we divert the possible m-fold zeros at 2πn:
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ψδ(z) =
z

∏
n	=0

(
1 − z

2πn

)
exp

(
z

2πn
+

1

2

( z

2πn

)2
)m

× eC0+C1z+C2z
2
∏
k

∏
n∈Z

(
1 − z

ak + 2πn

)
exp

[
z

ak + 2πn
+

1

2

(
z

ak + 2πn

)2
]

=
[
z

∞∏
n=1

(
1 − z2

4π2n2

)
exp

(
1

4π2n2
z2

)]m

eC0+C1z+C2z
2

×
∏
k

[(
1 − z

ak

) ∞∏
n=1

(
1 − z

ak + 2πn

)(
1 − z

ak − 2πn

)

× exp

(
C1(ak)z +

1

2
C2(ak)z

2

)]
. (4.12)

Here ak are the zeros inside the strip [0, 2π) × iR apart from 0, and

C1(ak) := 1

ak

+
∞∑

n=1

2ak

a2
k − 4π2n2

= 1

ak

+
�
(
1 − ak

2π

)− �
(
1 + ak

2π

)
2π

= 1

2
cot

ak

2

C2(ak) := 1

a2
k

+
∞∑

n=1

1

(ak + 2πn)2
+

1

(ak − 2πn)2
= 1

a2
k

+
1

4 sin2 ak

2

,

(4.13)

where � denotes the Digamma function �(z) = 
′(z)/
(z). Now we have to employ the
identities

sin z = z

∞∏
n=1

(
1 − z2

π2n2

)
(4.14)

and

sin

(
z − a

2

)
= − sin

(a

2

) (
1 − z

a

) ∞∏
n=1

(
1 − z

a + 2πn

)(
1 − z

a − 2πn

)
(4.15)

for a
2π

/∈ Z. Equation (4.14) is well known, and (4.15) will be proved in the appendix section.
Reinserting these two identities in (4.12), we obtain

ψδ(z) = sinm z

2
exp

(
mz2

∞∑
n=1

1

4π2n2

)
eC0+C1z+C2z

2
∏
k

sin z−ak

2

sin −ak

2

exp

(
C1(ak)z +

1

2
C2(ak)z

2

)
.

(4.16)

The first exponential factor can be absorbed into a redefinition of C2:

ψδ(z) = sinm z

2
eC0+C1z+C̃2z

2
∏
k

sin z−ak

2

sin −ak

2

exp

(
C1(ak)z +

1

2
C2(ak)z

2

)
. (4.17)

Periodicity now demands that

ψδ(z) = e2π iδψ(z + 2π) = (−1)m sin
z

2
e2π iδ eC0+C1(z+2π)+C̃2(z+2π)2

×
∏
k

[
− sin z−ak

2

sin −ak

2

exp

(
C1(ak)(z + 2π) +

1

2
C2(ak)(z + 2π)2

)]
= ψδ(z)(−1)m e2π iδ+2πC1+4π2C̃2+4πC̃2z

∏
k

[−e2πC1(ak)+4π2C2(ak)+4πC2(ak)z
]

(4.18)
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so

1 = (−1)m e2π iδ+2πC1+4π2C̃2+4πC̃2z
∏
k

[−exp(2πC1(ak) + 2π2C2(ak) + 2πC2(ak)z)]. (4.19)

Note that this equation holds for all z ∈ C, also for z = 0. Hence, both∏
k

[−exp(2πC1(ak) + 2π2C2(ak) + 2πC2(ak)z)] (4.20)

and ∏
k

[−exp(2πC1(ak) + 2π2C2(ak))] (4.21)

converge. Thus, also their quotient∏
k

[exp(2πC2(ak)z)] = exp

(
z
∑

k

2πC2(ak)

)
(4.22)

converges for each z ∈ C, and can be pulled out of the (possibly infinite) product in (4.19).
So we get

1 = (−1)m e2π iδ+2πC1+4π2C̃2 exp

(
4πC̃2 +

∑
k

2πC2(ak)

)
z

×
∏
k

[−exp(2πC1(ak) + 2π2C2(ak))]. (4.23)

This is only possible, if

4πC̃2 +
∑

k

2πC2(ak) = 0, (4.24)

as can be easily seen if one compares the growth behaviour on both sides of (4.23). Inserting
(4.24) into (4.23) yields

e−imπ−2π iδ−2πC1 =
∏
k

[−exp(2πC1(ak))] =
∏
k

[
−exp

(
π cot

ak

2

)]
. (4.25)

To proceed, we need a technical lemma. �

Lemma 4.1. Let {ak} be a sequence in ([0, 2π) × iR)\{0} of order 1. Let νk := sgn Im ak be
the sign of the imaginary part of ak (with sgn 0 := 1). Then∏

k

[
−exp

(
π cot

ak

2

)]
= exp

[∑
k

π
(

cot
ak

2
+ νki

)]
. (4.26)

The proof of this lemma is rather technical and will be delivered in appendix B. With the
help of (4.26), (4.25) can be rewritten. If the exponentials of two complex numbers are equal,
the numbers themselves are equal up to a multiple of 2π i. So, there is a number l ∈ Z such
that

−imπ − 2π iδ − 2πC1 = 2π
∑

k

(
νk

i

2
+ C1(ak)

)
+ 2π il. (4.27)

Thus

eC1z = e−i m
2 z ei(l−δ)z

∏
k

exp

[
−z

(
νk

i

2
+ C1(ak)

)]
. (4.28)
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Inserting (4.24) and (4.28) into (4.17) gives then

ψδ(z) = eC+i(l−δ)z
[
sin

z

2
exp

(
−i

z

2

)]m ∏
k

[
sin z−ak

2

sin −ak

2

exp
(
−νki

z

2

)]
, (4.29)

which completes the proof.
Note that the exponentials exp

(−νki z
2

)
in formula (4.29) can only be pulled out of the

product if the set of zeros ak is finite. If this is not the case, the exponentials are needed for
the infinite product to converge, of which the particular choice of the sign νk according to the
imaginary part of ak takes care.

