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Abstract

We provide details and present additional results on the numerical study of the
gravitational-wave emission from the collapse of neutron stars to rotating black
holes in three dimensions. More specifically, we concentrate on the advantages
and disadvantages of the use of the excision technique and on how alternative
approaches to that of excision can be successfully employed. Furthermore, as
a first step towards source characterization, we present a systematic discussion
of the influence that rotation and different perturbations have on the waveforms
and hence on the energy emitted in gravitational waves.

PACS numbers: 04.25.Dm, 04.30.Db, 04.70.Bw, 95.30.Lz, 97.60.]Jd

1. Introduction

The study of the gravitational collapse of rotating stars to black holes is a cornerstone of
any theory of gravity and a long-standing problem in general relativity. Important issues in
relativistic astrophysics awaiting clarification, such as the mechanism responsible for y -ray
bursts, may be unveiled with a more detailed understanding of the physics of gravitational
collapse in rotating and magnetized stars. Furthermore, the study of gravitational collapse will
provide the waveforms and the energetics of one of the most important sources of gravitational
radiation.

In our previous work [1, 2], we have described how we can perform accurate three-
dimensional relativistic simulations of such events and how we are able to extract their
gravitational-wave signals. Before our work, the only work in the literature about the
gravitational radiation from neutron-star collapse dates back 20 years and is restricted to
axisymmetry [3]. Here, after a brief introduction to our code and to the models we have
simulated, we give more details on the techniques and results presented in [1, 2], focussing on
the properties of the gravitational waves produced and on how these are influenced by factors
such as rate of rotation of the compact star or the type and amplitude of the perturbations
introduced to trigger the collapse.
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Throughout the paper we use a spacelike signature (—, +, +, +) and a system of units in
which ¢ = G = Mg = 1 (unless explicitly shown otherwise for convenience). Greek indices
are taken to run from O to 3, Latin indices from 1 to 3 and we adopt the standard convention
for the summation over repeated indices.

2. Basic equations and their implementation

The Whisky code solves the general-relativistic hydrodynamics equations on a three-
dimensional numerical grid with Cartesian coordinates [4]. The code has been constructed
within the framework of the Cactus Computational Toolkit (see [5, 6] for details), and it is
developed at the Albert Einstein Institute and at the Louisiana State University. This public
domain code provides high-level facilities such as parallelization, input/output, portability
on different platforms and several evolution schemes to solve general systems of partial
differential equations. Clearly, special attention is dedicated to the solution of the Einstein
equations, whose matter-terms in non-vacuum spacetimes are handled by the Whisky code.

In other words, while the Cactus code provides at each time step and on a spatial
hypersurface the solution of the Einstein equations

G/w = 877T;w, (1)

where G, is the Einstein tensor and 7}, is the stress—energy tensor, the Whisky code provides
the time evolution of the hydrodynamics equations, expressed through the conservation
equations for the stress—energy tensor 7" and for the matter current density J*

v, TH =0, v, J" =0. )

In what follows, and mostly for the sake of completeness, we give a brief overview of
how both the right- and the left-hand sides of equations (1) are computed within the coupled
Cactus/Whisky codes. The equations presented have already been discussed in several
different publications, e.g. in [1, 7, 8], and we refer the interested readers to these works for
more details.

2.1. Evolution of the field equations

Many different formulations of the equations have been proposed throughout the years, starting
with the ADM formulation in 1962 [9]. As mentioned in the introduction, we use the NOK
[10] formulation, which is based on the ADM construction and has been further developed
in [11].

Details of our particular implementation of the conformal traceless reformulation of the
ADM system as proposed by [10—-12] are extensively described in [7, 13] and will not be
repeated here. We only mention, however, that this formulation makes use of a conformal
decomposition of the 3-metric, y;; = e vij» and the trace-free part of the extrinsic curvature,
A;j = K;j — y;;K /3, with the conformal factor ¢ chosen to satisfy e* = 13, where y is
the determinant of the spatial 3-metric y;;. In this formulation, in addition to the evolution
equations for the conformal 3-metric #;; and the conformal traceless extrinsic curvature A;;,
there are evolution equations for the conformal factor ¢, for the trace of the extrinsic curvature
K and for the ‘conformal connection functions’ I'' = 7%/ ;. We note that although the final
mixed, first- and second-order, evolution system for the variables {¢, K, 7, A; js I } is not
in any immediate sense hyperbolic, there is evidence showing that the formulation is at least
equivalent to a hyperbolic system [14—16]. In the formulation of [11], the auxiliary variables
F; = =", 74j.; were used instead of the "',
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2.1.1. Gauge choices. The code is designed to handle arbitrary shift and lapse conditions,
which can be chosen as appropriate for a given spacetime simulation. More information about
the possible families of spacetime slicings which have been tested and used with the present
code can be found in [7, 17]. Here, we limit ourselves to recalling details about the specific
foliations used in the present evolutions. In particular, we have used hyperbolic K-driver
slicing conditions of the form

da = —f()a*(K — Ko), 3)

with f(«¢) > 0 and Ko = K (¢t = 0). This is a generalization of many well-known slicing
conditions. For example, setting f = 1 we recover the ‘harmonic’ slicing condition, while,
by setting f = ¢g/a, with ¢ an integer, we recover the generalized ‘1+ log’ slicing condition
[18]. In particular, all the simulations discussed in this paper are done using condition (3) with
f = 2/a. This choice has been made mostly because of its computational efficiency, but we
are aware that ‘gauge pathologies’ could develop with the ‘1+ log’ slicings [19, 20].

