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ABSTRACT

We address the dynamical evolution of an isolated self-gravitating system with two stellar mass
groups. We vary the individual ratio of the heavy to light bodies, μ from 1.25 to 50 and alter also
the fraction of the total heavy mass Mh from 5 to 40 per cent of the whole cluster mass. Clean-
cut properties of the cluster dynamics are examined, like core collapse, the evolution of the
central potential, as well as escapers. We present in this work collisional N-body simulations,
using the high-order integrator NBODY6++ with up to N� = 2 × 104 particles improving the
statistical significancy of the lower-N� simulations by ensemble averages. Equipartition slows
down the gravothermal contraction of the core slightly. Beyond a critical value of μ ≈ 2, no
equipartition can be achieved between the different masses; the heavy component decouples
and collapses. For the first time, the critical boundary between Spitzer-stable and Spitzer-
unstable systems is demonstrated in direct N-body models. We also present the measurements
of the Coulomb logarithm and discuss the relative importance of the evaporation and ejection
of escapers.

Key words: stellar dynamics – galaxies: star clusters.

1 I N T RO D U C T I O N

The internal evolution of a star cluster in dynamical equilibrium
is governed by its tendency to achieve a thermal velocity distri-
bution (i.e. Maxwellian with energy equipartition) through small
changes of velocity during two-body encounters between stars, a
phenomenon-dubbed relaxation. The relaxation time is the average
time after which a star’s moving direction has been deflected by
90◦ relative to its original orbit (Spitzer 1987). Relaxation produces
major changes in the structure of the cluster while keeping it in a
dynamical equilibrium.

The collapse of the central core makes up an important phase and
probably the most fascinating aspect of the dynamical cluster evo-
lution. There are three mechanisms acting in different ways in order
to achieve the collapse: equipartition, evaporation and gravothermal
instability. In a real cluster of stars all of these processes are present,
but in the idealized models, the ones we will describe; it is possible
to isolate the specific processes and gain some understanding of the
particular effects.

Spitzer (1969) set about an analysis on segregation of masses in
globular clusters systems that would lead later to a broad ensemble
of different analyses and techniques. For some clusters, it seemed
impossible to find a configuration in which they have dynamical

�E-mail: khalisi@ari.uni-heidelberg.de (EK); Pau.Amaro-Seoane@aei.
mpg.de (PAS); spurzem@ari.uni-heidelberg.de (RS)

and thermal equilibrium altogether. The heavy component sink into
the centre because they cede kinetic energy to the light one on the
road to equipartition. In most of the cases, equipartition happens to
be impossible, because the subsystem of massive objects becomes
self-gravitating before. Thermal energy flows from the inner part
to the outer regions. Whereas the outer regions of the cluster do
not alter significantly their temperature, the inner regions, the core,
loses heat and, so, contracts and becomes hotter. A self-gravitating
system has a negative thermic capacity. This phenomenon has been
observed in a big number of works using different methods (Hénon
1973, 1975; Spitzer & Shull 1975; Cohn 1980; Marchant & Shapiro
1980; Stodo�lkiewicz 1982; Takahashi 1993; Giersz & Heggie
1994b; Takahashi 1995; Makino 1996; Quinlan 1996; Spurzem &
Aarseth 1996; Drukier et al. 1999; Joshi, Rasio & Portegies Zwart
2000). The late phase of core collapse is the same as for a single-
mass model, because the heavy components do not interact with
other stars anymore.

There is an ample evidence for mass segregation in observed clus-
ters. McCaughrean & Stauffer (1994) and Hillenbrand & Hartmann
(1998) provided a new deep infrared observations of the Trapez-
ium cluster in Orion that clearly show the mass segregation in the
system, with the highest mass stars segregated into the centre of
the cluster. This is a clear-cut evidence for the mass segregation of
stars more massive than 5 M� towards the cluster centre and some
evidence for general mass segregation persisting down to 1–2 M�
in the Orion nebula cluster. Raboud & Mermilliod (1998) studied
the radial structure of Praesepe and of the very young open cluster
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NGC 6231. There, they found evidence for the mass segregation
among the cluster members and between binaries and single stars.
They put it down to the greater average mass of the multiple systems.

At this point, the question looms up whether for very young clus-
ters mass segregation is due to relaxation, like in our models, or
rather reflects the fact that massive stars are formed preferentially
towards the centre of the cluster, as some models predict.

To answer such questions, there is a clear necessity for models
that give us an accurate description of the evolution of multimass
models based on direct-summation numerical schemes.

The simplest case of a bimodal mass spectrum is a starting point
to take care of. This is a relatively good approximation if stellar
black holes are the heavy components (Lee 1995). Such two-mass
simulations are exclusively studied in this work.

Spitzer (1969) gave an analytical criterion to determine whether a
two-component system can, in principle, achieve energy equiparti-
tion or not. According to his analysis, energy equipartition between
the light and heavy component can exist if

S :=
(
Mh

Ml

)(
mh

m l

)3/2

< 0.16, (1)

Where Ml and Mh are the total masses in light and heavy stars and
ml and mh their individual masses, respectively. Spitzer’s work was
based on many strong simplifying assumptions.

A number of authors has addressed the problem of thermal and
dynamical equilibrium in star clusters from a numerical point of
view, with direct N-body simulations (Portegies Zwart & McMillan
2000), Monte Carlo simulations (Spitzer & Hart 1971) and with
the direct integration of the Fokker–Planck equation (Inagaki &
Wiyanto 1984; Kim, Lee & Goodman 1998). As regards the Monte
Carlo scheme, recent and very detailed numerical calculations
(Watters, Joshi & Rasio 2000) have suggested a different criterion,

� :=
(
Mh

Ml

)(
mh

m l

)2.4

< 0.32. (2)

The limitations inherent in this approach motivate us to embark
on more accurate models of this scenario with the help of N-body
methods, where the Newtonian gravity is essentially treated without
approximations.

In his pioneering work, von Hoerner (1960) performed calcula-
tions with N� = 16 particles on the best computers available at that
time. Rapid improvements in computer technology (both hardware
and software) facilitated larger as well as more accurate calculations.
The amount of 104 particles was reached by Spurzem & Aarseth
(1996), and parallel machines and special purpose computers do
even manage 50 times more nowadays.

In this article, we describe the simulation models based on these
methods as well as their initial conditions. We present the results of
a wide parameter space, which has been explored by direct N-body
modelling for the first time. We also extract the important parameters
describing the core collapse and equipartition of energies.

2 O R G A N I Z AT I O N O F T H E S I M U L AT I O N S :

N O M E N C L AT U R E

For all simulations in this work, we employed a Plummer sphere
model in global virial equilibrium. The particles are treated as point
masses without softening of the gravitational force, but with regular-
ization of close encounters instead. We only consider two different
mass species as the most simple approximation of a realistic mass
spectrum. Since this analysis aims to isolate the essential physi-
cal process of mass segregation, we ignore stellar evolution, cluster

Table 1. Overview of the simulations. A model is described by q and μ

and assigned to a capital Roman letter. RND = random set-up; INS = all
heavy masses placed inside and OUT = all heavy masses placed outside. As
regards series II, mh was inside and outside. The series VI withN� = 5×103

can be envisaged as a model for the Orion nebula.

Series Distribution q μ-models Remarks

I RND 0.1 A . . . H Various N�

II INS, OUT 0.1 A . . . H mh in/out
III RND 0.05 K . . . R N� = 2.5 × 103

IV RND 0.2 T . . . Z N� = 2.5 × 103

V RND 0.4 T ′ . . . Y ′ N� = 2.5 × 103

VI RND, INS, OUT 0.26 20.0 N� = 5 × 103

rotation and a tidal field as well as primordial binaries; binary for-
mation occurs only during the late stage of the evolution and do not
affect our objectives.

In our notation, a model will be determined by its fraction of
the heavy-mass component, q := Mh/Mcl, and the mass ratio
of the individual particles, μ : mh/ml. The model is assigned to a
capital Roman letter. Each model consists of a number of runs that
differ only in their random number seed which produces different
initial set-ups of positions and velocities of the particles for the same
distribution function. The runs are physically equivalent. Models
making up a logical unit for comparison are gathered to a series (see
Table 1).

After the work by Inagaki & Wiyanto (1984), we concentrate on
q = 0.1 (series I), since this is the value which had the fastest evo-
lution, as they proved, and study the evolution for a wide range of
values of μ (from 1 to 50). This choice is guided by observations
in youngest star clusters like the Trapezium in the Orion nebula
cloud, where a mass range of ≈0.1–50 M� is found (Hillenbrand &
Hartmann 1998). This cluster also exhibits clear mass segregation
that cannot be explained by the simple theory of ‘general’ mass seg-
regation driven by two-body relaxation. Given the extreme youth of
the stars with highest mass, a primordial segregation has been sug-
gested, in which they were formed at locations close to the dense
centre (Bonnell & Davies 1998).

We examine the time-scales for a random set-up of particles
(RND) by assigning a mass ml and mh to each body. For μ is a
relative quantity, we fix ml to unity, and vary mh in steps that are
given in the top row of Table 2. The two-mass populations have
Nl and Nh members (we will elaborate on this ahead), whose
spatial coordinates, positions and velocities are picked up ran-
domly according to a Plummer sphere (Aarseth, Henon & Wielen
1974).

In series II, we place the heavy particles completely either in the
centre (INS) or in the outskirts (OUT) and compare the evolutionary
patterns with the random set-up of series I. In series III–V we alter
the fraction of heavy masses, q, to test for this parameter. The full
parameter space is graphically illustrated in Fig. 1. Additionally, we
performed simulations of a special configuration, which is related
to a mass ratio in the Orion nebula cloud (series VI).

