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We propose a scheme for purification and distillation of squeezed and entangled continuous-variable states
of light transmitted through a channel exhibiting phase fluctuations. The outstanding advantage of the sug-
gested protocol is its experimental feasibility since it only involves an interference of two copies of the
decohered state on a balanced beam splitter, a homodyne measurement on one of the output beams, and a
conditioning on the measurement outcome. The purification can counteract the detrimental effects of phase
fluctuations in optical quantum-communication networks.
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Quantum-information processing with continuous vari-
ables �1� exploits the continuous degrees of freedom of
physical systems such as quadratures of a mode of the elec-
tromagnetic field or a collective spin of an atomic ensemble
to encode, transmit, and process quantum information. Con-
tinuous variables offer several important advantages because
many tasks such as preparation of entangled states �2�, Bell
measurement, quantum teleportation �3�, entanglement swap-
ping �4�, and dense coding �5� can be implemented in a de-
terministic unconditional way using squeezed Gaussian
states and Gaussian operations which can be easily imple-
mented with the help of optical parametric oscillators, beam
splitters, phase shifters, and homodyne detectors. However,
this approach also suffers from some limitations. Most im-
portantly, it is not possible to purify and distill the entangle-
ment of Gaussian states by means of the experimentally fea-
sible local Gaussian operations �6�. The purpose of
entanglement purification and distillation is to extract from
many copies of weakly entangled mixed states a single copy
of a highly entangled state by means of local operations and
classical communication between the two parties which
share the entangled states �7,8�. This procedure is crucial for
suppression of losses, noise, and decoherence which inevita-
bly arise in the distribution of the entanglement and squeez-
ing over realistic channels such as optical fibers. Several
methods were proposed to purify entanglement using non-
Gaussian operations which yield non-Gaussian states from
the initial Gaussian ones �9–13�. One can then drive the re-
sulting non-Gaussian states to Gaussian states via Gaussian
operations �12,13�. A first pioneering experimental step in
this direction has been achieved by degaussifying a single-
mode �14,15� and two-mode �16� squeezed vacuum by sub-
tracting a single photon from it.

In this paper we propose a simple scheme for purification
of mixed non-Gaussian squeezed and entangled continuous
variable states. The protocol relies on Gaussian operations
utilizing well-established technology, and will overcome ran-
dom phase fluctuations in envisioned long-distance quantum-
communication networks. Moreover, sources of squeezed
and entangled states may suffer from inherent phase fluctua-
tions which may be suppressed by our protocol, whereby
improving the properties of nonclassical sources.

Our purification procedure exploits the interference of
two copies of the state on a balanced beam splitter �12,13�
followed by balanced homodyne detection on one of the out-
put beams and conditioning on the measurement outcome.
The scheme does not require any non-Gaussian operations or
measurements which renders the method experimentally fea-
sible �17�. Our protocol particularly differs from the Gaussi-
fication scheme recently proposed by Browne et al. �12�.
They assumed conditioning on projection onto the vacuum
state, while we suggest to condition on outcomes of quadra-
ture measurements, which is much easier to implement and
is particularly well suited for the purpose of purification of
phase-diffused squeezed states �17�. Our protocol can actu-
ally purify a wide class of non-Gaussian states and we
choose here the phase-diffused states as a simple yet inter-
esting example to illustrate the performance of the scheme.
Our results reveal that for certain decoherence scenarios
there can exist alternative simpler purification procedures
which do not require non-Gaussian operations.

We will first describe the protocol for the purification of
phase-diffused single-mode squeezed states and then we will
extend it in a straightforward manner to the entangled phase-
diffused two-mode squeezed vacuum states distributed to
two distant parties. Consider a single-mode squeezed state
whose Wigner function reads WSMS�x , p�= 1

2��VxVp
exp�− x2

2Vx

− p2

2Vp
�, where Vx and Vp are variances of the x and p quadra-

tures, respectively, with VxVp�
1
4 . Assuming Vx�Vp, the

state is squeezed if Vx�1/2. Under the influence of the ran-
dom phase fluctuations this state will evolve into a mixed
generally non-Gaussian state with the Wigner function given
by

W�x,p� =
1

2��VxVp
�

−�

�

exp�−
x�

2

2Vx
−

p�
2

2Vp
�����d� ,

�1�

where x�=x cos �+ p sin �, p�= p cos �−x sin �, and ����
denotes the probability distribution of the random phase
shift, 	����d�=1. In the following we will assume Gauss-
ian fluctuations of �, ����= �2��2�−1/2 exp�− �2

2�2 �, but our
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results are largely independent of the particular form of the
fluctuations and qualitatively hold for any ����.

