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1Centrum Astronomiczne im. M. Kopernika, Bartycka 18, 00-716 Warszawa, Poland
2Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany
3Department of Physics, University of Durham, Durham DH1 3LE
4Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego, Orla 171, 30-244 Kraków, Poland
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ABSTRACT
We perform a comprehensive analysis of the superorbital modulation in the ultracompact

X-ray source 4U 1820–303, consisting of a white dwarf accreting on to a neutron star. Based

on RXTE data, we measure the fractional amplitude of the source superorbital variability (with a

∼170-d quasi-period) in the folded and averaged light curves, and find it to be by a factor of ∼2.

As proposed before, the superorbital variability can be explained by oscillations of the binary

eccentricity. We now present detailed calculations of the eccentricity-dependent flow through

the inner Lagrangian point, and find a maximum of the eccentricity of �0.004 is sufficient to

explain the observed fractional amplitude. We then study hierarchical triple models yielding

the required quasi-periodic eccentricity oscillations through the Kozai process. We find the

resulting theoretical light curves to match well the observed ones. We constrain the ratio of

the semimajor axes of the outer and inner systems, the component masses and the inclination

angle between the inner and outer orbits. Last but not least, we discover a remarkable and

puzzling synchronization between the observed period of the superorbital variability (equal to

the period of the eccentricity oscillations in our model) and the period of the general-relativistic

periastron precession of the binary.

Key words: accretion, accretion discs – binaries: general – stars: individual: 4U 1820–303 –

globular clusters: individual: NGC 6624 – X-rays: binaries – X-rays: stars.

1 I N T RO D U C T I O N

4U 1820–303 is one of the most remarkable low-mass X-ray bina-

ries. This ultracompact binary consists of an M2 = (0.06–0.08) M�
He white dwarf secondary (Rappaport et al. 1987, hereafter R87)

accreting via Roche lobe overflow on to a neutron star (of the mass

M1). Its binary period is as short as P1 � 685s (Stella, Priedhorsky

& White 1987; Anderson et al. 1997). A likely scenario for the for-

mation of 4U 1820–303 appears to be a direct collision of a neutron

star and a giant (Verbunt 1987; Ivanova et al. 2005) in its parent

globular cluster NGC 6624. This resulted in a binary consisting of

the neutron star and the stripped giant core, which then cooled down

to the present relatively degenerate state (R87). The secondary has

to have a very low H abundance in order to fit its Roche lobe (R87),

and the occurrence of type I X-ray bursts implies that it cannot

be made of elements heavier than He. Interestingly, 4U 1820–303

was the first X-ray burster identified with a known X-ray source

�E-mail: aaz@camk.edu.pl (AAZ); lwen@aei.mpg.de (LW);

Marek.Gierlinski@durham.ac.uk (MG)

(Grindlay et al. 1976). The most likely distance to the source ap-

pears to be 7.6 ± 0.4kpc (Kuulkers et al. 2003), as discussed in a

companion paper (Zdziarski et al. 2007, hereafter Z07).

The accretion occurs as a consequence of the loss of the angu-

lar momentum of the binary via emission of gravitational radiation

(Paczyński 1967), as proposed for this system by Stella et al. (1987)

and Verbunt (1987), and calculated in detail by R87. The implied

present mass-loss rate from the secondary (R87; see Section 3 be-

low) is completely compatible with that corresponding to the aver-

age isotropic bolometric luminosity measured from the Rossi X-ray
Timing Explorer (RXTE) data by Z07. This provides a strong sup-

port for this accretion model. The present phase of the high-mass

transfer started only ∼106 yr ago and may be sustained only for

∼3 × 106 yr (R87).

The 685-s period was discovered in X-rays as a modulation with

a ∼2–3 per cent peak-to-peak amplitude (Stella et al. 1987). The

period is very stable, with a low Ṗ1/P1 = (−3.5 ± 1.5) × 10−8 yr−1

(Chou & Grindlay 2001, hereafter CG01), which makes it certain it

is due to the binary motion. The modulation was proposed to be due

to the obscuration of the X-ray source by a structure at the edge of

the accretion disc. A stronger modulation in the UV was predicted
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by Arons & King (1993), and subsequently discovered by Anderson

et al. (1997), with P1 = 687.6±2.4 s and a 16 per cent peak-to-peak

amplitude.

The most unusual feature of 4U 1820–303 appears to be the

luminosity variation by a factor of �2 at a (superorbital) period

of P3 � 170 d (Priedhorsky & Terrell 1984; Smale & Lochner

1992; CG01; Šimon 2003; Wen et al. 2006, hereafter W06). CG01

found the modulation is stable with P3 = 171.0 ± 0.3 d and

|Ṗ3/P3| < 2.2 × 10−4 yr−1 based on data from 1969 to 2000. W06

found P3 = 172 ± 1 d based on 8.5 yr of RXTE All Sky Moni-

tor (ASM) data. The fact that X-ray bursts take place only at the

flux minima (Cornelisse et al. 2003; Z07) proves that the observed

variability is due to intrinsic luminosity/accretion rate changes and

not due to, for example, obscuration or changes of the projected

area of the source due to precession. This is further supported by

strong correlations between the observed flux and the source spec-

tral state, varying with the flux in a way typical of atoll-type neu-

tron star binaries (Bloser et al. 2000; Gladstone, Done & Gierliński

2007), and between the frequency of kHz QPOs observed from

the source and the flux (Zhang et al. 1998; van der Klis 2000).

The source was classified as an atoll by Hasinger & van der Klis

(1989).

The intrinsic, accretion-rate related, character of the long-term

periodic flux changes in 4U 1820–303 is unique among all sources

showing superorbital variability. In other cases, such changes of the

observed flux appear compatible with being caused by accretion disc

and/or jet precession, which either results in variable obscuration of

emitted X-rays as in Her X-1 (Katz 1973), or changes the viewing

angle of the presumed anisotropic emitter, as in SS 433 (Katz 1980)

or Cyg X-1 (e.g. Lachowicz et al. 2006), or both. However, that

precession keeps the inclination angle of the disc with respect to

the orbital plane constant, and thus it cannot change the accretion

rate (or the luminosity). Also, the ratio between the superorbital

and orbital periods is �2.2 × 104, which is much higher than that

possible to obtain from any kind of disc precession at the mass ratio

of the system (e.g. Larwood 1998; Wijers & Pringle 1999). This

appears to rule out also models which would attempt to explain

the variable accretion rate by a varying disc inclination angle (with

respect to the orbital plane).