In order to reduce the statistical noise, we performed a large
number of runs and averaged the data set into an ensemble model.
The statistical quality of such an ensemble averaging is comparable
with one single calculation containing the full particle set of all
runs (Giersz & Heggie 1994a). This means that, since the fiducial
model is a cluster with N� = 2.5 × 103 particles, we carried out
20 runs and the whole set containing N� = 5 × 104 has as little
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Table 2. Absolute numbers of heavy stars for the models of series I. Next to each model, we give
the value for μ in brackets.

N� A (1.25) B (1.5) C (2.0) D (3.0) E (5.0) F (10.0) G (25.0) H (50.0)

103 82 69 53 36 22 11 4 –
2.5 × 103 204 172 132 89 54 27 11 6
5 × 103 408 345 263 179 109 55 22 11
104 816 690 526 357 217 110 44 22
2 × 104 1633 1379 1053 714 435 220 88 44

Figure 1. Parameter space of the models examined in this work. The position
of the Roman letters indicate a model determined by its q and μ. The dotted
line is the boundary of the equipartition stable region after Spitzer (1969),
the dash–dotted line is the stability criterion after Lightman & Fall (1978),
the dot–dot–dot–dashed line is the prediction by Inagaki & Wiyanto (1984)
and the dashed line is the empirically proposed condition by Watters et al.
(2000).

noise as a high-N� model. In series I, we also performed 50 runs
for N� = 103, and 10 runs for N� = 5 × 103. Additional models
containing 104 particles (four runs) and 2 × 104 particles (one run)
were also performed.

2.1 Parameters of two-mass models

In order to describe the physics of our models, we have to define a
set of three parameters:

N� = Nl + Nh, μ = mh

m l
, q = Mh

Mcl
. (3)

Since the number of the force calculations per crossing time-scales
with N 2

� , computational efforts restrict the choice of N�. We can
express Nl as follows,

q = Mh

Ml + Mh
= mhNh

m lNl + mhNh

= m lμNh

m lNl + m lμNh

= μ(N� − Nl)

Nl + μ(N� − Nl)
. (4)

The absolute number of light particles is then

Nl = (1 − q)μN�

q − μq + μ
. (5)

Some authors (e.g. Inagaki & Wiyanto 1984) define a slightly
different parameter q̂ := Mh/Ml. With this definiton, equation (5)
turns out to be Nl = μN�/(q̂ + μ). In the following, we employ
the notation of Spurzem & Takahashi (1995), as defined in (3). The
absolute numbers of the heavy particles, Nh = N� −Nl, are shown
in Table 2 for the models of series I (q = 0.1). μ is given in brackets
on the top of each column.

A different way of fixing the mass ratio μ is by means of the
average mass of the stars:

μ̃i = mi

〈m〉 , (6)

where 〈m〉 = Mcl/N� and mi is the ith component in a multimass
cluster. With qi = Mi/Mcl, we have for the general case of k
different mass components

Ni = qiN�

μ̃i
= 〈m〉qiN�

mi
= Mi

mi
(7)

particles in the ith mass bin.
The advantage of this expression lies in the simpler handling,

if more than two masses are present. In the equation (5), (k − 1)!
parameters of mi/mj would be necessary for k mass components,
while employing 〈m〉 reduces the amount of the a priori definitions
of the values of mi to k − 1.

3 R E S U LT S F O R Mh/Mcl = 0.1

In this section, we deal with the situation in which the fraction of
heavy stars makes up 10 per cent of the whole cluster mass. We
investigate the physical processes occurring from a random initial
distribution and compare them with previous literature on this sub-
ject. The essential facts about the evolution are qualitatively vis-
ible in Fig. 2. The core radius shrinks with time, and the cluster
collapses under its self-gravity. The shorter the time-scale for the
collapse the larger the mass ratio μ between heavy and light stars
is. The formation of binaries in the core stops the collapse and al-
lows its re-expansion. We focus our attention on the variations of
the evolutionary processes for different values of μ.

3.1 Data of ensemble averages

We vary μ from 1.25 to 50.0 and obtain the core-collapse time,
tcc, for each run by considering two values: first, the moment of
the minimum core radius, t(rc|min) and, second, the deepest central
potential, t(�|min). The output data were written for each N-body
time unit. Because of large fluctuations between two subsequent
data points, we applied a ‘sliding average’ over rc and �, based on
the following algorithm

Ri = 1

w

w−1∑
j=0

Ai+ j−w/2, (8)
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Figure 2. Comparison of the shrinking core radius in the models A–G of
series I given in NBODY units (see Appendix B).

where Ri is the resulting value of the original variable Ai averaged
among w neighbouring data points. The choice of w = 5 turned out
to be the best-fitting one.

The average of the times found from the minima of rc and � is
defined to be the core-collapse time of the run:

tcc = trc + t�
2

. (9)

Fig. 3 illustrates the distribution of the data points of rc and �min

at their corresponding core-collapse times for four selected models.
The logarithmical time-axis was chosen to show the relative scatter
between the point clouds. When looking at a particular run, the core-
collapse times are likely to show a significant discrepancy between
the determination from the potential or the core, i.e. t� does not
necessarily correspond to trc , but the averages of both, 〈trc 〉 and 〈t�〉,
yield a good concordance for the whole model. Thus, 〈tcc〉 is a good
value to characterize the core-collapse time of the model,

〈tcc〉 =
∑[

(trc + t�)/2
]

Nruns
= 〈trc 〉 + 〈t�〉

2
. (10)

In this last equation, Nruns is the number of runs and we obtain an
equality between the left- and right-hand side by linearity.

Figure 3. Models A, C, D, and F of series I with N� = 2500. Each point represents the minimum value of the central potential �c (left-hand panel) and core
radius rc (right-hand panel) at the time when these parameters attain their minimum. The average values for all models are listed in the appendix.

As we can see in Fig. 3, the relative variance of the core-collapse
times increases for smaller values of 〈tcc〉. The mean values for the
eight models of our series I are summarized in Appendix A. The
errors given there are the standard deviation from the runs’ mean
tcc, divided by the square root of the number of the runs

√
Nruns.

The error of 〈tcc〉 is roughly 2–5 per cent for most of the mod-
els, consistent with the relative errors determined by Spurzem &
Aarseth (1996) and the half-mass evaporation times by Baumgardt
(2001).

4 E VO L U T I O N O F T H E C O R E R A D I U S

The evolution of the core radii for the models A–G is plotted in
Fig. 2. Each curve is an ensemble average of 20 runs. For models
with μ approaching unity, the core radius shrinks as in an equal-mass
system (at late collapse times, to the right). A linear time-scale (not
shown here) suggests that the collapse phase sets in when the core
radius has contracted to about 25 per cent of its initial radius. This
is in agreement with the results of Giersz & Heggie (1994a). For
high values of μ, this happens from the start of the simulations.
The rapid contraction of rc is due to the very massive stars falling
quickly to the centre. The contraction stops at higher rc-values than
for the low-μ models, and a quick expansion of the core follows.

The behaviour at the moment of core bounce is illustrated in
Fig. 4, where the minima of the potential and the core radius are
plotted versus μ. For a fixed N� and values of μ between 3 and 10,
the core collapse is carried out by approximately the same number of
particles, but they do not draw together as close as for the equal-mass
case or very small values of μ. Therefore, the density and the central
potential are less deep than those for μ � 2, and the minimum of
the core radius is not so profound. At high values of μ, the effect is
reversed. Even some few heavy components are massive enough to
deepen the potential. The collapse itself is less distinct, as seen from
the shallower rc in the right-hand panel. In this range of values for μ,
the depth of the potential results from the combination of these two
effects. Heavy masses build up a strong gravitational field, but their
kinetic motion does not allow a long-lasting vicinity. Equipartition
becomes then impossible. The differences of the depths for various
N� are discussed in Section 8.

For a system in which the central object has a small mass and the
energy production is confined to a small central volume we have
that the core radius rc should follow an expansion proportional to
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Figure 4. Minima of potential (left-hand panel) and core radius (right-hand panel) at the moment of core bounce. The collapse is carried out by a less number
of core particles when μ rises. The filled circles correspond to the single-mass case. See the text for explanations in more detail.

Table 3. Measured exponent for core-radius expansion in the post-collapse
phase. See the text for further explanation.

Slope A B C D E F G

Up 0.631 0.666 0.680 0.525 0.522 0.490 0.420
Low 0.940 0.864 0.662 0.615 0.524 0.517 0.445
Mean 0.7855 0.765 0.671 0.570 0.523 0.5035 0.4325

the power law of t and tcc (Hénon 1965; Shapiro 1977; McMillan,
Lightman & Cohn 1981; Goodman 1984),

rc ∝ (t − tcc)
2/3. (11)

We measured the slopes of the expanding values of rc in Fig. 2
by fitting two straight lines embracing the fluctuating data of each
model to construct an upper and a lower margin. These lines give
two independent measurements for the slope and are presented in
Table 3, and they show a decreasing trend for higher μ.

The lower lines seem to be steeper than the upper ones for the most
of the models. On the other hand, the simulations reach different
stages of the post-collapse evolution, and the expanding branches
exhibit different lengths. Especially, the low-μ models (A and B)
are not far advanced for precise measurements, while the high-μ
models (F and G) appear distorted about the time of collapse such
that the onset of the self-similar expansion is difficult to find (see
also Giersz & Heggie 1994b). From the theoretical point of view,
there is no argument for a different behaviour of the core expansion
when unequal masses are present.

5 C O R E - C O L L A P S E T I M E S

As we explained in Section 1, the two-body relaxation causes star
clusters to redistribute the thermal energy among stars. Since this
kind of heat transfer acts on the relaxation time-scale, a core collapse
is similarly ensued in gravitationally unstable systems.

