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Abstract. We provide details and present additional results on theenical study of the
gravitational-wave emission from the collapse of neutramssto rotating black holes in three
dimensions. More specifically, we concentrate on the adgast and disadvantages of the
use of the excision technique and on how alternative appesato that of excision can
be successfully employed. Furthermore, as a first step tsvsource-characterization, we
present a systematic discussion of the influence that ootaind different perturbations have
on the waveforms and hence on the energy emitted in graritdtivaves.

1. Introduction

The study of the gravitational collapse of rotating stardleck holes is a cornerstone of
any theory of gravity and a long standing problem in Geneglafity. Important issues
in relativistic astrophysics awaiting clarification, suaf the mechanism responsible fer
ray bursts, may be unveiled with a more detailed understgrafithe physics of gravitational
collapse in rotating and magnetized stars. Furthermoeesttidy of gravitational collapse will
provide the waveforms and the energetics of one of the mgsiitant sources of gravitational
radiation.

In our previous workl[[ll} 2], we have described how we can perfaccurate three-
dimensional relativistic simulations of such events andvlwe are able to extract their
gravitational wave signals. Before our work, the only workthe literature about the
gravitational radiation from neutron-star collapse ddiask 20 years and is restricted to
axisymmetry [[3]. Here, after a brief introduction to our eocdnd to the models we have
simulated, we give more details on the techniques and sgstdsented ir |1, 2], focussing on
the properties of the gravitational waves produced and enthese are influenced by factors
such as rate of rotation of the compact star or the type anditaiohp of the perturbations
introduced to trigger the collapse.

Throughout the paper we use a spacelike signdture-, +, +) and a system of units in
whichc = G = Mg = 1 (unless explicitly shown otherwise for convenience). Griedices
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are taken to run from 0 to 3, Latin indices from 1 to 3 and we aduop standard convention
for the summation over repeated indices.

2. Basic equations and their implementation

TheWhi sky code solves the general relativistic hydrodynamics eqoatbn a 3D numerical
grid with Cartesian coordinatels [4]. The code has been nartsd within the framework of
the Cact us Computational Toolkit (see refs.|[5] 6] for details), andsitdeveloped at the
Albert Einstein Institute and at the Louisiana State Ursitgr This public domain code
provides high-level facilities such as parallelizationput/output, portability on different
platforms and several evolution schemes to solve genestémyg of partial differential
equations. Clearly, special attention is dedicated to ttetisn of the Einstein equations,
whose matter-terms in non-vacuum spacetimes are handlgiWi sky code.
In other words, while theCact us code provides at each time step and on a spatial

hypersurface the solution of the Einstein equations

G =811y, , (1)

where G, is the Einstein tensor and), is the stress-energy tensor, thhi sky
code provides the time evolution of the hydrodynamics d@qnat expressed through the
conservation equations for the stress-energy tefisérand for the matter current density
JH

V. T =0, V.t =0 )

In what follows, and mostly for the sake of completeness, ive g brief overview of
how both the right and the left-hand-side of equatidis (&)a@mputed within the coupled
Cact us/ Wi sky codes. The equations presented have already been disénssadral
different publications, e.g. in_[7] 8] 1] and we refer theeheisted readers to these works for
more details.

2.1. Evolution of the field equations

Many different formulations of the equations have been psed throughout the years,
starting with the ADM formulation in 1962 [9]. As mentioned the Introduction, we use
the NOK [10] formulation, which is based on the ADM constiantand has been further
developed in[[101].

Details of our particular implementation of the confornrakeless reformulation of the
ADM system as proposed by [10,/11, 12] are extensively desdrin [7, 18] and will not be
repeated here. We only mention, however, that this forrardanakes use of a conformal
decomposition of the three-metri§,; = e~4?v;;, and the trace-free part of the extrinsic
curvature,A;; = K;; — v;;K/3, with the conformal factor chosen to satisfy*? = 41/3,
where~ is the determinant of the spatial three-metyj¢. In this formulation, in addition
to the evolution equations for the conformal three-mefsicand the conformal traceless
extrinsic curvaturel;;, there are evolution equations for the conformal fagtdior the trace
of the extrinsic curvaturg and for the “conformal connection functions” = 5% ;. We
note that although the final mixed, first and second-ordelugion system for the variables

b, K, %ij, Aij, fi} is not in any immediate sense hyperbolic, there is evidenowing that
the formulation is at least equivalent to a hyperbolic sys[g4,[15,/16]. In the formulation
of [11], the auxiliary variables’; = — . ¥;;,; were used instead of tHe.
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2.1.1. Gauge choicesThe code is designed to handle arbitrary shift and lapseitons,
which can be chosen as appropriate for a given spacetimdegioru More information about
the possible families of spacetime slicings which have bested and used with the present
code can be found in]7,17]. Here, we limit ourselves to lewaldetails about the specific
foliations used in the present evolutions. In particulag, mave used hyperboli& -driver
slicing conditions of the form

O = —f(a) (K — Ko), 3

with f(a) > 0 andKy, = K(t = 0). This is a generalization of many well known slicing
conditions. For example, settirfg= 1 we recover the “harmonic” slicing condition, while, by
settingf = ¢/, with ¢ an integer, we recover the generalizéd-fog” slicing condition [18].

In particular, all of the simulations discussed in this pegre done using conditiofil(3) with
f = 2/a. This choice has been made mostly because of its compuhgéfitiency, but we
are aware that “gauge pathologies” could develop with thel6ég” slicings [19/20].

