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Abstract: We theoretically analyze the influence of the Gouy phase shift
on the nonlinear interaction between waves of different frequencies. We
focus on χ (2) interaction of optical fields, e.g. through birefringent crystals,
and show that focussing, stronger than suggested by the Boyd-Kleinman
factor, can further improve nonlinear processes. An increased value of 3.32
for the optimal focussing parameter for a single pass process is found. The
new value builds on the compensation of the Gouy phase shift by a spatially
varying, instead constant, wave vector phase mismatch. We analyze the
single-ended, singly resonant standing wave nonlinear cavity and show
that in this case the Gouy phase shift leads to an additional phase during
backreflection. Our numerical simulations may explain ill-understood
experimental observations in such devices.
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1. Introduction

Nonlinear interactions of waves, in particular those of optical fields, have opened new research
areas and have found various applications. In general, waves of different frequencies are cou-
pled via nonlinear media, like birefringent crystals. Examples are the production of higher har-
monics of laser radiation [1], the generation of tunable frequencies through optical parametric
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oscillation [2] and the generation of nonclassical light [3, 4] for high precision metrology [5, 6],
fundamental tests of quantum mechanics and quantum information [7]. The efficiency of a non-
linear process depends on parameters of the nonlinear medium, and generally increases with
higher intensities of the fields involved and with better phase matching of their wave fronts. To
achieve strong nonlinear interactions, pulsed laser radiation, strong focussing and, especially
for continuous wave radiation, intensity build-up in resonators are used. In plane wave theory
perfect phase matching is achieved if the wave fronts of interacting fields propagate with the
same velocity. For focussed laser beams, however, this is not true because of the well-known
Gouy phase shift. This phase shift occurs due to the spatial confinement of a focussed wave and
generally depends on the spatial mode as well as the frequency of the wave [8]. The influence
of focussing into a nonlinear medium has been investigated by Boyd and Kleinman in great
detail [9]. They discovered that the efficiency of the nonlinear process does not monotonically
increase with decreasing focal size. They especially considered the lowest order nonlinearity
that enables second harmonic generation (SHG) and optical parametric amplification (OPA)
and is described by the susceptibility χ (2), and numerically found an optimum factor between
the length of the nonlinear crystal and the Rayleigh range of the focussed Gaussian beam for a
single pass through the crystal.

In this Letter we show that focussing stronger than suggested by the Boyd Kleinman factor
can further improve nonlinear processes. We show that this effect can be understood by consid-
ering the Gouy phase shift between the interacting waves. We also show that the Gouy phase
shift results in a non-trivial phase mismatch problem in standing wave cavities.

2. Singlepass interaction

Boyd and Kleinman have found that the maximum nonlinear coupling between two Gaussian
beams of fundamental (subscript 1) and second harmonic waves (subscript 2) is achieved for a
positive wave vector phase mismatch Δk=2|k1|−|k2|>0 which increases with decreasing waist
size of the beam. For a single pass through a nonlinear crystal of length L they numerically
found the optimal focussing parameter given by the relation

ξ :=
L

2zR
= 2.84 , (1)

where zR = πw2
0n1/λ is the Rayleigh range of the beams inside the crystal, and w0, n1 and λ

are the beam’s waist size, refractive index and wavelength, respectively. We first show that the
Boyd-Kleinman factor according to Eq. (1) is a consequence of maximizing the intensity of the
mean pump field inside the nonlinear medium under the constraint of the Gouy phase shift. In a
χ (2) medium the nonlinear interaction is described by the following set of differential equations

∂zE0,1(z) ∝ E∗
0,1(z)E0,2(z) ·g∗(z) , (2)

∂zE0,2(z) ∝ E2
0,1(z) ·g(z) , (3)

g(z) :=
eiΔkz

1+ i z−z0
zR

=
w0

w(z)
ei(Δkz+Δφ(z)) , (4)

where E0,1, E0,2 are the electrical fields of the fundamental and the harmonic mode in the focal
center at position z0, and Δk = 4πΔn/λ is the phase mismatch between the two interacting
modes. Although we look at the fields inside the waist, it is clear that the field strength at this
position depends on the propagation length z through the nonlinear material. Here we use the
following abbreviations