The core-collapse time is best studied numerically. For equal-
mass models, it ranges about tcc ≈ 330 trc(0) during the self-similar
phase. or about 12–19 half-mass relaxation times (Quinlan 1996).
In this article, Quinlan gives a time-scale of 15.7trh for an isolated
cluster, if an isotropic velocity distribution is assumed. Takahashi
(1995) also modelled Plummer spheres but for an anisotropic case,
and determined the collapse time to about 17.6 trh. Other authors

find similar factors, and we will adopt

tcc ≈ 17.5trh. (12)

Though the values are used in most studies of the core collapse,
they are a poor guide for clusters with a mass spectrum, e.g. globular
clusters have central relaxation times that are typically ten, some-
times a hundred times shorter than their half-mass relaxation times
(Quinlan 1996; Gűrkan, Freitag & Rasio 2004).

So far, the core-collapse time is only found empirically from a
large number of numerical simulations, for there exists no analyti-
cal theory which would predict it a priori from cluster properties,
e.g. the star number, the initial mass function, or the concentration
parameters.

It has been suggested that the nucleus consisting of two mass
components collapses in a time shorter than the equal-mass cluster
by a factor of 1/μ (Fregeau et al. 2002). In broad terms, this is so
because the equipartition time is shortened according to the time-
scale for equipartition (Spitzer 1969). The upper panel of Fig. 5
shows detailed calculations in a wide μ-range of this. The mean
times, 〈tcc〉, have been plotted versus μ for the complete sample of
our models in series I.

In the upper panel, the core-collapse times converge smoothly to
the collapse time for an equal-mass cluster, tcc,1, as μ approaches
unity. Between μ ≈ 2 and 10, a somewhat linear decline is visible,
but far beyond the stability boundary, run towards a constant value,
since binaries are likely to have more importance when the value of
μ is larger. In the same figure, in the lower panel, we display the
factor of ‘collapse acceleration’ for various values of μ. This gives
us a measure to which percentage a cluster with two masses evolves
faster than the single-mass case. The dashed line is the μ−1-decline,
i.e. a cluster with two mass species having a ratio μ would collapse
μ-times earlier than its single-mass equivalent according to

tcc,μ ∝ 1

μ
tcc,1. (13)

At μ = 2, the decoupling of the equipartition-based instability
and the gravothermal instability seems to take place. For μ −→ 1,
the evolution occurrs more slowly than the 1/μ-decrease, because
the tendency to equipartition drives the initial evolution and slows
down a ‘purely’ gravothermal collapse. This seems to suggest that as
the mass difference between mh and ml becomes less important, the
system collapses like a single-mass cluster. Beyond the critical value
μ = 2, an early decoupling of the two-mass populations occurs. The
heavy components try to reduce their large velocity dispersion, but

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 374, 703–720



708 E. Khalisi, P. Amaro-Seoane and R. Spurzem

Figure 5. Left-hand panel: core-collapse times of the models in series I. The times shorten non-linearly with increasing μ. The dotted line at μ = 1.275
is the equipartition criterion given by Spitzer (1969, equation 3–54) for a value of χmax = 0.16 and q = 0.1. The core-collapse times of the corresponding
equal-mass clusters are indicated by filled dots. The error bars are smaller than the symbols. In the right-hand panel all collapse times are normalized to tcc,1

(the core-collapse time for the single-mass case). The simulations for N� = 2.5 × 103 are connected with a solid line for clarity. The circles at the left-hand side
are the collapse times for an equal-mass cluster according to equation (12), and the dotted line is the stability boundary by Spitzer with χmax = 0.16 (Spitzer
1987, equation 3–55).

they rapidly accumulate in the centre and interact preferably with
themselves. As a consequence, equipartition is harder and harder
to achieve and the evolution proceeds only due to the redistribution
of heat within the two, almost separated components (Bettwieser &
Inagaki 1985). The light stars evaporate out of the core and take away
the thermal energy to the outskirts, while the heavy components
increase their binding energy. The latter ones collapse like a single-
mass subcluster. The release of energy transported away and the
heat transfer works effectively and leads to an accelerated collapse.

If μ � 1, the situation turns into a case of dynamical friction. A
significant fraction of particles are drowned into a homogeneous sea
of light stars and, like in an ordinary frictional drag, their motion
suffers a deceleration. It is instructive to see that only for large N�,
the absolute number of heavy stars seems sufficient to maintain the
linear slope of accelerated cluster evolution. The slope follows the
dashed line a bit longer before bending towards that constant value.

6 M A S S S E G R E G AT I O N

The process of mass segregation for the six models A–F is illustrated
in Fig. 6, where the mean mass of the stars that are inside a specified
Lagrangian shell, is shown (i.e. a Lagrangian shell is the volume
between two Lagrangian radii, which contain a fixed mass fraction of
the bound stars in the system; see Giersz & Heggie 1994a). With the
light and heavy masses randomly distributed, each shell exhibits the
same average mass at the beginning. In the course of the evolution,
the inner shells assemble the heavy bodies, and raise the mean mass.
The half-mass radius and the outer shells lose their heavy stars rather
quickly and remain below the value for the average mass, because
the light ones outnumber the heavy components significantly. The
cluster is stratified by the mass.

The segregation of masses propagates simultaneously with the
contraction of the core. Giersz & Heggie (1996) have already noted
the self-similarity of this process. In the models A and B, we can
clearly see how the inner layers decouple stepwise one after the other
until the final stage is reached. After the collapse, the profile does not
change much; the effect has only influence on the early evolutionary
phase, not in the post-collapse. The moderate decline in the models E
and F can be explained by the escaping of heavy particles. Because of
their relatively small absolute number (see Table 2), they get ejected

from the core and leave the cluster so that the surplus of small bodies
depletes the mean value in the shells. A fraction of high-mass stars in
the centre interact strongly in a few-body process and kick out each
other, and the core is gradually ‘evacuated’ from the heavy stars.
In our data, we find an enhanced fraction of high-mass escapers
occurring immediately after the collapse confirming this scenario;
many of them exhibit enormous kinetic energies and some even
escape as bound binaries (see Section 7). However, some heavy
latecomers enter the inner regions, but a balance is found between
the incoming and outgoing mass flux. In general, the dynamical
processes in the core do not influence the properties of the cluster
as a whole.

The mean mass in the 1 per cent Lagrangian shell never attains
its full ‘capacity’, i.e. the value of mh that could principally be
gained if this shell was completely populated by heavy stars; which
is only possible if the heavy stars are 51 per cent. It means that
there is always a number of low-mass stars entering and leaving the
innermost region that keep 〈m〉1 percent at a constant fraction of the
maximally attainable level. This level is at about 0.8 mh if μ is small,
and drops to 0.5 mh for the highest values of μ.

Another illustration of the segregation process is given in Fig. 7.
It shows the shrinking distance moduli of 18 heavy-mass stars of
one typical run of a model with a high mass ratio (model G, μ =
25, Run no. 4, N� = 5 × 103); this model consists of 22 heavy-
mass stars initially, but four stars escaped at some time before the
moment for which we show the plot and they were excluded from
it. 17 dashed lines were overlapped demonstrating how the orbits
of most particles draw rapidly closer. The core collapse occurs at
tcc = 33.5. A solid line lifts off one particle of example that was
knocked out of the chaotic region due to a close encounter, but its
kinetic energy was not sufficient enough to leave the system and it
segregated inwards again. One other particle, whose pericentre was
at 0.9 N-body radii, remained in the halo and did not take part in the
collapse, but it sank to intermediate distances at about tcc ≈ 70.

7 E S C A P E R S

The estimation of escape rates is often based on idealized mod-
els, whose simplifying treatments sometimes lead to different re-
sults. The complexity of this topic is reviewed by Meylan & Heggie
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Figure 6. Average mass in Lagrangian shells for models A–F shows the stratification of masses in the cluster. The segregation of heavy masses proceeds in
agreement with the global evolution of the cluster. The mean mass is indicated.

(1997). For the results that we show in this work, we should mention
the following.

(i) Theories based on diffusive or small-angle relaxation phenom-
ena yield a different escape rate than theories involving individual
two-body encounters. The former is often denoted as ‘evaporation’,

the latter is related to ‘ejections’, which dominate for isolated clus-
ters, like here.

(ii) The rate of escape is not a constant, while the evolution of
the system proceeds, even in the pre-collapse phase.

(iii) An increasing concentration in the core as well as the growth
of anisotropy tends to enhance the escape rate.
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Figure 7. Distance moduli of 18 heavy mass particles in model G with
N� = 5 × 103. Each of the particles has a mass 25 times larger than a light
particle (orbits not shown). The core collapse of this run occurred at tcc =
33.5.

(iv) Furthermore, the escape rate is strongly mass dependent;
different mass spectra and segregation alter it.

(v) A tidal field lowers the energy threshold for escape.
(vi) A sufficient abundance of binaries (both, primordial and

formed) has a substantial effect on high-velocity escapers which
take away energy from the system.

In view of these complications, we have to take care in the inter-
pretation of the data. We show in this section N-body simulations
investigating the rates for various particle numbers and the variation
on μ, in particular.

An escape is defined by a particle having both positive energy
and its distance from the density centre exceeding a limiting radius.
We have chosen the distance to be 20 times the half-mass radius, rh.