For the spatial gauge, we use one of the “Gamma-driver” sluiftditions proposed
in [17] (see also[[13]), that essentially act so as to driveIth to be constant. In this
respect, the “Gamma-driver” shift conditions are simitattie “Gamma-freezing” condition
o,T'* = 0, which, in turn, is closely related to the well-known minihhstortion shift
condition [21]. The differences between these two condgimvolve the Christoffel symbols
and are basically due to the fact that the minimal distortiondition is covariant, while the
Gamma-freezing condition is not.

In particular, all the results reported here have been oéthusing the hyperbolic
Gamma-driver condition,

OB =For —nops, (4)
where F' andn are, in general, positive functions of space and time. Ferhyperbolic
Gamma-driver conditions it is crucial to add a dissipatiemt with coefficient; to avoid
strong oscillations in the shift. Experience has shown thatuning the value of this
dissipation coefficient it is possible to almost freeze thation of the system at late times.
We typically choos&” = 3/4 andn = 3 and do not vary them in time.

The singularity-avoiding properties of the above gaugeéagsthave proved equally good
both when using excision, as we did in refs. [8] and [1], an@&mhot using excision. In this
latter case, the addition of a small amount of dissipatioth&n metric and gauge terms is
necessary to obtain long-term stable evolutions [2]. Inahsence of an excised region of
spacetime, the gauge choicgs (4) are essential to “frekeas\olution in those regions of the
computational domain inside the apparent horizon, whexertétric functions experience the
growth of very large gradients.

2.2. Evolution of the hydrodynamics equations

An important feature of théhi sky code is the implementation ot@nservative formulation
of the hydrodynamics equatioris [22] 23] 24], in which theofetquations[(R) is written in a
hyperbolic, first-order and flux-conservative form of thpeay

0rq + 0:f% (q) =s(a) , (5)

wheref(?) (q) ands(q) are the flux-vectors and source terms, respectiely [25}e Mt the
right-hand-side (the source terms) depends only on thdenatd its first derivatives, and on
the stress-energy tensor. Furthermore, while the sysileis (®t strictly hyperbolic, strong
hyperbolicity is recovered in a flat spacetime, whefg) = 0.
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Additional details of the formulation we use for the hydradynics equations can be
found in ref. [25]. We stress that an important feature of formulation is that it allows for
the extension to a general relativistic context the powertumerical methods developed in
classical hydrodynamics, in particular High-Resolutidro&-Capturing schemes based on
exact [26/ 27, 28] or approximate Riemann solvers (see2Ef.fpr a detailed bibliography).
Such schemes are essential for a correct representationais whose presence is expected
in several astrophysical scenarios.

For all the results presented here, we have solved the hydamdics equations
employing the Marquina flux formula and a third-order PRM] [B&construction, and the
Einstein field equations using a Runge-Kutta scheme of tbictkr, the 1-+log” slicing
condition and the “Gamma-driver” shift conditioris [17]. t&f having seen no significant
difference in the dynamics of our models while using polgtcor ideal-fluid EOSs (because
no shocks form), we have concentrated only on the formerchvhequire slightly smaller
computational times.

2.3. Mesh Refinement

An important improvement with respect to the work preseiéggdvhich we refer to as paper
| hereafter, is the possibility of solving now both the fiellsd hydrodynamics equations on
non-uniform grids using a “box-in-box” mesh refinement &gy [30] (see Fig. 2 of [31]).
All of the simulations of paper | were redone with the new ggetup and no differences
with respect to the unigrid results were found as far as thmadhcs of the matter and of the
horizons are concerned. On the other hand, this changelirdes two important advantages:
firstly, it reduces the influence of inaccurate boundary @@k at the outer boundaries
which can be moved far from the central source; secondlyljdtva for the wave zone to
be included in the computational domain and thus for theaetitin of important information
about the gravitational wave emission produced during tiagse.

In practice, we have adopted a Berger-Oliger prescriptiothie refinement of meshes on
different levels[[32] and used the numerical infrastruetdescribed irn [30], i.e., th&ar pet
mesh refinement driver f@act us (seel[33] for details). In addition to this, in refl [1] we had
also used a simplified form of adaptivity in which new refineddls are added at predefined
positions during the evolution. This progressive mesh esfient, which allows to use much
less computational resources, was the key improvementrtpreuious code [8] and allowed
to extract, for the first time in 3D calculations, the gratidaal waveform from the collapse
to a rotating black hole. While a fixed or a progressive megimement technique leads to
no appreciable change in the dynamics of the matter or of dhiedms, it can influence the
spectral distribution of the radiation emitted especiallyhigh frequencies [31]. All of the
results presented here have been computed using sevendgwetsl df refinements.

2.4. Singularity Excision

The use of the excision technique was essential in paper $ttatying the dynamics of

the collapse with uniform grids, because these, combindi thve computational resources
available at that time, had forced us to use outer boundaltese to the stellar surface
and a relatively coarse resolution. Such a resolution w#gigumt to describe accurately
the dynamics of the matter and of the horizons but also reduine use of excision if the

simulation was to be carried out beyond horizon formation.

