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Dynamics of magnetized relativistic tori oscillating around black holes
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ABSTRACT
We present a numerical study of the dynamics of magnetized, relativistic, non-self-gravitating,
axisymmetric tori orbiting in the background space–times of Schwarzschild and Kerr black
holes. The initial models have a constant specific angular momentum and are built with a non-
zero toroidal magnetic field component, for which equilibrium configurations have recently
been obtained. In this work we extend our previous investigations which dealt with purely
hydrodynamical thick discs, and study the dynamics of magnetized tori subject to perturbations
which, for the values of the magnetic field strength considered here, trigger quasi-periodic
oscillations lasting for tens of orbital periods. Overall, we have found that the dynamics of
the magnetized tori analysed is very similar to that found in the corresponding unmagnetized
models. The spectral distribution of the eigenfrequencies of oscillation shows the presence of a
fundamental p mode and of a series of overtones in a harmonic ratio 2:3: . . . . These simulations,
therefore, extend the validity of the model of Rezzolla et al. for explaining the high-frequency
QPOs observed in the spectra of low-mass X-ray binaries containing a black hole candidate also
to the case of magnetized discs with purely toroidal magnetic field distribution. If sufficiently
compact and massive, these oscillations can also lead to the emission of intense gravitational
radiation which is potentially detectable for sources within the Galaxy.

Key words: accretion, accretion discs – gravitational waves – hydrodynamics – relativity –
stars: oscillations.

1 I N T RO D U C T I O N

In a series of recent papers (Rezzolla, Yoshida & Zanotti 2003b;
Zanotti, Rezzolla & Font 2003; Zanotti et al. 2005) it has been
shown that upon the introduction of perturbations, relativistic tori
in equilibrium (or thick accretion discs) manifest a long-term os-
cillatory behaviour lasting for tens of orbital periods. When the
average disc density is close to nuclear matter density, the associ-
ated changes in the mass-quadrupole moment make these objects
promising sources of high-frequency, detectable gravitational ra-
diation for ground-based interferometers and advanced resonant
bar detectors, particularly for Galactic systems. This situation ap-
plies to astrophysical thick accretion discs formed following bi-
nary neutron star coalescence or the gravitational core collapse of
a sufficiently massive star. If the discs are instead composed of
low-density material stripped from the secondary star in low-mass
X-ray binaries (LMXBs), their oscillations could help explaining
the high-frequency quasi-periodic oscillations (QPOs) observed in
the spectra of X-ray binaries. Indeed, such QPOs can be explained
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in terms of p-mode oscillations of a small-size torus orbiting around
a stellar mass black hole (Rezzolla et al. 2003a).

The studies reported in the papers mentioned above have consid-
ered both Schwarzschild and Kerr black holes as well as constant
and non-constant (power-law) distributions of the specific angular
momentum of the discs. However, they have so far been limited
to purely hydrodynamical matter models, neglecting a fundamen-
tal aspect of such objects, namely the existence of magnetic fields.
There is general agreement that magnetic fields are bound to play
an important role in the dynamics of accretion discs orbiting around
black holes. They can be the source of viscous processes within the
disc through magnetohydrodynamic (MHD) turbulence (Shakura
& Sunyaev 1973), as confirmed by the presence of the so-called
magnetorotational instability (MRI) (Balbus 2003) that regulates
the accretion process by transferring angular momentum outwards.
In addition, the formation and collimation of the strong relativistic
outflows or jets routinely observed in a variety of scales in astro-
physics (from microquasars to radiogalaxies and quasars) is closely
linked to the presence of magnetic fields.

General relativistic magnetohydrodynamic (GRMHD hereafter)
numerical simulations provide the best approach for the investi-
gation of the dynamics of relativistic, magnetized accretion discs
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under generic non-linear conditions. In recent years there have been
important breakthroughs and a sustained level of activity in the mod-
elling of such systems, as formulations of the GRMHD equations in
forms suitable for numerical work have become available. This has
been naturally followed by their implementation in state-of-the-art
numerical codes developed by a number of groups (De Villiers &
Hawley 2003; Gammie, McKinney & Tóth 2003; Anninos, Fragile
& Salmonson 2005; Duez et al. 2005; Fragile 2005; Komissarov
2005; Shibata & Sekiguchi 2005; Antón et al. 2006; McKinney
2006; Mizuno et al. 2006; Giacomazzo & Rezzolla 2007) many of
which have been applied to the investigation of issues such as the
MRI in accretion discs and jet formation. Moreover, very recently
Komissarov (2006) has derived an analytic solution for an axisym-
metric, stationary torus with constant distribution of specific angular
momentum and a toroidal magnetic field configuration that general-
izes to the relativistic regime a previous Newtonian solution found
by Okada, Fukue & Matsumoto (1989). Such equilibrium solution
can be used not only as a test for GRMHD codes in strong grav-
ity, but also as initial data for numerical studies of the dynamics of
magnetized tori when subject to small perturbations. The latter is,
indeed, the main purpose of the present paper.

In this way we aim at investigating if and how the dynamics of
such objects changes when the influence of a toroidal magnetic field
is taken into account. We discuss the implications of our findings on
the QPOs observed in LMXBs with a black hole candidate, assessing
the validity of the model proposed by Rezzolla et al. (2003a) in a
more general context.

The paper is organized as follows. In Section 2 we briefly review
the equilibrium solution found by Komissarov (2006) for a station-
ary torus with a toroidal magnetic field orbiting around a black
hole. The mathematical framework we use for the formulation of
the GRMHD equations and for their implementation in our numer-
ical code is discussed in Section 3, while in Section 4 we describe
the approach we follow for the numerical solution of the GRMHD
equations. Section 5 is devoted to the discussion of the initial models
considered, with the results being presented in Section 6. Finally,
Section 7 summarizes the paper and our main findings. We adopt a
geometrized system of units extended to electromagnetic quantities
by setting G = c = ε0 = 1, where ε0 is the vacuum permittivity.
Greek indices run from 0 to 3 and Latin indices from 1 to 3.