The particles were removed from the calculation when both con-
ditions were fulfilled; we will call them ‘removed escapers’. We
focus here on escapers occurring before the time of core collapse,
tcc. One run contains a number of particles which have gained posi-
tive energy but not reached the distance for a removal yet. Such kind
of particles dominate when tcc is very short. In particular, the high-μ
models collapse within a few tens of N-body time units, and a large
number of particles, that are going to escape, would be missed. This
situation resembles the ‘energy cut-off’ (Baumgardt 2001), and we
will call these particles ‘potential escapers’. Whether some of them
will be scattered back to become bound members again or really
escape, is a complex process that is out of the scope of our sub-
ject. Baumgardt (2001) estimated that a fraction of 2 per cent of the
potential escapers might return to the system. As a first approach
to the general properties of escapers, we will assign to the number
Nesc all removed escapers plus potential escapers at the epoch of tcc.
Because of the scatter of the core-collapse times (Section 3.1), each
run was checked separately for its escapers that occurred before that
run’s individual core-collapse time – not the ensemble’s 〈tcc〉. 〈Nesc〉
is the average among the individual values of Nesc.

Fig. 8 gives a typical example for the energy distribution of all
removed escapers in the one run of model C with N� = 5×103; the
potential escapers are disregarded here. The energy is plotted against
the time of removal; it is measured in units of kT = m̄σ 2

0,av , where m̄
is the average mass and σ 0,av the average 1D velocity dispersion in
the core, measured for the initial model. Light bodies are represented

Figure 8. Model C (μ = 2.0), Run no. 04, with N� = 5 × 103. Energy of
an escaping particle is given in units of kT and plotted against its escape time
scaled to the core collapse. Diamonds denote heavy masses.

by filled dots, heavy ones of mh = 2.0 by diamonds. The collapse
occurred at tcc = 643.5 for this run. In the beginning, the light
particles diffuse slowly from the system with small energies (the
evaporational effect). After the core collapse, the mass dependence is
more complicated, for a second class of escapers joins: high-energy
particles, whose energies are higher by two orders of magnitude. A
fair fraction of the escapers are heavy stars. As in the statistics for
equal masses by Giersz & Heggie (1994a), it is natural to associate
them with ejected stars that go back to three-body interactions in the
very centre. Mass segregation has widely finished at the time of core
collapse, and interactions in the core start depleting the high-mass
population. Other runs of the same model exhibit a similar picture
of the physical scenario.

The analysis of the models in regard to μ reveals interesting views
on the escape mechanism. A summary is shown in Fig. 9, and the
legend for the symbols is given in panel (e). Panel (a) gives the
fraction of escaped stars, 〈Nesc〉/N�. In a single-mass cluster (μ =
1), about 2.5 per cent of the stars leave the system before it col-
lapses. When introducing a second mass, this fraction drops to 0.2–
0.5 per cent until μ≈ 3. The reason is that the rate of escape (panel e)
is nearly constant for small μ, but the shorter collapse times cause a
smaller progress of the escape mechanism, and thus a smaller Nesc.
When massive bodies mh � ml are present, a larger fraction of stars
receives positive energy and turns into potential escapers.

Panel (b) gives the ratio of the removed escapers to the potential
escapers as described above, 〈Nrem〉/〈Npot〉. For μ close to the equal-
mass case, the core-collapse time is large. Thus, the accumulated
number of removed particles is larger by ≈10 times than the number
of potential escapers at the moment of tcc. For high values of μ,
removed particles are scarce, while potential escapers did not have
time to cross the cluster and turn into removed ones. Therefore, the
potential escapers make the overwhelming majority. The slope of
the decrease is −1, and it is similar to the shortening of tcc when
μ increases. The vertical dependence on N� mirrors the increasing
amount of removed escapers due to the longer tcc times for larger
N�.

Panels (c) and (d) deal with the individual masses of the esca-
pers. When one heavy star escapes, it raises the average escaper
mass. In the models μ � 10, the absolute number of high-mass es-
capers is zero for most of the runs. This is the converse situation of
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Figure 9. Summary of escaper data for the different models. (a) Fractions of removed escapers before the core collapse plus potential escapers at tcc. (b) Ratio
of removed escapers to potential escapers. (c) Mean mass of escapers. (d) Relative number of mh-escapers among all escaping particles. (e) Escape rates. (f)
Mean energy of escapers in kT. The error bars are usually omitted, though they are given for the N� = 2.5 × 103 set (triangles) except in the panels (c) and (d);
the error bars are almost invisible in (c), and larger than the panel size in (d), because the number of high-mass escapers varies a lot among one model.

panel (a): for massive stars, the escape is difficult. Just one or two
heavy components appear and take away a significant fraction of
mass from the cluster. They are rather evaporated objects than
ejected in a close encounter, because their energies are relatively

small. Usually, the heavy escapers occur in the late post-collapse
phase and do not receive our attention here. From panel (d) and
μ � 5, we find that ≈3 per cent of all escapers are heavy compo-
nents which leave the system before tcc.
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Panel (e) presents the rates of escape within a crossing time for
different μ. The computation was adopted from Wielen (1975) as〈

dN�

dt

〉
= tcr

〈Nesc〉
〈tcc〉 , (14)

where the brackets denote averages among the runs within a model
and tcr is the average number of escapers per crossing time. For
equal-mass clusters our rate is ≈0.2—0.3 in accordance with other
N-body results listed by Giersz & Heggie (1994a). The slight de-
cline until μ ≈ 3 and the stronger increase afterwards is in excel-
lent agreement with the theoretical expectation by Hénon (1969)
(Fig. 1). Though his models differ from ours in q, the branch of the
curve related to our models exhibits the same shape. We interpret
the curve such that two different mechanisms produce escapers in
the pre-collapse phase under consideration. Relaxation dominates
if the individual masses do not differ much, thus evaporation causes
a steady mass loss from the system. When μ is increased slightly,
the effect of evaporation cannot advance so far. The escape rate is
reduced then. For higher values of μ another mechanism takes over.
Massive stars exhibit a strong gravitational focusing. The gravity of
one single heavy particle attracts more light stars and its energy is
distributed among them. So, a multitude of light stars easily gains
positive energy and heads for escape. The frequent two-body en-
counters of one heavy particle leads rather to ejections involving
high energies than an accumulation of small escape energies.

Panel (f) of Fig. 9 shows the mean energy carried away by the
stars. The near constancy suggests an independence on μ, but a
subdivision into removed and potential escapers (not shown here)
reveals differences between the two groups. For removed escapers,
the mean energy increases as much as a factor of 10 over the whole
μ-range. This confirms the ejection scenario explained for panel
(e). On the other hand, the potential escapers show a constant but
somewhat lower energies on an average. Since they make up the
larger fraction, the mean is depleted in the high-μ regime.

Finally, we can conclude that models resembling the equal-mass
model tend to lose their mass by a slow evaporation process, while
energetic ejections outweight in high-μ models. At μ ≈ 3, both pro-
cesses are exchanging their dominant role. After mass segregation
has come to a stop near core bounce, three-body encounters in the
core start depleting the population of mh-stars.

8 L A R G E R PA RT I C L E N U M B E R S

Some dependencies on different particle numbers have already been
dealt in the foregoing sections. Here, we present a direct comparison
of the cluster evolution for the A models first. This model is close
to the uniform mass case and has the longest evolution time. Fig. 10
shows the raw data of the minimum potential for five runs, i.e. we
applied no smoothing or averaging.

The most obvious feature, is the increasing core-collapse time
in pretty accordance to the increasing relaxation time proportional
to N�/ln(γN�) (see Section 8.1). Note that the fluctuations of the
data in the pre-collapse phase are smaller for higher N�, because the
global potential is smoother. In the post-collapse, the fluctuations
are nearly the same, for the number of core particles, Nc, is of the
same order for each of the five runs.

The assumed constancy of Nc (where the subscript ‘c’ stands for
core) leads to a second topic concerning the different amplitudes
of the potential minima. This has already been mentioned in con-
nection with Fig. 4, though the upper panel of Fig. 11 points to
the variations on N� in a more clear way. For models resembling

Figure 10. Evolution of the central potential of selected runs of model A
for N� = 103, 2.5 × 103, 5 × 103, 104 and 2 × 104 particles.

the equal-mass case, the maximum depth is a function of N�. The
reason is that the collapse is only halted when the rate of energy pro-
duction in the core becomes the same as the energy rate going out
via the heat flux of the gravothermal instability (Goodman 1987).
The outflowing energy is produced by the formation of binaries in
three-body encounters, and this become important when the density
is sufficiently high. As the core radius of a large-N� cluster con-
tains a larger number of stars initially, it has to get rid of almost all
of them. The final Nc at core bounce is nearly a constant and the
evolution of the core radius advances deeper in order to provide the
density necessary for binary formation. Giersz & Heggie (1994b)
described this scenario in terms of the fraction of core radius to
half-mass radius, rc/rh: the larger N�, the smaller is that fraction.
This is visible for models with μ close to unity in Fig. 11. Though,
the lower panel suggests a slight increase of core particles for large-
N models, the absolute values of Nc stay in the order between 10
and 40.

The situation looks somewhat different for models with high μ,
in particular for μ = 25 and 50. The central potential shows its
deepest value when some of the heavy masses have gathered in the
core, while the light stars have not changed their density distribution.
The presence of the massive stars causes the deeper potential, and
it appears not as profound as for nearly equal masses (see Fig. 4
for comparison). Therefore, the amplitude of the collapse, 〈�min〉,
depends on Nc only weakly.

8.1 The Coulomb logarithm

Now, we will focus on the coefficient γ in the Coulomb logarithm,
which is of relevant importance for the evolution of the star clus-
ter, because it is intimately connected with the time-scale associ-
ated with the evolution of the cluster, the relaxation time (equa-
tion 2–62 of Spitzer 1987). The value of this quantity, ln (γN�),
has been estimated to be γ = 0.11 (Giersz & Heggie 1994a) for
a single-mass cluster, but the variations on μ are not known pre-
cisely. One possible way to determine this quantity is by com-
paring the evolution of the same model but for different values of
N�.