An alternative to the use of the excision technique consgisaslding a small amount of
dissipation to the evolution equations for the metric anaiggavariables and of relying on the
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Figure 1. Gravitational mass shown as a function of the central engegigity for equilibrium
models constructed with the polytropic EOS, o= 2 and polytropic constank’ip = 100.
The solid, dashed and dotted lines correspond to the segusneon-rotating models, the
sequence of models rotating at the mass-shedding limit lEmdequence of models that are
at the onset of the secular instability to axisymmetric ynddtions. Also shown are the
dynamically unstable (filled circles) initial models usedhe collapse simulations.

use of singularity-avoiding gauges and of high resolutmaxtend the simulations well past
the formation of the apparent horizon. More specificallyhaee used an artificial dissipation
of the Kreiss—Oliger typel [34] on the right-hand-sides af #wvolution equations for the
spacetime variables and the gauge quantities. This is demdstly because all the field
variables develop very steep gradients in the region insid@pparent horizon. Under these
conditions, small high-frequency oscillations (eitheoguiced by finite-differencing errors
or by small reflections across the refinement or outer boueg)acan easily be amplified,
leave the region inside the apparent horizon and rapidliraethe solution. In practice, for
any time-evolved quantity, the right-hand-side of the corresponding evolution eiquais
modified with the introduction of a term of the tygia.(u) = —eh39}u, whereh is the grid
spacing, and is the dissipation coefficient, which is allowed to vary irasp.

We have experimented with configurations in which the caefficwas either constant
over the whole domain or larger for the grid points insideapparent horizon. We noticed no
significant difference between these two cases. Much margtae is instead the choice of
thevalueof ¢. In the simulations reported here, the employed valuesané between 0.0075
and 0.02. For each initial model, two valuesof i, andsmax, can be determined, such that
for values smaller thany,;, the dissipation is not strong enough to cure the instabdityl
such that for values larger thamax the solution is different from the one obtained without
dissipation (overdissipation). Such differences in tHatimn cannot be seen in the dynamics
of the matter or of the horizons, but only in the very sensitisaveforms.

The use of numerical dissipation stops the growth of the imdétmctions, which,
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Table 1. Equilibrium properties of the initial stellar models. Thé#fetent columns refer
respectively to: the central rest-mass dengitythe ratio of the polar to equatorial coordinate
radii r, /7, the gravitational masa/, the circumferential equatorial radiu., the angular
velocity ©, the ratio.J/M? whereJ is the angular momentum, the ratio of rotational kinetic
energy to gravitational binding enerdd/|W|. All models have been computed with a
polytropic EOS withK1p = 100 andI’ = 2.

Model po(x10°) rp/re M R. SQ(x10°3) J/MZ T/[W|(x102)

DO 3.325 1.00 1.636 7.54 0.00 0.000 0.00
DO0.5 3.314 099 1.644 7.59 0.92 0.108 0.32
D1 3.280 095 1.665 7.74 1.73 0.206 1.16
D1.5 3.249 091 1690 7.91 5.76 0.281 2.13
D2 3.189 085 1.728 8.21 2.88 0.362 3.52
D2.5 3.162 0.81 1.756 8.43 3.20 0.410 4.48
D3 3.134 0.75 1.797 8.80 3.55 0.468 5.79
D3.5 3.121 0.73 1.810 8.93 3.65 0.485 6.20
D4 3.116 0.65 1.861 9.65 3.95 0.543 7.67

instead of growing more and more while approaching the $ardy stabilise to a stationary
state. Outside the horizon, the spacetime is practicadiptidal to the one obtained without
dissipation and the dynamics of the horizon itself is theesasnin the case in which excision
was performed (up to when the latter data are available)h®ndntrary, the metric inside the
horizon is rather far from being a solution of the Einsteina&tipns, but this does not influence
the outside spacetime, as shown also in Fig. 2 oflref. [2] eHiiger, all of the presented results
will refer to simulations carried out without excision ané wote that no dissipation is added
to the evolution of any matter variable.

3. Initial stellar models

As mentioned earlier, this paper is specially dedicateddstudy of the gravitational collapse
of slowly and rapidly rotating supramassive relativistiars, in uniform rotation, that have
become unstable to axisymmetric perturbations. Givenlibguim models of gravitational
massM and central energy densigy along a sequence of fixed angular momentum or fixed
rest mass, the Friedman, Ipser & Sorkin criterfiif /0e. = 0 [35] can be used to locate the
exact onset of theecularinstability to axisymmetric collapse. The onset of thenamical
instability to collapse is located near that of the secubastdability but at somewhat larger
central energy densities. Unfortunately, no simple daoteexists to determine this location,
but the expectation mentioned above has been confirmed tgirthaations performed here
and by those discussed in [36]. Note that, in the absenceodsity or strong magnetic fields,
the star is not constrained to rotate uniformly after theebosthe secular instability and could
develop differential rotation. In realistic neutron stdrewever, very intense magnetic fields
are likely to counteract this.

For simplicity, we have focused on initial models constedctvith a polytropic EOS
p = Kp'', choosingl’ = 2 and polytropic constankip = 100 to produce stellar models
that are, at least qualitatively, representative of whakigected from observations of neutron
stars. More specifically, we have selected the models withféfiowing procedure: first
we have identified nine models having polar-to-equatosakaatio in the interval 0.65-1.0
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Figure 2. Left panel: Time evolution of the maximum value of the rest-mass derisitgome
representative modelsRight panel: exponential growth-time- of the central density as a
function of stellar rotation ratg/M 2. Indicated with open circles are the numerical values,
while the dashed line is the very good fit obtained with a qaticfunction in.J/M?2.

and lying on the line defining the onset of the secular instal{the dotted line in Fig[11).
The models used as initial data have then been derived frensahularly unstable ones
after increasing the central energy density5¥, while keeping the same axis ratio. These
models were indeed found to be dynamically unstable [8] amthawe indicated them here as
D0, D1,...,D3.5, D4 following the convention introduced in paper I. Note thatdabhD0
effectively corresponds to a TOV star.