In order to explain the long-term periodic variability of the ac-

cretion rate, CG01 proposed a hierarchical triple stellar model, in

which a distant tertiary exerts tidal forces on the inner binary. This

results in a cyclic exchange of the angular momentum between the

inner system and the tertiary (Kozai 1962; Lidov & Ziglin 1976;

Mazeh & Shaham 1979; Bailyn & Grindlay 1987; Ford, Kozinsky

& Rasio 2000, hereafter F00; Blaes, Lee & Socrates 2002; Wen

2003, hereafter W03). The period of the resulting evolution of the

parameters of the system is ∼P2
2/P1, where P2 is the orbital period

of the tertiary, implying P2 ∼ 1 d. The variable system parameter

relevant here is the eccentricity, e1, of the inner system, which causes

changes of the distance between the inner Lagrange point, L1, and

the centre of mass of the secondary. This in turn changes the rate of

the flow through L1 and the accretion rate. The mass of the tertiary

has been constrained by CG01 as M3 � 0.5 M� based on the lack of

its optical detection. We note that this constraint assumes the third

body is a main-sequence star; if it is a white dwarf or a neutron

star, M3 � 1.4 M�. (Still, the third star is most likely on the main

sequence, which we assume hereafter.) However, no specific calcu-

lations of the proposed triple system, for example, of the maximum

e1 from modelling the variable rate of the flow through the L1 point,

or of the system parameters from modelling gravitational evolution

of the system, have been done yet.

Here, we first analyse the RXTE ASM monitoring data and the

Proportional Counter Array (PCA) scanning data, and use them to

quantify the source X-ray variability. We then present calculations

on the dependence of the accretion rate through L1 on the eccentric-

ity, which yields the maximum e1 required to reproduce the observed

amplitude of the superorbital variability. Then, we model evolution

of hierarchical triple stellar systems, and reproduce the ∼170-d pe-

riod and the maximum eccentricity implied by the L1-flow model.

Our results put constraints on the masses of the system component,

the inclination between the inner and outer orbits, and the ratio be-

tween its semimajor axes. We also report a discovery of a remarkable

synchronization between the superorbital period and the period of

the relativistic periastron precession of the binary.

2 T H E DATA

Fig. 1 shows the long-term light curve of 4U 1820–303 from the

RXTE ASM (1996 January 1 to 2007 February 20). For the clarity of

display, we have averaged some adjacent 1-d measurements in order

to achieve the minimum significance of 3σ of the plotted count rate.

We clearly see the cyclic variations of the count rate on the ∼170-d

quasi-period with a large relative amplitude. The vertical lines show

the predicted minima according to the ephemeris of equation (9) of

CG01. Using the Lomb–Scargle periodogram (Lomb 1976; Scargle

1982), we find that the present (daily averaged) ASM data yield

P3 = 170.6 ± 0.3 d, compatible with the periods of CG01 and of

W06.

Fig. 2(a) shows the ASM light curve folded on the ephemeris of

CG01, as well as the folded light curve averaged over 10-phase bins.

We see that while the daily measurements span a factor of �10, the

averaged light curve varies over the superorbital period spanning a

factor of �2.

We also use the available Galactic bulge scan data1 from the

RXTE PCA detector for the time interval of 1999 February 5 to 2006

October 30. Fig. 2(b) shows the count rate from those measurements

folded, and folded over the superorbital ephemeris. We also show

the count rate folded and averaged over 10 phase bins. Similarly to

the ASM data, we see that while the individual measurements of the

count rate span a factor of �10, the averaged light curve varies over

the superorbital period spanning a factor of �2. We stress, however,

that the variability is not strictly periodic, and P3 represents only a

quasi-period. Therefore, folding and averaging over a single period

value results in some suppression of the actual average superorbital

variability. With that caveat, we attribute the changes of the aver-

age flux within the factor of �2 to a relative stable quasi-periodic

process (Sections 3–4), and the remaining variability to some ape-

riodic processes, in particular those operating in other atoll sources.

We also assume that the ASM and PCA count rate variability re-

flects that of the accretion rate, and assume hereafter its superorbital

variability consists of variations within (0.7–1.4)〈−Ṁ2〉.
Z07 have, in addition, analysed available PCA and High En-

ergy X-Ray Timing Experiment (HEXTE) pointed observations of

4U 1820–303. Using a physically motivated spectral model, they

have estimated the bolometric flux from the source for each obser-

vation. The resulting light curve, when folded over the ephemeris, is

very similar to those of Fig. 2. In particular, the fractional variabil-

ity of the folded/averaged light curve is also found to be ∼2. Since

the bolometric flux is highly likely to be proportional to the rate of

1 http://lheawww.gsfc.nasa.gov/users/craigm/galscan/html/4U 1820-

30.html

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 1006–1016



1008 A. A. Zdziarski, L. Wen and M. Gierliński

Figure 1. The RXTE/ASM light curve based on 1-d average measurements. The vertical lines show the minima of the superorbital cycle according to the

ephemeris of CG01. Note departures of the ASM minima from the predicted dates up to ∼50 d in some cases, as well as secondary minima (see also Šimon

2003). The solid curve presents our theoretical model of Sections 3–4.

Figure 2. (a) The ASM light curve of Fig. 1 folded on the superorbital

ephemeris of CG01. (b) The folded light curve for the PCA Galactic bulge

scan data (see Section 2). On each panel, the histogram shows the light

curve averaged over 10-phase bins, and the solid curve shows the theoretical

model of Sections 3 and 4 (based on the second cycle of Fig. 4a) fitted to the

averaged data.

accretion on to a neutron star, that result confirms that the super-

orbital range of −Ṁ2 is indeed within a factor of ∼2, as adopted

above.

3 T H E M A S S F L OW T H RO U G H T H E I N N E R
L AG R A N G I A N P O I N T

Here, we calculate the dependence of the rate of the Roche lobe

overflow (assumed to equal the accretion rate) on the eccentricity.

For that, we follow classical results on the Roche flow, expressing

Ṁ2 as the product of the density and the sound speed at the inner

Lagrangian point, L1, times an effective area of the flow. The position

of the L1 varies with the orbital phase in an eccentric orbit, yielding

a varying Ṁ2. This yields the orbit-averaged Ṁ2 as a function of the

eccentricity, e1. This in turn allows us to determine the maximum

eccentricity, emax, required to enhance Ṁ2(e) by the factor of 2

inferred above from the varying Fbol, assuming that the minima of

the superorbital cycle correspond to the e1 minimum of e0 � 0.

We first briefly estimate the parameters of the inner binary. We

assume that the white dwarf fills its Roche lobe. Then, we com-

bine the volume-averaged Roche lobe radius for M2/M12 � 0.8 of

Paczyński (1971),

R2

a1

= 2

34/3

(
M2

M12

)1/3

, (1)

with the Kepler law,

a3
1 = G M12

P2
1

4π2
, (2)

where G is the gravitational constant, a1 is the semimajor axis, and

M12 = M1 + M2. This yields the relation

P1 = 9π

21/2

R3/2
2

(G M2)1/2
. (3)

We then use the mass–radius relation for cold, low-mass stars of

Zapolsky & Salpeter (1969, as fitted in R87), and assume pure He

and the radius equal that of the fully degenerate configuration times

a factor, fd. For f d = 1.1 ± 0.1 (R87), M2 � 0.067+0.010
−0.010 M� and

R2 � 2.19+0.10
−0.11 × 109 cm, where the lower and upper limits corre-

spond to f d = 1 and 1.2, respectively. Hereafter, we assume f d = 1.1,
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for which the above M2 and R2 correspond to a He model of Deloye

& Bildsten (2003) (who has calculated the mass–radius relation for

white dwarfs of arbitrary degeneracy2) with the core temperature of

�107 K and the core density of �104.2 g cm−3. We note that for a

star approximated by an n = 3/2 polytrope (Chandrasekhar 1939),

we have

R2 � 0.0128(1 + X )5/3

(
M2

M�

)−1/3

R� (4)

(where X is the H mass fraction), which expression combined with

equation (3) at X = 0 yields M2 � 0.067 M� and R2 � 2.19 ×
109 cm, the values identical to those above for f d = 1.1. Then a1 �
1.29 × 1010 (M12/1.35 M�)1/3 cm, where we used M12 = 1.35 M�
corresponding to the presence of the resonance implied by equa-

tion (38) below, which then yields M1 � 1.28 M�.