The upper panel of Fig. 12 shows the ensemble-averaged La-
grangian radii of our model A for two different N�. For the time
t, the value of a Lagrangian radius in the 2500-body model was
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Figure 11. Upper panel: the mean potential minima at the moment of core bounce as as function of the total particle number N�. Models close to the equal-mass
case show a deeper peak when N� is rising than the high-μ models. Explanation is given in the text. Lower panel: the mean core number increases only slightly
with N�. Disregarding the two highest μ, the number of minimum core particles is between 10 and 40.

determined, and then the corresponding time t′ at which the same
value was reached in the 5000-body model.

The ratio of these two times is a scalefactor, Sf, that should be
also equal to the ratio of the relaxation times for the different N�

before core rebounce:

t ′

t
≡ Sf := N ′

� ln(γN�)

N� ln(γN ′
�)

. (15)

By repeating this procedure for each time-step and for each La-
grangian radius we get an Sf that is plotted in the lower panel of
Fig. 12. Before the core collapse, the time ratios show a remarkable
constancy (disregarding the initial settling period), and the inner
Lagrangian radii have a good agreement. The scalefactor in the
constant pre-collapse range is Sf = 1.675 for this model. With the
definition ν := N ′

�/N�, a re-arrangement of equation (15) yields

γ =
(

N�

(N ′
�)Sf/ν

)(
ν

Sf − ν

)
. (16)

We computed the values of γ for each model using the data sets
of N� = 2.5 × 103 and N ′

� = 5 × 103. The results are given in
Table 4 and plotted in Fig. 13. The first two rows of the table define
the μ-model, the third gives the scalefactor as determined from the
figures analogue to 12, the fourth is the error measured from the

Figure 12. Upper panel: five selected Lagrangian radii of model A for N� = 2.5×103 and N ′
� = 5×103. Lower panel: scalefactor Sf for this model computed

from the comparison of the Lagrangian radii.

widths of the fluctuating lines in the stable regime (horizontal part),
the fifth is the outer exponent in equation (16) with ν = 2 and the
sixth is the resulting values of γ .

The comparison of the data sets ‘2.5 × 103 → 5 × 103’ provides
a more accurate scalefactor than the other data sets with lower N�,
because they rest upon a higher statistical significance. Our set with
N� = 104 can be averaged over four runs only, and the 103-set is
biased to low-N� physics.

Very small variations in Sf cause large fluctuations in the two
exponents of equation (16) and alter γ significantly; the formula is
very sensitive to both, Sf and ν. The error was computed as the dif-
ference of an ‘upper’ and a ‘lower’ γ that results from the thickness
of the Sf-line.

As for different ν, we present another example illustrating the
big variations when determining the Coulomb-γ . Table 5 shows the
results for the equal-mass models using various particle numbersN�

and N ′
�. The Sf shows a reasonable behaviour for different values

of ν and conforms to the result by Giersz & Heggie (1994a) shown
in the last column. The resulting γ , however, differs at least by a
factor of 5.

The value γ = 0.11 mentioned above is actually found due to the
comparison of N-body and Fokker–Planck simulations of equal-
mass models (Giersz & Heggie 1994a, Fig. 5). From their N-body
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Figure 13. Upper panel: scalefactors measured from figures analogue to 12 for various μ. Lower panel: Coulomb-γ as determined from N-body simulations
with different particle numbers from equation (16). The error bars are larger than the panel size.

Table 4. Scalefactors and values of γ for the models with different μ. The data were determined
by comparing the data sets N� = 2500 and N ′

� = 5000, giving a particle ratio ν = 2.

Model A B C D E F G
μ 1.25 1.5 2.0 3.0 5.0 10.0 25.0

Sf 1.675 1.800 1.785 1.750 1.775 1.845 1.680
	Sf 0.045 0.010 0.035 0.030 0.175 0.045 0.190
ν/(Sf − ν) −6.154 −10.00 −9.302 −8.000 −8.889 −12.903 −6.250
γ 0.0142 0.2048 0.1263 0.0512 0.0948 1.5321 0.0152

Table 5. Comparison of our equal-mass models with four different particle numbers and the N-body-analysis by Giersz & Heggie
(1994a) in the last column.

Equal mass 1000 → 2500 1000 → 5000 2500 → 5000 2500 → 10 000 Giersz & Heggie (1994a)

ν 2.5 5.0 2.0 4.0 4.0
Sf 1.96 3.21 1.60 3.09 2.95
ν/(Sf − ν) −4.630 −2.793 −5.00 −4.396 −3.810
γ 0.028 0.018 0.006 0.044 0.098

simulations with particle numbers of N� = 500 and N ′
� = 2000

(their fig. 5), it is easy to extract an Sf = 2.95 and get a γ =
0.098. For the same particle ratio, ν = 4.0, we obtain a γ that
is half of theirs (last two columns in Table 5). But our absolute
particle numbers are five times larger. We can conclude from our
analysis that the choice of N� and N ′

� essentially contributes to the
Coulomb-γ .

Finally, we are left with a fair range of possible values for γ . An
estimate indicates that γ ranges somewhere between 0.01 and 0.20.
A similar range was given by Giersz & Heggie (1996) for the case
of a power-law mass spectrum: 0.016 � γ � 0.26.

9 VA R I AT I O N S O F T H E M A S S F R AC T I O N

So far, we have presented results on mass segregation for various
values of μ. This section deals with three additional series, in which
we alter the fraction of the heavy masses, q. Such kind of study
has been discussed by Watters et al. (2000) with a Monte Carlo
approach or by Inagaki & Wiyanto (1984), who simulated two-

component clusters by means of the Fokker–Planck modelling. They
fixed μ to 2.0 and investigated the core-collapse times as well as
the achievement of equipartition. They showed that the evolution of
the central potential in units of the half-mass relaxation time, trh, for
four different values of q is fastest when q ≈ 0.1.

We present in this section the question whether equipartition can
be achieved between the two components while segregation is on
work and a comparison of the N-body data with the above mentioned
literature.

We investigate the equipartition parameter

ξ = mhσ
2
2

m lσ
2
1

, (17)

which gives the ratio of the kinetic energies between the heavy and
light stars in the core. At the start its value is about μ and heads for
unity. When both mass species find a state of energy equipartition,
ξ = 1 is reached, and we call the system equipartition stable (after
Spitzer 1969), otherwise a ξmin indicates the closest approach to it.

When examining a particular run, the data of ξ is very noisy,
especially, for small-N� simulations. The main cause for this is the
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Figure 14. Equipartition parameter for two runs from model B (upper panel) and F (lower panel), respectively, containing 10 000 particles. The data were
smoothed out with a smooth width w = 5 as described in Section 3.1.

Figure 15. The averaged minimum of the equipartition parameter ξ for
stars inside twice the core radius. When both mass components are in the
equipartition, ξmin equals 1. The solid lines connect the data points for q =
0.4 (series V), q = 0.2 (series IV), q = 0.1 (series I with triangles) and q =
0.05 (series III). These four simulation series were made withN� = 2.5×103

particles, and error bars are given for them. The dotted line is an arbitrary
threshold for the equipartition stability at 1.05 as explained in the text.

small number of particles inside the core radius. For this reason,
we decided to evaluate for the particles inside twice the core radius,
and then apply the smoothing procedure of Section 3.1. We define
ξmin = 1, if equation (17) drops below unity at any time during the
evolution; otherwise we set it to the deepest peak. Fig. 14 shows an
example for the parameter ξ from two models with N� = 104. The
B-model does reach equipartition at t = 1157, so ξmin is set to 1; the
F-model approaches to it down to ξmin = 2.95 at t = 106.

The average from all the runs particularly the values of ξmin is
denoted by 〈ξmin〉 and taken as the most reliable data for the model.
The values of 〈ξmin〉 are plotted versus μ in Fig. 15. All the symbols
belong to the series I with q = 0.1, but with a different particle num-
ber. The solid line connects the N� = 2.5 × 103 values (triangles).
The additional series III (q = 0.05), IV (q = 0.2) and V (q = 0.4) are
shown as solid lines. Error bars are given only for the four sets with
N� = 2.5 × 103; they are smaller than the symbols in most cases.

As expected, the graphic shows that equipartition takes place for
small values of μ, but when μ becomes significantly greater than 2,

Table 6. Values of μ at which ξmin > 1.05. Equipartition cannot be attained
anymore. See the text for further details.

Series q μcrit

III 0.05 2.49

I 0.10 2.03

⎧⎪⎪⎨⎪⎪⎩
2.032 (N� = 1000)
2.048 (N� = 2500)
2.197 (N� = 5000)
2.111 (N� = 10k)
1.762 (N� = 20k)

IV 0.20 1.87
V 0.40 1.75

〈ξmin〉 recedes from unity. At μ = 2, about half of the individual runs
with q = 0.1 did succeed to reach ξmin = 1, at least for a moment.
Those runs, which did not find a state of full equipartition, tried to
reduce the kinetic difference halfways to the core collapse, but then
departed shortly after the closest approach.

That figure provides a good basis for the judgement on equipar-
tition stability. It is obvious that 〈ξmin〉 varies for different fractions
of heavy masses, q: the less the amount of heavy masses in a cluster,
the closer the equipartition is reached. This is consistent with the
results by both Inagaki & Wiyanto (1984) and Watters et al. (2000).
The latter explore an even wider range to very low values of q down
to 0.0015 (their set ‘B’).

In order to check the stability border, we look now for a ‘critical
μ’ at which equipartition stability is not given.