The main properties of these models are summarized in[Figvhich shows the
gravitational mass as a function of the central energy derfer equilibrium models
constructed with the chosen polytropic EOS. The solid, ddsind dotted lines correspond
respectively to: the sequence of non-rotating models, eheence of models rotating at the
mass-shedding limit and the sequence of models that are ahet of the secular instability
to axisymmetric perturbations. The dynamically unstablgal models used in the collapse
simulations are shown as circles.

A more guantitative description of the models is presemélable 1, which summarises
the main equilibrium properties of the initial models. Theemferential equatorial radius is
denoted agz., while  is the angular velocity with respect to an inertial obseatanfinity,
andr,/r. is the ratio of the polar to equatorial coordinate radii. @tiquantities shown
are the central rest-mass density the ratio of the angular momentushto the square of
the gravitational masa/, and the ratio of rotational kinetic energy to gravitatibbading

energyl'/|W|.

4. Dynamics of the Collapse

In paper | we have described in detail the dynamics of theenatid of the apparent and event
horizons during the gravitational collapse. Here, we sunsagrevious results and provide
additional details and comparisons.

We start by noting that although dynamically unstable medeé expected to collapse
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Figure 3. Time evolution of the mass of the horizon in the dynamicalizor framework,
for the different models (for clarity’s sake, not all modelse shown). The dotted lines
represent the respective values of the ADM masses at thal itiihe, as computed after a
compactification to infinity.

over a dynamical timescale, the collapse is traditionatlyetderated through the introduction
of a small perturbation, either in terms of an added radidaity or through a slight and
global reduction of the pressure. This is done, for instabgeising a polytropic constant for
the evolutionK that is 2% smaller than the one used to calculate the inigitel ;. We note
that we do not solve for the constraint equations once thilimerturbation is introduced.
This clearly produces a small error but, as shown in papétdr, an initial transient lasting a
couple of tenths of millisecond, the constraint violatiaffiedts only of a few percent from the
one measured in a simulation in which the constraints had besolved. A more detailed
discussion of the influence of the type and amplitude of threupeations introduced on the
waveforms emitted will be presented in Secfidn 6.

Overall, all of the models, with different initial /M2 values, show similar dynamics
as far as the bulk of the matter and the horizons are concefiiteimain differences across
different models concern, instead, the dynamics of theaenattound the equatorial plane
and the surface of the star. Of course, models with highi@r? are initially more flattened
and their oblateness increases as the collapse proceads)deduring the collapse to the
temporary formation of a disc-like configuration, which iswever unstable and is rapidly
accreteddf. Figs. 5 and 6 of paper I).

As a good representative quantity, we show in the left pahEig [2 the time evolution
of the maximum value of the rest-mass density for some of thdeis. Clearly all curves
show an exponential growth of the type= po + Aexp|(t — to)/7], wherepy andt, refer
to the initial values, suggesting that the growth-time éases with the rate of rotation, as
a result of the increased centrifugal support. This is madeeralear in the right panel of
Fig.[2, which shows the exponential growth-timas a function of the rotation rate. The open
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Figure 4. Gravitational wave extraction at short distances: wavefoof the even-parity
metric perturbationsQ%’O (left panel) andel‘0 (right panel) as functions of retarded time
(shown both in ms and solar-mass units) for mabe! evolved on a uniform grid. Different
lines refer to different extraction distances, expresseld in the legend and corresponding,
respectively, to coordinate radii 1.6, 2.6 and 3.6 timesittital coordinate stellar equatorial
radiusR «.

circles represent the numerical values, while the dasheddithe excellent fit obtained with a
quadratic function off/ /M2 with coefficientscy = 0.13208, ¢; = —0.00655, co = 0.06642,
wherec; is the coefficient of the term of ordé¢r/M?)t. The increase of the growth-time
with the rotation rate is simple to explain in terms of thereased centrifugal support that
rapidly rotating models have and its quantification repmésan important result, being the
first estimate of the growth-time for the dynamical instiépilo axisymmetric perturbations
as computed in full General Relativity and for rapidly ratgtstars.

The evolution of another representative quantity is presgkim Fig[3, which shows the
behaviour of the masses of the isolated horizons compartitimitial values of the ADM
masses computed at spatial infinity. As in paper I, the fighosvs that the mass of the newly
formed black hole is measured very accurately, and with eor,at the resolutions we have
used here, of a couple of percent only, when compared witexpected value of the ADM
mass. Furthermore, this error is indeed comparable witleti@ coming from the use of a
finite-size domain and is of about one percent (see papemhéoe details).

5. Extracting in the wave zone

The simulations presented in paper I, as well as other woeks. (efs. [36,[37,[38]),
made use of numerical grids with uniform spacing. This, thge with the presently
available computational resources, has initially forcedaiplace the outer boundary of our
computational domain in theear zonei.e. in regions of the spacetime where the gravitational
waves have not yet reached their asymptotic form, whicteatshappens in what is usually
referred to as thevave zoneUnder these constraints, the data on the gravitationatfeams
that we extract through gauge-invariant perturbativenapkes (see [39, 40, 31] for details)
does not provide interesting information besides the alwiohange in the quadrupole
moment of the background spacetime.
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This is illustrated in Fig[¥, where we show the the eventparietric perturbations
Q3 (left panel) andQ}, (right panel) as functions of retarded time (shown both inamd
solar-mass units) extracted at coordinate radii 1.6, 2d5 36 times the initial coordinate
stellar equatorial radiusk ., or equivalently at distance&1M, 13.4M, 18.8M. These
extraction 2-spheres are clearly not far enough out to baénsave zone. Indeed, we see
(left panel) that the waveforms for tife= 2 mode compared at the same retarded time do not
overlap, as they should if they were computed in the wave ,zginee the invariance under
a retarded-time scaling is a property of the solutions of senequation. The overlapping
for the/ = 4 mode waves (right panel) is slightly better and althougheguoisy they show
a wave-like behaviour. Clearly this is possible becausehtbker-frequency waves have a
shorter wavelength and, less influenced by the secular elsaafghe metric, reach the wave
zone at smaller radii. However, also in this case there lgleae secular variations of the
waveforms that are probably related to the dynamics of tlawigtional field in the near
zone. We also note that the amplitude of the 4 mode is much smaller (one or two orders
of magnitude) than that of the= 2 mode, so one has to look primarily at the latter mode to
ascertain whether wave extraction has been performedssfods.