This proposition shows that a state is (up to normalization) completely determined by the
zeros in its Hadamard decomposition and one further integer l. This is in contrast to the case
of quantum mechanics on the real line, where instead of the integer l one has to specify two
complex numbers C1 and C2.

From this, one can immediately conclude that the only states, whose Husimi distributions
are positive definite, are (up to normalization) the basis vectors (2.8). Let |ψ〉 and |ψ̃〉 be
two states such that their Bargmann–Segal representations (4.2) have the same zeros (with the
same multiplicities), i.e.

ψδ(z) = 0 ⇔ ψ̃δ(z) = 0. (4.30)

By (4.11) this is the case if and only if ψ̃δ(z) = exp(C + ilz)ψδ(z) for some l ∈ Z. With
the action of the ladder operators ĝ and ĝ† (3.23), one can immediately conclude that, up to
normalization,

|ψ̃〉 = (ĝ†)l|ψ〉. (4.31)

So, since the Bargmann–Segal representation of the basis vectors (2.8) has no zeros
and the basis vectors are transformed into each other by the application of ĝ†, as one can
easily compute, every state whose Bargmann–Segal representation has no zeros, is, up to
normalization, a basis vector |n〉δ, n ∈ Z. In particular, the Husimi distribution of every
complexifier coherent state |z〉δ has at least one zero, in contrast to the situation for quantum
mechanics on the real line. Even more, since the Husimi distribution of a coherent state can,
with the definition (3.1), be written in terms of the third Jacobian-theta function (3.2),

ψ
z′,t
δ (z) := δ〈z′|z〉δ = e−δ2s2

ϑ3

(
2is2δ + z̄′ − z

2π
,

is2

π

)
, (4.32)

and the zeros of the theta function ϑ3(z, τ ) for fixed τ are known [34] to be

z0 = (
k + 1

2

)
+
(
m + 1

2

)
τ for all k,m ∈ Z, (4.33)

we immediately see that the Husimi distribution of the coherent states has even infinitely many
zeros.

As we have seen by (4.11), one needs considerably less effort to reconstruct the state by
the zeros of the Bargmann–Segal representation (and hence the Husimi distribution). Also,
these zeros for states on the circle behave quite differently than the ones for states on the real
line.

5. Semiclassical propagator

5.1. Semiclassical approximation

One of the most widely acknowledged properties of the harmonic oscillator coherent states is
the fact that they provide a gateway to semiclassical analysis of quantum mechanical systems
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on the real line. In particular, they can be used to approximate the propagator between coherent
states KR(zF , tF , zI , tI ) or position eigenstates KR(xF , tF , xI , tI ) (see, e.g. [22, 25–29] and
references therein). In this section, we will show that the coherent states presented in the
last sections can be used to calculate the propagator for quantum mechanical systems on the
circle in a semiclassical approximation in the same way. Although technically more elaborate,
there is not much conceptual difference between the following derivation and the one in
[22]. This will demonstrate that the U(1)-complexifier coherent states are in fact useful for a
semiclassical analysis. So, in what follows, we will compute the coherent state propagator

KS1(zF , τ, zI , 0) = δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ, (5.1)

since the propagators in the ‘angle’, momentum or any mixed representation can be derived
from it.

Although we are working with the semiclassical approximation of the propagator, an
exact expression can be written down for the particular case of the freely moving particle on
the circle. In ‘angle’ representation this free propagator has already been calculated in [23].
As a propagator between coherent states on the circle, this has been done and investigated in
[2, 24].

In what follows, we will perform the analysis not only for the case of the free particle, but
for arbitrary Hamiltonians, and will obtain the propagator in the semiclassical approximation.

We start with expanding the exponential. For large N, we have

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈ δ〈zF |

(
11 − i

τ

Nh̄
Ĥ

)N

|zI 〉δ. (5.2)

Using the completeness of the coherent states (3.22), we get

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈ 1√

πs2h̄2

∫
R

N+1
dpN . . . dp0

∫
[0,2π]N+1

dφN

2π
· · · dφ0

2π

×
N∏

k=0

[
exp

(
zk − z̄k

2s

)2
]

δ〈zF |zN 〉δδ〈z0|zI 〉δ

×
N−1∏
k=0

[
δ〈zk+1|zk〉d

(
11 − iτ

Nh̄
H(z̄k+1, zk)

)]
, (5.3)

where the function H defined by

H(w, z) := δ〈w̄|Ĥ |z〉δ
δ〈w̄|z〉δ (5.4)

is holomorphic in both variables.
With (3.11) we get

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈ 1

(s2h̄)N+1

√
π

s2

∫
R

N+1
dpN . . . dp0

∫
[0,2π]N+1

dφN

2π
· · · dφ0

2π

×
N∏

k=0

[
exp

(
zk − z̄k

2s

)2
]∑

n∈Z

exp

[
2π inδ −

(
z̄F − zN − 2πn

2s

)2
]

×
∑
n∈Z

exp

[
2π inδ −

(
z̄0 − zI − 2πn

2s

)2
]

×
N−1∏
k=0

∑
n∈Z

exp

[
2π inδ −

(
πn − z̄k+1 − zk − 2πn

2s

)2

− iτ

Nh̄
H(z̄k+1, zk)

]
,

(5.5)
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where (
11 − iτ

Nh̄
H(z̄k+1, zk)