For the spatial gauge, we use one of the ‘Gamma-driver’ shift conditions proposed in
[17] (see also [13]), that essentially act so as to drive the [ to be constant. In this respect,
the ‘Gamma-driver’ shift conditions are similar to the ‘Gamma-freezing’ condition 9,k =0,
which, in turn, is closely related to the well-known minimal distortion shift condition [21].
The differences between these two conditions involve the Christoffel symbols and are basically
due to the fact that the minimal distortion condition is covariant, while the Gamma-freezing
condition is not.

In particular, all the results reported here have been obtained using the hyperbolic Gamma-
driver condition,

928" = Fo,I" —nd, B, 4

where F and n are, in general, positive functions of space and time. For the hyperbolic
Gamma-driver conditions it is crucial to add a dissipation term with coefficient 1 to avoid
strong oscillations in the shift. Experience has shown that by tuning the value of this dissipation
coefficient it is possible to almost freeze the evolution of the system at late times. We typically
choose F = 3/4 and n = 3 and do not vary them in time.

The singularity-avoiding properties of the above gauge choices have proved equally good
both when using excision, as we did in [8] and [1], and when not using excision. In this latter
case, the addition of a small amount of dissipation in the metric and gauge terms is necessary
to obtain long-term stable evolutions [2]. In the absence of an excised region of spacetime, the
gauge choices (4) are essential to ‘freeze’ the evolution in those regions of the computational
domain inside the apparent horizon, where the metric functions experience the growth of very
large gradients.

2.2. Evolution of the hydrodynamics equations

An important feature of the Whisky code is the implementation of a conservative formulation
of the hydrodynamics equations [22-24], in which the set of equations (2) is written in a
hyperbolic, first-order and flux-conservative form of the type

dq+ 317 (q) = s(q), ®)

where £ (q) and s(q) are the flux-vectors and source terms, respectively [25]. Note that the
right-hand side (the source terms) does not depend on derivatives of the stress—energy tensor.
Furthermore, while the system (5) is not strictly hyperbolic, strong hyperbolicity is recovered
in a flat spacetime, where s(q) = 0.
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Additional details of the formulation we use for the hydrodynamics equations can be
found in [25]. We stress that an important feature of this formulation is that it allows for
the extension to a general relativistic context of the powerful numerical methods developed
in classical hydrodynamics, in particular high-resolution shock-capturing schemes based on
exact [26-28] or approximate Riemann solvers (see [25] for a detailed bibliography). Such
schemes are essential for a correct representation of shocks, whose presence is expected in
several astrophysical scenarios.

For all the results presented here, we have solved the hydrodynamics equations employing
the Marquina flux formula and a third-order PPM [29] reconstruction, and the Einstein field
equations using a Runge—Kutta scheme of third order, the ‘1 + log’ slicing condition and the
‘Gamma-driver’ shift conditions [17]. After having seen no significant difference in the
dynamics of our models while using polytropic or ideal-fluid EOSs (because no shocks form),
we have concentrated only on the former, which require slightly less computational time.

2.3. Mesh refinement

An important improvement with respect to the work presented in [8], which we refer to as
paper I hereafter, is the possibility of solving now both the fields and hydrodynamics equations
on non-uniform grids using a ‘box-in-box’ mesh refinement strategy [30] (see figure 2 of [31]).
All the simulations of paper I were redone with the new grid setup and no differences with
respect to the unigrid results were found as far as the dynamics of the matter and of the horizons
are concerned. On the other hand, this change introduces two important advantages: firstly,
it reduces the influence of inaccurate boundary conditions at the outer boundaries which can
be moved far from the central source; secondly, it allows for the wave zone to be included
in the computational domain and thus for the extraction of important information about the
gravitational-wave emission produced during the collapse.

In practice, we have adopted a Berger—Oliger prescription for the refinement of meshes on
different levels [32] and used the numerical infrastructure described in [30], i.e., the Carpet
mesh refinement driver for Cactus (see [33] for details). In addition to this, in [1] we had
also used a simplified form of adaptivity in which new refined levels are added at predefined
positions during the evolution. This progressive mesh refinement, which allows us to use much
less computational resources, was the key improvement to our previous code [8] and allowed
us to extract, for the first time in three-dimensional calculations, the gravitational waveform
from the collapse to a rotating black hole. While a fixed or a progressive mesh-refinement
technique leads to no appreciable change in the dynamics of the matter or of the horizons, it can
influence the spectral distribution of the radiation emitted especially at high frequencies [31].
Unless explicitly stated otherwise, all the results presented here have been computed using
seven fixed levels of refinements, the coarsest of which having a grid spacing h/ My = 2.56
(the grid spacing of each finer nested grid is one half of the grid spacing of the containing
grid) and extending to a distance d/ My = 307.2 from the centre. We want to stress that on
any currently available machine it would be impossible to perform simulations on a uniform
grid, with boundaries so far out to include the wave zone and inner resolutions high enough to
accurately resolve the star and the horizon (see also section 5).

2.4. Singularity excision

The use of the excision technique was essential in paper I for studying the dynamics of
the collapse with uniform grids, because these, combined with the computational resources
available at that time, had forced us to use a relatively coarse resolution (and outer boundaries
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close to the stellar surface). Such aresolution was sufficient to describe accurately the dynamics
of the matter and of the horizons but also required the use of excision if the simulation was to
be carried out beyond horizon formation.