For those parameters, and assuming negligible effects of a possi-

ble outflow, equation (17) of R87 yields the average mass transfer

rate of 〈−Ṁ2〉 � 3.5+1.1
−0.9 × 1017 g s−1 (where the lower and upper

limits correspond to f d = 1, 1.2, respectively). This rate is fully com-

patible with the accretion rate, �(3.3 ± 0.1) × 1017 g s−1 (where the

error is statistical only), corresponding to the average bolometric

flux measured using the pointed RXTE PCA/HEXTE observations,

〈Fbol〉 � (8.7 ± 0.2) × 10−9erg cm−2 s−1 (Z07) at D = 7.6kpc

and an accretion efficiency of 0.2. Using M1 = 1.4 M� increases

the above theoretical rate by ∼0.2 × 1017 g s−1. In our numerical

estimates below, we use M1 = 1.28 M�, M2 = 0.07 M�, R2 = 2.2

× 109 cm, and the corresponding 〈−Ṁ2〉 = 4 × 1017 g s−1.

The distance, R0, between the centre of the white dwarf and the

L1 point at e1 = 0, is given by the solution of

(1 − x)−2 − (1 − x) = M2

M1

(x−2 − x), (5)

where x ≡ R0/a1, which yields R0 � 0.237a1 � 3.05 × 109 cm. In

an elliptical orbit, the separation between the stars at a given orbital

angle, φ (measured with respect to the periastron), is given by,

s1 = a1

(
1 − e2

1

)
1 + e1 cos φ

, (6)

and the angular velocity is

dφ

dt
= 2π

P1

(1 + e1 cos φ)2

(1 − e2
1)3/2

. (7)

At e1 	 1, the L1 distance is proportional to the separation, that is,

it equals R0 + d′, where

d ′

R0

� −e1

e1 + cos φ

1 + e1 cos φ
, (8)

which changes between −e1 and e1. (See Brown & Boyle 1984, for

an expression valid at large e1.)

The rate of the Roche lobe overflow can be generally written as

(e.g. Savonije 1983),

−Ṁ2 = Aρcs, (9)

whereA is an effective area of the flow, ρ and cs are the mass density

and the isothermal sound speed, cs = (kT/μmH)1/2, respectively, at

L1, and μ is the mean molecular weight. Thus, Ṁ2 depends on the

2 We note that for a cold, fully degenerate, white dwarf with the parameters

relevant to 4U 1820–303, the model of Deloye & Bildsten (2003) gives

somewhat lower radii than that of Zapolsky & Salpeter (1969).

depth of the L1 point within the donor star, d. It can be shown by

expanding the effective gravitational potential around L1 that

A � P2
1

2π

G M2

R2
0

d, (10)

(Savonije 1983). (Note that distinguishing here between the radius of

the L1 point, R0, and the volume-averaged radius of the star filling the

Roche lobe, R2, would require much more complex treatment of the

flow than that adopted here.) Paczyński & Sienkiewicz (1972) find

that in the polytropic case −Ṁ2 ∝ d1.5+n , where n is the polytropic

index (which can be shown to follow from equations 9 and 10). If we

neglect for a while the illumination of the white dwarf by the X-ray

source, the relevant index would be n = 3.25 of the (non-degenerate)

surface layers of the white dwarf (Schwarzchild 1958). Then, the

orbital-angle dependent accretion rate in an elliptical orbit can be

written as

−Ṁ2(φ, e1)

Ṁ0

�
[

max(d0 − d ′, 0)

d0

]4.75

, (11)

where d0 and Ṁ0 are the depth of the L1 point and the accretion rate,

respectively, at e1 = 0 (and d = d0 − d′). Hereafter, we assume that

the minimum of the average light curve (see Fig. 2) corresponds to

e1 = 0, that is, Ṁ0 = 0.7〈−Ṁ2〉 (see Section 2).

For the assumed white dwarf parameters and the core temperature

of 107 K (for the model of Deloye & Bildsten 2003; see above), we

can calculate the intirinsic white dwarf luminosity (equation 4.1.11

of Shapiro & Teukolsky 1983). For the metal abundance of Z ∼
0.01 of NGC 6624 given by Rich, Minniti & Liebert (1993), μ =
4/3 for ionized He, and the (very approximate) Kramers’ opacity

of Schwarzschild (1958), we find that luminosity to be �10−3 L�.

Using the above values, we then use the photon diffusion equation,

hydrostatic equilibrium, and the equation of state and solve for the

profiles of T(d), ∝ d and ρ(d), ∝ d3.25, of the non-degenerate white

dwarf surface layer (Schwarzschild 1958; section 4.1 of Shapiro &

Teukolsky 1983). Then we find from equations (9) and (10) that

d0 ∼ 1.64 × 10−3R0. At this d0, T � 1.9 × 105 K and ρ � 7.0 ×
10−7 g cm−3. Note that d0 is much less than the calculated thickness

of the surface layer, �0.01R0, below which the electrons become

partly degenerate at the interior temperature of �107 K.

The accretion rate averaged over the orbital period is

Ṁ2(e1) =
(

1 − e2
1

)3/2

2π

∫ 2π

0

Ṁ2(φ, e1)

(1 + e1 cos φ)2
dφ. (12)

Note that since this rate is averaged over time, a factor of dt/dφ,

equation (7), appears in the integral over φ. We will also use a

dimensionless accretion rate,

ṁe ≡ −Ṁ2(e1)

Ṁ0

. (13)

We find that a very low emax � 8 × 10−4 is sufficient to increase −Ṁ2

by a factor of 2. Fig. 3(a) shows −Ṁ2(φ, e1)/Ṁ0 of equation (11) at

this value of e1. Fig. 3(b) shows the ṁe of this model. Both the strong

changes of the accretion rate over an orbit and the fast increase of

the orbit-averaged rate with e1 are due to the very fast increase of

the product ρ cs d with d, ∝ d4.75, in the surface layer of the white

dwarf (see above). We note that we have used here the structure

of an isolated white dwarf, while the gravitational field close to L1

is affected by the gravity of the neutron star. This would flatten

the density profile and lead to a requirement of a somewhat higher

emax.