Δφ(z) = −arctan
(

z−z0
zR

)
, (5)
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Fig. 1. (Color online) Left: For weak focussing into the nonlinear medium (ξ = 0.18) the
Gouy phase shift can be compensated by choosing Δk = 1/zR, and perfect phase matching
can be realized over the full crystal length. Right: For stronger focussing (ξ = 2.03) a con-
stant Δk can not provide perfect phase matching. (a) Gouy phase shift Δφ , (b) compensating
phase Δkz, (c) overall phase φ0, where a constant value describes perfect phase matching.

w(z) = w0

√
1+

(
z−z0
zR

)2
, (6)

where w(z) corresponds to the beam width at the position z. In plane wave theory one finds
g(z) = exp(iΔkz) and Δφ = 0, and equal indices of refraction for the two interacting modes
provide the maximum nonlinearity. When focussing the beam into a nonlinear material how-
ever, there is a non zero phase difference Δφ . Since the phase difference between a plane wave
and a focussed Gaussian beam is given by the Gouy phase shift, Δφ should be the difference
of two such phase shifts. When considering phase shifts between different oscillator frequen-
cies, phases have to be frequency normalized. We therefore introduce the Gouy phase shift
normalized to the optical frequency of mode i

φ̃G(ωi) :=
φG

ωi
= − (m+n+1)

ωi
arctan

(
z− z0

zR

)
, (7)

where m and n describe the spatial Hermite-Gaussian modes (TEMmn). If we now normalize
Δφ to the harmonic frequency we find

Δφ
ω2

= φ̃G(ω1)− φ̃G(ω2) . (8)

We point out, that for an optimized nonlinear interaction of Gaussian beams the Rayleigh ranges
are identical for all modes involved. In the case of frequency conversion of a single pump field
this is automatically realized by the nonlinear process. For the χ (2)-processes considered in
Eqs. (2)-(4) (m = n = 0) we find

Δφ = φG . (9)

From this one can conclude that the Gouy phase shift leads to a nonperfect matching of the
(nonplanar) phase fronts in nonlinear processes. To quantify this effect we define the effective
nonlinearity κ of the process. This quantity is proportional to the conversion efficiency in SHG
as well as to the optical gain of OPA. For weak interaction, i. e. the pump field is not depleted
by the nonlinear interaction, κ is given by

κ :=
∣∣∣∣
∫

dz
g(z)
w0

∣∣∣∣
2

, (10)
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where the integration is taken over the whole interaction length. For a single pass through a
nonlinear medium of length L the effective nonlinearity is given by

κsp =

∣∣∣∣∣
∫ L

0
dz

ei(Δkz+φG(z))

w(z)

∣∣∣∣∣
2

. (11)

This quantity is maximized if the averaged field strength inside the crystal is maximized, i. e.
if the focus is placed in the crystal center and if the condition

Δkz+ Δφ(z) = φ0 = const. (12)

is satisfied. In this case all partial waves are produced exactly in phase to each other, and perfect
phase matching is realized.

Curves (a) in Fig. 1 show the differential Gouy phase shifts Δφ(z) = φG(z) for weak and
strong focussing, respectively. For weak focussing the gouy phase shift evolves linearly inside
the medium, and one can compensate this phase mismatch by choosing Δk = 1/z R > 0, as found
by Boyd and Kleinman [9]. For stronger focussing, however, it is not possible to achieve perfect
compensation from Δk that is constant over the crystal. Curves (b) show the compensating linear
phase Δkz that is due to the propagation inside the medium and curves (c) show the total phase
φ0. The value of Δk was chosen to provide the lowest variance of φ 0 over the whole interaction
range.

