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Accretion-induced quasinormal mode excitation of a Schwarzschild black hole
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By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the
linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the
gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black
hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting
us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or
binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the
emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting
black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a
simple superposition of quasinormal modes, although the fundamental mode is usually present and often
dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the
nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the
accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave
signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving

the accretion of extended distributions of matter.
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I. INTRODUCTION

It is well known within the framework of black-hole
perturbation theory [1-3] that quasinormal modes (QNMs)
(i.e., exponentially-damped harmonic oscillations) domi-
nate the gravitational-wave response of a nonspherically
distorted black hole if the corresponding frequencies are
part of the Fourier spectrum of the external source that
moved the hole away from its equilibrium state. This
perturbation is then radiated away in the form of gravita-
tional radiation until the black hole returns to its unper-
turbed, quiescent state. In practice, the QNMs excitation is
triggered if the frequency of the perturbing agent (e.g. an
external matter source moving close to the black hole) is
sufficiently close to the fundamental frequencies of the
black hole, which then acts as an excited oscillator. As a
result, the QNMs and, in particular, the fundamental mode
(which is the one at the highest frequency and with the
smallest damping time) represent the main feature of the
gravitational waves emission only for a sufficiently com-
pact perturbation; i.e., for sources whose characteristic
scale is comparable with the width of the peak of the
potential.

These results are well-known since the early studies of
Press [4] (see also Vishveshwara [5]), who considered the
scattering of Gaussian gravitational-wave packets off a
Schwarzschild black hole and noticed that the excitation
of the QNMs of the black hole is more efficient for very
narrow packets. Approximate relations to compute the
efficiency of excitation of the various QNMs were intro-
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duced by Leaver [6] and by Andersson [7] for Gaussian
pulses initial data with variable width. Since the QNMs
spectrum is entirely determined by the black-hole proper-
ties (i.e., mass, spin and charge), it is expected that the
detection of the QNMs ringdown would provide a unique
opportunity to unveil the physical properties of a black
hole. For this reason, the excitation of black-hole QNMs
has been studied in various astrophysical scenarios, such as
the gravitational collapse of a (rotating) neutron star to a
black hole or the collision of two black holes. The presence
of the QNMs in these situations has been confirmed either
through the use of perturbation theory with various degrees
of sophistication [8—10], or through fully relativistic nu-
merical simulations [11-15].

However, under more general and realistic conditions,
such as the excitation of the QNMs by accretion of matter,
and that may be encountered in gravitational stellar col-
lapse or binary neutron star mergers, the gravitational-
wave response of a black hole can be more complex. For
instance, the simulations performed by [16—18] showed
that the gravitational-wave signal is not simply given by
the superposition of exponentially-damped sinusoids at the
QNMs frequencies and that, in some cases, the QNM
ringing is only weakly excited and analysis in the fre-
quency domain are needed [19]. On the other hand, “‘back-
scattering” effects related to the slowly-decaying features
of the scattering potential and interference effects turn out
to play a crucial role for the correct interpretation of the
results; a detailed discussion of these effects can be found
in Ref. [18].
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In the case of a Schwarzschild black hole of mass M, we
recall that the appearance of QNMs ringing is related to the
peak of the curvature potential (also referred to as the
Zerilli or Regge-Wheeler potential), that is located at r =
3M; the backscattering, on the other hand, is related to the
fact that the curvature potential decays as r~2 for r — o,
This behavior is responsible for the late-time power-law
tail £~ ¢*3 of the gravitational-wave signal, where € refers
to the radiation multipole.

Therefore, while early-time ringing is the result of a
superposition of exponentially-damped sinusoids, and is
dominated by the fundamental quasinormal mode, at later
times the ringing dies out and the signal is dominated by
tail effects. However, in the transition from the ‘“‘ring-
down” to the “tail” phase, additional oscillations appear
that cannot be attributed to any of the two regimes and that
also seem to depend on the choice of the initial data (see
[2,3]). As we shall show in this paper for a broad sample of
initial data, there could be intermediate regimes where the
ringdown and the tail terms of the potential produce com-
peting effects, so that the QNMs ringing and the backscat-
tering effects can overlap, generating complex waveforms.
These effects were first noticed in Refs. [16,17], although
not discussed in detail there.

In a recent paper [17], hereafter Paper I, a general
analysis of the gravitational radiation emitted as a result
of anisotropic accretion of matter shells onto nonrotating
black holes and neutron stars was presented. That inves-
tigation made use of a procedure that combines the solution
of the linearized Einstein equations for the metric pertur-
bations with fully nonlinear hydrodynamics simulations.
Although the study of black-hole perturbations produced
by infalling matter has a long history and rich literature
[20-22], the approach outlined in Paper I proved to be
useful for a number of reasons: (i) it provided additional
information on the black-hole’s response to the dynamics
of pointlike particles in the vicinity of black holes; (ii) it
helped understanding the basic black-hole’s response to
extended matter perturbations; (iii) it represented an effec-
tive way of studying black-hole physics in a linear regime
without having to resort to full-scale numerical relativity
simulations.

One of the main results of Paper I was that, in the
idealized accretion processes considered, most of the en-
ergy is released at frequencies lower than that of the
fundamental quasinormal mode (QNM) of the black hole,
the spectrum consisting of a complex pattern, mostly pro-
duced during the accretion process rather than in the ring-
down phase. More precisely, the gravitational-wave
emission was found to be dominated by a collection of
interference ‘“fringes” at frequencies of about a few hun-
dred Hz, rather than by a single monochromatic peak at the
(higher) frequency of the fundamental mode of the black
hole. Moreover, the width of these fringes was found to
decrease rapidly with the initial position of the matter
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source. These results, which were already observed in
other works [8,23] in the case of a pointlike particle falling
onto a Schwarzschild black hole, also showed that the
appearance of interference fringes in the energy spectra
is much larger when the accreting matter is a shell of finite
size and that the efficiency in gravitational-wave emission
is much reduced, becoming almost 2 orders of magnitude
smaller than in the case of pointlike particles. An important
feature of the calculations carried out in Paper I was the
minimization of the initial gravitational-wave content; this
turned out to be crucial to illustrate that the interference
pattern was mainly due to the finite radial extension of the
accreting source.

The aim of the present paper is twofold. Firstly, we
intend to complete the discussion started in Paper I on
accreting quadrupolar shells onto a Schwarzschild black
hole by extending the parameter space of the initial models
and by analyzing their impact on the gravitational-wave
emission. In particular we study how the energy emitted in
gravitational waves, and the corresponding spectra, depend
on the compactness of the shells as well as on their initial
locations. In doing so we show that, for a finite-size source,
the ringing of the black hole is much more complex than a
simple superposition of QNMs and that the energy spectra
(and, in particular, the interference fringes) are dependent
on the choice of the initial data.