Instead of assuming that equipartition happens for 〈ξmin〉 = 1, we
will give a small tolerance for this and define the point of ‘turning
away’ from equipartition at 〈ξmin〉 = 1.05, as Watters et al. (2000)
did. It is denoted by the dotted horizontal line in Fig. 15. By linear
interpolation between the lower- and upper-next data point, one ob-
tains that this threshold is exceeded at the pointsμcrit given in Table 6.

The value for series I was averaged from all simulation sets for
different N�. All values of 〈ξmin〉 are plotted in Fig. 16, and fitted for
a direct comparison of the Monte Carlo results from Watters et al.
(2000). The positions of our μcrit are marked by a small filled dot.
The apparent difference for the line by Lightman & Fall (1978) is just
because Watters et al. (2000) defined their fraction of heavy masses
as q̂ = Mh/Ml, whereas we use q = Mh/Mcl (see Section 2.1).
The graphics and the results are consistent with each other and ease
the comparison.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 374, 703–720



716 E. Khalisi, P. Amaro-Seoane and R. Spurzem

Figure 16. Closest approach to equipartition for the models in our parameter
range of μ (mass ratio of heavy stars to light stars) and q (mass in heavy stars
relative to total cluster mass, see also Fig. 1). The figure has been adjusted
(symbols, axes and lines are accommodated as explained in the text) so
that one can easily compare it with the results with those of Watters et al.
(2000) (Fig. 5). The solid line is their stability criterion, equation (2); the
straight dashed line is from Spitzer (1969) and the curved dashed line is from
Lightman & Fall (1978).

Although we have four points for μcrit in order to check the
equipartition boundary, they follow the theoretical function by
Lightman & Fall (1978) in fair agreement.

The formula suggested by Watters et al. (2000) cannot be ruled
out, because it is based on the models in a low-q regime, which
is difficult to access with our N-body simulations. However, our
experimental data show that the criterion by Spitzer (1969) for the
stability boundary, appears too strong, especially at mass ratios μ

close to 1.
μcrit ≈ 2 is the point which was already recognized as the tran-

sition of an equipartition-dominated and a gravothermal-dominated
collapse (Section 5). Below μcrit, the core collapse proceeds slower
than the theory predicts, because equipartition governs the initial
phase. When μ > μcrit, the gravothermal instability always wins the
competition between the two effects. Before the thermal equilibrium
can fully be achieved, the massive stars have already segregated to
the centre and collapse independently from the light stars. With the
total fraction q being high, the massive component appears almost
self-gravitating and is decoupled from the beginning.

Bettwieser & Inagaki (1985) showed that there is an ‘optimal’ q
that favours the collapse of a two-component system. If q is small,
the collapse of the heavier component proceeds in the external field
of the lighter stars, and the collapse time decreases rapidly. On the
other hand, if q is very large, the amount of thermal energy contained
in the core of the massive stars is so large that the core of the light
ones cannot receive all the redundant energy. Hence the tendency
to collapse is postponed, because the heat gained has to be dumped
away into the halo and this process is slower than the tendency to
equipartition (see also Lee 1995). Finally, the extreme cases q → 0
and 1 approach the single-mass value for a negligible contribution
of the heavy and light component, respectively. This is the reason
why the core-collapse time attains a minimum at a certain fraction of
the heavier stars (Bettwieser & Inagaki 1985). The N-body models
confirm this (Fig. 17).

Figure 17. Core-collapse time tcc as a function of q. The individual mass
ratio, μ, was fixed to 2.0. The gas models by Bettwieser & Inagaki (1985)
show a broad minimum for the core-collapse times in terms of the relaxation
time. The value of q for fastest evolution is ≈0.1–0.2. The results of the
N-body models for the four series are discussed in the text. The time on the
vertical axis is given in N-body units.

1 0 C O N C L U S I O N S

We have studied mass segregation and equipartition in idealized
star clusters containing two mass components. The results provide
potential insight into the evolution of young star clusters, dynamics
of star forming regions and the degree of initial segregation which is
needed to match the observations. Also, this study is of theoretical
interest to check the classical ideas on the equipartition and the
thermodynamic behaviour of self-gravitating systems.

The parameter space was widely analysed for both parameters
using Plummer models: the ratio of individual star masses, μ =
mh/ml, that was varied from 1.25 to 50; and the fraction of the total
heavy masses, q = Mh/Mcl, that was chosen to be 0.05, 0.1, 0.2,
or 0.4. We also directed our attention to the value q = 0.1, which was
proved by Inagaki & Wiyanto (1984) to exhibit the fastest evolution
time. For this fraction, we modelled different particle numbers, with
N� ranging from 103 to 2×104. For all other cases, we used a particle
number of N� = 2.5 × 103. The statistical significance of the data
was considerably improved by ensemble averages. A large number
of physically equivalent runs differing just by a random seed for an
initial set-up was performed, and the data base was gathered for an
overall average.

For the first time, we have empirically checked the borders be-
tween an equipartition stable and unstable configuration (Spitzer
1969) with the accurate, direct N-body method. His criterion in-
volves the parameters q and μ and is given in equation (1). Moreover,
we determined the ranges of the longest and shortest core-collapse
time by comparing different initial set-ups of the particles.

From the results of our simulations we draw the following con-
clusions on the global cluster evolution.

(i) The evolution of a self-gravitating system with two mass com-
ponents depends strongly on the ratio of the individual masses, μ =
mh/ml. For q = 0.1, when μ is larger than ≈ 2, the heavy masses fall
to the centre and reduce the relaxation time proportional to 1/μ. Sub-
sidiary, the core-collapse time is shortened in the same way (Fig. 5).
Smaller values of μ go into the equipartition which slows down the
evolution. Large values of μ give rise to a small number of heavy
particles, and the situation turns into a process of dynamical friction.
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(ii) There is a competition between equipartition of energies and
gravothermal instability. If μ is close to unity, equipartition hinders
the gravothermal collapse in the initial phase, but will never prevent
it. As the heavy stars congregate in the central regions, they decouple
from the light component and perform their own collapse. When
μ exceeds a critical value of about 2, equipartition can never be
achieved (Fig. 15).

(iii) The boundary between the stable and unstable regimes is
close to the theory by Lightman & Fall (1978) when q is �0.2. For
q lower than ≈0.1, other works on the equipartition (Watters et al.
2000) seem to show a better agreement, but it is difficult to assess
their range with N-body simulations because the absolute number
of very heavy particles is too low in our standard N� (Fig. 16). When
q becomes larger than 0.1, the criterion given by Spitzer (1969) ap-
pears too strong, and his theory fails. According to equation (1),
no equipartition should be possible at all, while our models as well
as the Monte Carlo simulations by Watters et al. (2000) show the
contrary. The cause is probably that Spitzer assumed a global equi-
librium when deriving the analytical formulae. His basic ideas on
the processes, however, are still in fair accordance with our results.

(iv) Segregation proceeds on the relaxation time-scale simulta-
neously with the evolution of the cluster. The maximum level of
segregation is attained when the core has collapsed and began to
expand. Then, the mass shells in the cluster have also adjusted to a
stable balance of an ingoing and outgoing mass flux (Fig. 6). After
the core collapse, the degree of stratification remains constant.

(v) The escape rate shows two branches along the μ-axis indi-
cating two different mechanisms being on work (Fig. 9e). For mass
ratios resembling the equal-mass case, the escape seems to be gov-
erned by evaporational effects in the pre-collapse phase. Since the
core-collapse time decreases for a moderately rising μ, evaporation
does not advance far, so that the mass loss is also reduced. For high
values of μ (>3), we believe that escapes are rather a matter of
ejections; the very massive particles distribute their kinetic energy
to a large number of stars, and the escape rate increases roughly
with μ. The details of these processes, however, need more anal-
ysis tracing the path of the escapers or a countercheck with other
simulation methods. As for the equal-mass case, the escape rate is
consistent with other N-body simulations (Wielen 1975; Giersz &
Heggie 1994a; Baumgardt, Hut & Heggie 2002).

(vi) Light masses play an important role in the heat transfer from
the core to the halo. Even a small fraction of them moderates the heat
flux between the central source and the outer sink. The ‘optimal’
fraction q of heavy to light stars is about 0.15–0.20 in accord with
the previous results from gaseous models (Fig. 17).

Our results gained with the N-body method confirm previous sim-
ulations with other techniques (gas models, Monte Carlo), but also
reveal hidden effects like the small ‘deceleration’ of the gravother-
mal collapse due to the equipartition. Further astrophysical assump-
tions are likely to alter the results, e.g. the introduction of primordial
binaries in various fractions, a tidal field that accelerates the collapse
as well as the dissolution of clusters, or the rotation. Multiple mass
components or a continuous spectrum make the analysis more com-
plex but are important for the understanding of the observations.
Our variation of μ can principally be generalized by merging into
a multimass model, but care has to be taken when defining the pa-
rameters. The new parameters appearing for the models are to be
checked, e.g. the slope of the initial mass function (if a power law is
assumed), and how the ratio of the highest mass to the mean mass,
mmax/〈m〉, influences the segregation.
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A P P E N D I X A : DATA TA B L E S

The following Tables A1–A14 contain the mean values of the simu-
lations of star clusters and are organized as follows. The title speci-

Table A1. Equal mass: N� = 1000.

Model 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
EQMASS01 345.8 ± 5.2 −4.72 ± 0.10 0.0208 ± 0.0020 11.2 ± 0.4 — 26.6 ± 1.1 0.88 ± 0.18

Table A2. Equal mass: N� = 2500.

Model 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
EQMASS02 716.0 ± 12.0 −6.02 ± 0.16 0.0086 ± 0.0006 14.8 ± 0.8 — 64.2 ± 3.1 0.89 ± 0.24

Table A3. Equal mass: N� = 5000.