2 S TAT I O NA RY F L U I D C O N F I G U R AT I O N S
W I T H A TO RO I DA L M AG N E T I C F I E L D

The initial configurations we consider can be considered as the MHD
extensions to the stationary hydrodynamical solutions of thick discs
orbiting around a black hole described by Kozlowski, Jaroszynski
& Abramowicz (1978), Abramowicz, Jaroszyński & Sikora (1978)
and are built using the analytic solution suggested recently by
Komissarov (2006).

The basic equations that are solved to construct such initial models
are the continuity equation ∇µ(ρuµ) = 0 for the rest-mass density ρ,
the conservation of energy–momentum ∇µTµν = 0 and Maxwell’s
equation ∇µ(∗Fµν) = 0, where the operator ∇µ is the covariant
derivative with respect to the space–time four-metric and∗Fµν is the
dual of the Faraday tensor defined as

∗ Fµν = uµbν − uνbµ. (1)

In this expression uµ is the fluid four-velocity and bµ is the mag-
netic field measured by an observer comoving with the fluid. As
usual in ideal relativistic MHD (i.e. for a plasma having infinite

conductivity), the stress–energy tensor Tµν is expressed as

T µν ≡ (ρh + b2)uµuν +
(

p + b2

2

)
gµν − bµbν, (2)

where gµν are the metric coefficients, p is the (thermal) pressure, h
the specific enthalpy and b2 ≡ bµbµ.

The equilibrium equations are then solved to build stationary and
axisymmetric fluid configurations with a toroidal magnetic field
distribution in the tori and a constant distribution of the specific
angular momentum in the equatorial plane. The main difference
of our solution with that of Komissarov (2006) is that we employ
a polytropic equation of state (EOS) of the form p = κρ
 for the
fluid, where κ is the polytropic constant and 
 is the adiabatic index.
Such an EOS has a well-defined physical meaning and differs from
the one used by Komissarov (2006), p = Kωq , where ω is the fluid
enthalpy, and K and q are constants.

By imposing the condition of axisymmetry and stationarity in
a spherical coordinate system (i.e. ∂φ = ∂t = 0), the hydrostatic
equilibrium conditions in the r and θ directions are given by

∇i ln(ut ) − �∇i�

1 − ��
+ ∇i p

w
+ ∇i (Lb2)

2Lw
= 0, (3)

with i = r, θ and L(r , θ ) ≡ gtφgtφ − gφφgtt . The angular velocity
appearing in (3) is defined as

� ≡ uφ

ut
, (4)

the specific angular momentum is given by

� ≡ −uφ

ut
(5)

and the components of the magnetic field are

bφ =
√

2pm

gφφ + 2�0gtφ + �2
0gtt

, (6)

bt = �0bφ. (7)

Following Komissarov (2006), we consider the following EOS
for the magnetic pressure pm = MLq−1wq , where M and q are
constants, and which essentially amounts to confining the magnetic
field to the interior of the torus. Using this relation, we can inte-
grate equation (3), which in the case of constant specific angular
momentum yields

W − Win + ln

(
1 + 
K


 − 1
ρ
−1

)
+ q

q − 1
M (Lw)q−1 = 0, (8)

where the potential W is defined as W ≡ ln |ut |. Note that in general
there will be two radial locations at which �0 equals the Keplerian
specific angular momentum. The innermost of these radii represents
the location of the ‘cusp’ of the torus, while the outermost the ‘cen-
tre’. When a magnetic field is present, the position of the centre does
not necessarily correspond to that of the pressure maximum, as in
the purely hydrodynamical case.

In order to solve equation (3) a number of parameters are needed
to define the initial model, namely, κ , 
, q, �0, W in and the ratio of
the magnetic-to-gas pressure at the centre of the torus, βc = (pm/p)c.
Thus, using the definition of βc, we obtain the rest-mass density at
the centre of the torus from the following expression:

Wc − Win + ln

(
1 + 



 − 1
kρ
−1

c

)

+ βc



 − 1

[
1

1/kρ
−1
c + 
/(
 − 1)

]
= 0. (9)
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Finally, the equilibrium equation (3) can be solved to obtain
the distribution of all relevant MHD quantities inside the torus
(Komissarov 2006).

3 G E N E R A L R E L AT I V I S T I C M H D E QUAT I O N S

As mentioned in Section 1, there has been intense work in recent
years on formulations of the GRMHD equations suitable for nu-
merical approaches (De Villiers & Hawley 2003; Gammie et al.
2003; Anninos et al. 2005; Duez et al. 2005; Komissarov 2005;
Shibata & Sekiguchi 2005; Antón et al. 2006; Giacomazzo &
Rezzolla 2007). We here follow the approach laid out in Antón
et al. (2006) and adopt the 3 + 1 formulation of general relativity
in which the 4D space–time is foliated into a set of non-intersecting
space-like hypersurfaces. The 3 + 1 line element of the metric then
reads

ds2 = −(α2 − βiβ
i ) dx0 dx0 + 2βi dxi dx0 + γi j dxi dx j , (10)

where γ ij is the three-metric induced on each space-like slice, and α

and β i are the so-called lapse function and shift vector, respectively.
Under the ideal MHD condition, Maxwell’s equations ∇∗

νFµν =
0 reduce to the divergence-free condition for the magnetic field

∂(
√

γ Bi )

∂xi
= 0, (11)

together with the induction equation for the evolution of the mag-
netic field

1√
γ

∂

∂t
(
√

γ Bi ) = 1√
γ

∂

∂x j
{√γ [αṽi B j − αṽ j Bi ]}, (12)

where γ ≡ det(γi j ) and ṽi = vi − β i/α, with vi and Bi being,
respectively, the spatial components of the velocity and of the mag-
netic field, as measured by the Eulerian observer associated to the
3 + 1 splitting.