Using the mesh-refinement setup discussed in $edt. 2.3, we ade to place the
numerical boundary of our coarsest grid much farther out.oo fiducial simulation we use
an outer boundary located at 160M from the central object. Because of the approximate
boundary conditions employed, at some time in the simulatiomerical errors reflected from
the outer boundary arrive back in the central high-gradiene where they excite numerical
instabilities which are not cured by the small amount of igestion applied. Given the
relatively short duration of the collapse, however, thigsloot represent a serious problem
and it is always possible to place the outer boundary far gihauwt so that its influence is
delayed to a time when the largest part of the gravitatioveale emission has already taken
place. This boundary distance is indeed arou6@d)M for all of the models studied here.
Outer-boundary locations placed farther out have not predsignificant differences in the
waveforms nor on the emitted energy. In particular, cormgpsimulations of modeD4 with
outer boundary located a60M and at320M, the maximal pointwise relative difference
between correspondent values of the 2 mode is below 1% (but the average difference is
about 0.1%) and the relative difference in the emitted gnisrelow 0.5%.

Finally, we note that our extraction 2-spheres are not &taear the outer boundary
but, rather, around0M from the origin and thus at a distance which is about four $ime
larger than the gravitational wavelength. This distanaeg®od compromise between being
far enough in the wave zone and far enough from the outer oynilom where numerical
contamination may come. We note that a similar choige éxtraction att0M) was made
in [3].

6. Variations on the theme: factors influencing the waveforrs

A fundamental prospect of the world-wide effort dedicatedhe construction and planning
of gravitational-wave detectors is that of opening a “newdew” on the universe through
which we may observe details of compact objects which wowldhb® accessible through
other astronomical observations. As a step towards gtarita-wave astronomy and the
characterization of the sources through the features af gnavitational radiation, we now
discuss how the waveforms computed here can provide imgani@rmation on the physical
properties of the collapsing star. More specifically, we lis by considering how the form
and amplitude of the waves are influenced by factors sucheastation rate of the collapsing
star or the type and amplitude of the initial perturbations.
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6.1. The Role of Rotation

Assessing the role that the stellar rotation rate has onntidesl gravitational radiation is
particularly simple in the case of uniformly rotating stas all models can be selected so as
to differ only in the value of the angular velocifyafter having fixed either the central energy
density or the gravitational mass. Here, however, we censltk role of rotation along the
sequence of dynamically unstable models that we have diedus the previous Sections.
More specifically, we show in Fid.]5 the waveforms computedsiome of the simulated
models when the initial model has been induced to collapseithh a reduction of about 2%
for the initial pressure support.

The waveform reported in the upper left panel is at least e s of magnitude smaller
than any other waveform presented in Eig. 5, because itsy&ethe non-rotating stdp0 and
should, atleast in principle, be exactly zero. Mofél, however, is hot exactly a spherical star
but rather a Cartesian approximation of a spherical stdveatavel of resolution considered
here. Hence, the gravitational-wave signal in the upp¢plhel should not be considered as
an intrinsic error but, rather, as a measure of the overaliacy of our evolution code and
extraction technique.

A rapid look at the waveforms in Fifl 5 is sufficient to realthat the amount of initial
rotational velocity does influence both the amplitude ard¢ihm of the emitted gravitational
radiation. A more detailed discussion of this in terms of #mergy-efficiency and of the
spectral properties of the signal will be presented in $&dtlere, however, it is sufficient to
underline that while the form of the signal does not vary @ersbly, its amplitude changes
by more than two orders of magnitude over the range of passitthtions considered.

An interesting feature which is common to all the waveforeysarted in Fig[h is the
presence of a high-frequency signal between 0 and 0.25 msvhage amplitude does not
change appreciably with rotation. As we will discuss in tbiofving Section, this initial and
spurious burst of radiation is most likely the signature gfeaturbation in the star which is
further amplified by the reduction in pressure. Finally, vegenthat in all cases considered
thecompletesignal has been collected, starting from the initial spusiburst at the beginning
of the collapse and up to the ring-down phase of the black. haRer this, the extracted
signal becomes essentially constant until the numericat eroduced at the outer boundary
reaches the region of the spacetime where the fields ardyapiging in space and destroys
the solution (this is not shown in the figure).