Moreover, the white dwarf is very close to the X-ray source, and

thus it is irradiated. Irradiation could be avoided if the accretion disc

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 1006–1016
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Figure 3. (a) The dashed and solid curves show the orbital phase dependence

of the accretion rate for the model without irradiation at e1 = 8 × 10−4 and

d0/R0 = 1.64 × 10−3, equation (11), and with irradiation at e1 = 4 ×
10−3 and H0/R0 = 2.3 × 10−3, equation (16), respectively. The periastron

corresponds to φ = 0. In both cases, ṁe � 2, illustrating the orbital phase

dependence of Ṁ2 at the respective emax required to explain the superorbital

cycle of 4U 1820–303. See equation (7) for dφ/dt (almost constant at e1 	
1). (b) The dashed and solid curves show the orbit-averaged accretion rate

as function of e1 for the two above models, respectively.

was strongly flared and obscured the white dwarf from the X-ray

source. However, the observed strong orbital modulation in the UV

(Anderson et al. 1997) is well explained by reprocessing of X-rays

by the white dwarf (Arons & King 1993), which interpretation rules

out strong flaring. Thus, we consider now the case with irradiation

of the white dwarf.

The white dwarf subtends the solid angle �πR2
2/a2

1, which, for

our binary parameters, is �7.3 × 10−34π. For the 〈Fbol〉 of Z07

(see above) and an albedo of 0.5 (e.g. Anderson 1981; London,

McCray & Auer 1981), the white dwarf receives ∼2.2 ×
1035(D/7.6 kpc)2 erg s−1, that is, several orders of magnitude more

than its possible intrinsic luminosity. The absorbed flux per unit

area at a mid-point of the white dwarf (at ∼ a1 − r0/2 from

the neutron star) varies then in the range Firr � (0.9–1.8) ×
1016(D/7.6 kpc)2 erg cm−2 s−1. This variability is due to the X-ray

luminosity undergoing the superorbital cycle with the amplitude

of 2. The corresponding blackbody temperature changes from

T = T0 � 1.1 × 105(D/7.6 kpc)1/2 K to 21/4T0. Assuming L ∝
ṁe, T (e1) = ṁ1/4

e T0. In optically thick regions, the structure of

the atmosphere will be closely isothermal at this T (e.g. Anderson

1981). Thus, the atmosphere density will decrease exponentially

with the distance from the centre of the white dwarf, ρ ∝
exp(−d′/H), where H is the scaleheight around the L1 point,

H

R0

� c2
s R0

G M2

� 2.3 × 10−3ṁ1/4
e

T0

1.1 × 105 K
, (14)

where we used our numerical values of the parameters for the sec-

ond equality. Then, we use the results of Brown & Boyle (1984),

who derived A � (2π)1/2 H R0 (see their equation 4), which can be

expressed as

−Ṁ2(φ, e1) � (2π)1/2t2
dync3

s ρ0 exp

(
− d ′

H

)
, (15)

where tdyn = (R3
0/GM2)1/2(�55 s) is close to the dynamical time-

scale of the white dwarf [(R3
2/GM2)1/2 � 30 s], and ρ0 is the atmo-

sphere density at L1 corresponding to e1 = 0. Here we neglected the

correction of Brown & Boyle (1984) for the velocity of the L1 point,

since it is much slower than the sound speed in our case. Note that

though the functional dependence ∝c3
s ρ0 is most likely accurate,

the constant of the proportionality remains relatively uncertain (see

Savonije 1983) as well as the argument of the exponent may be more

complex than that used above, see Frank, King & Raine (2002),

p. 352. The latter effect may increase the scaleheight around L1

and thus lead to a requirement of a higher emax than that estimated

by us below. To solve this problem accurately, hydrodynamical

simulations (see e.g. Regös, Bailey & Mardling 2005) specific to

4U 1820–303 (beyond the scope of this work) are needed.

The H and cs depend on e1 through T(e1), and we denote their

values at e1 = 0 as H0 and cs0, respectively. The accretion rate relative

to that at e1 = 0 can then be written as

−Ṁ2(φ, e1)

Ṁ0

� ṁ3/8
e exp

(
e1 R0

H0ṁ1/4
e

e1 + cos φ

1 + e1 cos φ

)
. (16)

This equation coupled with equations (12) and (13), giving ṁe, can

be easily solved iteratively.

This solution, for a given H0/R0, can be used to calculate the

eccentricity required for a given amplitude of L. Fig. 3(a) shows

an example of the dependence of equation (16) for e1 = 0.004 and

H0/R0 = 0.0023, yielding ṁe � 2 (i.e. emax � 0.004). Fig. 3(b)

shows −Ṁ2(e1) for the same H0/R0. These dependences are slower

than those of the unirradiated case due to the slower (in the present

case) increase of the density with the depth within the atmosphere

as well as its isothermality.

In the irradiated case, the accretion rate enhancement due to the

eccentricity depends primarily not on e1 itself but on e1/(H0/R0).

In particular, the eccentricity required to obtain the increase of the

orbit-averaged accretion rate by 2 is emax ∼ 2H0/R0. Also, ṁe in-

creases initially, at low values of e1, very slowly. Thus, our assump-

tion that Ṁ0 corresponds to e1 = 0 (see above) introduces only a

slight error as long as emax � e0. We also note that the value of emax

does not depend on the (relatively uncertain) normalization of the

−Ṁ2 dependence of equation (15).

From that normalization, we can determine ρ0 as

ρ0 = Ṁ0

(2π)1/2t2
dync3

s0

� 2.0 × 10−6 g cm−3. (17)

This corresponds to an electron density of n0 � 6.0 × 1017cm−3,

and the Thomson optical depth above the L1 of 1.0. The Rosseland

absorption opacity at the above ρ, T � 1.1×105 K and Z = 0.01 is

�17 g−1 cm2 (Iglesias & Rogers 1996), that is, ∼102 more than the

scattering opacity for He. Thus, the medium is completely optically

thick, consistent with our assumption of the temperature equal to

the blackbody one. The corresponding pressure is ∼107 dyn cm−2,

which can be calculated to be ∼102 times more than the critical

pressure below which a transition to an optically thin regime begins

(London et al. 1981). Note that the L1 region may be partly shad-

owed by the accretion disc, which would decrease the temperature

and move the L1 region even more into the optically thick regime.
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We also check that the time-scale at which the atmosphere locally re-

sponds to the irradiation, ∼2n0kT0H0/Firr � 15 ms, is much shorter

than any other time-scale of interest.

On the other hand, the coefficient in equation (15) and other de-

tails of the flow through L1 are relatively uncertain, and thus it is of

interest to also consider the case with the L1 region being optically

thin. Above a transition zone (Anderson 1981; London et al. 1981),

the atmosphere temperature becomes close to the Compton temper-

ature of the surrounding radiation field (e.g. Kallman & McCray

1982; Begelman, McKee & Shields 1983),

TC =
∫

hν Jν dν

4k
∫

Jν dν
, (18)

where Jν is the mean intensity. For the sum of the X-ray spectrum

of the source, its reflection from the star, and the blackbody emis-

sion from reprocessing in the underlying regions of the star, TC

will be ∼2/3 of the Compton temperature for the X-ray spectrum

alone. Based on the spectral fits of Z07, we have calculated the lat-

ter to range from (1.6–1.8) × 107 K in the high-luminosity state to

∼108 K in the low-luminosity state. Thus, TC ∼ 107 K for the dom-

inant high-luminosity state. As the Compton temperature depends

only on the shape of the spectrum but not on its flux, T � TC is almost

independent of −Ṁ2, except for the lowest −Ṁ2 corresponding to

the hard low state, where TC is several times higher. Neglecting the

last effect (important only at the flux minima), equation (14) yields

H/R0 ∼ 0.2.