Secondly, we improve the astrophysical relevance of our
study by analyzing the gravitational radiation produced by
thick accretion disks [24,25] which accrete onto the black
hole on dynamical timescales. We recall, in fact, that
quasiperiodic oscillations of thick accretion disks (or
tori) orbiting around Schwarzschild or Kerr black holes
have been recently addressed as promising sources of
gravitational waves [18,26—-29] in the kHz range.

The paper is organized as follows: in Sec. I we review
the theory of odd- and even-parity nonspherical perturba-
tions of Schwarzschild spacetime, writing the inhomoge-
neous Zerilli-Moncrief and Regge-Wheeler equations in a
form suitable for time-domain calculations. Sec. III briefly
describes the numerical approach adopted for the simula-
tions, while Sec. IV is devoted to the discussion of the
results. Finally, Sec. V provides a summary of the most
important results and presents our conclusions. Unless
otherwise specified, we choose geometrized units (¢ =
G = 1), and the black-hole mass M is the unit of length.

II. GAUGE-INVARIANT PERTURBATIONS OF THE
SCHWARZSCHILD METRIC

A. Odd and even-parity master equations

The theory of gauge-invariant nonspherical metric per-
turbations of a Schwarzschild spacetime has a long history
which has been recently reviewed in Refs. [30,31]. We here
simply recall that in this approach the spacetime metric
8uv 1s described by the background Schwarzschild metric
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§ wv Plus a nonspherical perturbation £,,,. As a result of the
spherical symmetry, h,, can be expanded in three odd-
parity and seven even-parity multipoles

00 ¢
0
Sur = &uv T . . ()@ + (hE1)©, (1)
{=0m=—¢

with the odd multipoles transforming as (—1)‘*! and the
even ones as (— 1) under a parity transformation (6, ¢) —
(77 — 6, 7 + ¢). The presence of matter around the black
hole is accounted through a ““source’ term in the linearized
Einstein’s equations, represented by a stress-energy tensor
t,, which can also be expanded in multipoles. From the
multipoles of the perturbed metric, it is possible to build

odd, ‘1’(231, and even-parity, \PE;L, gauge-invariant quantities
which are solution of two equations, the Regge-Wheeler
[32] and Zerilli-Moncrief [33,34] equations, respectively,
and whose expression in Schwarzschild coordinates is
given by

U~ B 4 VG - S0 )
Here the upper indices refer to the odd and even case,
respectively, and r, = r + 2Mlog[r/(2M) — 1] is the
“tortoise’” coordinate (see Refs. [31,35] for the most gen-
eral covariant form of these equations). Explicit expres-
sions for the scattering potentials Vf;’) and Vge) are well
known and can be found, for example, in Ref. [30]. The
source terms in Schwarzschild coordinates can also be
found in [17,30], while the corresponding expressions
valid for any coordinate slicing of Schwarzschild space-
time are reported in detail in Ref. [31]. Once ‘I'(;rzl and ‘P(e(;,)z
are known, the gravitational-wave amplitude can be com-
puted as

1
r

(€ +2)!
(€ —2)!

hy —ihy = (W) +i%) v, (3)

>

€=2,m

where _, Y = _ Y'(0, o) are the s= —2 spin-
weighted spherical harmonics [36] and the emitted power
in gravitational waves is simply given by

dE 1 € +2)!
dr 16w > (€ —2)!

£=2,m

(TP + 15D, @

where the overdot refers to a derivative with respect to the
Schwarzschild coordinate time.

B. Initial data

Specifying suitable initial data for nonspherical metric
perturbations taking place in astrophysical events is not
trivial. The standard approach, in the case of even-parity
perturbations, exploits the fact that ‘I’fﬁl can be written in
terms of two gauge-invariant multipoles, namely, the per-
turbed conformal factor k;, and the gravitational-wave
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degree of freedom Yy, as introduced, for instance, in
Eq. (8) of Paper I and whose relationship with the
Zerilli-Moncrief function is given by Eq. (18) of the
same reference [30,37] As a result, the perturbed
Hamiltonian equation and the equation for the momentum
constraint, i.e., Egs. (45) and (46) of [30], provide a system
of coupled ordinary differential equations for the un-
knowns (k¢ Xem» 0:1kem> and 8, xe¢,,)- The indetermination
inherent in the solution of this system can be overcome, for
example, by assuming x¢,, = Bk¢,, [23], where 8 = 0, so
that the Hamiltonian constraint simply reads

2 5M 1 2M
a%*k{’m + |:___2 - B<___2>i|ar*k€m
) r r

r r

(125 B = 8T 9

r r? 252

where A =£€({ + 1) and Tg{{‘ are the multipoles of the
energy density 7y, of the matter source according to the
multipolar decomposition given by Eq. (13) of Paper I (see
also Ref. [37]). The case B =0 corresponds to
conformally-flat initial data, since in this case the per-
turbed metric in isotropic coordinates is the
Schwarzschild one modulo a conformal transformation.

Depending on the problem under investigation, we can
either choose initial conditions that are time-symmetric
(i.e., for which d,k¢,, = 9,x¢, = 0) or not. In the first
case, if the Hamiltonian constraint is satisfied, the momen-
tum constraint is automatically satisfied too. In the second
case, on the other hand, the momentum constraint must
also be solved for d,kg,, if we provide a suitable ansatz for
6,)( tm-

Whether it is possible to use time-symmetric initial data
depends essentially on the astrophysical scenario under
investigation and thus on the form of the stress-energy
tensor of the matter, whose multipoles appear as sources
in the Hamiltonian and momentum constraint equations.
Clearly, time-symmetry is satisfied for matter configura-
tions in equilibrium, or initially at rest and subsequently
falling radially; in this case only the numerical solution of
the Hamiltonian constraint is needed.

This is the case, for example, of dust shells initially at
rest at a finite radius. Because this configuration is intrinsi-
cally non time symmetric, it will invevitably produce
spurious radiation. A way to minimize the latter is to freeze
the sources of the perturbation equations up until the
radiation has left the grid. This is the approach we will
follow in most of our simulations.

ITII. NUMERICAL FRAMEWORK

The numerical approach adopted in our simulations is
the same as the one described in Paper 1. We only recall
here that our hybrid approach implies the solution of both
the nonlinear, relativistic hydrodynamics equations on a
fixed Schwarzschild background, in the two spatial dimen-
sions r and 6 (since we restrict ourselves to axisymmetric
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flows), and of the Regge-Wheeler and Zerilli-Moncrief, in
the radial direction r,. Such “‘test-fluid approximation” is
valid as long as the mass of the accretion flow is much
smaller than the mass of the black hole; in our simulations
this mass ratio is < 10%

The hydrodynamics equations, once cast in conservation
form, are solved using Godunov-type methods based on
Riemann solvers (see e.g. [38] and references therein),
while Egs. (2) can be written as a first-order hyperbolic
system over a one-dimensional (1D) grid expressed in
terms of the radial coordinate r, and solved with some
standard finite-difference method such as Lax-Wendroff
(see Paper I for details).