Finally, the different panels of Fid.l 6 offer information ali the properties of the
waveforms that is complementary to the one presented inBrigMore specifically, they
show the power spectral density (PSD) of the waveforms ethity modelsD3 and D4
in the absence of any initial perturbation. The left panielgarticular, show the PSD of the
complete signal and thus including also the initial spusiburst (see Se¢i. 6.2 for a discussion
of this), while the right panels show the PSD of only the finaltf the waveforms, namely
the one produced by the ring-down of the black hole. Inditatéh a vertical dotted line
is the corresponding frequency of the fundamental black habsi-normal mode (QNM) as
computed in[[41]. As expected, the PSD of the complete signather narrow and shows
a main peak around 6 kHz and a series of smaller peaks at faeggrencies, related to the
initial burst of radiation and possibly a signature of thenodes of the perturbed star. The
PSD of the QNM ringing, on the other hand, is wider in frequemat very well matched with
the expected frequency of the fundamental QNM.
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Figure 6. Power spectra ok measured at- 50 M. All panels refer to initial data without
any added perturbation. Top left: complete extracted signaD3; top right: only ring-down

signal for D3; bottom left: complete signal fab4; bottom right: only ring-down signal for
D4.

6.2. The Role of the Pressure Perturbation

As discussed in Sedt] 3, it is customary in simulations ofapsle to rotating black holes
to introduce a pressure perturbation whose amplitude canather large (as in_[3], where
the pressure support was decreased up to 99%) or rather @aadh paper |, where the
pressure support was decreased by only 2%). The rationhiedthis approach is that the
introduction of the perturbation simply increases the atugé¢ of the (only) unstable mode,
hence triggering the instability and decreasing the coatmnal costs. As we will show
below, this assumption is correct only for very small pdsations and, quite on the contrary,
large-amplitude perturbations can have a strong impactotin the dynamics of the matter
(and hence of the horizons) and on the gravitational wawesor

We start by comparing in Fi@l 7 the evolution of the centratmass density for model
D4 in the case in which a pressure perturbation of 2% is intredute. Ap/p = 2%) and
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Figure 7. Comparison of the time evolution of the maximum value of testimass density
for model D4 with and without pressure depletion at the initial time. Theve for the
unperturbed case has been shifted in time to offer a direopedson. The time reference
for the non-perturbed data is reported on the upper axis.

when no explicit perturbation is introduced (i&p/p = 0%). In this latter case, the fact that
the model is already past the secular instability limit amal presence of a small but nonzero
truncation error are sufficient to trigger the instabilitizieh leads to a collapse (delayed with
respect to the perturbed case). The two curves in[fig. 7 amepy shifted in time so as to
be superposed and the uppeaxis is used to indicate the coordinate time in the caseef th
unperturbed collapse. It is apparent that in this regiméngfr perturbations the dynamics
of the matter and that of the horizons during the collapséghown here) are very similar in
both the perturbed and the unperturbed models.

A similar conclusion can be drawn when considering the gasiginal-wave emission
and this is summarised in Figl 8, whose left panel showsthewaveforms for modeD1
with the initial perturbation (dotted linef. Fig.[H, center-left panel) and without (solid line).
Note that the two curves are not shifted in time and thus theyde effectively due to the
smaller initial amplitude of the unstable eigenmode wheryp = 0. Note that not all of
the signal coming from the unperturbed model is shiftedrretand indeed also in this case
an initial spurious burst of radiation is present betweed @rand 0.25 ms, as highlighted
in the right panel of Fig.18. As mentioned earlier, this sigmdginates essentially from the
truncation error introduced when interpolating onto a €sietn grid the initial stellar models
which are computed as equilibrium models in a code usingrggigolar coordinates [42].
As a result, it is always present, with a form which is essdigtindependent of the stellar
rotation rate ¢f. Fig.[3), but with an amplitude which can be further increai$ele star is
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Figure 8. Left panel: Comparison of th«i);o measured at- 50 M in simulations of models
D1 with an initial pressure depletion of 2% (dotted line) andheut any added perturbation
(solid line). Right panel:Magnification of the initial spurious burst.

perturbed and hence with a larger initial violation of thenstvaint equations. This is very
evident in the right panel of Figl 8 which shows the two signaging well superposed in
phase but also having different amplitudes, with the oneiegrfrom the unperturbed star
being systematically smaller.

It is as yet uncertain whether this initial signal, albeitispus, reflects a consistent
response of the star to a perturbation and can thereforedneiated to av mode [43].
Preliminary investigations in this direction seem to suppbe idea that the gravitational
signal between 0 and 0.25 ms does indeed correspondutarende (the signal does not
converge away with resolution as shown in Fig. 4[of| [31]) andld therefore be used to
extract the eigenfrequencies of these modes in rapidlyimgtatars which are yet unaccessible
to perturbative studies. However, further work is needetbttsolidate this conclusion.

We note that while introducing an initigimall perturbation can serve to accelerate the
matter-dynamics and that the latter is not influenced nalitye alarge pressure perturbation
can however lead to significantly different results and eeencorrect interpretations on the
efficiency of the gravitational-wave emission during thélagse. This is quite apparent in
Fig.[8, whose left panel shows the changes in the even-paaitgform@);, emitted during
the collapse of modeD4 when this is subject to pressure depletions going from 2 #.99
Clearly, as the pressure depletion is increased, the gtmritl collapse becomes much more
rapid, asymptotically becoming the one produced in the-falleof an oblate distribution of
dust. The corresponding changes in the mass quadrupoléliiemcreasingly rapid collapse
are also larger and thus the amplitude of the gravitatierale emission is also increased. It
is not surprising, therefore, that in these conditionsiit easily reach values comparable with
the ones computed inl[3] who were indeed using pressure tiedadetween 60 and 99%.