If this condition were dominant over the superorbital cycle, a

rather high emax ∼ 0.4 would be required to account for the superor-

bital variability. This would require changing the radius (and mass)

of the white dwarf, and raise the issue of the stability of the mass

transfer (beyond the scope of this work). However, we stress that

according to our estimates the L1 region of the irradiated star is

unlikely to be in the optically thin regime.

On the other hand, we cannot rule out that the L1 point is in

the transition zone (Anderson 1981; London et al. 1981) between

T � 105 K and 107 K, in which case detailed solutions of the

atmosphere structure would be required to calculate −Ṁ2(e1), and

the emax would be somewhat higher than the value of 0.004 estimated

above. On the other hand, the shadowing of the white dwarf by the

disc would (as mentioned above) decrease the temperature of the

L1 region. These effects introduce some systematic uncertainties on

the value of emax.

4 M O D E L S O F T H E T R I P L E S Y S T E M

Above, we have modelled the accretion rate variability in 4U 1820–

303 as due to variability of the binary eccentricity. Here, we model

the required variability of the eccentricity as due to gravity of a third

star in the system. The third star should have the semimajor axis

(a2; measured with respect to the centre of mass of the inner binary)

satisfying a2/a1 � 1 in order not to perturb the binary motion on

time-scales in the range between P1 and P3, which perturbations

have not been observed. Thus, this model is of a hierarchical triple

system. We then attempt to reproduce the observed 171-d period

and its relative coherence (Section 2) as well as the eccentricity

amplitude necessary to reproduce the observed amplitude of the

superorbital variability as inferred from our L1-flow calculations

(Section 3).

We begin with a brief review of the main features of secular effects

in hierarchical triple systems. It has been known (e.g. Kozai 1962)

that a third outer body can induce quasi-periodic oscillations of the

inner eccentricity with a long quasi-period of

P3 = K
P2

2

P1

, (19)

where P2 (the outer orbital period) is given by

P2
2 = 4π2a3

2

G M
, (20)

M = M1 + M2 + M3, and K (often ∼1) depends on the system

parameters. There are two main regimes. At an initial mutual in-

clination, i0, above a critical angle, ic � 40◦, the amplitude of

the inner eccentricity is large and K ∼ 1. The evolution can be

well described by taking into account only the lowest order per-

turbative term in the system Hamiltonian expanded in powers of

a1/a2, namely the quadrupole term, ∝ (a1/a2)2. Then, the mutual

inclination, i, is anticorrelated with the inner eccentricity, e1, with

(1 − e2
1) cos2 i � constant. In this approximation, both semimajor

axes, the outer eccentricity, e2, and the magnitude of the angular

momentum of the outer binary are constant, and there is exchange

of the angular momentum between the inner and outer binary. In a

conservative system, also the total angular momentum and energy

are constant. The maximum inner eccentricity is roughly emax �
[1 − (5/3) cos2 i0]1/2 (Holman, Touma & Tremaine 1997; Innanen

et al. 1997) above the critical angle (and thus emax � 1 for i0 � 90◦).

Below ic, emax 	 1, and the quadrupole approximation becomes

insufficient. In particular, for coplanar orbits, i0 = 0, the quadrupole

term in the Hamiltonian becomes null, and the first non-zero term

is octupole, ∝ (a1/a2)3. In the octupole approximation, only the

semimajor axes are constant (apart from the total energy and an-

gular momentum). In this regime, the inner eccentricity also varies

quasi-periodically, but at a period longer than that of the quadrupole

one. In the intermediate regime where both terms are important,

time dependencies of the inner eccentricity show both periodicities

(Krymolowski & Mazeh 1999). Also, at emax 	 1 in general, emax

decreases with the increasing a2/a1, increases with the increasing

the initial outer eccentricity, e2,0, and it depends very weakly on

either M3/M12 or M2/M1 (F00).

We use a numerical model calculating the time evolution of an

isolated hierarchical triple of point masses, using secular perturba-

tion theory up to the octupole terms (e.g. F00; Blaes et al. 2002;

Miller & Hamilton 2002; W03). We neglect possible effect of the

tidal deformation of the white dwarf on the gravitational force

exerted on the inner binary, see, for example, Söderhjelm (1984)

and Eggleton & Kiseleva-Eggleton (2001). Also, the Hamiltonian

is averaged over the periods of both the inner and outer binaries,

and thus any possible short-time-scale changes (e.g. Bailyn 1987;

Georgakarakos 2002) are averaged out. Our calculations are New-

tonian apart from the general relativistic (GR) periastron precession

in the inner binary. Its first-order post-Newtonian period, PPN, is

given by (e.g. Weinberg 1973),

PPN = P1a1c2
(

1 − e2
1

)
3G M12

= P5/3
1 c2

(
1 − e2

1

)
3(2πG M12)2/3

. (21)

We include this effect in the same way as in, for example, W03.

The free parameters of the model are the masses of the neutron

star, M1, and of the third star, M3, a2/a1, i0, e2,0 and e0. We assume

0 � e0 	 emax � 0.004 (Section 3). Then, we know P1 and P3, and

assume M2 = 0.07 M� (Section 3).

Given the relatively large number of free parameters and com-

plex dependencies between them and the resulting period and the

amplitude of the eccentricity modulation, it has proven difficult to

constrain the parameter space numerically. Thus, we have obtained
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some approximate analytical constraints. Given the presence of only

one, well-defined, long-term periodicity in the system (Section 2;

W06), evolution of the triple system can be dominated by either the

quadrupole or the octupole term, but not by both, which would have

given rise to two periodicities (as noted above). Given the consid-

erably greater simplicity of the quadrupole equations, we consider

them for our analytical estimates (though we do include the octupole

term in numerical calculations). Given our requirement of emax 	
1, this implies values of i0 close to ic.