Following Antón et al. (2006), the conservation equations for
the energy–momentum tensor given by equation (2) together with
the continuity equation and the induction equation for the magnetic
field can be written as a first-order, flux-conservative, hyperbolic
system. The state vector and the vector of fluxes of the fundamental
GRMHD system of equations read

1√−g

(
∂
√

γ F0

∂x0
+ ∂

√−gFi

∂xi

)
= S, (13)

where g ≡ det(gµν) = α
√

γ . The state vector F 0 is given by

F0 ≡




D

Sj

τ

Bk


 , (14)

with the definitions

D ≡ ρW , (15)

Sj ≡ ρ(h + b2/ρ)W 2v j − αb0b j , (16)

τ ≡ ρ(h + b2/ρ)W 2 − (p + b2/2) − α2(b0)2 − D, (17)

where W is the Lorentz factor of the fluid. The ‘fluxes’ Fi in equations
(13) have instead explicit components given by

Fi ≡




Dṽi

S j ṽ
i + (p + b2/2)δi

j − b j Bi/W

τ ṽi + (p + b2/2)vi − αb0 Bi/W

ṽi Bk − ṽk Bi


 , (18)

while the ‘source’ terms S are

S ≡




0

T µν(∂gν j/∂xµ − 
δ
νµgδ j )

α(T µ0∂lnα/∂xµ − T µν
0
νµ)

0k


 , (19)

where 0 k ≡ (0, 0, 0)T, and 

µ
νδ are the Christoffel symbols for

either a Schwarzschild or Kerr black hole space–time. Note that the
following fundamental relations hold between the four components
of the magnetic field in the comoving frame, bµ, and the three vector
components Bi measured by the Eulerian observer:

b0 = W Bivi

α
, (20)

bi = Bi + αb0ui

W
. (21)

Finally, the modulus of the magnetic field can be written as

b2 = B2 + α2(b0)2

W 2
, (22)

where B2 ≡ BiBi .
Casting the system of evolution equations in flux-conservative,

hyperbolic form allows us to take advantage of high-resolution
shock-capturing (HRSC) methods for their numerical solution. The
hyperbolic structure of those equations and the associated spectral
decomposition of the flux-vector Jacobians, needed for their numer-
ical solution with Riemann solvers, is given in Antón et al. (2006).

4 N U M E R I C A L A P P ROAC H

The numerical code used for the simulations reported in this pa-
per is an extended version of the code presented in Zanotti et al.
(2003, 2005) to account for solution of the GRMHD equations. The
accuracy of the code has been recently assessed in Antón et al.
(2006), with a number of tests including magnetized shock tubes
and accretion on to Schwarzschild and Kerr black holes. The sys-
tem of GRMHD equations (13) is solved using a conservative HRSC
scheme based on the HLLE solver, except for the induction equa-
tion for which we use the constraint transport method designed by
Evans & Hawley (1988) and Ryu et al. (1998). Second-order accu-
racy in both space and time is achieved by adopting a piecewise-
linear cell reconstruction procedure and a second-order, conserva-
tive Runge–Kutta scheme, respectively.

The code makes use of polar spherical coordinates in the two
spatial dimensions (r, θ ) and the computational grid consists of
Nr × Nθ zones in the radial and angular directions, respectively. The
innermost zone of the radial grid is placed at rmin = rhorizon + 0.1,
and the outer boundary in the radial direction is at a distance about
30 per cent larger than the outer radius of the torus, rout. The radial
grid has typically Nr � 300 and is built by joining smoothly a first
patch which extends from rmin to the outer radius of the torus and
is logarithmically spaced (with a maximum radial resolution at the
innermost grid zone, �r/M = 1 × 10−3, where M is the mass of
the black hole) and a second patch with a uniform grid and which
extends up to rmax. On the other hand, the angular grid consists of
Nθ = 100 equally spaced zones and covers the domain from 0 to π .

As in the hydrodynamical code, a low-density atmosphere is in-
troduced in those parts of the computational domain not occupied by
the torus. This is set to follow the spherically symmetric accreting
solution described by Michel (1972) in the case that the background
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metric is that of a Schwarzschild black hole and a modified so-
lution, which accounts for the rotation of the black hole (Zanotti
et al. 2005), when we consider the Kerr background metric. Since
this atmosphere is evolved as the rest of the fluid and is essentially
stationary but close to the torus, it is sufficient to ensure that its
dynamics does not affect that of the torus. This is the case if the
maximum density of the atmosphere is five to six orders of mag-
nitude smaller than the central density of the torus. Note that since
we limit our analysis to isentropic evolutions of isentropic initial
models, the energy equation does not need to be solved. Finally, the
boundary conditions adopted are the same as those used by Font &
Daigne (2002).

5 I N I T I A L M O D E L S

The initial models consist of a number of magnetized relativistic
tori which fill their outermost closed equipotential surface, so that
their inner radii coincide with the position of the cusp, rin = rcusp.
In practice, we determine the positions of the cusp and of the max-
imum rest-mass density in the torus by imposing that the specific
angular momentum at these two points coincides with the Keplerian
value. Clearly, different values of specific angular momentum will
produce tori with different positions of the cusp and of the maximum
rest-mass density. In a purely hydrodynamical context, the effect on
the dynamics of the tori of the distribution of specific angular mo-
mentum, being either constant or satisfying a power law with r, was
studied by Zanotti et al. (2003, 2005). In this paper, however, we
consider only magnetized tori with constant specific angular mo-
mentum as we want to first focus on the influence a magnetic field
has on the dynamics, both in a Schwarzschild and in a Kerr back-
ground metric. In this way we can conveniently exploit the analytic
solution reviewed in Section 2 and which cannot be extended sim-
ply to include the case of non-constant specific angular momentum
distributions.