The proposed setup for the purification of the state in Eq.
�1� is depicted in Fig. 1. The purification requires two copies
of the state which are combined on a balanced beam splitter
�BS�. Subsequently, the x quadrature of one output mode is
measured in a balanced homodyne detector �BHD1�. The pu-
rification is a probabilistic operation which succeeds if the
absolute value of the measured quadrature falls below certain
trigger threshold X. We shall show that this procedure im-
proves the squeezing of the x quadrature of the beam in the
second output port of BS. To verify this improvement, we
suggest to measure the x quadrature of the second beam by
another balanced homodyne detector �BHD2�. For phase-
diffused states �1� the purified state can again be expressed as
a statistical mixture of Gaussian states and its Wigner func-
tion is positive definite.

Assume for a moment that the random phase shifts of
each copy attained some particular values �1 and �2. In this
case, the initial joint probability distribution of the input
quadratures x1

in and x2
in before mixing on a BS can be ex-

pressed as

P�x1
in,x2

in� =
1

2��V1V2

exp�−
�x1

in�2

2V1
−

�x2
in�2

2V2
� , �2�

where V1=Vx cos2 �1+Vp sin2 �1, V2=Vx cos2 �2
+Vp sin2 �2. The x quadratures after combining the modes on
a BS read x1= 1

�2
�x1

in+x2
in�, x2= 1

�2
�x2

in−x1
in�. In our model we

take into account the imperfect homodyning with efficiency
	�1 by introducing a virtual beam splitter of transmittance
	 into the path of each beam impinging on a homodyne
detector, see Fig. 1. The joint probability distribution of the x
quadratures after mixing on BS and after passing through the
virtual beam splitters has the form

P̃�x1,x2� =
1

2��A2 − B2
exp�−

A�x1
2 + x2

2� − 2Bx1x2

2�A2 − B2� � ,

�3�

where A= 	
2 �V1+V2�+ 1−	

2 , B= 	
2 �V2−V1�. The �un-

normalized� probability distribution of the quadrature x2 con-

ditional on 
x1
�X is given by Pcond�x2�=	−X
X P̃�x1 ,x2�dx1.

The resulting distribution of the quadrature x2 of the condi-
tionally purified state can be obtained by averaging Pcond�x2�
over the random phase shifts �1 and �2 �we assume that
these phase shifts are independent�,

Pout�x2� =
1

P��1

�
�2

Pcond�x2����1����2�d�1d�2. �4�

Here the normalization factor P denotes the probability of
positive trigger events from BHD1,

P = �
�1

�
�2

erf� X
�2A

����1����2�d�1d�2. �5�

The squeezing of the output quadrature x2 is most conve-
niently characterized by its variance. It can be easily seen
from Eqs. �3� and �4� that 
x2�=0, hence the variance Vout

measured with the use of BHD2 is simply equal to 
x2
2� and

after some algebra we obtain

Vout =
1

P��1

�
�2

�A erf� X
�2A

� −� 2

�

B2X

A3/2 e−X2/2A�

 ���1����2�d�1d�2. �6�

This should be compared with the variance of x quadrature
of the initial dephased state �1� before purification which
would be observed in a homodyne detection with efficiency
	,

Vin = 	�
�

�Vx cos2 � + Vp sin2 ������d� +
1

2
�1 − 	� .