An alternative to the use of the excision technique consists in adding a small amount
of dissipation to the evolution equations for the metric and gauge variables and in relying
on the use of singularity-avoiding gauges and of high resolution to extend the simulations
well past the formation of the apparent horizon. More specifically, we have used an artificial
dissipation of the Kreiss—Oliger type [34] on the right-hand sides of the evolution equations for
the spacetime variables and the gauge quantities. This is needed mostly because all the field
variables develop very steep gradients in the region inside the apparent horizon. Under these
conditions, small high-frequency oscillations (either produced by finite-differencing errors
or by small reflections across the refinement or outer boundaries) can easily be amplified,
leave the region inside the apparent horizon and rapidly destroy the solution. In practice, for
any time-evolved quantity u, the right-hand side of the corresponding evolution equation is
modified with the introduction of a term of the type L, (1) = —eh38i4 u, where £ is the grid
spacing, and ¢ is the dissipation coefficient, which is allowed to vary in space.

We have experimented with configurations in which the coefficient was either constant
over the whole domain or larger for the grid points inside the apparent horizon. We noted no
significant difference between these two cases. Much more sensitive is instead the choice of
the value of €. In the simulations reported here, the employed values of ¢ are between 0.0075
and 0.02. For each initial model, two values of ¢, ¢,;, and &,,,, can be determined, such that
for values smaller than ¢, the dissipation is not strong enough to cure the instability, and such
that for values larger than ¢,,, the solution is different from that obtained without dissipation
(over-dissipation). Such differences in the solution cannot be seen in the dynamics of the
matter or of the horizons, but only in the very sensitive waveforms.

The use of numerical dissipation stops the growth of the metric functions, which, instead
of growing more and more while approaching the singularity, stabilize to a stationary state.
Outside the horizon, the spacetime is practically identical to that obtained without dissipation
and the dynamics of the horizon itself are the same as in the case in which excision was
performed (up to when the latter data are available). In contrast, the metric inside the horizon
is rather far from being a solution of the Einstein equations, but this does not influence the
outside spacetime, as shown also in figure 2 of [2]. Hereafter, all of the presented results will
refer to simulations carried out without excision and we note that no dissipation is added to
the evolution of any matter variable.

3. Initial stellar models

As mentioned earlier, this paper is specially dedicated to the study of the gravitational collapse
of slowly and rapidly rotating supramassive relativistic stars, in uniform rotation, that have
become unstable to axisymmetric perturbations. Given equilibrium models of gravitational
mass M and central energy density e. along a sequence of fixed angular momentum or fixed
rest mass, the Friedman, Ipser and Sorkin criterion d M /de. = 0 [35] can be used to locate the
exact onset of the secular instability to axisymmetric collapse. The onset of the dynamical
instability to collapse is located near that of the secular instability but at somewhat larger
central energy densities. Unfortunately, no simple criterion exists to determine this location,
but the expectation mentioned above has been confirmed by the simulations performed here
and by those discussed in [36]. Note that, in the absence of viscosity or strong magnetic fields,
the star is not constrained to rotate uniformly after the onset of the secular instability and could
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Table 1. Equilibrium properties of the initial stellar models. The different columns refer
respectively to: the central rest-mass density p., the ratio of the polar to equatorial coordinate
radii rp /r, the gravitational mass M, the circumferential equatorial radius R,, the angular velocity
Q, the ratio J/M? where J is the angular momentum, the ratio of rotational kinetic energy to
gravitational binding energy 7'/|W|. All models have been computed with a polytropic EOS with
Kip=100and I = 2.

Model  p.(x107%)  rp/re M R. Q(x107%)  J/M?*  T/|W|(x1072%)
DO 3.325 1.00  1.636 7.54 0.00 0.000  0.00
D0.5 3314 099  1.644 759 0.92 0.108  0.32
D1 3.280 095  1.665 7.74 1.73 0206  1.16
D15 3249 0.91 1.690 791 576 0281 2.3
D2 3.189 0.85 1728 821 2.88 0362  3.52
D25  3.162 0.81 1756 843 320 0410  4.48
D3 3.134 075 1797 880 3.55 0.468  5.79
D35 3121 073  1.810 893 3.65 0.485  6.20
D4 3.116 0.65 1.861 9.65 3.95 0.543  7.67

develop differential rotation. In realistic neutron stars, however, very intense magnetic fields
are likely to counteract this.

For simplicity, we have focused on initial models constructed with a polytropic EOS
p = Kp', choosing I' = 2 and polytropic constant Kjp = 100 to produce stellar models
that are, at least qualitatively, representative of what is expected from observations of neutron
stars. More specifically, we have selected the models with the following procedure: first
we have identified nine models having polar-to-equatorial axes ratio in the interval 0.65-1.0
and lying on the line defining the onset of the secular instability (the dotted line in figure 1).
The models used as initial data have then been derived from the secularly unstable ones
after increasing the central energy density by 5%, while keeping the same axis ratio. These
models were indeed found to be dynamically unstable [8] and we have indicated them here as
DO, D1, ..., D3.5, D4 following the convention introduced in paper I. Note that model DO
effectively corresponds to a TOV star.

The main properties of these models are summarized in figure 1, which shows the
gravitational mass as a function of the central energy density for equilibrium models
constructed with the chosen polytropic EOS. The solid, dashed and dotted lines correspond
respectively to: the sequence of non-rotating models, the sequence of models rotating at the
mass-shedding limit and the sequence of models that are at the onset of the secular instability
to axisymmetric perturbations. The dynamically unstable initial models used in the collapse
simulations are shown as circles.

A more quantitative description of the models is presented in table 1, which summarizes
the main equilibrium properties of the initial models. The circumferential equatorial radius is
denoted as R,, while 2 is the angular velocity with respect to an inertial observer at infinity,
and r,/r. is the ratio of the polar to equatorial coordinate radii. Other quantities shown are
the central rest-mass density p., the ratio of the angular momentum J to the square of the
gravitational mass M, and the ratio of rotational kinetic energy to gravitational binding energy
T/|W].