We now show that it is possible to realize perfect phase matching for an arbitrary focussing
by applying the following position dependent index of refraction

Δnsp(z) =
λ
4π

Δk(z) = λ
4π

φ0+arctan( z−z0
zR

)
z , (13)

where the constant value of the phase φ0 is set by the Gouy phase at the entrance surface of the
nonlinear medium

φ0 = arctan

(
z0

zR

)
= φG(0) . (14)

Figure 2 shows Δnsp(z) for a nonlinear crystal of length L for different focussing parameters ξ ,
with focus placed into the crystal’s center. Curves (a) to (c) could experimentally be realized
by applying an appropriate temperature gradient along z-direction. Alternatively, an electrical
field applied to the crystal could be used. The temperature values on the right vertical axis
constitute an example for 7 % magnesium-oxide-doped lithium niobate (MgO:LiNbO 3). Data
was deduced from measurements of the nonlinear efficiency of crystals used in type I OPA in
[6].

The effective nonlinearity for the single pass setup with perfect Gouy phase compensation
can be written as

κsp =
1
ξ

ln2

(√
1+ ξ 2 + ξ√
1+ ξ 2− ξ

)
, (15)

with ξ = L/2zR. The numerical optimization of the above expression leads to

ξopt = 3.32 . (16)

Our result means that with optimum, position dependent phase matching, the optimal waist size
is approximatly 7.5% smaller than suggested by the Boyd-Kleinman factor, and according to
this, the effective nonlinearity is further increased by 4.4%.
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Fig. 2. (Color online) Change of refractive index along the crystal to compensate for the
Gouy phase shift, for three different strengths of focussing. The temperature scale on the
right corresponds to a MgO(7%) : LiNbO3 crystal that has been used in [6]. (a) ξ = 0.55,
(b) ξ = 1.14, (c) ξ = 3.32.

3. Nonlinear cavities

We now analyze if the nonlinear interaction in standing-wave cavities can be similarily im-
proved. Standing wave cavities, in particular in the form of a singly-resonant, single-ended
cavity, i. e. with one mirror of almost perfect reflectivity, are frequently used in quantum and
nonlinear optics [10, 6] . In such cavities waves that propagate in two different directions in-
terfere with each other, and the differential phases introduced by the reflections at the cavity
mirrors have to be considered. Paschotta et al. have investigated the phase difference Δϕ in-
troduced from back reflection and have suggested an appropriate design of the high reflectivity
dielectric multi-layer coating to annihilate any additional phase shift. It can be shown that the
effective nonlinearity for a doublepass of plane waves through a crystal depends on the Δϕ in
the following way

κdp,pw =
sin2 (ΔkL

2

)
(ΔkL

2

)2 · cos2
(

ΔkL
2

+
Δϕ
2

)
. (17)

For the calculation of the doublepass effective nonlinearity in the case of focussed Gaussian
beams we model the system with a nonlinear medium of length 2L with a thin lense at position
L that refocuses the beam. In this way we obtain two waists at positions z0 and z′0 = 2L− z0 of
size w0 indicating the way to the endmirror and the way back, respectively. Now we integrate
over 2L and find the following expression for the effective nonlinearity for a double pass of the
fundamental Hermite-Gauss mode

κdp = 1
w2

0
·
∣∣∣∫ L

0 dzg(z,z0)+
∫ 2L
L dzg(z,z′0)e

iΔϕ
∣∣∣
2

= 1
w2

0
·
∣∣∣∫ L

0 dz
[
g(z,z0)+g(z+L,z′0)e

iΔϕ]∣∣∣
2

=
∣∣∣∫ L

0 dz ei(Δkz+φG(z))

w(z) ×
(

1+ w(z)
w′(z)ei(φ ′

G(z)−φG(z)+ΔkL+Δϕ)
)∣∣∣

2
, (18)
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Fig. 3. (Color online) Effective nonlinearity κdp (normalized) versus the differential phase
introduced by the back reflecting surface Δϕ . For Gaussian beams with waist position on
the reflecting surface, Δϕ = 0 generally provides the highest κdp, (a) (here with strong
focussing ξ = 2.84, z0 = L); the same result is found for plane waves. Contrary, for ξ =
2.84 and z0 = L/2 we find Δϕ ≈ π (c). The result for weaker focussing is shown in (b)
(ξ = 0.775, z0 = L/2).

where w′(z) and φ ′
G(z) belong to the focus at position z′0. Δϕ is again the differential phase that

may be introduced by the coating of the back reflecting mirror. We first consider the special
case of weak focussing, i. e. |z− z0|/zR � 1 ∀z ∈ [0, L], and simplify the above expression as
follows