Model 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
EQMASS05 1210.2 ± 10.6 −7.58 ± 0.27 0.0045 ± 0.0003 17.7 ± 0.8 — 117.1 ± 5.0 0.71 ± 0.26

Table A4. Equal mass: N� = 10 000.

Model 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
EQMASS10 2312.9 ± 34.7 −8.75 ± 0.47 0.0025 ± 0.0004 21.3 ± 2.2 — 256.3 ± 7.1 2.55 ± 1.43

Table A5. Series I: q = 0.1, N� = 1000.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 309.1 ± 5.8 −4.60 ± 0.11 0.0206 ± 0.0009 11.1 ± 0.4 1.002 ± 0.002 22.9 ± 1.2 0.70 ± 0.17
B (1.5) 256.0 ± 5.1 −4.10 ± 0.07 0.0275 ± 0.0011 11.7 ± 0.3 1.011 ± 0.005 18.4 ± 1.1 0.70 ± 0.11
C (2.0) 162.6 ± 3.5 −3.52 ± 0.04 0.0400 ± 0.0016 12.0 ± 0.5 1.043 ± 0.010 9.5 ± 0.5 0.78 ± 0.24
D (3.0) 86.1 ± 2.1 −3.27 ± 0.06 0.0596 ± 0.0026 12.0 ± 0.6 1.264 ± 0.033 4.8 ± 0.4 1.02 ± 0.26
E (5.0) 45.8 ± 1.4 −3.24 ± 0.06 0.0797 ± 0.0040 12.5 ± 0.8 1.892 ± 0.071 0.0 ± 0.0 0.00 ± 0.00
F (10.0) 25.4 ± 0.9 −3.65 ± 0.08 0.0954 ± 0.0039 12.1 ± 0.7 3.426 ± 0.187 4.1 ± 0.4 1.28 ± 0.33
G (25.0) 18.0 ± 0.7 −4.72 ± 0.12 0.0785 ± 0.0030 7.3 ± 0.4 4.992 ± 0.237 12.9 ± 0.2 1.09 ± 0.12

Table A6. Series I: q = 0.1, N� = 2500.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 677.8 ± 8.1 −5.51 ± 0.12 0.0100 ± 0.0005 15.9 ± 0.7 1.000 ± 0.000 61.3 ± 2.0 0.77 ± 0.27
B (1.5) 558.4 ± 8.8 −5.02 ± 0.11 0.0137 ± 0.0006 15.9 ± 0.8 1.001 ± 0.000 45.2 ± 2.2 0.55 ± 0.14
C (2.0) 366.6 ± 8.4 −4.06 ± 0.11 0.0207 ± 0.0011 14.4 ± 1.0 1.043 ± 0.028 24.9 ± 1.6 1.18 ± 0.28
D (3.0) 180.1 ± 2.9 −3.50 ± 0.10 0.0336 ± 0.0019 16.2 ± 2.3 1.188 ± 0.017 9.7 ± 0.6 0.70 ± 0.12
E (5.0) 86.1 ± 3.3 −3.17 ± 0.10 0.0567 ± 0.0043 17.0 ± 1.4 1.807 ± 0.056 7.3 ± 0.8 1.43 ± 0.27
F (10.0) 40.2 ± 2.0 −3.45 ± 0.15 0.0811 ± 0.0054 19.9 ± 1.8 3.218 ± 0.086 8.0 ± 0.7 0.89 ± 0.12
G (25.0) 21.8 ± 1.1 −4.11 ± 0.18 0.0905 ± 0.0048 19.7 ± 1.7 7.150 ± 0.282 12.4 ± 0.9 0.86 ± 0.15
H (50.0) 17.9 ± 1.1 −6.16 ± 0.36 0.0792 ± 0.0039 11.7 ± 1.0 11.245 ± 0.556 25.2 ± 2.6 0.98 ± 0.15

fies the series, q and particle number. The columns of the tables are
defined as follows.

(i) Column 1: model name and μ.
(ii) Column 2: 〈tcc〉, mean core-collapse time.
(iii) Column 3: 〈�min〉, depth of central potential.
(iv) Column 4: 〈rc〉, mean core radius in the moment of core

bounce.
(v) Column 5: 〈Nc〉, number of particles in the core at the time

of smallest core radius.
(vi) Column 6: 〈ξmin〉, mean of the closest approach to equipar-

tition.
(vii) Column 7: 〈Nesc〉, number of escaped stars until core-

collapse time.
(viii) Column 8: 〈Eesc〉, mean energy of escapers.
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Table A7. Series I: q = 0.1, N� = 5000.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 1183.7 ± 17.7 −6.92 ± 0.18 0.0055 ± 0.0004 19.8 ± 0.7 1.000 ± 0.000 103.9 ± 5.0 0.44 ± 0.13
B (1.5) 993.8 ± 10.3 −5.85 ± 0.12 0.0071 ± 0.0003 16.9 ± 1.0 1.000 ± 0.000 76.9 ± 3.2 0.57 ± 0.14
C (2.0) 642.6 ± 4.4 −4.62 ± 0.20 0.0117 ± 0.0011 15.8 ± 1.4 1.016 ± 0.008 38.0 ± 1.9 0.47 ± 0.09
D (3.0) 331.5 ± 11.6 −3.72 ± 0.08 0.0204 ± 0.0013 16.8 ± 1.4 1.189 ± 0.037 19.3 ± 2.6 1.08 ± 0.45
E (5.0) 157.9 ± 6.3 −3.36 ± 0.12 0.0302 ± 0.0025 14.9 ± 1.1 1.715 ± 0.039 14.2 ± 1.9 1.38 ± 0.27
F (10.0) 64.3 ± 3.5 −3.11 ± 0.09 0.0742 ± 0.0055 29.4 ± 2.8 3.738 ± 0.256 10.4 ± 1.0 2.17 ± 1.01
G (25.0) 33.3 ± 0.9 −4.43 ± 0.34 0.0842 ± 0.0025 29.1 ± 1.4 7.394 ± 0.214 17.7 ± 1.2 0.97 ± 0.09
H (50.0) 22.4 ± 0.7 −5.64 ± 0.43 0.0789 ± 0.0089 26.2 ± 3.5 12.962 ± 0.358 25.8 ± 3.1 1.15 ± 0.18

Table A8. Series I: q = 0.1, N� = 10 000.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 2169.9 ± 24.7 −8.35 ± 0.52 0.0027 ± 0.0003 20.0 ± 2.7 1.000 ± 0.000 227.3 ± 3.9 0.40 ± 0.11
B (1.5) 1886.8 ± 8.6 −7.05 ± 0.39 0.0042 ± 0.0001 20.8 ± 1.0 1.008 ± 0.006 172.3 ± 9.3 0.35 ± 0.06
C (2.0) 1218.0 ± 20.1 −5.85 ± 0.37 0.0053 ± 0.0007 15.8 ± 1.8 1.035 ± 0.014 91.3 ± 4.3 0.78 ± 0.17
D (3.0) 595.1 ± 8.5 −3.97 ± 0.17 0.0107 ± 0.0010 15.0 ± 1.9 1.170 ± 0.024 35.3 ± 3.4 1.03 ± 0.27
E (5.0) 277.6 ± 9.7 −4.18 ± 0.32 0.0235 ± 0.0004 19.8 ± 1.4 1.700 ± 0.029 19.3 ± 1.4 0.63 ± 0.08
F (10.0) 123.5 ± 2.1 −3.80 ± 0.31 0.0351 ± 0.0055 22.3 ± 3.9 3.065 ± 0.108 25.5 ± 2.0 1.19 ± 0.04
G (25.0) 52.4 ± 2.3 −4.92 ± 0.42 0.0741 ± 0.0108 36.8 ± 6.1 8.040 ± 0.440 29.0 ± 2.9 2.05 ± 0.82
H (50.0) 37.5 ± 0.6 −6.82 ± 0.95 0.0894 ± 0.0059 47.8 ± 8.9 14.478 ± 0.859 42.3 ± 5.3 0.93 ± 0.28

Table A9. Series I: q = 0.1, N� = 20 000.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 3859.0 ± 00.0 −8.62 ± 0.00 0.0021 ± 0.0000 33.0 ± 0.0 1.000 ± 0.000 422.0 ± 0.0 0.52 ± 0.00
B (1.5) 3318.0 ± 0.0 −9.09 ± 0.00 0.0030 ± 0.0000 36.0 ± 0.0 1.016 ± 0.000 292.0 ± 0.0 0.79 ± 0.00
C (2.0) 2236.0 ± 0.0 −5.64 ± 0.00 0.0044 ± 0.0000 23.0 ± 0.0 1.081 ± 0.000 140.0 ± 0.0 0.34 ± 0.00
D (3.0) 1094.0 ± 0.0 −3.84 ± 0.00 0.0114 ± 0.0000 34.0 ± 0.0 1.170 ± 0.000 55.0 ± 0.0 0.56 ± 0.00
E (5.0) 608.0 ± 0.0 −4.21 ± 0.00 0.0103 ± 0.0000 16.0 ± 0.0 1.770 ± 0.000 65.0 ± 0.0 2.82 ± 0.00
F (10.0) 213.0 ± 0.0 −3.70 ± 0.00 0.0241 ± 0.0000 24.0 ± 0.0 2.950 ± 0.000 38.0 ± 0.0 1.34 ± 0.00
G (25.0) 78.0 ± 0.0 −4.95 ± 0.00 0.0863 ± 0.0000 88.0 ± 0.0 7.680 ± 0.000 30.0 ± 0.0 1.41 ± 0.00
H (50.0) 48.5 ± 0.0 −7.92 ± 0.00 0.0447 ± 0.0000 25.0 ± 0.0 14.046 ± 0.000 48.0 ± 0.0 0.78 ± 0.00