In order to find a closer comparison with the values repord@8]iwe show in the right
panel of Fig[® the energy emitted in gravitational wavesfasetion of the pressure depletion
for modelD4. Note, however, that in the case of large pressure deptgtiba collapse is so
rapid that it is very difficult, if possible at all, to distingsh the initial-burst signal from the
one produced by the collapse. Indeed, although the heigtiteofirst peak of the signal is
closely related to the amplitude of the initial perturbateimd grows monotonically with it,
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amount of initial pressure depletioRight panel:Energy carried by the emitted gravitational
waves during the collapse of modeu with different percentages of initial pressure depletion.
All measurements were performed at a coordinate distanceffM .

this is not true for the other peaks, as shown in the left pahElg.[d. As a result, while the
open circles are refer to the total signal, the filled oneams, show the emitted energy when
the first peak in the signal is not taken into account and hanit®ut the initial burst. It is
apparent that as the pressure removal is increased, thgyenaeliated increases, becoming
about two orders of magnitude larger than the one obtaindteirmbsence of perturbations.
Such large values are in good agreement with those preserj&jdand induce us to conclude
that the estimates made there, although served as usefed lipjts, were dominated by the
unrealistic dynamics of the matter.

Interestingly, the total energy emitted in gravitatiorediation (when not including the
initial burst) does not have a monotonic behaviour wkh/p and two different factors may
combine to yield this effect. The first one is that as the pressupport is drastically reduced
the centrifugal support, that in modé&l4 plays an important dynamical role, ceases to be
relevant and the dust-like matter collapses with only a bmatease in the oblateness and
hence in the mass quadrupole. The second factor is that im¢ine rapid collapse triggered
by larger pressure depletions, the apparent horizon isjoertimuch earlier and hence a larger
amount of radiation remains trapped and cannot reach thenadrs While of little practical
interest because of the extreme conditions of matter imehlwerifying these conjectures
may provide important information on the behaviour of thediin equations in a nonlinear
regime and deserves further investigations.

As a final remark, we note that an initial small perturbatilsodas an obvious drawback
when it comes to analysing the gravitational-wave signaie $ignal from the early burst
of radiation, in fact, combines with the stronger collapgmal and can lead to incorrect
estimates about the efficiency of the emission of gravitaiosadiation during the collapse
for slowly rotating models. In the case of model, for instance, the energy contained in the
initial burst amounts te- 30% of the energy produced instead during the actual gravitatio
collapse. For modeD4, on the other hand, this amounts only~t@2%.
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6.3. Perturbations in the velocity

A pressure reduction is not the only possible perturbatian tan be introduced in order to
induce the collapse of a star past the secular stabilityt.liAhother possibility, also used
in the past in[[44], consists in adding an inward-directetlaiavelocity to the equilibrium
configuration, which we have here done in terms of a radialoigl of constant modulu.02
throughout the star.

This different type of initial perturbation gives rise to leghtly larger violation of the
constraint equations at the initial time and produces aaps# over a timescale which is
comparable to that resulting from a 10% depletion of theqarassupport. The efficiency in
the energy emission, on the other hand, can be much largell g wiscussed in more detail
in the following Section.

7. Energy-Efficiency and Detectability

Determining the energy-efficiency in the emission of giatidnal radiation in fully nonlinear
regimes of the Einstein equations is particularly difficadt perturbative or post-Newtonian
approaches cannot be used reliably. The role that numegtalvity calculations can
therefore play in this context is therefore particularlyjuadble and it represents one of
the goals of most simulations. In addition, determining téfficiency in the case of the
gravitational collapse to a black hole is made more diffibylthe intrinsic weakness of the
system which looses only a small fraction of its binding @yep gravitational radiation. In
the case of binary black hole calculations, in contrastffieiency can easily reach a few
percent even in the simplest scenario of non-spinning,legaas binaries.

In Fig.[10 we present a summary of the efficiency in the collafus black hole by
reporting in a log-log plot the emitted energy as a functibthe initial stellar rotation rate
parameter//M? and for different initial perturbations. A discussion ormhto calculate
this energy from the gauge-invariant quantities can beddnrj40,[31] and it has been here
calculated for an observer at a coordinate distancglak/. The left panel of Figl 10, in
particular, highlights the influence of pressure pertudest and shows with filled squares
and triangles models with a 2% pressure perturbation andrtumbed models, respectively.
Open circles, on the other hand, are the same as the filledoon@ghen the initial burst in
the waveforms is excluded (see SEci] 6.2 for a discussion).

Clearly, and as first pointed out ihl[3], the efficiency follow behaviour of the type
AE/E « (J/M?*)* almost up to the largest rotations rates that yield equilibrmodels
in uniform rotation, i.e. J/M? < 0.54. After that, the efficiency does not grow further
and this represents a difference with respect to what founf8]i, where the efficiency
essentially saturated at very large rotation rates (Wellréieat the rather crude way of
introducing rotation in the initial models allowed to reagilues as large a$/M? ~ 0.9
in [3].). As mentioned in Sedt] 4, this is probably due to theréased centrifugal support that
these models experience and that effectively slows dowigitinvth-time for the dynamical
instability (cf. right panel of Figll2). The value of/M? at which the maximum efficiency
is reached depends on the rapidity of the collapse and henteednitial perturbation. For
models with a small or zero initial perturbation, the maximis located at//M? ~ 0.4,
while for more rapid collapses (as those shown in the rightepaf Fig.[10), this happens at
higher rotation rates. Note also that the efficiency doedailmtw a power-law behaviour at
very small values of//M?2. A comparison with the efficiency calculated not includihg t
initial burst (open circles) shows that this is just the testithe initial spurious gravitational
wave signal that, as mentioned above, can represent a sagifraction of the whole signal
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Figure 10. Energy carried by the emitted gravitational waves durirggdbllapse for different
values of the rotation parametdy M2 and initial perturbationsLeft panel: Filled squares
and triangles refer respectively to models with a 2% presperturbation and to models that
are unperturbed. Open triangles, on the other hand, arathe as the filled ones but exclude
the initial burst in the waveforms (see Séctl6Rjght panel:Filled triangles refer to models
perturbed with an inward uniform radial velocity of 0.02 at& open circles to the same
models but considering only thle= 2 contribution to the energy; filled squares refer again to
pressure-perturbed models and are used as a referencethlpdr®ls the measurements are
made at a coordinate distances6f M and the dashed lines indicate a scaliad.J/M?)%.

at low rotation rates.