The computational domain used for the hydrodynamical
evolution consists of N, X Ny grid-points, geometrically
distributed along r [that is, with grispacing Ar;,; = aAr;
with @ = 1] and uniformly distributed along . When we
evolve quadrupolar shells of dust plunging from large
distances we set N, = 2000 and N, = 20, while for the
evolution of fluid accretion disks we use N, = 300 and
Ny = 150 to reach the desired truncation error. The hydro-
dynamical grid extends from a point slightly outside the
event horizon up to a finite radius, that depends on the
initial data, much smaller than the extraction radius. At the
inner boundary we impose inflowing boundary conditions,
while at the outer one we fix the conditions of a tenuous
stationary spherical atmosphere.

The radial grid used for the time evolution of the Regge-
Wheeler and Zerilli-Moncrief equations, on the other hand,
is much more extended in radius than the hydrodynamical
one and overlaps with the latter. To avoid spurious bound-
ary effects, the 1D grid typically extends from —2000M to
5000M and is covered by ~103 cells. At the inner and
outer boundary of this grid we use standard Sommerfeld
outgoing conditions. We stress that, due to the long-range
action of the potential, these conditions are not completely
nonreflecting, which is the reason why we still need large
grids to properly capture the late-time power-law decay of
the waveforms (see below). We recall in passing that ex-
actly nonreflecting boundary condition for the Zerilli-
Moncrief and Regge-Wheeler equations have been re-
cently proposed in [39].

While the gravitational waveforms are extracted using
both the Regge-Wheeler and Zerilli-Moncrief equations,
we also use as a comparison the Newtonian quadrupole
formula to compute the amount of gravitational waves
emitted. We use the modified definition of the quadrupole
moment proposed in Ref. [18] and which reads

1 00 3 1
1= 277[ dz[ (hDW — p)(—z2 - —>r4dr, (6)
L%, )

where D = pW is the conserved rest-mass density, W is
the relativistic Lorentz factor, £ is the relativistic enthalpy,
p is the pressure, and z = cosf. Expression (6) represents a
slight modification of the Newtonian standard quadrupole

PHYSICAL REVIEW D 75, 044016 (2007)

formula (SQF;) and it was shown to provide the best
agreement with the gauge-invariant waveforms when com-
pared with alternative definitions [18].

IV. RESULTS
A. Effects of the gravitational potential

As mentioned in the Introduction, for a certain set of
initial conditions the ringdown phase of the gravitational-
wave signal from a perturbed black hole shows the pres-
ence of the first QNMs of the black hole (typically, the
fundamental mode and the first overtone) together with
backscattering or tail effects. While the less damped modes
are related to the interaction of the perturbations with the
peak of the black hole Regge-Wheeler potential, the tail-
effect cannot be associated to QNMs and are instead due to
the long-range features of the potential and, in particular, to
its slow decay with radius.

In order to single out the contribution of the peak of the
curvature potential on the generation of the resulting
gravitational-wave spectrum, while suppressing the effect
of the tail term, we solve a simplified version of Eq. (2) in
which the Regge-Wheeler potential is replaced by the so-
called Poschl-Teller potential [40,41], which is exponen-
tially decaying for r, — *oo. We therefore evolve in time
an equation of the type

6%‘1’5 - 6%‘1’5 + qu}(g = 0, (7)
where U, is given by

V?ax
¢ cosh[a(r, — rm)]

®)

and r"** is the position of the peak of the Regge-Wheeler
potential V™®* = Véo)(r;nax) and « is determined through
the matching of the second derivatives at ri'®; i.e.,
d*Ug/dr? = d*V® /dr? at r, = /™ In the following,
for simplicity we will consider only the £ = 2 odd-parity
perturbations.

The Poschl-Teller potential is shown in the top left panel

of Fig. 1 together with Vg)). Although the exponential
decay of the former is evident for large r,, it is also
apparent that it provides a good approximation to the
Regge-Wheeler potential near the peak. The accuracy of
the approximation was first studied in Ref. [42], where it
was pointed out that the QNMs of the Poschl-Teller poten-
tial can be computed analytically. The frequencies found
for the lower modes agree within a few percent with those
obtained using the true curvature potential v, computed
numerically in [43].

We solve Eq. (7) using a Lax-Wendroff method on an
evenly spaced r, grid with Ar, = 0.1M and with initial
data given by a Gaussian pulse ¥, = Nexp[—(r —
r.)?/o?] where r, is the initial position of the pulse and
N a normalization constant. The initial pulse is considered
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to be purely ingoing (i.e., with 4,¥, = 9, '¥,). We com-
pare the signal extracted at r.,, = 200M for different
values of o using either the Regge-Wheeler or the
Poschl-Teller potential. This is summarized in Fig. 1,
which shows the waveforms obtained for different values
of r. and o and expressed in the retarded time, u = t —
robs_ Note that the waveforms from the Poschl-Teller have
been shifted in time so as to overlap the maxima and the
minima of the ringdown phase of the Regge-Wheeler

0.15 —
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L _ — _ - Poeschl-Teller i
0.1 —
i
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FIG. 1.
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potential. This is necessary because the scattering of the
pulse starts earlier for the Regge-Wheeler potential than
for the Poschl-Teller one.

Let us focus first on the top-right panel of Fig. 1, which
refers to a very narrow pulse (o = M) initially located at
r. = 100M and shows with a solid and a dashed line the
waveforms obtained with the Regge-Wheeler and Poschl-
Teller potentials, respectively. Clearly, the ringing is very
similar in the two cases both in the wavelength and in the

|||||||||||||0||||||||||||||||||

-0.2 :l||||||||||||||||||||||||||||:
Z100-50 0 50 100 150 200

o=1.0M
r,=100M
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u/M

—
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-

||||||||||||||||||||:”|Il'h\|||||||||||||||||
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u/M

Comparison between the outcome of a scattering problem over the Regge-Wheeler (solid lines) and the Poschl-Teller

(dashed lines) potential. The waveforms are extracted at r,,, = 200M and refer to a choice of the parameters given by (from top to
bottom and from left to right): o = M and r. = 100M, o = 9.5M and o = 11.5M with r. = 50M. The wider the pulse, the larger the
differences between the two solutions. The top left panel shows a comparison between the profiles of the Regge-Wheeler and the

Poschl-Teller potentials.
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amplitude, but differences become apparent after u/M =
180, when the tail term of the Regge-Wheeler potential
becomes dominant and the gravitational-wave signal is
driven by the backscatter due to the r~2 decay and asymp-
totes the expected late-time decay according to Price’s law
[44]. Since the Poschl-Teller potential decays exponen-
tially, no tail effects are found and the signal is still given
by a superposition of exponentially-damped harmonic os-
cillations. Smaller differences between the waveforms are
however present also in the early part of the waveform (cf.,
the inset of the top-right panel of Fig. 1) and are, again, due
to the fact that the interaction of the perturbation with the
Regge-Wheeler potential starts “earlier’”” (i.e., at larger
radii) than in the case of the Poschl-Teller potential.