Once the specific angular momentum is fixed, the inner edge of
the torus rin is determined by the potential gap at such inner edge,
�W in = W in − Wcusp which, in the case of constant specific angular
momentum distributions, is defined as

�Win = ln[(−ut )in] − ln[(−ut )cusp], (23)

with �W in = 0 corresponding to a torus filling its outermost equipo-
tential surface.

Table 1. From left- to right-hand side the columns report the name of the model, the spin of the black hole, a, the specific angular
momentum, �0, the polytropic constant, κ , the inner and outer radius of the torus, rin and rout, the orbital period at the point of maximum
rest-mass density, torb, the maximum rest-mass density, ρmax, the magnetic-to-gas pressure at the maximum of the rest-mass density,
βc, and the maximum magnetic field, Bmax. For all models the torus-to-hole mass ratio Mt/M is 0.1 (M = 2.5 M�) and the adiabatic
exponent of the EOS is 4/3.

Model a �0 κ (CGS) rin rout torb (ms) ρmax (CGS) βc Bmax (G)

S1 0.0 3.80 9.33 × 1013 4.57 15.88 1.86 1.25 × 1013 0.00 0.0
S2 0.0 3.80 9.21 × 1013 4.57 15.88 1.86 1.26 × 1013 0.01 2.50 × 1015

S3 0.0 3.80 9.10 × 1013 4.57 15.88 1.86 1.27 × 1013 0.02 3.52 × 1015

S4 0.0 3.80 8.90 × 1013 4.57 15.88 1.86 1.28 × 1013 0.04 4.94 × 1015

S5 0.0 3.80 8.40 × 1013 4.57 15.88 1.86 1.29 × 1013 0.10 7.58 × 1015

S6 0.0 3.80 7.60 × 1013 4.57 15.88 1.86 1.34 × 1013 0.20 1.04 × 1016

S7 0.0 3.80 6.00 × 1013 4.57 15.88 1.86 1.39 × 1013 0.50 1.50 × 1016

S8 0.0 3.80 4.49 × 1013 4.57 15.88 1.86 1.40 × 1013 1.00 1.85 × 1016

K1 0.5 3.30 2.20 × 1014 3.16 15.65 1.22 1.44 × 1013 0.01 4.29 × 1015

K2 0.7 3.00 2.25 × 1014 2.57 12.07 0.88 2.74 × 1013 0.01 6.69 × 1015

K3 0.9 2.60 7.80 × 1014 1.77 19.25 0.56 1.87 × 1013 0.01 1.15 × 1016

All of the models are built with an adiabatic index 
 = 4/3
to mimic a degenerate relativistic electron gas, and the polytropic
constant κ is fixed such that the torus-to-black hole mass ratio, Mt/M,
is roughly 0.1. Since the mass of the torus is at most 10 per cent of
that of the black hole, we can neglect the self-gravity of the torus and
study the dynamics of such objects in a fixed background space–time
(test-fluid approximation). Moreover, the disc-to-hole mass ratio
adopted here is in agreement with the one obtained in simulations
of unequal mass binary neutron star mergers performed by Shibata,
Taniguchi & Uryū (2003) and Shibata & Sekiguchi (2005).

Overall, we have investigated a number of different models for
tori orbiting either non-rotating or rotating black holes. In the case of
Schwarzschild black holes, the main difference among the models
is the strength of the toroidal magnetic field, which is parametrized
by the ratio of the magnetic-to-gas pressure at the centre of the
disc, βc ≡ b2/(2p). In the case of Kerr black holes, on the other
hand, we report results for tori orbiting around black holes with
spins a = 0.5, 0.7 and 0.9, while keeping constant the magnetic-
to-gas pressure ratio at βc = 0.01. A summary of all the models
considered is given in Table 1.

The set of models chosen here will serve a double purpose. Being
tori with large average densities, they can provide accurate estimates
for the gravitational-wave emission triggered by the oscillations.
On the other hand, since the ratio among the eigenfrequencies is
the astrophysically most relevant quantity and this does not depend
on the density, this set of models is also useful for analysing the
oscillation properties of the accretion discs in LMXBs. It is also
important to note that for tori withβc >1 the initial solution degrades
over time as a significant mass is accreted in these cases, with an
accretion rate that increases with the strength of the magnetic field.
The dependence of the stability of thick discs with the strength of
the toroidal magnetic field will be the subject of an accompanying
paper (Rezzolla et al., in preparation).

The maximum strength of the magnetic field at the centre, deter-
mined by the parameter βc, can be calculated through equation (6),
which also reflects the dependence of the toroidal magnetic field
component on the background metric. The initial models consid-
ered are such that βc takes values between 0 and 1, as shown in
Table 1. This also fixes the overall strength of the magnetic field,
whose maximum values are reported in the tenth column of the
same table. The values of the magnetic field strength at the centre
for the case of tori around a Schwarzschild black hole range from
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Figure 1. Isocontours of the logarithm of the rest-mass density for the unperturbed model S2. The left-hand panel shows the configuration at the initial time
and the right-hand panel the corresponding distribution after 100 orbital time-scales. The equilibrium solution is preserved to high accuracy.

the magnetized model S2 with 2.50 × 1015 G to model S8 with
1.85 × 1016 G. These values are in good agreement with the typi-
cal values expected to be present in the astrophysical scenarios that
could form a relativistic thick torus, such as the magnetized core
collapse (Cerdá-Durán & Font 2006; Obergaulinger, Aloy & Müller
2006; Shibata et al. 2006) and values considered for the collapse of
magnetized hypermassive neutron stars by Duez et al. (2006).