4. Dynamics of the collapse

In paper I we have described in detail the dynamics of the matter and of the apparent and event
horizons during the gravitational collapse. Here, we summarize previous results and provide
additional details and comparisons.
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Figure 1. Gravitational mass shown as a function of the central energy density for equilibrium
models constructed with the polytropic EOS, for I' = 2 and polytropic constant Kip = 100. The
solid, dashed and dotted lines correspond to the sequence of non-rotating models, the sequence of
models rotating at the mass-shedding limit and the sequence of models that are at the onset of the
secular instability to axisymmetric perturbations. Also shown are the dynamically unstable (filled
circles) initial models used in the collapse simulations.

We start by noting that although dynamically unstable models are expected to collapse
over a dynamical timescale, the collapse is traditionally accelerated through the introduction
of a small perturbation, either in terms of an added radial velocity or through a slight and
global reduction of the pressure. This is done, for instance, by using a polytropic constant for
the evolution K that is 2% smaller than the one used to calculate the initial data Kip. We note
that we do not solve for the constraint equations once the initial perturbation is introduced.
This clearly produces a small error but, as shown in paper I, after an initial transient lasting a
couple of tenths of millisecond, the constraint violation differs only a few per cent from the
one measured in a simulation in which the constraints had been resolved. A more detailed
discussion of the influence of the type and amplitude of the perturbations introduced on the
waveforms emitted will be presented in section 6.

Overall, all of the models, with different initial J/M 2 values, show similar dynamics as
far as the bulk of the matter and the horizons are concerned. The main differences across
different models concern, instead, the dynamics of the matter around the equatorial plane
and the surface of the star. Of course, models with higher J/M? are initially more flattened
and their oblateness increases as the collapse proceeds, leading during the collapse to the
temporary formation of a disc-like configuration, which is however unstable and is rapidly
accreted (cf figures 5 and 6 of paper I).

As a good representative quantity, we show in the left panel of figure 2 the time evolution
of the maximum value of the rest-mass density for some of the models. Clearly all curves
show an exponential growth of the type p = pg + A exp[(t — fy)/t], where py and £ refer to
the initial values, suggesting that the growth time increases with the rate of rotation, as a result
of the increased centrifugal support. This is made more clear in the right panel of figure 2,
which shows the exponential growth time t as a function of the rotation rate. The open
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Figure 2. Left panel: time evolution of the maximum value of the rest-mass density for some
representative models. Right panel: exponential growth time 7 of the central density as a function
of stellar rotation rate J/M?. Indicated with open circles are the numerical values, while the
dashed line is the very good fit obtained with a quadratic function in J /M 2,

1.9

1.8 = =

- e

1.6 — -

MIH

15~ poll D1 f

0.4 0.6 0.8
t (ms)

Figure 3. Time evolution of the mass of the horizon in the isolated/dynamical-horizon framework,
for the different models (for clarity’s sake, not all models are shown). The dotted lines represent
the respective values of the ADM masses at the initial time, as computed after a compactification
to infinity.

circles represent the numerical values, while the dashed line is the excellent fit obtained with a
quadratic function of J/M2 with coefficients co = 0.13208, ¢; = —0.00655, ¢, = 0.06642,
where ¢; is the coefficient of the term of order (J/M?)". The increase of the growth time
with the rotation rate is simple to explain in terms of the increased centrifugal support that
rapidly rotating models have and its quantification represents an important result, being the
first estimate of the growth time for the dynamical instability to axisymmetric perturbations
as computed in full general relativity and for rapidly rotating stars.

The evolution of another representative quantity is presented in figure 3, which shows the
behaviour of the masses of the isolated horizons (see [37—41] and the discussion in paper I)
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Figure 4. Gravitational-wave extraction at short distances: waveforms of the even-parity metric
perturbations Q% (left panel) and Q7 (right panel) as functions of retarded time (shown both in
ms and solar-mass units) for model D4 evolved on a uniform grid. Different lines refer to different
extraction distances, expressed in M in the legend and corresponding, respectively, to coordinate
radii 1.6, 2.6 and 3.6 times the initial coordinate stellar equatorial radius R,.

compared to the initial values of the ADM masses computed at spatial infinity. As in paper I,
the figure shows that the mass of the newly formed black hole is measured very accurately, and
with an error, at the resolutions we have used here, of a couple of per cent only, when compared
with the expected value of the ADM mass. Furthermore, this error is indeed comparable with
the error coming from the use of a finite-size domain and is about one per cent (see paper I for
more details).

5. Extracting in the wave zone

The simulations presented in paper I, as well as other works (e.g. [36, 42, 43]), made
use of numerical grids with uniform spacing. This, together with the presently available
computational resources, has initially forced us to place the outer boundary of our
computational domain in the near zone, i.e. in regions of the spacetime where the gravitational
waves have not yet reached their asymptotic form, which instead happens in what is usually
referred to as the wave zone. Under these constraints, the data on the gravitational waveforms
that we extract through gauge-invariant perturbative techniques (see [31, 44, 45] for details)
do not provide interesting information besides the obvious change in the quadrupole moment
of the background spacetime.