κdp =
sin2

(
Δk′L

2

)

(
Δk′L

2

)2 · cos2
(

Δk′L
2

+
Δϕ ′

2

)
, (19)

where Δk′ := Δk−1/zR and
Δϕ ′ := Δϕ +2(L− z0)/zR . (20)

This expression has the same form as the one for plane waves as given in Eq. (17). However,
an additional phase shift appears. This phase shift is a result of spatial confinement and the
swapping in sign of the wave front’s radius of curvature during reflection, and corresponds
to minus twice the Gouy phase in the limit considered here. From the expression of Δϕ ′ in
Eq. (20) it follows that this additional phase jump vanishes if the waist is located exactly at the
back reflecting surface. In this case we have plane wave fronts at the end mirror and therefore
the system is similar to a single pass through a nonlinear medium of length 2L.

We now examine κdp for reflected Gaussian beams of arbitrary focussing parameters ξ and
the waist located in the center of the medium. Eq. (18) yields

κdp = 4cos2
(

ΔkL+ Δϕ
2

)∣∣∣∣∣
∫ L

0
dz

ei(Δkz+φG(z))

w(z)

∣∣∣∣∣
2

. (21)

The first term provides the optimal phase of the end mirror of Δϕ = −ΔkL. In turn Δk is again
found by minimizing the variance of the term Δkz+φ G(z). We obtain the following expression
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for the optimal differential phase Δϕ of the end mirror versus focussing parameter

Δϕ = − 3
ξ 2

[
(1+ ξ 2) · arctan(ξ )− ξ

]
. (22)

Figure 3 shows the effective nonlinearity versus Δϕ for three different standing wave cavity
arrangements. In all cases the second harmonic wave is not resonant but simply back reflected.
Curves (a) and (c) use the focussing parameter ξ = 2.84. This value optimizes the effective
nonlinearity of the cavity if the refractive index of the medium does not depend on direction
of propagation of waves. This is evident from Fig. 2 because the position dependent refractive
indices are not symmetric with respect to the focal position and the back reflected wave would
require different values. However, if one transfers the results from a single pass through the
medium and realizes the required propagation direction dependent refractive index the optimum
focussing parameter is again ξ = 3.32. Curve (a) represents the case for focussing directly onto
the back reflecting surface. Curve (c) shows the effective nonlinearity for a waist position at the
crystal’s centre. In the latter case the best choice of the differential phase at the back reflecting
surface is Δϕ ≈ π . This is exactly the opposite of what one might expect from plane wave
theory, where the optimum phase is Δϕ = 0, similar to curve (a). Trace (b) shows the effective
nonlinearity for the focussing parameter that was chosen by Paschotta et. al. [11]. In that paper
a full quantitative comparison between experiment and theory of the nonlinearity in standing
wave cavities was conducted. In their experiment the back reflecting mirror was designed to
prevent a differential phase shift between the two interacting modes and a value of Δϕ = 0
was chosen. However, their experimental data revealed the effective nonlinearity to be ≈ 10%
smaller than expected from their calculations. From our calculation it follows that the optimum
phase for their setup was Δϕ ≈ 1.55π and that the chosen value of Δϕ = 0 decreased the
effective nonlinearity to about 90% of the maximum value. Our considerations are therefore in
excellent agreement with experimental results given in that paper and can solve the observed
discrepancy.

4. Conclusion

In conclusion we have shown how for focussed waves the Gouy phase shift produces nonideal
phase matching in case of Δk = 0. For a single pass through a nonlinear medium the optimum
focussing parameter is found to be ξ = 3.32. In this case a position dependent refractive index
is required to further improve the effective nonlinearity by 4.4%. For a double pass and for
cavities an optimum focussing parameter above ξ = 2.84 can only be achieved with a refractive
index that also depends on propagation direction. We have also shown that the Gouy phase shift
effects the optimum value for the phases introduced by cavity mirrors, with a significant effect
on the achievable effective nonlinearity. Our theoretical analysis shows exact agreement with
experimental data published elsewhere, and may lead to improved quantitative descriptions of
nonlinear cavities.
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