�7�

The results of numerical calculations are shown in Fig. 2
for experimentally achievable set of parameters Vx=0.2, cor-
responding to 4 dB squeezing, Vp=2, corresponding to 6 dB
antisqueezing, and 	=0.85 �18�. Note that the squeezed state
is mixed accounting for optical loss during squeezed-state
generation. We can see that the purification clearly enhances
the squeezing and Vout�Vin. We can also see that the purifi-
cation effect becomes more pronounced for stronger phase
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FIG. 1. Proposed scheme for purification of dephased single-
mode squeezed vacuum states. BS—balanced beam splitter;
BHD—balanced homodyne detectors; VBS—virtual beam splitters
modeling imperfect homodyning. Note that an alternative similar
but less-practical scheme where conditioning on projections onto
vacuum state is employed instead of balanced homodyning is con-
sidered in Refs. �12,13�.
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FIG. 2. Variances of the quadrature x versus strength of the
phase noise before �Vin, dashed line� and after purification �Vout,
solid line�; Vx=0.2, Vp=2, 	=0.85, and X=0.45; the vacuum noise
reference is given by the horizontal line.
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fluctuations and in our example the quadrature fluctuations
can be reduced by more than 1 dB. Note that the present
purification procedure cannot reduce Vout below the squeezed
variance Vx of the original Gaussian state before transmis-
sion through the noisy channel.

The main mechanism of the purification can be under-
stood by realizing that by measuring x1= 1

�2
�x1

in+x2
in� we

probe the phase fluctuations in the two channels. If x1 is
close to zero then with high probability both x1

in and x2
in were

squeezed and, consequently, the random phase shifts �1 and
�2 were small. On the other hand, large values of x1 indicate
that a large fraction of noisy antisqueezed quadrature p1

in �or
p2

in� was admixed to x1
in �x2

in� due to a large phase shift �1

��2�. These events, which reduce the squeezing, are �par-
tially� suppressed by the conditioning on 
x1 
 �X. Our nu-
merical analysis suggests that it is suitable to choose X
��Vx, which results in good squeezing enhancement while
at the same time the probability of success is of the order of
50%.

The purification procedure can be, similarly as other such
methods �13�, applied iteratively in order to distill from
many copies of mixed phase-diffused and weakly squeezed
state a single copy of strongly squeezed almost pure state. In
the iterative purification, two output states produced by two
successful purifications are used as an input in the next pu-
rification step, which can be formally described by a map
�N+1=EP��N

�2�. We have numerically simulated the iterative
purification and the results are shown in Fig. 3. We can see
that each iteration increases the squeezing of the state. More-
over, the purification also improves the purity of the state
P=Tr��2�. A highly pure state is obtained after few iteration
steps, see Fig. 3�b�. Our procedure thus meets all criteria
imposed on a proper purification protocol. A detailed analy-
sis of the full iterative purification procedure including itera-
tive purification of entangled two-mode squeezed states is
beyond the scope of the present paper and will be reported in
a separate publication.

Let us now consider the entanglement purification
of two-mode squeezed vacuum state, 
�TMS�AB

=�1−
2�n=0
� 
n
n ,n�A,B, where n denotes photon number, 


=tanh r, and r the squeezing constant. We assume that during
the distribution of the state 
�TMS�AB from the source to the
two parties Alice and Bob each mode undergoes random
phase shift �A and �B, see Fig. 4. However, due to the pe-
culiar structure of the pure state 
�TMS�AB it is only the phase
sum �=�A+�B which matters. The purification procedure
which we suggest requires only local operations on two cop-
ies of the decohered state and classical communication. Alice
and Bob each combine the two modes which they possess
�A1, A2 and B1, B2, respectively� on a balanced beam splitter
and they measure the x quadrature of output mode, i.e., Alice
measures XA= 1

�2
�xA1

in −xA2
in � and Bob observes XB= 1

�2
�xB1

in

−xB2
in �. Alice and Bob exchange their measurement results via

classical communication channel and evaluate the difference
�X= 1

�2
�XA−XB�. The purification succeeds if 
�X
�X and

fails otherwise.
The two-mode squeezed vacuum state exhibits squeezing

of the two commuting quadratures x−= 1
�2

�xA−xB� and p+

= 1
�2

�pA+ pB�. The entanglement of the Gaussian state

�TMS�AB can be fully quantified by the Einstein-Podolsky-
Rosen �EPR� uncertainty

�EPR = 
��x−�2� + 
��p+�2� . �8�

If �EPR�1 then the state is entangled �19�. Although for
non-Gaussian states �EPR is strictly speaking not an en-
tanglement measure, it quantifies the degree of nonlocal cor-
relations between modes A and B and can be easily measured
experimentally. In our model we assume that �EPR is mea-
sured using balanced homodyning with efficiency 	 and we
evaluate �EPR that would be observed in the experiment.