)
≈ exp

(
− iτ

Nh̄
H(z̄k+1, zk)

)
(5.6)

has been used. With
N−1∏
k=0

(∑
n∈Z

f (n)

)
=
∑
n1∈Z

· · ·
∑
nN ∈Z

N−1∏
k=0

f (nk+1), (5.7)

formula (5.5) can be rewritten as follows:

δ〈zF |e− i
h̄
Ĥ τ |zI 〉δ ≈ 1

(s2h̄)N+1

√
π

s2

∫
R

N+1
dpN . . . dp0

∫
[0,2π]N+1

dφN

2π
· · · dφ0

2π

×
∑
n0∈Z

∑
n1∈Z

· · ·
∑

nN+1∈Z

exp[f (�n)(�̄z, �z)], (5.8)

where

f (�n)(�̄z, �z) = f (n0,...,nN+1)(z̄0, . . . , z̄N , z0, . . . , zN) (5.9)

is given by

f (n0,...,nN+1)(z̄0, . . . , z̄N , z0, . . . , zN) = 2π iδ

(
N+1∑
k=0

nk

)
+

N∑
k=0

(
zk − z̄k

2s

)2

−
(

z̄0 − zI − 2πn0

2s

)2

−
N−1∑
k=0

(
z̄k+1 − zk − 2πnk+1

2s

)2

−
(

z̄F − zN − 2πnN+1

2s

)2

− iτ

Nh̄

N−1∑
k=0

H(z̄k+1, zk). (5.10)

This formula can be simplified considerably by using the following property of f (�n)(�̄z, �z):
f (n0,...,nN+1)(z̄0, . . . , z̄k + 2π, . . . , z̄N , z0, . . . , zk + 2π, . . . , zN)

= f (n0,...,nk−1,nk+1+1,...,nN+1)(z̄0, . . . , z̄N , z0, . . . , zN), (5.11)

which can be readily seen from the explicit form (5.10) of f (�n)(�̄z, �z) and the fact that H is
periodic in both variables (5.4), since the coherent states are.

We then have∑
n0∈Z

∑
n1∈Z

∫
[0,2π]2

dφ1

2π

dφ0

2π
exp[f (n0,...,nN+1)(z̄0, . . . , z̄n, z0, . . . , zN)]

=
∑
n0∈Z

∑
n1∈Z

∫
[0,2π]2

dφ1

2π

dφ0

2π
exp[f (0,n1−n0,...,nN+1)(z̄0+2πn0, . . . , z̄n, z0+2πn0, . . . , zN)]

=
∑
n0∈Z

∑
n1∈Z

∫
[0,2π]2

dφ1

2π

dφ0

2π
exp[f (0,n1,...,nN+1)(z̄0 + 2πn0, . . . , z̄n, z0 + 2πn0, . . . , zN)]

=
∑
n1∈Z

∫
[0,2π]

dφ1

2π

∫
R

dφ0

2π
exp[f (0,n1...,nN+1)(z̄0, . . . , z̄n, . . . , zN)]. (5.12)

In the second step, we have used the invariance under shifting the summation index n1.
The trick used in (5.12) can now be carried on over all φk to transform the integrations over
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[0, 2π ] into integrations over R while getting rid of the summations. The last summation over
nN+1, however, cannot be eliminated this way, and one obtains

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈ 1

(s2h̄)N+1

√
π

s2

∑
n∈Z

∫
R

N+1
dpN . . . dp0

∫
R

N+1

dφN

2π
· · · dφ0

2π

× exp[f (0,0,...,0,n)(�̄z, �z)]. (5.13)

The integrand now takes a much simpler form

f (0,0,...,n)(�̄z, �z) = 2π inδ +
N∑

k=0

(
zk − z̄k

2s

)2

−
(

z̄0 − zI

2s

)2

−
N−1∑
k=0

(
z̄k+1 − zk

2s

)2

−
(

z̄F − zN − 2πn

2s

)2

− iτ

Nh̄

N−1∑
k=0

H(z̄k+1, zk). (5.14)

We are now able to perform the semiclassical approximation. It assumes that the main
part of the integral (5.13) comes from the stationary points of the integrand. These points are
characterized by the condition that the first derivative of (5.14) vanishes:

0 = ∂f (�0,n)

∂zk

= z̄k+1 − z̄k

2s2
− τ

N

i

h̄
∂2H(z̄k+1, zk), k = 0, . . . , N − 1

0 = ∂f (�0,n)

∂zN

= 2πn − z̄F + z̄N

2s2

0 = ∂f (�0,n)

∂z̄k+1
= zk − zk+1

2s2
− τ

N

i

h̄
∂1H(z̄k+1, zk), k = 0, . . . , N − 1

0 = ∂f (�0,n)

∂z̄0
= zI − z0

2s2
,

(5.15)

where we have used the notation

∂1H(w, z) = ∂H
∂w

(w, z), ∂2H(w, z) = ∂H
∂z

(w, z). (5.16)

Let the points where (5.15) are satisfied be called ( �̄w, �w).
Note that there may be more than one set of complex numbers satisfying (5.15) for every

N and n. This resembles the fact that there may be more than one classical trajectory from one
point on the circle to another with the fixed winding number. We will keep this in mind, but
refrain from introducing a special notation to keep track of the different paths, in order not to
overburden the formulae.