In order to trigger the oscillations, we perturb the models reported
in Table 1 by adding a small radial velocity (we recall that in equi-
librium all velocity components but the azimuthal one are zero). As
in our previous work (Zanotti et al. 2003, 2005), this perturbation is
parametrized in terms of a dimensionless coefficient η of the spher-
ically symmetric accretion flow on to a black hole (Michel 1972),
that is, vr = η(vr)Michel. In all the simulations reported we choose
η = 0.1, but the results are not sensitive to this choice as long as
the oscillations are in a linear regime (i.e. for η � 0.2; Zanotti et al.
2003).

Finally, it is worth commenting on the choice made for the mag-
netic field distribution. On one hand, this choice is motivated by the
mere convenience of having an analytic equilibrium solution upon
which a perturbation can be introduced. On the other hand, there
exists an additional motivation which is more astrophysically mo-
tivated. As it has been shown in recent simulations of magnetized
core collapse (Cerdá-Durán & Font 2006; Obergaulinger et al. 2006;
Shibata et al. 2006) the magnetic field distribution in the nascent,
magnetized, protoneutron stars has a dominant toroidal component,
quite irrespective of the initial configuration. Since gravitational
core collapse is one of the processes through which thick accretion
discs may form, the toroidal initial configuration of our simulations
is well justified. This choice, however, also has an important con-
sequence. Because of the enforcement of axisymmetry in our 2D
simulations and the absence of an initial poloidal magnetic field, in
fact, the MRI, which could change even significantly the dynam-
ics of our tori, cannot develop in our simulations. Indeed, Fragile
(2005) has investigated the oscillation of an accretion torus hav-
ing an initial poloidal magnetic field component. Although pre-
liminary, his results suggest that the development of the MRI and
of the Papaloizou–Pringle instability (Papaloizou & Pringle 1984)
may damp significantly the oscillation modes of accretion tori with

poloidal magnetic fields. We will address this question in a future
work.

6 R E S U LT S

6.1 Oscillation properties

6.1.1 Dynamics of magnetized tori

We have first investigated equilibrium configurations of magnetized
tori by performing numerical evolutions of unperturbed tori (η =
0) and by checking the stationarity of the solution over a time-scale
which is a couple of orders of magnitude larger than the dynamical
one. As representative example, we show in Fig. 1 the isocontours
of the logarithm of the rest-mass density of model S2 as computed
at the initial time t = 0 (left-hand panel) and at the time when
the simulation was stopped (right-hand panel). This corresponds to
t = 100 torb, where torb is the Keplerian orbital time for a particle
in a circular orbit at the centre of the torus. Aside from the minute
accretion of matter from the cusp towards the black hole (see below),
the final snapshot of the rest-mass distribution clearly shows the
stationarity of the equilibrium initial solution. More precisely, the
central rest-mass density, after a short initial transient phase, settles
down to a stationary value which differs after 100 orbital time-
scales only by 2 per cent from the initial one. This provides a strong
evidence of the ability of the code to keep the torus in equilibrium
for evolutions much longer than the characteristic dynamical time-
scales of these objects.

On the left-hand panel of Fig. 2 we show instead the evolution
over 100 torb of the central rest-mass density of the least magnetized
model S2, when a perturbation with parameter η = 0.1 is added
to the equilibrium model.1 It is interesting to note that despite the
presence of a rather strong toroidal magnetic field, the persistent
oscillatory behaviour found in these simulations is very similar to

1 We have here chosen to show the evolution of the rest-mass density as this
has a simple physical interpretation, but all of the MHD variables exhibit the
same harmonic behaviour.
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Figure 2. Time evolution of the central rest-mass density normalized to its initial value for models S2 (left-hand panel) and S8 (right-hand panel). Distinctive
oscillations are visible during the whole evolution, t = 100 torb.

the one found in purely hydrodynamical tori (Zanotti et al. 2003,
2005). Note also that the small secular decrease in the oscillation
amplitude is not to be related to numerical or physical dissipation,
since the code is essentially inviscid and the EOS used is isentropic.
Rather, we believe it to be the result of the small but non-zero mass
spilled through the cusp at each oscillation (see also discussion
below). Furthermore, on a smaller time-scale than the one shown
in Fig. 2, the oscillations show a remarkable harmonic behaviour
and this is highlighted in the small insets in Fig. 2. This is in stark
contrast with the results of Fragile (2005), which were obtained
with comparable numerical resolutions, but with an initial poloidal
magnetic field configuration. In that case, in fact, the oscillations
were rapidly damped in only a few orbital periods.

Results from a representative model with a higher magnetic field
are shown in the right-hand panel of Fig. 2, which again reports the
evolution of the normalized central rest-mass density for model S8.
Note that despite this model has a magnetic-to-gas pressure ratio
at the centre βc = 1, and hence a central magnetic field of ∼ 2 ×
1016 G, its overall dynamics is very similar to that of model S2. Also
in this case, in fact, the oscillations are persistent during the entire
evolution (100 torb) and show almost no damping. However, the am-
plitude does show variations over time and, most importantly, it no
longer maintains a symmetric behaviour between maxima and min-
ima, as a result, we believe, of the increased mass accretion through
the cusp. We recall, in fact, that all the initial models considered in
our sample correspond to marginally stable tori, that is, tori filling
entirely their outermost closed equipotential surface. Any perturba-
tion, however small, will induce some matter to leave the equipoten-
tial surface through the cusp, leading to the accretion of mass and
angular momentum on to the black hole. Evidence in favour of this
is shown in Fig. 3, which reports the accretion mass-flux for model
S2 (upper panel) and model S8 (lower panel). While both reflect the
oscillations in the dynamics, they also have different mean values,
with the one relative to model S8 being almost an order of magni-
tude larger. Note also the correlation between the fluctuations in the
mass-accretion rate and the changes in the oscillation amplitudes
shown in Fig. 2. In particular, the sudden change in the mass-flux
of model S8 at t ∼ 35torb and which corresponds to a change in the
amplitude modulation in the right-hand panel of Fig. 2.