The two bottom panels of Fig. 1 refer instead to a wave-
packet that is initially closer to the black hole (i.e., r, =
50M) and show the impact on the waveforms of an in-
creasing width of the wave-packet. Most notably, the two
panels show that as o is progressively increased, the effects
due to the slow-decay of the Regge-Wheeler potential
become progressively more pronounced, with the ring-
down lasting progressively less and with the backscattering
being correspondingly anticipated. For example, when
o = 9.5M (left-bottom panel of Fig. 1) and despite the
fundamental mode is still recognizable, other oscillations
are present already after u/M ~ 70, while for o = 11.5M
(right-bottom panel) the global waveform is essentially
overwhelmed by backscattering, the QNMs are almost
absent and the signal is dominated by the tail. An addi-
tional increase in the pulse width would make the QNMs
disappear completely. Clearly, this behavior is not present
in the case of a scattering off a Poschl-Teller potential,
which is much less sensitive to the finite-size of the per-
turbation as long as it is smaller than the scale-height set by
the exponential decay.

Although just a toy-problem, this simple comparison of
the black-hole response when modeled with the Poschl-
Teller potential is very useful to clarify that in the case of
general initial data with a finite size, the shape of the
curvature potential strongly affects the gravitational wave-
form. In the next sections we will refine this finding by
considering more realistic perturbations such as those pro-
duced by the accretion of extended distributions of matter.

B. Quadrupolar shells of dust

Following the analysis presented in Paper I, we here
consider a number of aspects of gravitational-wave emis-
sion resulting from the accretion of quadrupolar shells of
dust which were not investigated in detail before. More
specifically, we will here discuss: (i) a more detailed
analysis of the black-hole ringdown phase, focusing on
black-hole QNMs and on backscattering effects related to
the nonexponential decay of the black-hole potential;
(i1) the mechanism responsible for the production of the
interference fringes in the energy spectra; (iii) the effect of
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using conformally-flat initial data; iv) a more detailed
analysis of the energy released in gravitational waves.
As in Paper I, the rest-mass density is parameterized as

p = p + poexp[—(r — ro)*/o?*sin? 9, )

where r( is the initial position of the “center’’ of the shell
and o controls its compactness. The background rest-mass
density p is chosen to be very small (i.e., ~107%2) to
simulate the vacuum outside the black hole, while the
normalization constant p, is obtained from the condition
that the volume integral of Eq. (9) gives w, the total mass of
the shell, which we choose to be w = 0.01M. As we
mentioned in Sec. IIB (and Paper I), the initial profile

for ‘I’(fo) is obtained after solving the Hamiltonian con-
straint for k,y with 8 = 0. Furthermore, to minimize the
impact of surious radiation and produce initial data that is a
“almost” time-symmetric, the shell is kept frozen at r
(i.e., the hidrodynamics equations are not evolved) up until
the spurious initial gravitational-wave pulse leaves the
numerical grid. We shall show at the end of this Section
how waveforms and energy spectra change when ‘‘genu-
ine” time-symmetric and conformally-flat initial data are
implemented.

We start by considering the plunge from ry, = 15M with
o /M = 0.050 (this particular model was discussed also in
Paper I) and whose complete waveform is shown in the left
panel of Fig. 2. As expected, the gravitational-wave signal
contains signatures of both the black-hole QNMs and of
the backscattering effects. The first ones are triggered
when the maximum of the rest-mass density crosses the
peak of the potential at r ~ 3M yielding the largest con-
tribution to the waveform at u/M =~ 112. We have verified
the presence of the black-hole QNMs with complex fre-
quency w; (withi = 1,2, ...) by fitting the waveform from
this time onward with a superposition of modes of the form
PO = 3 [a; cos(N(w)1) + B sin(N(w)n)] exp[I(w))1],
where the free coefficients «; and (; are real. The right
panel of Fig. 2 reports the result of such fit obtained using
the first five QNMs, and which is essential to properly
capture the early-time part of the waveform. (Adding
higher modes does not improve the fit, while considering
less modes is not enough to reproduce accurately the
waveform.) When analyzed on a logarithmic scale (see
bottom part of the right panel of Fig. 2), it becomes evident
that after u/M ~ 130 the backscattering effects become
dominant and the waveform is no longer a simple super-
position of exponentially decaying modes.

Additional information on the black-hole response
comes from the study of the energy spectra for shells of
different initial width o and starting from ry = 15M. This
is summarized in Fig. 3, whose left panel shows the energy
spectra of the complete waveforms and the characteristic
interference patterns already introduced in Paper I. Clearly,
the interference effects at higher frequencies (i.e., for
2Mw = 0.2) as well as the efficiency in the emission of
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FIG. 2. The € = 2 gravitational Zerilli-Moncrief function extracted at r,,, = 500M for a dust shell falling from ry = 15M with
o/M = 0.050. Left panel: the complete waveform. Right panel: investigation of the presence of the black-hole QNMs: the dashed line
was obtained through a nonlinear fit with the first five modes and the comparison with the computed waveform is shown on both a

linear and a logarithmic vertical scale.

energy via gravitational waves are increased as the com-
pactness of the shell is increased, progressively tending to
what is expected for a pointlike particle (cf. the top-right
panel in Fig. 4). Equally clear is that the energy spectra do

not show any peculiar behavior around the QNMs frequen-
cies (i.e., for 2M w = 0.35) but also that the behavior of the
spectra at low frequencies does not change significantly
with the matter compactness.
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FIG. 3. Left panel: Energy spectra and their typical interference fringes as computed from the waveforms produced by shells
infalling from ry = 15M. Right panel: The same as in the left panel but only for the ringdown phase, showing the excitation of the

€ = 2 black-hole QNMs. See text for details.
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o/M = 0.050. For the sake of comparison, the right panels show in dashed lines the € = 2 energy spectra for a particle plunging

radially onto the black hole (rescaled by a convenient factor).

As argued in Paper I and in Refs. [8,23], interference
fringes naturally arise in the energy spectrum generated by
the superposition of two waveforms separated by a certain
time lag T. Indeed, given two time series A,(¢) and A,(¢) =
CA,(t + T), the power spectral density resulting from their
superposition is given by

dE

22 w |Aj(w)[1 + C* + 2Ccos(wT)], (10)
dw

where A,(w) is the Fourier transform of A, (¢). As a result,
such a spectral density will have peaks with a constant
spacing given by Aw = 277/T. If C = 1, the minima occur
at dE/dw = 0 and the spectrum is said to have 100%
frequency modulations. The modulation is always smaller
for generic values of C.