We first estimate the maximum eccentricity. We use the conser-

vation of the total angular momentum and energy. The former gives

us the mutual inclination, i, in terms of i0 and e1, for example,

equation (3) in Miller & Hamilton (2002). Then the (quadrupole)

Hamiltonian gives the total energy. The minimum and maximum

inner eccentricity corresponds to the inner periastron angle (mea-

sured from the intersection of the two orbits), g1, of 0 and π/2,

respectively. Equating the Hamiltonian at those two angles and us-

ing i from the angular momentum conservation, gives, in the lowest

(second) order of e1,

e2
max � 4 + θPN + 2 cos i0/β

10 cos2 i0 − 6 + θPN + 2 cos i0/β
e2

0, (22)

where

θPN ≡ 8G M2
12a3

2

(
1 − e2

2,0

)3/2

c2 M3a4
1

, (23)

β ≡ M3/2
12 M3a1/2

2

(
1 − e2

2,0

)1/2

M1/2 M1 M2a1/2
1

. (24)

In order for a solution with emax � e0 to exist, the denominator in

equation (22) should be nearly zero. Also, β � 1 at a2 � a1, which

we assume hereafter. Thus,

cos2 i0 � cos2 ic � 6 − θPN

10
. (25)

Note that this ic is also the critical angle for the large emax regime

(see Blaes et al. 2002), and it becomes the Newtonian critical angle

when θPN = 0 (Kozai 1962). In the small e1 limit, the initial mu-

tual inclination angle should be approximately equal to but slightly

smaller than the critical value, which is different from the require-

ment for high emax regime. The value of emax is determined by how

close i is to ic.

For a solution of equation (25) to exist, θPN < 6 is required. Then,

we have from equation (23),

a3
2

a3
1

� 3

4

c2a1 M3

4G M2
12

(
1 − e2

2,0

)−3/2
. (26)

For M12 � 1.5, the upper limit on M3 of 0.5 M� (CG01) and e2
2 	

1, a2/a1 � 25. Note that the constraint of equation (26) is the same

as that derived for the high-e1 case [except for the (1 − e2
1)3/2 factor,

Blaes et al. 2002]. It is related to the fact that the Newtonian regime

corresponds to PPN � P3. Otherwise, the GR periastron precession

decreases the amplitude of the Kozai oscillations of e1, and leads

to its disappearing in opposite limit. This is because the effect of

the third body is a coherent summation of the tidal perturbations

over many orbital periods, and the GR precession partly destroys

this coherence (e.g. W03). In particular, this leads to a change of ic,

equation (25), reducing the high-emax regime.

Another constraint on the parameter space comes from the ob-

served P3 � 171 d. The inner binary spends most of the time around

g1 = π/2, at which dg1/dt = 0. We thus write g1 = π/2 + δ with

δ 	 1 and expand the (quadrupole) evolution equations for e1 and

g1 (e.g. equations 16 and 17 in W03) to the first order in δ and in the

small-e1 approximation. We then use equation (22) to express the

results in terms of emax/e0, divide de1/dt by dg1/dt, and integrate

over e1 from e0 to emax. This yields the value of K (equation 19) of

K = 25/2 f

3π

M

M3(4 + θPN)

(
1 − e2

2,0

)3/2 emax

e0

ln1/2 emax

e0

, (27)

where f is a fudge factor to compensate for the approximation we

used in the derivation. We found empirically that f � 1 are within a

factor of 2, and in our example described below, f � 1.1. Note also

that the superorbital period is strongly dependent on e0, on which

the accretion rate depends very weakly (as long as e0 � 0, Fig. 3b).

The following constraint on the total mass of the inner binary can

be obtained using equations (19), (20), (23) and (27),

3(G M�/c3)2/3(2π)5/3 P3e0

21/2 P5/3
1 emax ln1/2(emax/e0)

= f θPN

4 + θPN

(
M12

M�

)−2/3

, (28)

which (for the observed P1 and P3) can be solved for θPN as

θPN � 4

0.274 f
(

M12/M�
)−2/3

(emax/e0) ln1/2 (emax/e0) − 1
. (29)

The constraint of θPN < 6 then yields a relation between M12 and

emax/e0,

M12

M�
� 0.067

(
f emax

e0

)3/2

ln3/4 emax

e0

. (30)

At f � 1.1, it allows M12 � 1.5 M� provided emax/e0 � 5.5. Since

the required relative amplitude of Ṁ2 of �2 can be achieved at

any emax/e0 � 3 (see the solid curve in Fig. 3b), this is only a

very weak constraint, allowing practically any of the theoretically

possible masses of the neutron star at modest values of emax/e0.

Equation (23) at θPN < 6 also yields a constraint on M3. If we

assume M12 � 1.5 M� and that the system is hierarchical, a2/a1 �
5, we obtain M3 � 0.004 M� (see also equation 26). An independent

relation follows from equations (19), (20) and (27),

M3(
1 − e2

2,0

)3/2
M12

= 25/2a3
2 P1emax

3πa3
1 (4 + θPN)P3e0

ln1/2 emax

e0

, (31)

which yields the same constraint of M3 � 0.004 M� at emax/e0 � 7.

Thus, even a very low-mass third body can still induce the required

eccentricity oscillations in the inner binary.

We have not studied analytically constraints in the octupole-

dominated regime (which regime has been considered, e.g. by

Rasio 1994, 1995; F00; Georgakarakos 2002; Lee & Peale 2003).

The octupole-dominated regime may likely yield solutions with i0

∼ 0 (as compared to i0 � ic in the quadrupole regime). Still, if such

solutions exist, our conclusion of only very weak constraints on

the masses of the system components would remain unaffected. On

the other hand, an important difference between solutions in the two

regimes is the variability of the mutual inclination. In the quadrupole

low-e1 regime, the maximum change, 
i = i − i0, is given by


i � − e2
max − e2

0

2
cot i0, (32)

which implies only a very small change of i over the course of the

superorbital cycle, for example, about −2.3 arcsec at i0 = 40◦, emax

= 0.004. On the other hand, numerical results of F00 (fig. 8) show


i ∼ ±15◦ in their example for the octupole-regime, low-e1 oscil-

lations, for which i0 = 15◦, emax � 0.001. Since the angular momen-

tum is dominated by the outer binary, i is approximately equal to

the inclination with respect to the constant axis of the total angular
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momentum, which, in turn, is related to the value of (in principle

observable) the inclination of the inner orbit to the line of sight.

For assumed values of M1, M2, M3, e0, emax, and with the observed

P1 and P3, the above equations can be used to find a2 and i0. These

approximate analytical solutions can be then fine-tuned numerically.

We first present an example yielding P3 � 171 d within ∼1 per cent

and emax � 0.004, corresponding to our model of the accretion with

irradiation (Section 3). Its parameters are M1 = 1.29 M�, M2 =
0.07 M�, e0 = 10−4, M3 = 0.5 M�, a2/a1 = 8.66 (yielding P2 �
0.17 d), i0 = 40.◦96, e2,0 = 10−4, corresponding to θPN � 0.22,

β � 19 and K � 41. The initial values of the periaxis angles, g1

and g2, are set to zero. Note that emax/e0 is very sensitive to i0, see

equation (22).

Time evolution of this model is shown in Fig. 4(a). Fig. 5 shows

the Fourier power spectrum of e1 at the sampling rate of 20 d−1 (to

Figure 4. The time evolution of the inner eccentricity, e1, for our best model

(a) with irradiation of the white dwarf and (b) without irradiation.

Figure 5. The Fourier power spectrum of the eccentricity dependence for

the case with irradiation, Fig. 4(a).

approximate that of the RXTE/ASM). The P3 peak is unresolved at

the resolution of the Fourier spectrum. This narrowness is similar

to that observed, cf. fig. 19 of W06. In Fig. 4(a), we also see a

weak second quasi-periodicity, with the period slightly longer than

twice of the main one. This is an effect of the octupole term in the

evolution equations (see above).