This is illustrated in figure 4, where we show the even-parity metric perturbations Q3
(left panel) and Q7 (right panel) as functions of retarded time (shown both in ms and solar-
mass units) extracted at coordinate radii 1.6, 2.6 and 3.6 times the initial coordinate stellar
equatorial radius, R,, or equivalently at distances 8.1M, 13.4M, 18.8 M. These extraction
2-spheres are clearly not far enough out to be in the wave zone. Indeed, we see (left panel) that
the waveforms for the £ = 2 mode compared at the same retarded time do not overlap, as they
should if they were computed in the wave zone, since the invariance under a retarded-time
scaling is a property of the solutions of a wave equation. The overlapping for the £ = 4-mode
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waves (right panel) is slightly better and although quite noisy they show wave-like behaviour.
Clearly this is possible because the higher-frequency waves have a shorter wavelength and, less
influenced by the secular changes of the metric, reach the wave zone at smaller radii. However,
also in this case there clearly are secular variations of the waveforms that are probably related
to the dynamics of the gravitational field in the near zone. We also note that the amplitude of
the £ = 4 mode is much smaller (one or two orders of magnitude) than that of the £ = 2 mode,
so one has to look primarily at the latter mode to ascertain whether wave extraction has been
performed successfully.

Using the mesh-refinement setup discussed in section 2.3, we were able to place the
numerical boundary of our coarsest grid much farther out. For our fiducial simulation we use
an outer boundary located at ~160M from the central object. Because of the approximate
boundary conditions employed, at some time in the simulation numerical errors reflected from
the outer boundary arrive back in the central high-gradient zone where they excite numerical
instabilities which are not cured by the small amount of dissipation applied. Given the
relatively short duration of the collapse, however, this does not represent a serious problem
and it is always possible to place the outer boundary far enough out so that its influence is
delayed to a time when the largest part of the gravitational-wave emission has already taken
place. This boundary distance is indeed around 160M for all of the models studied here.
Outer-boundary locations placed farther out have not produced significant differences in the
waveforms nor on the emitted energy. In particular, comparing simulations of model D4
with outer boundary located at 160M and at 320M, the maximal pointwise relative difference
between correspondent values of the £ = 2 mode is below 1% (but the average difference is
about 0.1%) and the relative difference in the emitted energy is below 0.5%.

Finally, we note that our extraction 2-spheres are not located near the outer boundary but,
rather, around 50M from the origin and thus at a distance which is about four times larger than
the gravitational wavelength. This distance is a good compromise between being far enough in
the wave zone and far enough from the outer boundary, from where numerical contamination
may come. We note that a similar choice (i.e. extraction at 50M) was made in [3].

6. Variations on the theme: factors influencing the waveforms

A fundamental prospect of the world-wide effort dedicated to the construction and planning
of gravitational-wave detectors is that of opening a ‘new window’ on the universe through
which we may observe details of compact objects which would not be accessible through
other astronomical observations. As a step towards gravitational-wave astronomy and the
characterization of the sources through the features of their gravitational radiation, we now
discuss how the waveforms computed here can provide important information on the physical
properties of the collapsing star. More specifically, we do this by considering how the form
and amplitude of the waves are influenced by factors such as the rotation rate of the collapsing
star or the type and amplitude of the initial perturbations.

6.1. The role of rotation

Assessing the role that the stellar rotation rate has on the emitted gravitational radiation is
particularly simple in the case of uniformly rotating stars, as all models can be selected so as
to differ only in the value of the angular velocity €2 after having fixed either the central energy
density or the gravitational mass. Here, however, we consider the role of rotation along the
sequence of dynamically unstable models that we have discussed in the previous sections.
More specifically, we show in figure 5 the waveforms computed for some of the simulated
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Figure 5. Q;O measured at ~50M in simulations of some of the models D0-D4, all with an
initial pressure depletion of 2%. Filled circles indicate the coordinate retarded times at which the
apparent horizon is first found.

models when the initial model has been induced to collapse through a reduction of about 2%
for the initial pressure support. The filled circles in the figure indicate the coordinate retarded
times at which the apparent horizon is first found. (This notation differs from that we used
in figures 1 and 3 of [2], where we showed with a circle the time of first apparent-horizon
appearance in absolute time. This was done to stress how short our simulations with excision
extended past the horizon formation.)
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The waveform reported in the upper left panel is at least two orders of magnitude smaller
than any other waveform presented in figure 5, because it refers to the non-rotating star DO and
should, at least in principle, be exactly zero. Model D0, however, is not exactly a spherical star
but rather a Cartesian approximation of a spherical star at the level of resolution considered
here. Hence, the gravitational-wave signal in the upper left panel should not be considered as
an intrinsic error but, rather, as a measure of the overall accuracy of our evolution code and
extraction technique.

A rapid look at the waveforms in figure 5 is sufficient to realize that the amount of initial
rotational velocity does influence both the amplitude and the form of the emitted gravitational
radiation. A more detailed discussion of this in terms of the energy efficiency and of the
spectral properties of the signal will be presented in section 7. Here, however, it is sufficient to
underline that while the form of the signal does not vary considerably, its amplitude changes
by more than two orders of magnitude over the range of possible rotations considered.

An interesting feature which is common to all the waveforms reported in figure 5 is the
presence of a high-frequency signal between 0 and 0.25 ms and whose amplitude does not
change appreciably with rotation. As we will discuss in the following section, this initial and
spurious burst of radiation is most likely the signature of a perturbation in the star which is
further amplified by the reduction in pressure. Finally, we note that, in all the considered
cases, the complete signal has been collected, starting from the initial spurious burst at the
beginning of the collapse and up to the ring-down phase of the black hole. After this, the
extracted signal becomes essentially constant until the numerical error produced at the outer
boundary reaches the region of the spacetime where the fields are rapidly varying in space and
destroys the solution (this is not shown in the figure).