In the course of purification, both variances 
��x−�2� and

��p+�2� are reduced. Let us first consider x−. The quadra-
tures x−,1 and x−,2 of the two copies of the phase-diffused
two-mode squeezed vacuum nonlocally interfere on the two
balanced beam splitters BSA and BSB and the measured dif-
ference �X can be interpreted as the measurement of x−,1

in

−x−,2
in . Hence for the quadrature x− the scheme is totally

equivalent to the purification of the single-mode squeezed
state as shown in Fig. 1 and the variance of x− after the
purification can be directly calculated from Eq. �6� where the
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FIG. 3. Iterative purification protocol. Variance �a� and purity
�b� of the state after N purification steps are plotted versus � �N
=0 corresponds to the original dephased state�. The results were
obtained for Vx=e−2r /2, Vp=e2r /2, r=0.5, 	=1, and conditioning
on x1=0. This corresponds to the limit of very a narrow acceptance
window, X→0, where the protocol exhibits optimum performance.

M

BS

VBS

source 1

source 2

VBS

OUT A OUT B

A2

A1 B1

B2

φφ

φA2

B1A1

B2φ

A BBS

M

BHD BHD

classical communication

trigger for outputs A and B

A B

FIG. 4. Scheme for the purification of dephased continuous vari-
able entangled states by means of local operations and classical
communication.

EXPERIMENTALLY FEASIBLE PURIFICATION OF… PHYSICAL REVIEW A 75, 050302�R� �2007�

RAPID COMMUNICATIONS

050302-3



two independent phase shifts now read �1= ��A1+�B1� /2,
�2= ��A2+�B2� /2, Vx= 1

2e−2r, and Vp= 1
2e2r.

Let us now consider the output quadrature p+. For fixed
phase shifts �1 and �2, both p+ and the measured �X exhibit
Gaussian distribution centered on origin with variance A.
Due to the peculiar structure of the state 
�TMS�AB the distri-
butions of �X and p+ are not correlated. The condition 
�X

�X will be satisfied with probability erf�X /�2A� and the
resulting variance of p+ after the purification can be obtained
as a properly normalized average of A over the probability
distributions of the random phase shifts,


��p+
out�2� =

1

P��1

�
�2

A erf� X
�2A

����1����2�d�1d�2,

�9�

where the probability of successful entanglement purification
P is given by Eq. �5�. Note that the function erf�X /�2A� in
Eq. �9� acts as a filter which suppresses large A contributions
to 
��p+

out�2� and consequently the purification reduces the
variance of p+.

The reduction of the EPR uncertainty by our entangle-
ment purification protocol is illustrated in Fig. 5�a�. The re-
sults are similar to the improvement of squeezing in the
single-mode version of our protocol. To rigorously prove that
the purification increases the entanglement we have also nu-
merically evaluated the logarithmic negativity EN
=log2��AB

TB �1 where � · �1 denotes the trace norm and TB indi-
cates partial transposition with respect to the subsystem B
�20�. EN is an entanglement measure that provides an upper
bound on the distillable entanglement �20� and a lower
bound on the PPT-entanglement cost for the exact prepara-
tion of the state �21�. The calculations were done in the Fock
basis similarly as in Ref. �22�. The results are shown in Fig.

5�b� and clearly confirm that the purification increases the
entanglement.

To conclude, we note that our proposed scheme cannot
counteract the effect of losses which is one of the dominating
decoherence sources in optical fibers. However, if combined
with a single de-Gaussifying operation such as recently dem-
onstrated photon subtraction �14–16�, it would provide a ge-
neric continuous variable �CV� entanglement purification
and distillation scheme capable of also suppressing the effect
of losses �12,13�. We therefore expect that our method will
play an important role in the further development of the con-
tinuous variable quantum-communication networks.
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FIG. 5. �a� The EPR uncertainty versus strength of phase fluc-
tuations, before purification ��EPR,in, dashed line� and after
��EPR,out, solid line�; r=0.46, 	=0.85; �b� logarithmic negativity of
the dephased state �dashed line� and purified state �solid line�.
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