We then use our results of Section 3 connecting e1 to −Ṁ2. We

first apply equations (16), (12) and (13), yielding −Ṁ2(e) with the

flow parameters as in Fig. 3 to convert e1(t) of Fig. 4(a) to −Ṁ2(t).
We multiply the model period by 0.987 in order to obtain the exact

agreement with the observed P3. We first plot the resulting −Ṁ2(t)
(fitting only the normalization) by the solid curve in Fig. 1. We see

that the model fits well the overall superorbital variability. We also

note that the exact Newtonian calculations of the evolution would in-

crease the scatter in e1(t), that is, leading to a less periodic behaviour

(e.g. F00). This could explain the presence of some observed super-

orbital cycles with a significantly different duration that the average

P3 (see Fig. 1).

We then take the second cycle in Fig. 4(a) as representative and

fit it to the average superorbital phase diagrams of Figs 2(a) and (b),

with the second free parameter being the phase offset (with respect

to the ephemeris of CG01), which we find φ3,0/2π = −0.088 and

−0.076 for the ASM and PCA data, respectively. The fit results,

shown by the solid curves in Figs 2(a) and (b), reproduce well the

average phase diagrams.

Finally, we also find a triple solution corresponding to our model

without irradiation of the white dwarf, which requires emax � 8 ×
10−4 (Section 3). Its parameters are identical to the previous model

except for a2/a1 = 16.95 (yielding P2 � 0.47 d) and i0 = 48.◦5,

corresponding to θPN � 1.65, β � 26.5 and K � 4.6. Time evolution

of this model is shown in Fig. 4(b).

5 L O N G - T E R M E VO L U T I O N A N D OT H E R
C O N S T R A I N T S

Above, we have neglected the effects of emission of gravitational

radiation (and of any other process of long-term loss of angular mo-

mentum) on the evolution of the inner binary. This is fully justified as

we have considered evolution over the course of a decade, which is

many orders of magnitude shorter than the time-scale due to emis-

sion of gravitational waves. Thus, we can consider the long-term

evolution separately from the short-term one.

The time-scale for the loss of the angular momentum, J1, from

the inner system due to emission of gravitational radiation is given

by (Peters 1964)

τ−1
g = − J̇ g

J1

= 32

5

(
2π

P1

)8/3
G5/3

c5

M1 M2

M1/3
12

1 + (7/8)e2
1(

1 − e2
1

)5/2
(33)

� 1.23 × 10−6 M1 M2

M
5/3

� M1/3
12

(
P1

1 s

)−8/3

s−1, e1 	 1, (34)

where

J1 = M1 M2

[
Ga1

(
1 − e2

1

)
M12

]1/2

. (35)

This yields τg � 1.1×107 yr for our system parameters. We see that

the effect of e1 > 0 on the rate of emission of gravitational radiation

is negligible as long as e2
1 	 1.

By logarithmically differentiating equation (35), assuming con-

servative mass transfer (Ṁ1 = −Ṁ2) and using equations (1), (2)
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and (4), we can relate J̇ 1 to Ṁ2 and Ṗ1 (assuming e2
1 	 1),

− J̇ 1

J1

= −Ṁ2

M2

(
2

3
− M2

M1

)
= Ṗ1

P1

(
2

3
− M2

M1

)
, (36)

where J̇ 1 includes all contributions to the inner angular momentum

loss. Note that although the white dwarf expands as it loses mass,

the accretion from M2 is not self-sustaining, that is, Ṁ2 = 0 if

J̇ = 0, as well as it can take place only for M2/M1 < 2/3. Also,

Ṗ1/P1 = −Ṁ2/M2 > 0. This is in conflict with the observations,

showing Ṗ1 < 0 (see Section 1). We note here that taking into

account a possible mass-loss from the system cannot resolve this

discrepancy. If a fraction, δ, of the mass lost by the secondary is

ejected from the system, we derive from equations (1), (2) and (4),

Ṗ1

P1

= −Ṁ2

M2

(
1 − δ

M2

M12

)
. (37)

Thus, although the mass-loss reduces Ṗ1, it is still >0. Only in

the absence of mass transfer, when the companion does not fill its

Roche lobe, angular momentum losses (in particular, those due to

gravitational radiation) lead to Ṗ1/P1 = 3 J̇/J < 0. A possible

resolution of this conflict is the apparent observed Ṗ1 < 0 resulting

from gravitational acceleration of the system in the cluster potential

(CG01).

Then, the likely evolutionary scenario of 4U 1820–303 is still that

of R87, as shown on their fig. 1. According to it, the period shortly

after the onset of the mass transfer (∼106 yr ago) was ∼500 s. Then,

a1 was lower and θPN higher (equation 23) than now. Consequently,

cos2 ic was less than the present value (i.e. the low-emax, octupole,

regime was increased), see equation (25). Thus, the eccentricity

oscillations had in the past lower amplitudes than now, and the

system was in the octupole-dominated regime. On the other hand,

a future increase of P1 may lead to i > ic and moving the system to

the high-emax regime (provided i0 ∼ ic at present).

On the other hand, we find that at the present moment of the source

evolution, the GR periastron precession period, PPN, is very close,

and may be equal exactly, to the superorbital period, P3. Namely,

PPN

171 d
= (

1 − e2
1

)(
P1

685 s

)5/3 (
M12

1.347 M�

)−2/3

. (38)

We consider this equality to be a very remarkable coincidence. We

do not see any straightforward way in which the GR periastron

precession could by itself (i.e. without the presence of a third star)

affect the orbit-averaged accretion rate. Thus, the origin of the above

equality can be either purely accidental or it may be due to some

evolutionary processes not understood yet. We note that F00 find

the presence of a resonance at PPN � P3 manifesting itself as a peak

in emax (fig. 14 in F00). However, it is not clear how that resonance

could lead to the synchronization of PPN � P3.

On the other hand, our results and those of R87 do allow

PPN = P3 to be satisfied exactly. If this is the case and at M2 �
(0.06–0.08) M�, e1 	 1 (Section 3), the mass of the neutron star

would be M1 � (1.27–1.29) M�. Remarkably, modelling of an

X-ray burst of 4U 1820–303 by Shaposhnikov & Titarchuk (2004)

gives M1 = 1.29+0.19
−0.06 M�. Also, Grindlay et al. (1984) have mea-

sured the total masses of low-mass X-ray binaries in globular clus-

ters (including 4U 1820–303) and concluded that the initial neutron

star masses appear substantially less than 1.4 M� on average. We

also note that some low neutron star masses have recently been

measured with high precision, for example, 1.250+0.005
−0.005 M� for

PSR J0737–3039B (Lyne et al. 2004), and 1.18+0.03
−0.02 M� for the

neutron star companion of PSR J1756–2251 (Faulkner et al. 2005).

Given those results, M1 = 1.28 M� in 4U 1820–303 appears entirely

plausible.