We now expand f (�0,n) up to second order:

f (�0,n)(�̄z, �z) ≈ f (�0,n)( �̄w, �w) +
1

2

∂2f (�0,n)

∂zk∂zl

( �̄w, �w)zkzl

+
∂2f (�0,n)

∂zk∂z̄l

( �̄w, �w)zkz̄l +
1

2

∂2f (�0,n)

∂z̄k∂z̄l

( �̄w, �w)z̄kz̄l . (5.17)

Inserting (5.17) into (5.13) enables us to evaluate the integral in (5.13) explicitly, for we
will have to deal with ordinary Gaussian integrals only. From (5.15), we can compute the
second derivatives of f (�0,n):
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∂2f (�0,n)

∂zk∂zl

= − τ

N

i

h̄
∂2

2H(z̄k+1, zk)δkl k, l = 0, . . . , N − 1,

∂2f (�0,n)

∂zN∂zk

= 0 k = 0, . . . , N,

∂2f (�0,n)

∂zk∂z̄l+1
= − 1

2s2
δk,l+1+

(
1

2s2
− τ

N

i

h̄
∂1∂2H(z̄k+1, zk)

)
δkl, k, l = 0, . . . , N − 1,

∂2f (�0,n)

∂zk∂z̄0
= − 1

2s2
δ0k k = 0, . . . , N,

∂2f (�0,n)

∂zN∂z̄k

= − 1

2s2
δ0N k = 0, . . . , N,

∂2f (�0,n)

∂z̄k+1∂z̄l+1
= − τ

N

i

h̄
∂2

1H(z̄k+1, zk)δkl k, l = 0, . . . , N − 1,

∂2f (�0,n)

∂z̄0∂z̄k

= 0 k = 0, . . . , N

.(5.18)

Inserting (5.17) and (5.18) into (5.13), we obtain

δ〈zF |e− i
h̄
Ĥ τ |zI 〉δ ≈

√
π

s2

1

(h̄s2)N+1

∑
n∈Z

ef (�0,n)( �̄w, �w)

∫
R

N+1
dpN . . . dp0

∫
R

N+1

dφN

2π
· · · dφ0

2π

× exp

[
−1

2

N−1∑
k=0

τ

N

i

h̄
∂2

2H(w̄k+1, wk)z
2
k − 1

2s2

N∑
k=0

zkz̄k

+
N−1∑
k=0

(
1

2s2
− τ

N

i

h̄
∂1∂2H(w̄k+1, wk)

)
zkz̄k+1

− 1

2

N−1∑
k=0

τ

N

i

h̄
∂2

1H(w̄k+1, wk)z̄
2
k+1

]
. (5.19)

For z = φ + ip/h̄, the Gaussian integral
1

2πh̄

∫
R

2
dφ dp exp(a1z

2 + a2z̄
2 + a3z̄z + b1z + b2z̄)

= 1

2

1√
a2

3 − 4a1a2

exp

(
a1b

2
2 + a2b

2
1 − a3b1b2

a2
3 − 4a1a2

)
(5.20)

is used to integrate successively over dφkdpk , starting with k = 0. From (5.19), we can read
off the parameters for this integration:

a1 = −1

2

τ

N

i

h̄
∂2

2H(w̄1, w0), a2 = 0 =: X0, a3 = − 1

2s2
,

b1 =
(

1

2s2
− τ

N

i

h̄
∂1∂2H(w̄1, w0)

)
z̄1, b2 = 0.

(5.21)

The integration yields (keeping X0 = 0)

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈

√
π

s2

1

(h̄s2)N+1
ef (�0,n)( �̄w, �w)

∫
R

N

dpN . . . dp1

∫
R

N

dφN

2π
· · · dφ1

2π

× 1√
1 + 8s4 τ

N
i
h̄
∂2

2 H(w̄1, w0)X0

exp

[(
1 − 2s2 τ

N
i
h̄
∂1∂2H(w̄1, w0)

)2
X0

1 + 8s4 τ
N

i
h̄
∂2

2 H(w̄1, w0)X0

]
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× exp

[
− 1

4s2
z2
N − 1

2

N−1∑
k=1

τ

N

i

h̄
∂2

2H(w̄k+1, wk)z
2
k − 1

2s2

N∑
k=1

zkz̄k

+
N−1∑
k=1

(
1

2s2
− τ

N

i

h̄
∂1∂2H(w̄k+1, wk)zkz̄k+1

)

− 1

2

N−1∑
k=0

τ

N

i

h̄
∂2

1H(w̄k+1, wk)z̄
2
k+1

]
. (5.22)

Now one can read off the next set of parameters a1, a2, a3, b1 and b2 to perform the
subsequent integration over dφ1dp1 according to (5.20). The final result is

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈

√
π

s2

∑
n∈Z

ef (�0,n)( �̄w, �w)

N−1∏
k=0

1√
1 + 8s4 τ

N
i
h̄
∂2

2H(w̄k+1, wk)Xk

, (5.23)

where Xk are determined by the following recursion relation:

X0 = 0

Xk+1 =
((

1 − 2s2 τ
N

i
h̄
∂1∂2H(w̄k+1, wk)

)2
Xk

1 + 8s4 τ
N

i
h̄
∂2

2 H(w̄k+1, wk)Xk

)
− 1

2

τ

N

i

h̄
∂2

1H(w̄k+1, wk).
(5.24)

5.2. The continuum limit

We now perform the limit N → ∞ in (5.23). The sequences w̄k, wk become functions
w̄(t), w(t) with t ranging from 0 to τ and conditions (5.15) turn into the Hamiltonian equations

ẇ = −2s2 i

h̄
∂1H(w̄, w), w(0) = zI

˙̄w = 2s2 i

h̄
∂2H(w̄, w), w̄(τ ) = z̄F − 2πn.