The energy spectra displayed in the left panel of Fig. 3
can be explained within this general picture. The series of
fringes is mainly determined by the interference of two
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bursts of radiation with different amplitude and separated
in time by the scattering off the curvature potential at
different times. In the case of a shell of width o/M =
0.050, the two main pulses responsible for this modulation
can be distinguished in the waveform shown in the left
panel of Fig. 2. These correspond to the peak produced by
the initial motion of \I’(;b) and appearing at very early times
(i.e., at u/M ~ 20), and to the one emitted when the bulk of
accreting matter crosses the peak of the Zerilli potential
(i.e., around u/M ~ 112)." The time-lag between the two
pulses is Au/M ~ 92, which gives a separation between
the peaks of the spectrum 2MAw ~ 0.07. This value is in
good agreement (given the difficulty in unambiguously
catch the time when the ringdown starts) with the
2MAw ~ 0.1 that can be read off from the solid line in
the left panel of Fig. 3.

The right panel of Fig. 3, on the other hand, shows the
spectra obtained by performing a Fourier transform of the
signal in the ringdown phase only. The two dotted vertical
lines indicate the n = 1 (fundamental) and n = 2 (first
overtone) QNM frequencies of the black hole. It is inter-
esting to note that with the exception of very wide shells
(i.e., with o/M = 1.582) which are not able to excite
cleanly the QNMs, the maximum of the spectra always
lies between the two lines, suggesting the presence of the
two modes in the waveform.

Another parameter influencing the energy spectra is the
initial location of the shells ry. As mentioned above, the
largest part of the gravitational-wave signal is emitted
when the center of the shell reaches the peak of the
Zerilli potential and this will clearly depend on the initial
position of the shell. Shells that start further away will have
longer infalling times, larger separations between the first
and second peaks in the waveforms, and thus smaller
separation in the interference fringes of the energy spectra.

In order to reproduce this dependence we have per-
formed a number of simulations for shells of fixed initial
width (o/M = 0.050) accreting from different initial lo-
cations ry. Two representative and extreme cases for ry =
10M and ry = 70M are shown in Fig. 4, whose left panels
display the waveforms, while the right ones the energy
spectra. Overall, these plots show a number of interesting
and general properties of the excitation of black-hole os-
cillations through accreting matter. Firstly, as the infalling
time is increased, the ringdown phase is progressively
dominated by the nonoscillatory tail, essentially as a result
of the “spreading” of the shell induced by the tidal field.
This behavior is indeed consistent with the analysis carried
out in Ref. [45] and which pointed out that the excitation of
the black-hole QNMs through a continuous flux of infal-

"Note that because W@ is initially nonzero close to the peak of
the Zerilli potential, some backscattering is also possible before
the bulk of the shell reaches the peak of the potential itself. This
explains the small oscillation in the waveform at u/M ~ 20.
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ling particles is made difficult by the presence of destruc-
tive interferences effects.

Secondly, the efficiency in gravitational-wave emission
decreases for shells falling from larger distances and is
significantly smaller than for pointlike particles. This can
be easily appreciated in the right panels of Fig. 4, when
comparing energy spectra associated with shells (solid
lines) with the corresponding € = 2 energy spectra of a
particle plunging radially from the same initial position
(dashed 1ine).2 Note that the efficiency is in this case of at
least a couple of orders of magnitude larger (the data have
been properly rescaled to aid the comparison).

Thirdly, the energy emission is progressively peaked
toward lower frequencies as r increases. This behavior
can be made more quantitative by defining the ““character-
istic frequency” of the energy spectrum as the weighted
average

_ fw(dEzo/dw)dw
w, = ,
¢ [(dE®/dw)dw

an

and by computing how this characteristic frequency
changes along a sequence of shells of fixed initial compact-
ness and falling from increasingly larger radii. A summary
of this dependence is offered in Fig. 5 for shells with
o/M = 0.158. By following a phenomenological ap-
proach, if one defines x = log,o(ro/M) and y=
log;o(2Mw,) the figure shows that the data can be very
well fitted by means of a quadratic law like y = ax® +
bx + cwitha = —0.461,b = 1.002 and ¢ = —0.904. The
interpretation of this relation is still unclear but certainly
deserves further attention.

As we anticipated at the beginning of this section, an
important comment is worth making on the influence of the
initial amount of gravitational radiation on the waveforms
and on the energy spectra. Two different approaches are
possible in this respect and it is important to bear in mind
that they do not yield identical results. The first one’
consists in selecting a time-symmetric and conformally-
flat (or non-conformally-flat) initial profile of the Zerilli-
Moncrief function from the solution of Hamiltonian con-
straint. As we discussed in Sec. II B, this does not prevent
that spurious radiation is produced as the evolution starts.
The second approach, which has been the one adopted
here, consists, after the solution of the constraint, in the
removal of the spurious burst of gravitational radiation by
evolving the perturbation equations but not the perturbing
sources. In this way the initial radiation is allowed to leave
the computational domain and the evolution can therefore
start self-consistently once the initial, nonstationary part of

The interested reader is addressed to Paper I and to Ref. [46]
for details about the handling of a pointlike particle in the current
framework.

*This apprach has been systematically adopted in Refs. [8,23]
for a particle plunging radially from a finite distance
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the solution has been removed. Figure 6 summarizes the
impact on the energy spectra and on the waveforms of the
two approaches for a shell initially at rest at ry = 7.5M.
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FIG. 6. Conformally-flat initial data and spurious bursts of
radiation: energy spectra obtained by solving the Hamiltonian
constraint with 8 = 0 only (dashed line) and when the initial
gravitational-wave pulse is additionally eliminated (solid line).
The shell has o/M = 0.158, it falls from ry, = 7.5M and the
signal is extracted at r,,; = 5S00M. The inset shows the corre-
sponding initial part of the waveform.
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Plotted with the dashed line in the main panel is the energy
spectrum in the case of actual conformally-flat initial data
involving the solution of Hamiltonian constraint only; on
the other hand, the solid line refers to the spectrum one
obtains when the initial pulse is allowed to be radiated
away. Note the much stronger modulation present in the
former case and the corresponding larger variation in the
initial part of the waveform as shown in the inset. Note that
we would have found larger differences for smaller ry and
smaller differences for larger r,. Furthermore, we note that
if we start with non-conformally-flat initial data (that is,
throughout the solution of Hamiltonian constraint with
B # 0) we would obtain larger differences in the early
part of the waveforms and thus larger modulations in the
energy spectrum. This behavior is qualitatively similar to
what discussed in Ref. [23] in the case of particles plunging
radially from finite distance