We also note that although Arons & King (1993) proposed that

M1 ∼ 2 M� if the initial mass of the white dwarf were ∼0.6 M�
and ∼0.5 M� has been accreted, the calculations of R87 imply a

much lower initial mass and a short mass-transfer time interval, with

only 	0.1 M� accreted. Then, Zhang et al. (1998) proposed that

M1 � 2.2 M� if the frequency of the upper kHz QPO at its apparent

saturation at 1060 Hz were equal to the Keplerian frequency at the

last stable orbit. However, van der Klis (2000) shows that there is

no saturation in a more extensive data set. Also, current theoretical

models of kHz QPOs do not postulate that frequency identification,

and use it only to provide an upper mass limit (e.g. van der Klis

2000).

The presence of the third star may affect the system evolution

only if it remains stable and is not disrupted by encounters with

stars in the cluster. The triple system itself is stable if a2/a1 �
2.8 (1 + M3/M12)2/5 (Mardling & Aarseth 2001), which is clearly

satisfied in our case, with a2/a1 ∼ 10, M12 ∼ 1.5 M� (Section 4),

and M3 � 0.5 M� (CG01). Then, the encounter time-scale has been

estimated by Miller & Hamilton (2002) in the limit of domination

of gravitational focusing, and we write it as

τenc � 4 × 108 4 × 105 pc−3

nGC

1011 cm

a2

2 M�
M

yr. (39)

Here, nGC is the number density of stars, which we assume to be

numerically equal to the mass density of �4 × 105 M� pc−3 in the

core of NGC 6624 (Ivanova et al. 2005), and a2 ∼ 1011 cm, M ∼
2 M� (Section 4). Thus, τ enc is much longer than the gravitational-

radiation time-scale, equation (34), but still shorter than an esti-

mated cooling time of the white dwarf in 4U 1820–303 of ∼109 yr

(the appendix of R87). Thus, an encounter could have formed the

triple system during the lifetime of 4U 1820–303, but it is stable on

the current evolutionary time-scale.

We also note that the angular momentum will also be lost from the

system due to tidal dissipation within the secondary at e1 > 0. This

mechanism usually leads to circularization (and synchronization)

of close binaries (e.g. Zahn 1977), but in our case the influence of

the tertiary will force 〈e1〉 > 0 and continuous dissipation (Mazeh

& Shaham 1979). The time-scale for this process, τt = −J1/ J̇ t, is

related to the circularization time-scale. This, unfortunately, remains

very uncertain for stars without convective envelopes, in particular

white dwarfs (e.g. Zahn 1977), and it may be very long. Here, we

consider the turbulent dissipation model of Press, Wiita & Smarr

(1975), which probably gives the lower limit to the actual dissipation

time-scale in a white dwarf (Zahn 1977). Using the time-scale of

Press et al. (1975) and the approach of Mazeh & Shaham (1979),

we obtain

τt = 125π

121

(
1 − e2

1

)11/2

e3
1

( a1

R2

)11 RT

Kμ

M3
2

M2
1 M12

P1, (40)

where RT is the effective Reynolds number, which we assume =20

following Press et al. (1975), and Kμ is a dimensionless factor of

the mean turbulent viscosity,

Kμ = 14

M2 R11
2

∫ R2

0

ρ(r )r 13 dr , (41)

where ρ(r) is the stellar density. We have calculated Kμ � 0.0257

for a polytrope with n = 3/2, appropriate for a low-mass white

dwarf. For our system parameters, we find then τt � 2300/〈e3〉 yr

(where the average is over the superorbital cycle), which for

〈e3
1〉1/3 = 0.003 becomes ∼1011 yr. Thus, even if the dissipation

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 1006–1016



The triple nature of 4U 1820–303 1015

is as fast as envisaged by Press et al. (1975), the process is com-

pletely negligible compared to the gravitational radiation. However,

τ t < τ g for 〈e3
1〉1/3 � 0.06.

On the other hand, the soft X-ray absorption towards the source

is consistent with being caused entirely by the interstellar medium,

with no evidence for any local component (Futamoto et al. 2004).

This appears to rule out strong outflows from either the irradiated

disc, the irradiated surface of the white dwarf, or, in particular,

mass-loss through the L2 point. At the mass ratio of the binary, the

absence of the L2 mass-loss by the Roche lobe filling star imposes the

constraint of emax � 0.07, as calculated by Rëgos, Bailey & Mardling

(2005). This rules out the above condition of 〈e3
1〉1/3 � 0.06. Thus,

presently, tidal dissipation appears not to be the dominant channel

of angular momentum loss.

6 C O N C L U S I O N S

We have obtained the following main results.

(1) Using the RXTE data, we quantify the average amplitude of

the superorbital variability of the source. We find that amplitude in

the folded and averaged light curves to be by about a factor of 2.

(2) We consider the model in which the superorbital variability

is due to a third star inducing cyclic variations (Kozai 1962) of the

eccentricity of the binary (as proposed by CG01). We have stud-

ied the dependence of the rate of the Roche lobe overflow on the

eccentricity taking into account the strong irradiation of the white

dwarf by the X-ray source (Fig. 3b). We find the amplitude of the

eccentricity required to account for the variability of the accretion

rate by the factor of 2 is emax � 0.004 (assuming the minimum of

the eccentricity is close to null). However, systematic uncertainties

of this model may somewhat change the actual value of emax.

(3) We reproduce the above maximum eccentricity of �0.004

and the observed superorbital period of 171 d in a detailed model of

a hierarchical triple system. Our calculations are Newtonian except

for inclusion of the GR periastron precession. We then convolve the

obtained eccentricity light curve with our theoretical dependence

of the accretion rate on the eccentricity and obtain a theoretical

luminosity light curve. This theoretical light curve is compared to

and found to be in a good agreement with the observed light curves

from the ASM and PCA detectors, see Figs 1 and 2.

(4) We also study the parameter space allowed by the observa-

tional data, the emax � 0.004 constraint, and M3 � 0.5 M� (CG01).

We obtain analytical solutions for the low-eccentricity Kozai os-

cillations in the regime dominated by the quadrupole terms of the

evolution equations. We find the ratio of the semimajor axes to be

�25, which follows from the constraint that the GR periastron pre-

cession does not quench the Kozai eccentricity modulation. The

masses of the system components are only weakly constrained. In

particular, the canonical neutron star mass of 1.4 M� is allowed in

this model. The mass of the third body is constrained as 0.004 �
M3/ M� � 0.5.

(5) We find that the period of the binary GR periastron precession

is approximately equal (and it is allowed to be exactly equal) to

the observed superorbital period (which equals the period of the

Kozai eccentricity oscillations in our model). We find this to be a

remarkable and puzzling example of synchronization in a physical

system.

(6) We obtain some other constraints on the system. The binary

eccentricity has to be �0.07 from the apparent absence of the mass-

loss by the Roche lobe filling white dwarf through the L2 point. The

angular momentum loss due to tidal dissipation in the white dwarf

is found to be negligible compared to the loss due to emission of

gravitational radiation. Also, we find the theoretical mass transfer

rate due to the angular momentum loss via gravitational radiation

is in complete agreement with that corresponding to the average

bolometric flux from this source (as measured by Z07).
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