(5.25)

At this point, we encounter the same phenomenon that occurs in the case of the coherent
state propagator of ordinary quantum mechanics. Equations (5.25) are the Hamiltonian
equations for the system with the Hamiltonian H, and the boundary conditions fix the starting
point zI and the endpoint zF − 2πn in phase space. But the trajectory is already fixed by
initial condition, and a solution w(t) starting at w(0) = zI will most likely never go through
w(τ) = zF −2πn. The solution to this problem is as follows. One has to give up the condition
that w(t) and w̄(t) are to be complex conjugate to each other. Defining new variables

u := w, v := w̄, (5.26)

one can see that the integral (5.13) is complex analytic in u and v. Thus one can shift the
integration plane defined by u = v̄ to another plane, where (5.25) actually has solutions, but
u = v̄ is no longer guaranteed. Details can be found in [22]. This means that we have to solve
the following set of differential equations:

u̇ = −2s2 i

h̄
∂1H(v, u), v̇ = 2s2 i

h̄
∂2H(v, u) (5.27)

with boundary conditions

u(0) = zI , v(τ ) = z̄F − 2πn. (5.28)

Note that now the values of u(τ) and v(0) are not directly given by v(τ) and u(0), in
particular we do not, in general, have v(0) = u(0) and u(τ) = v(τ). Rather, v(0) and u(τ)
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have to be computed by solving (5.27), they can hence be understood as functions of the initial
conditions u(0) = zI and v(τ) = z̄F − 2πn.

We now investigate the continuum limit for the different factors in (5.23), starting with
the exponential

f (�0,n)(�v, �u) = 2πnδi +
N∑

k=0

(
uk − vk

2s

)2

−
N−1∑
k=0

[(
uk − vk+1

2s

)2

+
i

h̄

τ

N
H(vk+1, uk)

]

−
(

v0 − zI

2s

)2

−
(

z̄F − 2πn − uN

2s

)2

= 2πnδi +
N−1∑
k=0

[
vk+1 − vk

4s2
uk − vk+1

uk+1 − uk

4s2
− iτ

Nh̄
H(vk+1, uk)

]

−
(

v0 − zI

2s

)2

−
(

z̄F − 2πn − uN

2s

)2

+
v0(v0 − u0)

4s2
+

uN(uN − vN)

4s2
(5.29)

(N → ∞) = 2πnδi +
∫ τ

0
dt

[
v̇u − u̇v

4s2
− i

h̄
H(v, u)

]
−
(

v(0) − zI

2s

)2

−
(

z̄F − 2πn − u(τ)

2s

)2

+
v(0)(v(0) − zI )

4s2
+

u(τ)(u(τ) − z̄F + 2πn)

4s2
. (5.30)

We turn to the difference equation (5.24). As N → ∞, (5.24) becomes a differential
equation. We use the expansion (1 + bx)−1(1 − ax)2 = 1− (2a +b)x +O(x2). As N becomes
large, one eventually gets, up to O(N−2),

Xk+1 = Xk − Xk

(
4s2∂1∂2H(vk+1, uk) + 8s4∂2

2 H(vk+1, uk)Xk

) τ

N

i

h̄

− 1

2

τ

N

i

h̄
∂2

1H(vk+1, uk). (5.31)

As N → ∞, this becomes

Ẋ = −4s2X
i

h̄
∂1∂2H − 8s4X2 i

h̄
∂2

2 H − i

2h̄
∂2

1 H, (5.32)

with boundary condition

X(0) = 0. (5.33)

Furthermore, we get
N−1∏
k=0

1√
1 + 8s4 τ

N
i
h̄
∂2

2H(vk+1, uk)Xk

= exp

[
−1

2

N−1∑
k=0

ln

(
1 + 8s4 τ

N

i

h̄
∂2

2H(vk+1, uk)Xk

)]

= exp

[
N−1∑
k=0

(
−4

i

h̄
s4∂2

2H(vk+1, uk)Xk + O(N−2)
)]

(5.34)

(N → ∞) = exp

(
−4s4 i

h̄

∫ τ

0
dt ∂2

2H(v(t), u(t))X(t)

)
.

To solve the differential equations (5.32), we perturb the boundary data (5.27) around a
given solution v(t), u(t) of (5.27) via

ũ(0) = u(0) + δu(0), ṽ(τ ) = v(τ) + δv(τ ), (5.35)
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where one has to determine the difference of this solution with the original, i.e. the evolution
of the perturbations δu(t), δv(t). In first order of the perturbation this yields

δu̇ = −2is2∂2
1H(v, u)δv − 2is2∂1∂2H(v, u)δu

δv̇ = 2is2∂2
1H(v, u)δu + 2is2∂1∂2H(v, u)δv.

(5.36)

Defining now

X(t) := 1

4s2

δu(t)

δv(t)
, (5.37)

one then finds with (5.36):

Ẋ = 1

4s2

δu̇

δv
− 1

4

δu

(δv)2
δv̇

= − i

2h̄
∂2

1H(v, u) − i

h̄

δu

δv
∂1∂2H(v, u) − i

2h̄

(
δu

δv

)2

∂2
2H(v, u)

= − i

2h̄
∂2

1H(v, u) − 4s2 i

h̄
X∂1∂2H(v, u) − 8s4 i

h̄
X2∂2

2H(v, u). (5.38)

So this is—for every choice of boundary perturbation (5.35)—a solution of (5.32). The
boundary perturbations have to be chosen in a way to satisfy (5.33), which can easily be done
by choosing δu(0) = 0, i.e. by only perturbing v(τ).