We conclude this section by commenting on the amount
of energy released in gravitational waves as a function of
both rg and o. This is shown in Fig. 7, which displays in the
main panel the normalized energy emitted in the lowest
multipole as a function of the initial location r, and for a
shell of initial width /M = 0.158. Note that in the case of
a shell this is a monotonically decreasing function of the
radial distance, an opposite behavior to that seen for ac-
creting particles where, for conformally-flat initial data,
the energy has a local minimum and then increases mono-
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FIG. 7. Main panel: Total energy radiated in gravitational
waves (£ = 2 multipole) as a function of the initial location r
of the center of a shell with /M = 0.158. Inset panel: Total
energy versus o for shells falling from ry = 15M (open circles).
The filled circles refer to the energy contribution coming from
the black-hole ringdown only.
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tonically with r, [8], asymptoting the Davis-Ruffini-Press-
Price limit [47]. In addition, the inset in Fig. 7 displays a
comparison between the energy emitted through the whole
waveform (empty circles) and the one computed consider-
ing the ringdown phase only (filled circles). Note that while
the black-hole ringdown contributes for ~30%—40% of the
total energy in the case of small ry, this value goes down to
~10% for larger initial distances as a result of the pro-
gressive loss of compactness experienced by the shell
during the infall.

C. Thick accretion disks

While our model with infalling quadrupolar shells al-
lows us to capture some of the essential features of the
gravitational-wave emission from extended matter sources,
such as the excitation of the black-hole QNM ringdown
and the presence of interference effects in the energy
spectra, it nevertheless remains a useful toy model.

To improve on this and to examine a scenario which is
astrophysically more realistic, we will now consider the
gravitational-wave emission resulting from the accretion of
geometrically thick disks (or tori) orbiting around a non-
rotating black hole. Such systems are believed to form in a
variety of different ways, such as during the last stages of
gravitational collapse or in the merger of binary neutron
stars. In addition, if compact enough and undergoing os-
cillations, these systems generate gravitational-wave sig-
nals within the sensitivity curve of ground-based
interferometers [18,26,27]. Hereafter, and as in the case
of dust shells, we will assume that the mass of the torus w
is much smaller than that of the black hole.

Detailed descriptions on how to build equilibrium con-
figurations of barotropic thick disks orbiting black holes
are given in Refs. [24,25], but we here recall that these
objects have traditionally been described as obeying a
polytropic equation of state p = xp?, with y =4/3.
Because in pure orbital motion, the fluid four-velocity is
given by u® = (u',0,0,u?) and it describes a non-
Keplerian rotation around the central black hole, with a
specific angular momentum € = —u,/u, distribution
which is essentially unknown.

Table I lists the main features of the tori considered in
our simulations, such as the values of the specific angular

TABLE 1.
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momentum ¢ (assumed constant throughout the disk), of
the potential gap AW between the inner edge of the disk
and the cusp, and of the mass of the disk w. In order to
induce a nontrivial dynamics in these otherwise stationary
disks, the initial models have to be perturbed in some way,
such as by adding a radial velocity v, = nvi™, where 7 is
a parameter and v is the radial velocity of the spherical
stationary atmosphere surrounding the torus [26]. The rest-
mass density of the atmosphere is low enough not to
influence the dynamics of the tori (its density is several
orders of magnitude smaller than the maximum density at
the center of the disk).

As in the case of infalling dust shells, the initial data for
the perturbation fields ‘I’% °) s obtained either through the
solution of the Hamiltonian constraint (for even-parity
perturbations) with conformally-flat initial data, or assum-
ing stationarity, i.e., through Egs. (2) with 8%?% o=,
Clearly, in either case this initial data is not consistent with
the hydrodynamical sources once they are perturbed. This
mismatch inevitably introduces a unphysical initial burst of
gravitational radiation that is however easy to distinguish
and remove from the analysis.

We note that the accretion of matter onto the black hole
can occur on different timescales depending on the pertur-
bation and we will consider here the two limiting situations
that could be encountered in astrophysical scenarios. In the
first case we will consider a perturbation which is large
enough to cause a runaway accretion of the disk onto the
black hole; we will refer to this as the “hypercritical
accretion”” scenario (see Sec. IVC1). In the second case,
on the other hand, the perturbation is smaller and it will
induce a series of quasiperiodic oscillations, each accom-
panied by an episode of accretion onto the black hole; we
will refer to this as to the “quasiperiod accretion’ scenario
(see Sec. IVC?2).

1. Hypercritical accretion

As mentioned above, simulations of hyper-accreting
disks can be performed by simply choosing a sufficiently
large initial value of the radial velocity perturbation. Under
this condition, the centrifugal barrier cannot counteract the
injection of additional kinetic energy and the whole disk is

Stable (D and D;) and marginally stable (D,) constant angular momentum thick disks orbiting around a Schwarzschild

black hole of mass M = 2.5M,. From left to right, the columns report the name of the model, the number of radial and polar gridzones
used in the hydrodynamicsl simulations, the disk-to-hole mass ratio, the polytropic constant k of the isoentropic EOS p = kp?” with
y = 4/3, the value of the specific angular momentum /, the position of the cusp 7, and of the center r ey, of the disk, the rest-mass
density at the center p., the location of the inner (r;,) and outer (r,,) disk boundaries, the value of the potential barrier AW, and the

orbital period at the center 7.

Model Nr N0 /'L/M K (CgS) l rcusp T center Pc (Cgs) Tin Tout AW torb (ms)
D, 300 150 0.0077 225x 1083 372 5.06 7.27 7.31 X 10" 526 950 —1x107* 1.51
D, 300 150  0.0463 9.00 x 10'* 380 457 8.35 6.86 X 1012 521 1454  —0.002 1.87
D, 300 150 0.0779 1.05x 10" 380 457 8.35 8.74 X 102 457 1589 0 1.87
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“pushed” towards the black hole, rapidly accreting onto it
in less than one orbital period.

Hereafter we will concentrate on the dynamics of model
D, to which a velocity perturbation with n = 0.3 is added.
For this model the hydrodynamical grid runs from r;, =
2.03M to rp, = 16M and it is covered by 300 X 150 grid-
points, geometrically spaced in the coordinate r, with
Arpin =3 X 107 and Ar,,,, = 0.2. The range of the r,
1D grid is r, € [—2200M, 4500M], to guarantee that the
outer boundary does not influence the slope of the late-time
power-law tail, and is covered by ~3 X 10* cells.

The left panel of Fig. 8 shows, in terms of the tortoise
coordinate, five snapshots of the evolution of the rest-mass
density on the equatorial plane. Note that as time proceeds,
the disk is compressed, the density increases and matter
quickly starts falling onto the black hole. This continues
until the entire disk has been accreted. A summary of this is
shown in the spacetime diagram in the right panel of Fig. §,
which presents the motion of the projection on the equa-
torial plane of an effective ‘“‘center-of-mass” of the disk,
defined as

2
o = LSBT dr (12)
[ &rnprdr

where g,, = (1 —2M/r)~! (for convenience the space-
time diagram is shown using the tortoise radial coordinate
r,). Correspondingly, the inset in Fig. 8 depicts the time
evolution of the mass-accretion rate for model D,.