Although the accretion-rates are well above the Eddington limit
(which is ∼10−16 M� s−1 for a 2.5 M� black hole), the amounts
of mass accreted by the black hole at t = 100 torb is only 1.3 and

Figure 3. Time evolution of the mass-accretion rate for models S2 and S8.

3.3 per cent of the initial mass for models S2 and S8, respectively.
Similarly, the total amount of angular momentum accreted at the
end of the simulation would introduce a change in the black hole’s
spin of less than 1 per cent for both models S2 and S8. Overall,
therefore, these changes in the mass and spin of the black holes are
extremely small and thus justify the use of a fixed background space–
time. Finally, in Fig. 4 we show the evolution of the normalized
central rest-mass density for model K2, which corresponds to a
torus orbiting around a Kerr black hole with spin a = 0.7. Again, a
perturbation with parameter η = 0.1 was added to the equilibrium
model so as to investigate the oscillatory behaviour of the torus
around its equilibrium position. As in the purely hydrodynamical
case, the qualitative behaviour in models around a Kerr black hole
is very similar to that found for models around a Schwarzschild
black hole, and the dynamics shows, also in this case, a negligible
damping of the oscillations after the initial transient.

6.1.2 Power spectra

An important feature of axisymmetric p-mode oscillations of ac-
cretion tori is that the lowest order eigenfrequencies appear in
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Figure 4. Time evolution of the central rest-mass density normalized to its
initial value for the model K2.

the harmonic sequence 2:3. This feature was first discovered in
the purely hydrodynamical numerical simulations of Zanotti et al.
(2003), subsequently confirmed through a perturbative analysis in a
Schwarzschild space–time by Rezzolla et al. (2003b), and later ex-
tended to a Kerr space–time and to more general distributions of the
specific angular momentum by Zanotti et al. (2005) and Montero,
Rezzolla & Yoshida (2004). Overall, it was found that the 2:3 har-
monic sequence was present with a variance of ∼10 per cent for tori
with a constant distribution of specific angular momentum and with
a variance of ∼20 per cent for tori with a power-law distribution
of specific angular momentum. Since the 2:3 harmonic sequence is
the result of global modes of oscillation, it depends on a number of
different elements that contribute to small deviations from an exact
relation among integers. The latter, in fact, should be expected only
for a perfect 1D cavity, trapping the p modes without losses. In prac-
tice, however, factors such as the vertical size of the tori, the black
hole spin, the distribution of specific angular momentum, the EOS
considered and the presence of a small but non-zero mass-loss, can
all influence this departure.

While the understanding of the properties of these modes of os-
cillation has grown considerably over the last few years (see Mon-
tero et al. 2004, for a list of references), and an exhaustive anal-
ysis has been made in the case of relativistic slender tori (Blaes,
Arras & Fragile 2006), it was not obvious whether such a harmonic
sequence would still be present in the case of magnetized discs
with toroidal magnetic fields. To address this question, we have
performed a Fourier analysis of the time evolution of some rep-
resentative variables and obtained quantitative information on the
quasi-periodic behaviour of the tori. In particular, for all of the mod-
els considered, we have Fourier transformed the evolution of the L2

norm of the rest-mass density, defined as ||ρ||2 ≡ ∑Nr

i=1

∑Nθ

j=1(ρi j )2

and studied the properties of resulting power spectra. These, we re-
call, show distinctive peaks at the frequencies that can be identified
with the quasi-normal modes of oscillation of the disc.2 Clearly, the
accuracy in calculating these eigenfrequencies depends linearly on

2 Note that because of the underlining axisymmetry of our calculations,
we cannot compute the effect of transverse hydromagnetic waves, such as
Alfvèn waves, propagating along the toroidal magnetic field lines.

the length of the time-series and is of 0.01 kHz for the evolutions
carried out here and that extend for 100 torb ∼ 100 ms.

In Fig. 5 we present the power spectra (PSD) obtained from the
L2 norm of the rest-mass density for model S2 (left-hand panel)
and model S8 (right-hand panel); in both panels the solid lines refer
to the magnetized tori, while the dashed ones to the unmagnetized
counterpart S1, which is shown for reference. A rapid look at the
panels in Fig. 5 reveals that the overall dynamics of magnetized
tori shows features which are surprisingly similar to those found by
Zanotti et al. (2003, 2005) for unmagnetized accretion tori. Namely,
the spectra have a fundamental mode f (which is the magnetic equiv-
alent of the p mode discussed in Zanotti et al. (2003, 2005)) and a
series of overtones, for which, in particular, the first overtone o1 can
usually be identified clearly. Interestingly, also these spectra show
the 2:3 harmonic relation between the frequencies of the fundamen-
tal mode and its first overtones. Such a feature remains therefore
unmodified and an important signature of the oscillation properties
of magnetized tori with a toroidal magnetic field.