With this knowledge, we are now able to rewrite factor (5.34) with the help of (5.36):

2s2 δu

δv

i

h̄
∂2

2H(v, u) = δv̇

δv
− 2s2 i

h̄
∂1∂2H(v, u), (5.39)

and therefore

exp

(
−4s4 i

h̄

∫ τ

0
dt X∂2

2H
)

= exp

(
− i

2h̄

∫ τ

0
dt

d

dt
ln δw̄ + s2 i

h̄

∫ τ

0
dt ∂1∂2H

)

=
√

δv(0)

δv(τ )
exp

(
s2 i

h̄

∫ τ

0
dt ∂1∂2H

)
. (5.40)

Combining results (5.29), (5.34) and (5.40), the limit N → ∞ of (5.23) becomes

δ〈zF | e− i
h̄
Ĥ τ |zI 〉δ ≈

√
π

s2

∑
n∈Z

e2π inδ

{√
δv(0)

δv(τ )

}
n

exp

{
s2 i

h̄

∫ τ

0
dt ∂1∂2H

}
n

× exp

{∫ τ

0
dt

(
v̇u − u̇v

4s2
− i

h̄
H(v, u)

)
−
(

v(0) − zI

2s

)2

−
(

z̄F − 2πn − u(τ)

2s

)2

+
v(0)

(
v(0) − zI

)
4s2

+
u(τ)

(
u(τ) − z̄F + 2πn

)
4s2

}
n

. (5.41)

Here the subscript n shall remind us of the fact that the propagator is a sum over all n,
where for each n the complex classical trajectory u(t), v(t) given by (5.27) is different: u starts
at zI and v ends at z̄F − 2πn. The function X(t) for each of these paths has to be computed
separately, and at the end all propagators for these paths have to be summed up, each one with
a phase e2π inδ .



Quantum mechanics on a circle 3979

As a consistency check we consider the case τ → 0. Then the solution of the Hamiltonian
equations (5.27) becomes trivial for every n ∈ Z, in particular u(t) = zI and v(t) = z̄F −2πn.
With this, (5.41) becomes√

π

s2

∑
n∈Z

e2π inδ
√

1 exp(0) exp

[
0 −

(
2πn + z̄F − zI

2s

)2

−
(

z̄F − 2πn − zI

2s

)2

+
(z̄F − 2πn)(z̄F − 2πn − zI )

4s2
+

zI (zI − z̄F + 2πn)

4s2

]
=
√

π

s2

∑
n∈Z

exp

[
2π inδ −

(
z̄F − 2πn − zI

2s

)2
]

= δ〈zF |zI 〉δ, (5.42)

which is the inner product of two coherent states (3.11).

5.3. The complex action

Like in [22], the prefactor with the square root in (5.41) can be rewritten in terms of a complex
action. We will do the same here and write, in accordance to [22], the boundary points of the
classical trajectories as

u′ := u(0) = zI , u′′ := u(τ)

v′ := v(0), v′′ := v(τ) = z̄F − 2πn.

Then we define the complex action to be

S(u′, v′′, τ ) :=
∫ τ

0
dt

[
ih̄

4s2
(u̇v − v̇u) − H(u, v)

]
− ih̄

4s2
(u′v′ + u′′v′′), (5.43)

where the independent variables in S are u′, v′′ and τ . The complex trajectories u(t) and v(t)

result from the variational principle with S as complex action and are hence functions of u′, v′′

and τ . Perturbing these variables, the variation of S is given by

δS(u′, v′′, τ ) =
∫ τ

0
dt

[(
ih̄

2s2
u̇ − ∂1H

)
δv −

(
ih̄

2s2
v̇ − ∂2H

)
δu

]
− ih̄

2s2
(v′δu′ + u′′δv′′) − H(u′′, v′′, τ )δτ. (5.44)

The integral vanishes, since the classical trajectories are defined by the solutions of
Hamilton’s equations (5.27). Hence we get

∂S

∂u′ = − ih̄

2s2
v′,

∂S

∂v′′ = − ih̄

2s2
u′′,

∂S

∂τ
= −H(u′′, v′′, τ ). (5.45)

The first equation of (5.45) shows that

∂2S

∂u′∂v′′ = − ih̄

2s2

δv′

δv′′ , (5.46)

and (5.41) can be rewritten in terms of the complex action S, which yields the final result for
the coherent state propagator (5.1) in the semiclassical approximation:

KS1(zF , τ, zI , 0) ≈
√

2π
∑
n∈Z

∑
ν

e2π inδ

√
h̄

i

∂2Sν

∂u′∂v′′ (zI , z̄F − 2πn, τ)

× exp

{
s2 i

h̄

∫ τ

0
dt ∂1∂2H

}
n,ν

× exp

{
i

h̄
Sν(zI , z̄F − 2πn, τ) − z2

I + (z̄F − 2πn)2

4s2

}
. (5.47)
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Here the sum over ν shall indicate that for each n there may be different complex paths
u and v satisfying (5.27) and (5.28). Each of them has to be computed separately and taken
into account in formula (5.47).

By comparing result (5.47) for the propagator KS1 on the circle with the coherent state
propagator KR for quantum mechanics on the real line [22], one readily sees

KS1(zF , τ, zI , 0) ∼
∑
n∈Z

e2πnδiKR(zF − 2πn, τ, zI , 0). (5.48)

This demonstrates that quantum mechanics on the circle is nothing but a periodic quantum
mechanic on the real line, but with a phase shift for each period. The proportionality factor
has to be chosen to ensure that both propagators are normalized correctly.