The vertical dashed line in the right panel of Fig. 8 is
approximately the location of the peak of the Zerilli po-

tential, 2% ~1.90M ("% ~ 3.1M) and can be used to
identify ¢ = 0.44¢,,, as the time at which the center of mass
crosses the peak of the potential. Furthermore, this panel
also shows that the center of mass leaves the hydrodynam-
ical grid (rM" =~ —6.35M) at t ~ 0.75t,, and from this
time onward, the gravitational-wave signal is dominated
by the QNMs of the black hole.

The gauge-invariant gravitational waveform produced
by the hypercritical accretion has a dominant € = 2 char-
acter* and is displayed in a logarithmic scale in Fig. 9 as
measured by an observer located at r,,, = 200M. Besides
the initial burst of spurious radiation related to the initial
data, and which is no longer present by u = 0.2z, the
waveforms exhibits two main features. The first one is
determined by the infalling matter as its center of mass
approaches the maximum of the potential at u =~ 0.4¢,,.
The second one, instead, starts at u = 0.7¢,,, and represents
the ringing resulting from the perturbation experienced by
the black hole through the rapid accretion of the torus (see
the mass-accretion rate inset in the right panel of Fig. 8).
This becomes apparent when comparing the features of the
waveform in Fig. 9 with the matter dynamics in Fig. 8. The

*Note that because the system is axisymmetric, ‘lf(;o/ )=0
when m # 0, and \I'(Z%) > \If(z‘(’)) =0, \Ifg"o) > \I'geo) = 0.
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FIG. 8. Model D. Left panel: time evolution of the equatorial
rest-mass density profiles for a velocity perturbation n = 0.3.
Right panel: time evolution of the center of mass in the equa-
torial plane. The disk disappears in the black hole at t = 0.75¢,.

ringdown phase ends with the usual power-law tail; this is
highlighted by the dot-dashed line in Fig. 9 which is
proportional to u~’ and shows that for u > 3.6t the
waveform has only a quadrupolar nature decaying as &
u—2e+3)

In summary, the analysis of the process shows that a very
rapid and hypercritical accretion of a compact distribution
of matter onto a black hole produces gravitational-wave
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FIG. 9. Model Dy: gravitational waveform (extracted at rqp, =
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profile of the Zerilli-Moncrief equation. The second ringing
(magnified in the inset) is determined by the object crossing
the peak of the potential. The dashed line, proportional to 1™,
shows that the late-time behavior of the waveform is properly
captured.

emission that is qualitatively similar to that of either rela-
tively narrow dust shells plunging from a large distance or
wide dust shells accreting from a small distance.
Furthermore, the gravitational-wave signal shows oscilla-
tions that reflect the excitation of the black-hole QNMs
(especially the fundamental one) but these oscillations are
in general so weak that the nonoscillatory tail determined
by the long-range properties of the scattering potential
soon dominates the signal.

2. Quasiperiodic accretion

A phenomenology complementary to the one discussed
in the previous section for a hypercritical accretion can be
studied when the accretion takes place in a quasiperiod
fashion. Indeed, there are at least two different ways of
triggering a quasiperiodic accretion and we will discuss
them separately.

The first possibility has already been discussed in
Sec. IV C and consists in adding a perturbation in the radial
velocity of the torus parameterized in terms of an analytic
accretion solution. As a concrete example we will now
concentrate on the dynamics of model D;, describing a
disk with a comparatively high value of the specific angular
momentum, € = 3.80, and subject to an initial radial ve-
locity perturbation with n = 0.2.

PHYSICAL REVIEW D 75, 044016 (2007)

Figure 10 shows the motion of the center of mass on the
equatorial plane, indicating that after an initial transient, a
phase of quasiperiodic, (almost) constant-amplitude oscil-
lations follows, in which the disk periodically approaches
the black hole before the centrifugal barrier pushes it back,
past its original position. As the torus nears the black hole,
part of its matter is spilled through the cusp, resulting in a
quasiperiodic accretion of matter onto the black hole; this
is shown by the inset of Fig. 10 which reports the evolution
of the mass-accretion rate (see Ref. [26] for a more detailed
discussion). Note that the accretion is essentially shut-off
as the torus moves away from the black hole.

This quasiperiodic dynamics of the torus is clearly im-
printed onto the gravitational-wave signal and this is shown
in the left panel of Fig. 11, where the £ =2 gauge-
invariant waveform (extracted at ry,, = S00M) is super-
posed to the signal extracted using the quadrupole formula
(SQF,). Note that the very early time part of the gauge-
invariant signal has been removed to avoid influences
coming from the burst related to the initial data. The
waveforms show a small burst at u = ¢, that corresponds
to the initial accretion of matter, followed by regular
oscillations that mirror the motion of the torus in the
potential well. Some differences between the gauge-
invariant and the SQF; waveforms are recognizable in
the initial stages, with the first one showing highly damped
high-frequency oscillations for u = 2t superposed to the
main, quasiperiodic signal. Since this high-frequency pat-
tern is absent in the quadrupole waveform, we conclude
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FIG. 10. Model D;: time evolution of the projection of the
center of mass in the equatorial plane. After an initial transient,
the dynamics is characterized by constant-amplitude quasiperi-
odic oscillations. The inset shows the mass-accretion rate.
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which is not related to the QNMs frequencies of the black hole.

that it originates from curvature backscattering of gravita-
tional waves emitted in the initial infalling phase.

We also note that the differences between the waveforms
computed through the gauge-invariant formalism and the
quadrupole formula using the quadrupole tensor defined by
Eq. (6) become larger if the initial velocity perturbation is
increased. This is simply due to the fact that the SQF; is
valid in the weak-field and slow-motion approximation and
thus ceases to be accurate when the dynamics of the
oscillations is nonlinear, with the velocities becoming rela-
tivistic. On the other hand, the velocity-dependent terms in
the source function of the Zerilli-Moncrief equation are
obviously accurate also in a relativistic regime.