Finally, the different panels of figure 6 offer information about the properties of the
waveforms that is complementary to that presented in figure 5. More specifically, they
show the power spectral density (PSD) of the waveforms emitted by models D3 and D4 in the
absence of any initial perturbation. The left panels, in particular, show the PSD of the complete
signal and thus including also the initial spurious burst (see section 6.2 for a discussion of
this), while the right panels show the PSD of only the final part of the waveforms, namely the
one starting from the retarded time at which the apparent horizon is first found, and that could
be used to approximately bracket the ring-down of the black hole. Indicated with a vertical
dotted line is the corresponding frequency of the fundamental black-hole quasi-normal mode
(QNM) as computed in [46]. As expected, the PSD of the complete signal is rather narrow and
shows a main peak around 6 kHz and a series of smaller peaks at larger frequencies, related to
the initial burst of radiation and possibly a signature of the w modes of the perturbed star. The
PSD of the QNM ringing, on the other hand, is wider in frequency but very well matched with
the expected frequency of the fundamental QNM. It is also worth noting that the spectra in the
right panels have a rather poor accuracy in frequency, as the timeseries used is intrinsically
short.

It is worth remarking that while the stellar models considered here are still quite idealized,
they are sufficiently realistic to highlight a precise correlation between the spectral features of
the waveforms and the black-hole QNMs. We expect this feature to survive also more realistic
treatments of the stellar matter.

6.2. The role of the pressure perturbation

As discussed in section 3, it is customary in simulations of collapse to rotating black holes
to introduce a pressure perturbation whose amplitude can be rather large (as in [3], where
the pressure support was decreased by up to 99%) or rather small (as in paper I, where the
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Figure 6. Power spectra of /4, measured at ~50M. All panels refer to initial data without any
added perturbation. Top left: complete extracted signal for D3; top right: only ring-down signal
for D3; bottom left: complete signal for D4; bottom right: only ring-down signal for D4.

pressure support was decreased by only 2%). The rationale behind this approach is that the
introduction of the perturbation simply increases the amplitude of the (only) unstable mode,
hence triggering the instability and decreasing the computational costs. As we will show
below, this assumption is correct only for very small perturbations and, quite to the contrary,
large-amplitude perturbations can have a strong impact on both the dynamics of the matter
(and hence of the horizons) and the gravitational waveforms.

We start by comparing in figure 7 the evolution of the central rest-mass density for model
D4 in the case in which a pressure perturbation of 2% is introduced (i.e. Ap/p = 2%) and
when no explicit perturbation is introduced (i.e. Ap/p = 0%). In this latter case, the fact that
the model is already past the secular instability limit and the presence of a small but nonzero
truncation error are sufficient to trigger the instability, which leads to a collapse (delayed with
respect to the perturbed case). The two curves in figure 7 are properly shifted in time so as to
be superposed and the upper x-axis is used to indicate the coordinate time in the case of the
unperturbed collapse. It is evident that in this regime of linear perturbations the dynamics of
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Figure 8. Left panel: comparison of the Q%) measured at ~50M in simulations of models D1
with an initial pressure depletion of 2% (dotted line) and without any added perturbation (solid
line). Right panel: magnification of the initial spurious burst.

the matter and those of the horizons during the collapse (not shown here) are very similar in
both the perturbed and the unperturbed models.

A similar conclusion can be drawn when considering the gravitational-wave emission
and this is summarized in figure 8, whose left panel shows the Q%, waveforms for model D1
with the initial perturbation (dotted line, cf figure 5, centre-left panel) and without (solid line).
Note that the two curves are not shifted in time and thus the delay is effectively due to the
smaller initial amplitude of the unstable eigenmode when Ap/p = 0. Note that not all of
the signal coming from the unperturbed model is shifted in time and indeed also in this case
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an initial spurious burst of radiation is present between and 0 and 0.25 ms, as highlighted in
the right panel of figure 8. As mentioned earlier, this signal originates essentially from the
truncation error introduced when interpolating onto a Cartesian grid the initial stellar models
which are computed as equilibrium models in a code using spherical polar coordinates [47].
As a result, it is always present, with a form which is essentially independent of the stellar
rotation rate (cf figure 5), but with an amplitude which can be further increased if the star is
perturbed and hence with a larger initial violation of the constraint equations. This is very
evident in the right panel of figure 8 which shows the two signals being well superposed in
phase but also having different amplitudes, with the one coming from the unperturbed star
being systematically smaller.

It is as yet uncertain whether this initial signal, albeit spurious, reflects a consistent
response of the star to a perturbation and can therefore be associated with a w mode [48].
Preliminary investigations in this direction seem to support the idea that the gravitational signal
between 0 and 0.25 ms does indeed correspond to a w mode (the signal does not converge
away with resolution as shown in figure 4 of [31]) and could therefore be used to extract
the eigenfrequencies of these modes in rapidly rotating stars which are yet unaccessible to
perturbative studies. However, further work is needed to consolidate this conclusion.

We note that while introducing an initial small perturbation can serve to accelerate the
matter dynamics, which however are not influenced noticeably, a large pressure perturbation
can instead lead to significantly different results and even to incorrect interpretations on the
efficiency of the gravitational-wave emission during the collapse. This is quite clear in figure 9,
whose left panel shows the changes in the even-parity waveform Q7F, emitted during the
collapse of model D4 when this is subject to pressure depletions going from 2 to 99%.
Clearly, as the pressure depletion is increased, the gravitational collapse becomes much more
rapid, asymptotically becoming the one produced in the free-fall of an oblate distribution of
dust. Also the corresponding changes in the mass quadrupole from this increasingly rapid
collapse are larger and thus the amplitude of the gravitational-wave emission is increased
as well. It is not surprising, therefore, that in these conditions it can easily reach values
comparable with the ones computed in [3], where pressure reductions between 60 and 99%
were indeed used.