It is also worth noting that in the case of mildly magnetized tori,
such as model S2, the similarity in the PSD is rather striking and
the two spectra differ only in the relative amplitude between the
eigenfrequencies o1, o2, . . . and the modes which are the result of
non-linear coupling (e.g. 2f–o1, 2f, . . .). On the other hand, in the
case of more highly magnetized tori, such as model S8, the magnetic
field strength is sufficiently large to produce variations in the eigen-
frequencies, which are all shifted to higher frequencies, with devia-
tions, however, which become larger for higher overtones. While not
totally unexpected [a magnetic field is known to increase the eigen-
frequencies of magnetized stars Nasiri & Sobouti (1989)], these
represent the first calculations of the eigenfrequencies of relativis-
tic magnetized discs and, as such, anticipate analogous perturbative
studies.

As a way to quantify the differential shift of the eigenfrequencies
to larger values, we report in Table 2 the frequencies of the fun-
damental mode, of the first overtone, and their ratio for all of the
models considered. Another analogy worth noticing in the spectra
presented in Fig. 5 is the presence of non-linear couplings among
the various oscillation modes. These modes were first pointed out by
Zanotti et al. (2005) in the investigation of the dynamics of purely
hydrodynamical tori with non-constant specific angular momentum
in Kerr space–time, and are the consequence of the non-linear cou-
pling among modes, in particular of the f and o1 modes.

We complete our discussion of the spectral properties of these os-
cillating discs, by showing in Fig. 6 the PSD for model K2, which,
we recall, represents a torus orbiting around a Kerr black hole with
spin a = 0.7. As for the previous spectra, the dashed line corre-
sponds to the unmagnetized version of model K2 and is included
for reference. Overall, the features observed in a Kerr background
are very similar to those found for models in the Schwarzschild case.
Also in this case, in fact, the fundamental mode, its first overtones
and the non-linear harmonics are clearly identified and no evidence
appears of new modes related to the presence of a toroidal magnetic
field.

As a final remark we note that the 2:3 ratio among the different
p modes has a relevance also in a wider context. We recall, in fact,
that among the several models proposed to explain the QPOs ob-
served in LMXBs containing a black hole candidate, the one sug-
gested by Rezzolla et al. (2003a) is particularly simple and is based
on the single assumption that the accretion disc around the black
hole terminates with a sub-Keplerian part, that is, a torus of small
size. A key point of this model is the evidence that in these objects
the frequencies of the fundamental mode and the first overtone are
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Figure 5. Solid lines: Power spectrum of the L2 norm of the rest-mass density for models S2 (left-hand panel) and S8 (right-hand panel). The dashed lines
show the corresponding PSD for the unmagnetized versions of both models. The units in the vertical axis are arbitrary and the PSDs were obtained using a
Hanning filter.

Table 2. From left- to right-hand side, the columns report
the name of the model, the frequency of the fundamental
mode, the frequency of the first overtone, their ratio and
the magnetic-to-gas pressure ratio at the centre of the
torus.

Model f (Hz) o1 (Hz) o1/f βc

S1 224 332 1.48 0.00
S2 224 332 1.48 0.01
S3 228 336 1.47 0.02
S4 229 333 1.45 0.04
S5 230 330 1.43 0.10
S6 230 340 1.48 0.20
S7 233 345 1.48 0.50
S8 235 341 1.45 1.00

K1 275 418 1.52 0.01
K2 370 560 1.51 0.01
K3 255 404 1.58 0.01

in the 2:3 harmonic sequence in a very wide space of parameter. The
simulations presented here further increase this space, extending it
also to the case of magnetized tori and thus promoting the validity
of this model for QPOs to a more general and realistic scenario.
As mentioned above, the simulations presented here refer to tori
with a constant distribution of specific angular momentum. How-
ever, Montero et al. (2004) and Zanotti et al. (2005) have also shown
that the ratio of the o1 mode to the fundamental one departs only
slightly from 3:2 when power-law distributions of the specific angu-
lar momentum were considered. Slender tori with a distribution of
specific angular momentum close to a Keplerian one, on the other
hand, have this ratio much closer to unity (Blaes et al. 2006).

6.2 Gravitational-wave emission

As pointed out by Zanotti et al. (2003) the oscillating behaviour of
perturbed accretion tori is responsible for significant changes of their
mass-quadrupole moment. As a result, these changes determine the
emission of potentially detectable gravitational radiation if the tori
are compact and dense enough. This could be the case if the tori are
produced via binary neutron star mergers or gravitational collapse
of the central core of massive stars. In this section, we extend the

Figure 6. As Fig. 5 but for model K2.

analysis of Zanotti et al. (2003, 2005) for unmagnetized discs and
investigate the gravitational-wave emission from constant angular
momentum magnetized tori orbiting around black holes.

Although more sophisticated approaches involving perturba-
tive techniques around black holes can be employed to study the
gravitational-wave emission from these tori (Nagar et al. 2005;
Ferrari, Gualtieri & Rezzolla 2006; Nagar et al. 2007), we here resort
to the simpler and less expensive use of the Newtonian quadrupole
approximation (Zanotti et al. 2003), which has been suitably mod-
ified to account for the presence of a magnetic field, as done by
Kotake et al. (2004). In particular, the quadrupole wave amplitude
AE2

20 , which is the second time derivative of the mass-quadrupole
moment, is computed through the ‘stress formula’ (Obergaulinger
et al. 2006)

AE2
20 = k

∫
r 2drdz

[
frr (3z2−1)+ fθθ (2−3z2)− fφφ

− 6z frθ

√
1 − z2−rρ

∂�

∂r
(3z2−1) + 3zρ

∂�

∂θ

√
1−z2

]
,

(24)
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Figure 7. Comparison between the power spectrum |h( f )|√ f of the wave
signal for models S2, S8 and K2 and the strain sensitivity of LIGO (dashed
line), Virgo (long-dashed line).

where k = 16π3/2/
√

15, z ≡ cos θ, fi j ≡ ρviv j − bi b j and �

is the gravitational potential, and is approximated at the second
post-Newtonian order from the metric function grr = 1 − 2� +
2�2.