5.4. Angle representation

From formula (5.47) on can now obtain, for instance, the angle representation 〈φF | e− i
h̄
Ĥ τ |φI 〉

by convolution with the coherent states as functions of φ. We just state the final result:

〈φF | e− i
h̄
Ĥ τ |φI 〉 ≈

√
2π

s2

∑
n∈Z

∑
ν

e2π inδ 1√
(mqp)n,ν

× exp

{
s2 i

h̄

∫ τ

0
dt δH(φ, p)

}
n,ν

exp

{
i

h̄

∫ τ

0
dt

φ̇p

s2
− H(φ, p)

}
n,ν

, (5.49)

with

H(φ, p) = δ〈φ + ip/h̄|Ĥ |φ + ip/h̄〉δ
δ〈φ + ip/h̄|φ + ip/h̄〉δ . (5.50)

The integrals in (5.49) have to be taken over the solutions of the classical trajectories
satisfying

φ̇ = 2s2 ∂H
∂p

(φ, p) , ṗ = −2s2 ∂H
∂φ

(φ, p)

φ(0) = φI , φ(τ) = φF − 2πn,

(5.51)

and mqp is an entry of the tangent matrix [22] that can be computed from the complex action
(5.43). The additional index ν indicates that, as already mentioned, even for paths with fixed
n, there may be more than one classical trajectory satisfying (5.51). If there is, all have to
be taken into account. In the angle representation, the sum over n has a nice interpretation.
On a circle, a particle can go from φI to φF in infinitely many ways: the different paths can
all differ by their relative winding number. The parameter δ determines the phase shift the
particle acquires by ‘going round the circle’. All these paths contribute to the propagator,
each one with an additional factor of e2π inδ . This demonstrates the fact that the motion of a
quantum mechanical particle depends on the global topology of the space it is moving in. The
propagator (5.49) takes all these paths into account correctly.

The mathematical realization of this becomes more transparent, when comparing (5.49)
to the result for the propagator on the real line [22]:

KS1(φF , τ, φI , 0) ∼
∑
n∈Z

e2π inδKR(φF − 2πn, τ, φI , 0). (5.52)

Like in (5.48), the proportionality factor has to be chosen to normalize both propagators
correctly.
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6. Summary and conclusion

A brief overview of the complexifier coherent states for quantum mechanics on the circle
has been given, summarizing the results from various authors. Furthermore, it was shown
that these states are useful for semiclassical analysis, by considering the Bargmann–Segal
representation and the semiclassical propagator.

The Bargmann–Segal representation, from which the Husimi distribution can be defined,
shows significant differences compared to the one for quantum mechanics on the real line.
Periodicity of the system restricts the possible forms of the phase-space wavefunctions ψδ(z).
In particular, apart from the zeros of ψδ(z), the state is completely determined by the choice
of normalization and an additional integer. This is in contrast to the situation on the real
line, where, apart from the zeros of the phase-space wavefunction ψ(z), one has to specify
normalization and two arbitrary complex coefficients to reconstruct the state. Furthermore,
on the real line, the coherent states are the only states whose Husimi distribution has no zeros
at all. On the circle, the eigenvectors |n〉δ of the momentum operator p̂ are the only vectors
whose Husimi distribution is without zeros. This demonstrates the qualitatively different
behaviour of the two kinds of coherent states, which results from the different topologies of
phase space.

The semiclassical propagator for the complexifier coherent states was derived. The result
is the infinite sum over coherent state propagators on the real line, each one evaluated for a
path with a different winding number. Also, each of the single propagators acquires a phase
which is determined by the parameter δ of the representation. This shows the influence of
the global phase-space topology on the motion of a quantum mechanical particle. In contrast
to the real line, a wavefunction moving on a circle can interfere with itself because of the
non-simply connected configuration space. The result also illustrates the physical meaning of
the representation parameter δ: it determines the phase shift the wavefunction acquires when
moving around the circle. The parameter δ can be chosen according to the problem at hand
and has to be taken into account when computing the coherent state propagator.

These results show that the complexifier coherent states for G = U(1) are in principle
as useful for a semiclassical analysis of periodic systems as the harmonic oscillator coherent
states are for systems on the real line.
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Appendix A. Hadamard decomposition of the sine

In this section, we will prove formula (4.15). We start by noting that the sine function is of
first order: ∣∣∣∣sin

z − a

2

∣∣∣∣ � exp

(
1

2
|a| +

1

2
|z|
)

. (A.1)

So, the function z �→ sin z−a
2 can, according to the Hadamard decomposition, be written

[33] in the following way:
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sin
z − a

2
= eC0+C1z

∏
n∈Z

(
1 − z

a + 2πn

)
exp

( z

a + 2πn

)
= eC0+C1z

(
1− z

a

)
e

z
a

∞∏
n=1

(
1− z

a+2πn

)(
1− z

a−2πn

)
exp

(
z

a+2πn
+

z

a−2πn

)

= eC0+C̃1z
(

1 − z

a

) ∞∏
n=1

(
1 − z

a + 2πn

)(
1 − z

a − 2πn

)
, (A.2)

with

C̃1 := C1 +
1

a
+

∞∑
n=1

2a

a2 − 4π2n2
. (A.3)

By setting z = 0, one gets the condition eC0 = −sin a
2 , and from the anti-periodicity of

the sine,

−1 = sin z+2π−a
2

sin z−a
2

= e2πC̃1
∏
n∈Z

1 − z+2π
a+2πn

1 − z
a+2πn

= e2πC̃1 lim
N→∞

N∏
n=−N

a + 2π(n − 1) − z

a + 2πn − z

= e2πC̃1 lim
N→∞

a − 2π(N + 1) − z

a + 2πN − z

= −e2πC̃1 . (A.4)

Thus, e2πC̃1 = 1 and C̃1 = ik, with k being an integer. This means that

sin
z − a

2
= −sin

a

2
eikz

(
1 − z

a

) ∞∏
n=1

(
1 − z

a + 2πn

)(
1 − z

a − 2πn

)
. (A.5)