In order to find a closer comparison with the values reported in [3] we show in the
right panel of figure 9 the energy emitted in gravitational waves as a function of the pressure
depletion for model D4. Note, however, that in the case of large pressure depletions, the
collapse is so rapid that it is very difficult, if possible at all, to distinguish the initial-burst
signal from that produced by the collapse. Indeed, although the height of the first peak of the
signal is closely related to the amplitude of the initial perturbation and grows monotonically
with it, this is not true for the other peaks, as shown in the left panel of figure 9. As a result,
while the open circles refer to the total signal, the filled ones instead show the emitted energy
when the first peak in the signal is not taken into account and hence without the initial burst. It
is evident that, as the pressure removal is increased, the energy radiated increases, becoming
about two orders of magnitude larger than that obtained in the absence of perturbations. Such
large values are in good agreement with those presented in [3] and induce us to conclude that
the estimates made there, even if they served as useful upper limits, were dominated by the
unrealistic dynamics of the matter.

Interestingly, the total energy emitted in gravitational radiation (when not including the
initial burst) does not have a monotonic behaviour with Ap/p and two different factors may
combine to yield this effect. The first one is that, as the pressure support is drastically reduced,
the centrifugal support, that in model D4 plays an important dynamical role, ceases to be
relevant and the dust-like matter collapses with only a small increase in the oblateness and
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Figure 9. Left panel: comparison of Q3 from simulations of model D4, differing in the amount of
initial pressure depletion. Right panel: energy carried by the emitted gravitational waves during the
collapse of model D4 with different percentages of initial pressure depletion. All measurements
were performed at a coordinate distance of ~50M.

hence in the mass quadrupole. The second factor is that in the more rapid collapse triggered
by larger pressure depletions, the apparent horizon is produced much earlier and hence a larger
amount of radiation remains trapped and cannot reach the observer. While of little practical
interest because of the extreme conditions of matter involved, verifying these conjectures may
provide important information on the behaviour of the Einstein equations in a nonlinear regime
and deserves further investigations.

As a final remark, we note that an initial small perturbation also has an obvious drawback
when it comes to analysing the gravitational-wave signal. The signal from the early burst
of radiation, in fact, combines with the stronger collapse signal and can lead to incorrect
estimates about the efficiency of the emission of gravitational radiation during the collapse
for slowly rotating models. In the case of model D1, for instance, the energy contained in the
initial burst amounts to ~30% of the energy produced instead during the actual gravitational
collapse. For model D4, on the other hand, this amounts only to ~2%.

6.3. Perturbations in the velocity

A pressure reduction is not the only possible perturbation that can be introduced in order to
induce the collapse of a star past the secular stability limit. Another possibility, also used
in the past in [49], consists in adding an inward-directed radial velocity to the equilibrium
configuration, which we have here done in terms of a radial velocity of constant modulus 0.02
throughout the star.

This different type of initial perturbation gives rise to a slightly larger (<2% ) violation
of the constraint equations at the initial time and produces a collapse over a timescale which
is comparable to that resulting from a 10% depletion of the pressure support. The efficiency
in the energy emission, on the other hand, can be much larger as it will be discussed in more
detail in the following section.
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Figure 10. Energy carried by the emitted gravitational waves during the collapse for different
values of the rotation parameter J/M? and initial perturbations. Left panel: filled squares and
triangles refer respectively to models with a 2% pressure perturbation and to models that are
unperturbed. Open circles refer to the same as the filled symbols but after excluding the initial
burst in the waveforms (see section 6.2). Right panel: filled triangles refer to models perturbed with
an inward uniform radial velocity of 0.02 and the open circles to the same models but considering
only the £ = 2 contribution to the energy; filled squares refer again to pressure-perturbed models
and are used as a reference. In both panels the measurements are made at a coordinate distance of
50M and the dashed lines indicate a scaling o (J/M?)*.

(This figure is in colour only in the electronic version)

7. Energy efficiency and detectability

Determining the energy efficiency in the emission of gravitational radiation in fully nonlinear
regimes of the Einstein equations is particularly difficult as perturbative or post-Newtonian
approaches cannot be used reliably. The role that numerical-relativity calculations can play
in this context is therefore particularly valuable and it represents one of the goals of most
simulations. In addition, determining this efficiency in the case of the gravitational collapse to
a black hole is made more difficult by the intrinsic weakness of the system which loses only a
small fraction of its binding energy to gravitational radiation. In the case of binary black hole
calculations, in contrast, the efficiency can easily reach a few per cent even in the simplest
scenario of non-spinning, equal-mass binaries.

In figure 10 we present a summary of the efficiency in the collapse to black hole by
reporting in a log—log plot the emitted energy as a function of the initial stellar rotation rate
parameter J/M? and for different initial perturbations. A discussion on how to calculate
this energy from the gauge-invariant quantities can be found in [31, 45] and it has been here
calculated for an observer at a coordinate distance of 50M. The left panel of figure 10, in
particular, highlights the influence of pressure perturbations and shows with filled squares and
triangles models with a 2% pressure perturbation and unperturbed models, respectively. Open
circles, on the other hand, are the same as the filled symbols but when the initial burst in the
waveforms is excluded (see section 6.2 for a discussion).