Fig. 7 shows a spectral comparison between the designed strain
sensitivity of the gravitational-wave detectors Virgo and LIGO, and
the logarithm of the power spectrum |h( f )|√ f of the gravitational-
wave signals for models S2, S8 and K2 (similar graphs are obtained
also for the other models). Note that all of the sensitivity curves dis-
played in this figure assume an optimally incident wave in position
and polarization (as obtained by setting the beam-pattern function of
the detector to one), and that the sources are assumed to be located
at a distance of 10 kpc.

From Fig. 7 it is clear that all our models lie well above the sensi-
tivity curves of the detectors for Galactic sources and also that there
are no significant differences in the power spectra as the magnetic
field strength is increased. Interestingly, however, the signal from
a torus orbiting around a Kerr black hole is clearly distinguishable
from the one around a Schwarzschild black hole. Besides having a
fundamental mode at higher frequencies, in fact, also the amplitude
is about one order of magnitude larger as a result of it being closer
to the horizon and with a comparatively larger central density. As
expected from the similarities in the dynamics, the signal-to-noise
ratio of these magnetized models is very similar to one of the cor-
responding unmagnetized tori, and we refer to Zanotti et al. (2005)
for a detailed discussion.

7 C O N C L U S I O N S

We have presented and discussed the results of numerical simula-
tions of the dynamics of magnetized relativistic axisymmetric tori
orbiting in the background space–time of either Schwarzschild or
Kerr black holes. The tori, which satisfy a polytropic EOS and have a
constant distribution of the specific angular momentum, have been
built with a purely toroidal magnetic field component. The self-
gravity of the discs has been neglected and, as the models consid-
ered are all marginally stable to accretion, the minute accretion of

mass and angular momentum through the cusp is not sufficient to
affect the background black hole metric.

The use of equilibrium solutions for magnetized tori around black
holes has allowed us to study their oscillation properties when these
are excited through the introduction of small perturbations. In par-
ticular, by considering a representative sample of initial models with
magnetic field strengths that ranged from 2.5 × 1015 G up to equipar-
tition, and GRMHD evolutions over 100 orbital periods, we have
studied the dynamics of these discs and how this is affected by a
magnetic field.

Overall, we have found the behaviour of the magnetized tori to
be very similar to the one shown by purely hydrodynamical tori
(Zanotti et al. 2003, 2005). As in the hydrodynamical case, in fact,
the introduction of perturbations triggers QPOs lasting tens of or-
bital periods, with amplitudes that are modified only slightly by
the small loss of matter across the cusp. The enforcement of ax-
isymmetry and the absence of an initial poloidal magnetic field has
prevented the development of the MRI, which could influence the
oscillation properties and thus alter our conclusions (Fragile 2005).
Determining whether this is actually the case will be the focus of a
future work, where a more generic magnetic field configuration will
be considered.

As for unmagnetized tori, the spectral distribution of the eigen-
frequencies shows the presence of a fundamental p mode and of
a series of overtones in a harmonic ratio 2:3: . The analogy with
purely hydrodynamical simulations extends also to the non-linear
harmonics in the spectra and that are the consequence of the non-
linear coupling among modes (in particular the f mode and of its first
overtone o1). Also for them we have found a behaviour which is es-
sentially identical to that found in unmagnetized discs. In summary,
because of the underlining axisymmetry of our calculations and the
use of purely toroidal magnetic fields, we cannot compute the effect
of transverse hydromagnetic waves, such as Alfven waves, propa-
gating along the toroidal magnetic field lines. Within this restriction,
no new modes have been revealed by our simulations, and in partic-
ular no modes which can be associated uniquely to the presence of
a magnetic field. Nevertheless, the influence of the magnetic field is
evident when considering the absolute values of the eigenfrequen-
cies, which are shifted differentially to higher frequencies as the
strength for the magnetic field is increased, with an overall relative
change which is ∼5 per cent for a magnetic field near equipartition.

Besides confirming the unmagnetized results, the persistence
of the 2:3 ratio among the different p modes also has an impor-
tant consequence. It allows, in fact, to extend to a more general
and realistic scenario the validity of the QPO model presented by
Rezzolla et al. (2003a) and Schnittman & Rezzolla (2006), and
which explains the QPOs observed in the X-ray luminosity of
LMXBs containing a black hole candidate with the QPOs of small
tori near the black hole. The evidence that this harmonic ratio is
preserved even in the presence of toroidal magnetic fields provides
the model with additional robustness.

When sufficiently massive and compact, the oscillations of these
tori are responsible for an intense emission of gravitational waves
and using the Newtonian quadrupole formula, conveniently modi-
fied to account for the magnetic terms in the stress–energy tensor,
we have computed the gravitational radiation associated with the os-
cillatory behaviour. Overall, we have found that for Galactic sources
these systems could be detected as they lie well within the sensitivity
curves of ground-based gravitational-wave interferometers.

As a concluding remark we note that our discussion here has been
limited to tori with magnetic fields whose pressure is at most com-
parable with the gas pressure, that is, βc � 1. The reason behind
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this choice is that while in equilibrium, the magnetized tori with a
purely toroidal magnetic field are not necessarily stable. Rather, in-
dications coming both perturbative calculations and from non-linear
simulations suggest that these tori could be dynamically unstable
for sufficiently strong magnetic fields. The results of these investi-
gations will be presented in a forthcoming paper (Rezzolla et al., in
preparation).
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