The right panel of Fig_10, on the other hand, highlights thftuence on the energy-
efficiency of velocity perturbations, with the filled tridlegreferring to models perturbed
with an inward uniform radial velocity of 0.02 and with theeapcircles referring to the
same models but when considering only the= 2 contribution to the energy. Clearly,
velocity perturbations do not alter the overall scalingwitation but do produce a significant
increase in the efficiency, which can easily become two ardémagnitude larger than the
one produced with pressure perturbations (this is shown filied squares as a reference).
This enhanced emission is essentially the result of a mqid hange in mass quadrupole
(indeed the amplitude of the= 2 mode is always larger than the corresponding mode in the
cases of pressure depletion) but it also receives a cotittbfrom higher-order multipoles,
especially from th¢ = 4 and at low-rotation rates (cf. filled triangles and openlesadn
the right panel of Figl_10). The evidence that the- 4 contribution to the overall energy
is rather similar at all rotation rates seems to indicaté thhia is just an artifact of the initial
perturbation and that a very clear scalind.//M?)* is recovered when considering the- 2
contribution only (open circles). This result, on the othand, also highlights that the study
of the multipolar structure of the gravitational-wave esios from the collapse can be used
to deduce the dynamical and kinematical properties of deatithe time of the collapse.

The gravitational-wave information computed here can &lsaised to determine the
detectability of these sourcés [40,/ 31] so that and in the chsan interferometric detector
with the sensitivity of Virgo and the signal coming from theagtational-collapse only,
we set an upper limit for the characteristic amplitude pazdlin the collapse of a rapidly
and uniformly-rotating polytropic star at 10 kpc to bge = 5.77 x 10722(M /M) at a
characteristic frequency, = 931 Hz. In the case of a detector with the sensitivity of



On the gravitational radiation from the collapse of neutrstars to rotating black holes 19

LIGO |, instead, we obtaith, = 5.46 x 10722(M /M) at f. = 531 Hz. The resulting
signal-to-noise ratios are thes/N)Virse ~ 0.27 — 2.1, (§/N)""""° ~ 1.2 — 11, and

D1-D4
(S/N)2""  ~ 3.3 — 28 for detectors such as Virgo/LIGO, advanced LIGO or Dlial [45]

D1-D4

D1-D4

8. Conclusions

We have provided details and presented additional resaltthe numerical study of the
gravitational-wave emission from the collapse of neutttanssto rotating black holes in three
dimensions([1], 2]. In particular, we have discussed the rtdeges and disadvantages of the
use of the excision technique and how alternative appradoiteat of excision can used with
great success to extract tbempletegravitational-wave signal [2].

As a first step towards the characterization of these sowtegavitational waves,
we have presented a systematic discussion of the influeraterdation and different
perturbations have on the waveforms and hence on the eneithg@ in gravitational waves.
In particular, a systematic analysis of the waveforms dated under different initial rotation
rates has provided the first estimates in full General Retatand for rapidly rotating stars
of the growth-time for the dynamical instability to axisyratric perturbations and confirmed
the existence of a precise power-law scaling of the eneffigiezcy in terms of rotation
parameter//M?2.

We have also shown that the pressure perturbations traditjoused to trigger the
collapse do not affect sensitively the dynamics of the maitel of the trapped surfaces as
long as they are very small. Excessively large pressurestieps, on the other hand, can
change significantly the way the collapse proceeds as welttdigially amplify the energy-
efficiency in the emission of gravitational waves. This ifles the source of the differences
between our estimates for the efficiency and those made siyrxnetry in [3]. Furthermore,
the study of the waveforms produced with perturbations fiédint amplitude and type has
also made it possible to isolate the part of the signal predliy the actual collapse from the
spurious one which should instead be related to initialatiohs of the constraint equations
and which is produced either from the interpolation of thidahdata onto a Cartesian grid
or from the introduction of the initial perturbations. Wilt is still unclear whether this
initial signal reflects a consistent response of the stargerturbation and can therefore be
associated to @ mode, a number of considerations seem to support this hgpisth

Overall, the found results indicate that the gravitationallapse of axisymmetric
neutrons stars to rotating black holes is not an efficientess for converting the binding
energy into gravitational waves, with an overall efficieniy//M ~ 10=7 — 10~° for
uniformly rotating models. This efficiency, however, canibereased of up to two orders
of magnitude if velocity perturbations are present in thkapsing star and it is possible that
similar conclusions may be valid also for the collapse diedéntially rotating models.

As a concluding remark we note that while this work, togethitgh the ones preceding
it [B 1, [2], has provided a full and consistent picture of tiravitational-wave emission
from the collapse of neutron stars to rotating black hokegpresents only a very idealized
description of this process. Additional and considerablekwis still needed both in
the modelling of the matter (through improved equations tates the inclusion of the
contributions coming from magnetic fields, radiation tiaor$, multifluids, a solid crust, etc.)
and in the numerical techniques needed to handle this ineprmodelling. Both aspects will
represent the focus of our future research.
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