Clearly, and as first pointed out in [3], the efficiency follows behaviour of the type
AE/E o (J/M?*)* almost up to the largest rotation rates that yield equilibrium models in
uniform rotation, i.e. J/M? < 0.54. After that, the efficiency does not grow further and
this represents a difference with respect to what found in [3], where the efficiency essentially
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saturated at very large rotation rates. (We recall that the rather crude way of introducing
rotation in the initial models allowed values as large as J/M 2 ~ 0.9 to be reached in [3].)
As mentioned in section 4, this is probably due to the increased centrifugal support that
these models experience and that effectively slows down the growth time for the dynamical
instability (cf the right panel of figure 2). The value of J/M? at which the maximum efficiency
is reached depends on the rapidity of the collapse and hence on the initial perturbation. For
models with a small or zero initial perturbation, the maximum is located at J/M 2~ 04,
while for more rapid collapses (as those shown in the right panel of figure 10), this happens
at higher rotation rates. Note also that the efficiency does not follow a power-law behaviour
at very small values of J/M?. A comparison with the efficiency calculated not including the
initial burst (open circles) shows that this is just the result of the initial spurious gravitational
wave signal that, as mentioned above, can represent a significant fraction of the whole signal
at low rotation rates.

The right panel of figure 10 also highlights the influence on the energy efficiency of
velocity perturbations, with the filled triangles referring to models perturbed with an inward
uniform radial velocity of 0.02 and with the open circles referring to the same models but
when considering only the £ = 2 contribution to the energy. Clearly, velocity perturbations do
not alter the overall scaling with rotation but do produce a significant increase in the efficiency,
which can easily become two orders of magnitude larger than that produced with pressure
perturbations (this is shown with filled squares as a reference). This enhanced emission is
essentially the result of a more rapid change in mass quadrupole (indeed the amplitude of the
£ = 2 mode is always larger than the corresponding mode in the cases of pressure depletion),
but it also receives a contribution from higher-order multipoles, especially from the ¢ = 4 and
at low rotation rates (cf filled triangles and open circles in the right panel of figure 10). The
evidence that the £ = 4 contribution to the overall energy is rather similar at all rotation rates
seems to indicate that this is just an artefact of the initial perturbation and that a very clear
scaling oc (J/M?)* is recovered when considering the £ = 2 contribution only (open circles).
This result, on the other hand, also highlights that the study of the multipolar structure of
the gravitational-wave emission from the collapse can be used to deduce the dynamical and
kinematical properties of the star at the time of the collapse.

The gravitational-wave information computed here can also be used to determine the
detectability of these sources [31, 45]. In the case of an interferometric detector with the
sensitivity of Virgo and of the signal coming only from the gravitational collapse, we set an
upper limit for the characteristic amplitude produced in the collapse of a rapidly and uniformly-
rotating polytropic star at 10 kpc to be h, = 5.77 x 1072>(M/ M) at a characteristic frequency
fe = 931 Hz. In the case of a detector with the sensitivity of LIGO I, instead, we obtain
h. = 5.46 x 1072>(M /M) at f. = 531 Hz. The resulting signal-to-noise ratios are then
(S/N)YVIro ~ 0.27-2.1, (S/N)" " ~ 1.2-11 and (S/N)."" =~ 3.3-28 for detectors such
as Virgo/LIGO, advanced LIGO or Dual [50].

D1-D4

8. Conclusions

We have provided details and presented additional results on the numerical study of the
gravitational-wave emission from the collapse of neutron stars to rotating black holes in three
dimensions [1, 2]. In particular, we have discussed the advantages and disadvantages of the
use of the excision technique and how alternative approaches to that of excision can be used
with great success to extract the complete gravitational-wave signal [2].

As a first step towards the characterization of these sources of gravitational waves, we
have presented a systematic discussion of the influence that rotation and different perturbations
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have on the waveforms and hence on the energy emitted in gravitational waves. In particular,
a systematic analysis of the waveforms calculated under different initial rotation rates has
provided the first estimates in full general relativity and for rapidly rotating stars of the growth
time for the dynamical instability to axisymmetric perturbations and confirmed the existence
of a precise power-law scaling of the energy efficiency in terms of the rotation parameter
J/M>.

We have also shown that the pressure perturbations traditionally used to trigger the collapse
do not affect sensitively the dynamics of the matter and of the trapped surfaces as long as
they are very small. Excessively large pressure depletions, on the other hand, can change
significantly the way the collapse proceeds as well as artificially amplify the energy efficiency
in the emission of gravitational waves. This clarifies the source of the differences between
our estimates for the efficiency and those made in axisymmetry in [3]. Furthermore, the study
of the waveforms produced with perturbations of different amplitudes and type has also made
it possible to isolate the part of the signal produced by the actual collapse from the spurious
one which should instead be related to initial violations of the constraint equations and which
is produced either from the interpolation of the initial data onto a Cartesian grid or from the
introduction of the initial perturbations. While it is still unclear whether this initial signal
reflects a consistent response of the star to a perturbation and can therefore be associated with
a w mode, a number of considerations seem to support this hypothesis.

Overall, the results found indicate that the gravitational collapse of axisymmetric neutron
stars to rotating black holes is not an efficient process for converting the binding energy into
gravitational waves, with an overall efficiency §M/M ~ 10~7—107° for uniformly rotating
models. This efficiency, however, can be increased up to two orders of magnitude if velocity
perturbations are present in the collapsing star and it is possible that similar conclusions may
be valid also for the collapse of differentially rotating models.

As a concluding remark we note that, while this work, together with the ones preceding it
[1, 2, 8], has provided a full and consistent picture of the gravitational-wave emission from the
collapse of neutron stars to rotating black holes, it represents only a very idealized description
of this process. Additional and considerable work is still needed both in the modelling of
the matter (through improved equations of state, the inclusion of the contributions coming
from magnetic fields, radiation transport, multifluids, a solid crust, etc) and in the numerical
techniques needed to handle this improved modelling. Both aspects will represent the focus
of our future research.
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