The energy spectrum for this signal is shown as a solid
line in the right panel of Fig. 11 and refers to the signal
from u/t,, = 1 in order to eliminate the unphysical initial
burst. The spectrum shows the presence of a broad-band
peak at low frequencies, related to the highly damped
oscillation in the early time part of the € = 2 signal,
together with narrow peaks in the harmonic ratio
1:2:3:..., which instead mirror the nonlinear coupling of
modes in an oscillating torus (see Refs. [28,29] for a de-
tailed discussion of the eigenfrequencies and their astro-
physical implications). Such peaks are present in both the
€ =2 and € = 3 energy spectra (dashed line in Fig. 11).
The latter is generated by a waveform rh3?/(cos@sin’6)
whose amplitude is roughly 2 orders of magnitude smaller
than the € = 2 one. It is interesting to note that while for
the € = 2 multipole the first frequency of the disk is the

dominant one, the second frequency has the largest power
for the £ = 3 multipole. The energy spectrum shows no
distinctive signature at 2Mw = 0.7473 that could be re-
lated with the excitation of the QNMs of the black hole (cf.,
right panel of Fig. 3). This is in contrast with the results of
Ref. [19], which have simulated a similar source of pertur-
bations for the black hole and have indeed found a minute
high-frequency contribution in the energy spectra related
to the emission from the black hole.” It is presently unclear
what is the origin of this difference, but it is likely that the
hybrid approach proposed in Ref. [19], and which com-
bines a solution in the time-domain for the hydrodynamics
and one in the frequency-domain for the perturbative equa-
tions, is better suited to extract the extremely small con-
tributions coming from the black hole.

A second possibility of triggering quasiperiodic oscilla-
tions in the disk, and hence a quasiperiodic accretion, is by
an instantaneous reduction of the specific angular momen-
tum. The main difference with the dynamics discussed
before is that this reduction produces a continuous mass
accretion, which is however modulated quasiperiodically
as the torus approaches or moves away from the black hole.
This behavior is shown in Fig. 12 for model D,, in which
the specific angular momentum is reduced from € = 3.80
to € = 3.72. More specifically, the left panel of Fig. 12

5Tt should be noted that the QNM contribution is indeed more
than 4 orders of magnitude smaller in energy than the one
coming from the torus.
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shows the motion of the center of mass on the equatorial
plane and the evolution of the mass-accretion rate in the
inset. Because of the intrinsic reduction of the centrifugal
support and the resulting continuous accretion, the oscil-
lations are quasiperiodic in time but with decaying ampli-
tude, so that by 1/t,, ~50 they have essentially
disappeared and the torus accretes at an almost constant
rate, with the center of mass progressively approaching the
black hole.

This different quasiperiodic dynamics of the torus is also
imprinted onto the quadrupolar waveform and this is
shown in the right panel of Fig. 12, which presents both
the gauge-invariant signal as measured by an observer
located at r,, = S00M (solid line) and the one computed
with the SQF, (dashed line). Note that the differences
between the signals are very small initially, but they
grow with time and by ¢t = 15¢,4, when the angular mo-
mentum loss induces a global radial motion of the disk, the
mean value of the gauge-invariant signal progressively
drifts away from zero. This different behavior can be
understood simply if one bears in mind that during this
stage the disk is undergoing an almost steady-accretion
phase. As a result, while the disks mass-quadrupole is
nonzero and large, its time variations, and hence the cor-
responding gravitational-wave signal as computed in the
SQF;, are essentially zero. The perturbative approach, on
the other hand, is able to capture the perturbations induced
by this steady-state accretion and this is reflected in the
gradual and secular increase of the gravitational-wave

signal shown in the right panel of Fig. 12. Of course, this
behavior is the same already encountered in the case of
accretion of dust shells and it is, once again, generated by
curvature backscattering off the tail of the potential.

Note that during the final stages of the accretion, i.e., for
t = 60¢,4, the motion of the center of mass exhibits an
exponentially rapid motion toward the black hole which,
however, is not reflected neither in the mass-accretion rate,
nor in the gravitational-wave signal. The reason for this is
that, in practice, the rest-mass contained in the torus in
these final stages is extremely small and the rest-mass
density is so diluted that it becomes comparable to that
of the atmosphere surrounding the torus. As a result, the
effective perturbation induced onto the black hole in the
final stages of the accretion is vanishingly small.

In summary, the analysis of this process shows that the
gravitational-wave signal produced by a quasiperiodic ac-
cretion can be rather different, depending on whether the
amplitude of the oscillations is (almost) constant in time
and the accretion rate is also periodic, or the oscillations
have decreasing amplitude and the accretion rate is con-
stant with a periodic modulation. In the first case, the
gravitational-wave signal will reflect faithfully the dynam-
ics of the matter with constant-amplitude waveforms aver-
aging to zero and a spectrum showing peaks at the
eigenfrequencies of the oscillating matter. In the second
case, on the other hand, the waveforms will have a decreas-
ing amplitude and will not average to zero as a result of the
underlying continuous accretion.

044016-15



NAGAR, ZANOTTI, FONT, AND REZZOLLA
V. CONCLUSIONS

By performing numerical simulations that combine the
solution of the nonlinear hydrodynamics equations with
that of the linear inhomogeneous Zerilli-Moncrief and
Regge-Wheeler equations, we have studied the features
of the gravitational-wave signals generated by the accre-
tion of matter onto a Schwarzschild black hole.

As extended and accreting matter-sources we have con-
sidered quadrupolar shells of dust falling radially from a
finite distance, as well as geometrically thick disks under-
going either bursts of hypercritical accretion or quasiperi-
odic oscillations. In both cases we find that the
gravitational-wave signal is not a simple superposition of
the black-hole QNMs and that the latter cannot be found in
the energy spectra at times. Rather, we find that quite
generically the signal contains important contributions
coming from radiation scattering off the tail of the curva-
ture potential and producing a characteristic pattern of
interference fringes in the energy spectra. While the rele-
vance of this contribution differs according to the specific
source considered, it is generically present as long as the
source of perturbations is extended and the scattering
potential does not have an exponential decay with radius.
This conclusion, which was already reported in previous
studies involving simpler sources, has been here confirmed
unambiguously by studying the scattering off a fictitious
potential, the Poschl-Teller potential, which however de-
cays exponentially with radius.

These generic properties of the gravitational-wave emis-
sion coming from black holes perturbed by extended
sources represent important differences with respect to
corresponding properties of signals produced by very com-
pact sources, such as pointlike particles. Of course this
conclusion prevents from the derivation of a simple and

PHYSICAL REVIEW D 75, 044016 (2007)

generic description of the gravitational-wave signal which
would be independent of the properties of the perturbing
source, but it also opens the exciting perspective of deduc-
ing many of the physical properties of the source through a
careful analysis of the waveforms produced.

Overall, the results presented here make us confident
that the black-hole QNM contributions to the full
gravitational-wave signal should be extremely small in
generic astrophysical scenarios involving the accretion of
extended distributions of matter. On the other hand, it
should also be stressed that the time-domain analysis car-
ried out here may not be the most accurate to extract the
contributions coming from the perturbed black hole when
these are several orders of magnitude smaller than those
coming from the source itself or from the backscattering
off the potential. In these cases, however, a hybrid ap-
proach such as the one proposed in Ref. [19], combining
the solution in the time-domain for the hydrodynamics
with one in the frequency-domain for the perturbative
equations, may be better suited.
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