We will now show that k is actually zero. To achieve this, we set z = 2a, and obtain

sin
a

2
= sin

a

2
e2ika

∞∏
n=1

(
1 − 2a

a + 2πn

)(
1 − 2a

a − 2πn

)
, (A.6)

and therefore

e−2ika =
∞∏

n=1

(
1 − 2a

a + 2πn

)(
1 − 2a

a − 2πn

)

=
∞∏

n=1

2πn − a

2πn + a

−2πn − a

a − 2πn
= 1, (A.7)

which immediately shows that, if k 	= 0, a = πm/k for some m ∈ Z. But then the function
z �→ sin z−a

2 is real for z ∈ R, which, as can be seen by (A.5), is only possible for k = 0. So
we have

sin
z − a

2
= −sin

a

2

(
1 − z

a

) ∞∏
n=1

(
1 − z

a + 2πn

)(
1 − z

a − 2πn

)
(A.8)

which is formula (4.15).
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Appendix B. Proof of a technical lemma

In this section, the proof of lemma 4.1 will be delivered.
Let {ak} be a sequence in ([0, 2π) × iR)\{0} of order 1. Let νk := sgn Im ak be the sign

of the imaginary part of ak (with sgn 0 := 1). Then∏
k

[
−exp

(
π cot

ak

2

)]
= exp

[∑
k

π
(

cot
ak

2
+ νki

)]
. (B.1)

Proof. We would like to employ the formula∏
k

fk = exp

[∑
k

ln fk

]
. (B.2)

To use this formula for complex numbers fk , one has to select a branch cut of the
logarithm. The particular choice of the cut results in different imaginary parts of (some of the)
ln fk , differing by an integer multiple of 2π i. The exponential of these different ln fk hence
is the same for all choices of branch cut, which means that (B.2) is valid for every choice of
branch cut of the logarithm. In the following, we choose the cut on the negative real axis, i.e.

ln exp (ix) =



...

ix + 2π i x ∈ (−3π,−π ]
ix x ∈ (−π, π ]
ix − 2π i x ∈ (π, 3π ]

...

. (B.3)

So, we have to compute ln(−exp(π cot ak/2)). The result crucially depends on the
imaginary part of αk , so we need to keep track of it. �

Since the sequence {ak}k is of order 1, it has no accumulation points. So, since ak ∈
[0, 2π) × iR, there is only a finite number of ak with a fixed real part. Thus we can order the
sequence {ak}k by ascending imaginary part, i.e.

Im ak � Im al ⇔ k < l. (B.4)

The number of ak can be finite or infinite, which leaves three possibilities. The index k
ranges from −∞ to 0, from 0 to ∞, or from −∞ to ∞, depending on the distribution of the
ak over the strip. We will concentrate on the last of these four cases, which is the most general
one. The argument for the other three cases runs along similar lines.

So, the ak go to i∞ for k → ∞ and to −i∞ for k → ∞. Since Re ak ∈ [0, 2π), we have

lim
k→±∞

Im cot
ak

2
= ∓1, (B.5)

which follows from the properties of the cotangent. So there are N,M ∈ Z such that

Im cot
ak

2
∈
(

1

2
,

3

2

)
, Im ak < 0 for all k < N, (B.6)

Im cot
ak

2
∈
(

−3

2
,−1

2

)
, Im ak > 0 for all k > M. (B.7)



3984 B Bahr and H J Korsch

Hence, with the definition of the logarithm (B.3), we have

ln
[
−exp

(
π cot

ak

2

)]
=


π cot

ak

2
− iπ, k < N

π cot
ak

2
+ iπ, k > M.

(B.8)

This means that, with νk := sgn Im ak ,:

ln

[
−exp

(
π cot

ak

2

)]
= π

(
cot

ak

2
+ iνk

)
, (B.9)

for all k, up to finitely many exceptions. So, there is an integer K ∈ Z, such that∑
k∈Z

ln

[
−exp

(
π cot

ak

2

)]
=
∑
k∈Z

π

(
cot

ak

2
+ iνk

)
+ 2π iK. (B.10)

From this it follows immediately that∏
k∈Z

[
−exp

(
π cot

ak

2

)]
= exp

∑
k∈Z

ln

[
−exp

(
π cot

ak

2

)]

= exp

[∑
k

π

(
cot

ak

2
+ νki

)
+ 2π iK

]
= exp

∑
k

π

(
cot

ak

2
+ νki

)
, (B.11)

as claimed in the lemma.
Note that the lemma stays true, of course, if one replaces νk = sgn Im ak by any other

sequence ν̃k ∈ {±1,±3,±5, . . .}, that differs from νk at not more than finitely many ks. Only
the sum is shifted by an integer multiple of 2π i, which does not show up in the exponential.

But in the case of infinitely many aks, the choice of the νk = sgn Im ak (up to finitely
many exceptions) is important for the sum to converge, that is, one is not allowed to change
the νk at more that finitely many ks, in order for the sum

∑
k π

(
cot ak

2 + νki
)

to exist at all.
The proof that the sum then actually converges rests on the fact that the sequence {ak} is of
order 1.

The lemma is only true if we define the sign of 0 to be either 1 or −1. For real ak , for
which the imaginary part of cot ak/2 vanishes, one has

ln
[
−exp

(
π cot

ak

2

)]
= π

(
cot

ak

2
± i

)
, (B.12)

the sign depending on the particular choice of the branch cut. So, for real ak , one has to have
either νk = +1 of νk = −1, although sgn Im ak = 0. Thus, we adjust the definition of the
sign of 0 to be +1, and with this definition the lemma is thoroughly true. Since there are only
finitely many real ak , we could have chosen the sign of 0 to be −1 as well, for the reasons
stated above.
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