Table A10. Series II: q = 0.1, N� = 2500, INS.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 623.9 ± 11.1 −5.64 ± 0.10 0.0098 ± 0.0005 15.2 ± 0.5 — 57.5 ± 2.8 0.89 ± 0.22
B (1.5) 501.5 ± 9.1 −5.05 ± 0.10 0.0133 ± 0.0008 14.4 ± 0.8 — 42.0 ± 2.5 1.30 ± 0.56
C (2.0) 304.4 ± 8.0 −4.09 ± 0.12 0.0225 ± 0.0018 15.2 ± 1.0 — 16.9 ± 1.1 0.35 ± 0.18
D (3.0) 139.4 ± 4.6 −3.51 ± 0.07 0.0330 ± 0.0023 13.5 ± 0.9 — 8.5 ± 0.9 0.15 ± 0.11
E (5.0) 73.6 ± 3.0 −3.51 ± 0.08 0.0437 ± 0.0026 12.3 ± 0.8 — 8.4 ± 0.8 1.43 ± 0.40
F (10.0) 32.4 ± 1.7 −3.58 ± 0.13 0.0722 ± 0.0059 16.3 ± 1.9 — 5.9 ± 0.8 1.01 ± 0.29
G (25.0) 18.3 ± 0.9 −5.28 ± 0.33 0.0845 ± 0.0070 16.3 ± 2.9 — 13.6 ± 1.5 0.78 ± 0.11
H (50.0) 15.2 ± 0.9 −5.52 ± 0.27 0.0892 ± 0.0050 13.9 ± 1.4 — 25.7 ± 2.2 0.82 ± 0.10

Table A11. Series II: q = 0.1, N� = 2500, OUT.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
A (1.25) 673.7 ± 8.6 −6.08 ± 0.16 0.0088 ± 0.0004 14.8 ± 0.6 — 61.4 ± 2.5 1.03 ± 0.41
B (1.5) 646.1 ± 11.3 −5.12 ± 0.14 0.0129 ± 0.0008 17.1 ± 0.9 — 50.1 ± 2.5 0.66 ± 0.14
C (2.0) 508.5 ± 10.8 −4.16 ± 0.12 0.0227 ± 0.0014 18.2 ± 1.2 — 32.6 ± 1.6 1.77 ± 0.42
D (3.0) 304.1 ± 7.3 −3.23 ± 0.05 0.0476 ± 0.0026 24.8 ± 1.8 — 13.0 ± 0.8 1.10 ± 0.30
E (5.0) 153.7 ± 4.7 −2.98 ± 0.06 0.0756 ± 0.0042 29.6 ± 2.8 — 8.5 ± 0.6 1.40 ± 0.32
F (10.0) 92.7 ± 3.0 −3.23 ± 0.08 0.0892 ± 0.0033 23.8 ± 1.6 — 10.0 ± 0.9 2.17 ± 0.47
G (25.0) 52.5 ± 1.5 −4.58 ± 0.27 0.0857 ± 0.0037 17.5 ± 1.2 — 17.0 ± 1.6 1.76 ± 0.26
H (50.0) 47.6 ± 2.3 −6.86 ± 0.29 0.0664 ± 0.0032 9.7 ± 0.7 — 32.0 ± 2.8 1.94 ± 0.32
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Table A12. Series III: q = 0.05, N� = 2500.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
K (1.25) 689.3 ± 7.8 −5.88 ± 0.21 0.0094 ± 0.0005 16.0 ± 0.6 1.000 ± 0.000 60.7 ± 2.5 0.53 ± 0.12
L (1.5) 605.3 ± 11.8 −5.19 ± 0.19 0.0140 ± 0.0009 17.2 ± 0.8 1.001 ± 0.000 51.0 ± 2.7 0.61 ± 0.16
M (2.0) 428.8 ± 9.8 −3.89 ± 0.11 0.0264 ± 0.0022 19.2 ± 1.4 1.009 ± 0.008 25.8 ± 1.7 0.82 ± 0.28
N (3.0) 219.3 ± 7.4 −3.20 ± 0.06 0.0443 ± 0.0028 19.5 ± 1.6 1.092 ± 0.034 9.3 ± 1.1 0.85 ± 0.27
P (5.0) 96.1 ± 4.5 −3.07 ± 0.06 0.0672 ± 0.0046 23.6 ± 2.4 1.510 ± 0.034 4.3 ± 0.7 1.60 ± 0.54
Q (10.0) 44.9 ± 1.4 −3.34 ± 0.11 0.0896 ± 0.0053 23.5 ± 2.4 2.638 ± 0.068 4.2 ± 0.6 1.06 ± 0.19
R (25.0) 27.6 ± 1.2 −4.53 ± 0.21 0.0903 ± 0.0046 19.0 ± 1.9 4.348 ± 0.290 9.0 ± 1.4 1.37 ± 0.44

Table A13. Series IV: q = 0.2, N� = 2500.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
T (1.25) 657.1 ± 11.0 −5.88 ± 0.17 0.0102 ± 0.0006 15.2 ± 0.9 1.001 ± 0.000 62.5 ± 2.6 0.81 ± 0.21
U (1.5) 549.4 ± 7.6 −5.00 ± 0.14 0.0134 ± 0.0009 14.6 ± 0.8 1.000 ± 0.002 49.5 ± 2.7 1.17 ± 0.28
V (2.0) 343.8 ± 9.5 −4.51 ± 0.11 0.0166 ± 0.0011 12.3 ± 0.6 1.067 ± 0.012 26.7 ± 2.2 1.04 ± 0.35
W (3.0) 174.0 ± 3.9 −3.87 ± 0.11 0.0244 ± 0.0020 11.8 ± 0.8 1.334 ± 0.016 16.9 ± 1.3 0.61 ± 0.04
X (5.0) 86.3 ± 2.2 −3.55 ± 0.09 0.0391 ± 0.0028 12.0 ± 0.9 2.069 ± 0.059 13.9 ± 0.8 0.81 ± 0.08
Y (10.0) 48.6 ± 2.4 −3.97 ± 0.16 0.0564 ± 0.0041 11.9 ± 1.0 4.063 ± 0.161 21.1 ± 1.6 1.06 ± 0.11
Z (25.0) 22.7 ± 1.0 −4.72 ± 0.24 0.0869 ± 0.0049 15.5 ± 1.6 9.676 ± 0.267 30.1 ± 1.97 0.74 ± 0.07

Table A14. Series V: q = 0.4, N� = 2500.

Model (μ) 〈tcc〉 〈�min〉 〈rc〉 〈Nc〉 〈ξmin〉 〈Nesc〉 〈Eesc〉
T′ (1.25) 639.7 ± 9.9 −5.79 ± 0.16 0.0092 ± 0.0007 14.0 ± 0.8 1.000 ± 0.000 63.0 ± 2.4 0.68 ± 0.13
U′ (1.5) 523.2 ± 8.2 −5.24 ± 0.12 0.0117 ± 0.0006 14.4 ± 0.8 1.007 ± 0.003 51.4 ± 2.7 0.81 ± 0.22
V′ (2.0) 372.3 ± 10.3 −4.95 ± 0.15 0.0149 ± 0.0007 13.3 ± 0.6 1.094 ± 0.013 42.3 ± 2.9 0.85 ± 0.24
W′ (3.0) 212.8 ± 4.3 −4.27 ± 0.10 0.0195 ± 0.0014 11.3 ± 0.6 1.436 ± 0.039 38.7 ± 2.4 0.57 ± 0.03
X′ (5.0) 130.7 ± 4.0 −4.19 ± 0.14 0.0274 ± 0.0015 10.4 ± 0.6 2.200 ± 0.047 43.7 ± 2.9 0.81 ± 0.05
Y′ (10.0) 66.8 ± 2.5 −4.26 ± 0.12 0.0440 ± 0.0026 9.9 ± 0.5 4.316 ± 0.087 50.9 ± 3.5 0.88 ± 0.05

A P P E N D I X B : N - B O DY- U N I T S

A N D T I M E - S C A L E S

Dimensionless units, so-called ‘N-body units’, were used through-
out the calculations. They are obtained when setting the gravita-
tional constant G and the initial total cluster mass Mcl equal to 1,
and the initial total energy E to −1/4 (Aarseth et al. 1974; Heggie
& Mathieu 1986). Since the total energy E of the system is E =
K + W with K = 1

2Mcl〈v2〉 being the total kinetic energy and
W = −(3π/32)GM2

cl/R the potential energy of the Plummer
sphere, we find from the virial theorem that

E = 1

2
W = −3π

64

GM2
cl

R
. (B1)

R is a quantity which determines the length-scale of a Plummer
sphere. Using the specific definitions for G, Mcl, and E above, this
scaling radius becomes R = 3π/16 in dimensionless units. The half-
mass radius rh can easily be evaluated by the formula (e.g. Spitzer
1987):

M(r ) = Mcl
r 3/R3

(1 + r 2/R2)3/2
(B2)

when setting M(rh) = 1
2Mcl. It yields rh = (22/3 − 1)−1/2 R =

1.30 R. The half-mass radius is located at the scalelength of R =
0.766, or about three-fourth of ‘N-body radii’.

The initial half-mass crossing time of a particle is

tcr = GM5/2
cl

(2E)3/2
. (B3)

Since the N-body-unit of time, tNB, is 1 when

tNB = GM5/2
cl

(−4E)3/2
, (B4)

immediately follows that tcr/tNB = 2
√

2.
In the situations considered here, the evolution of the cluster is

driven by two-body relaxation. Therefore, a natural time-scale is the
half-mass relaxation time. We use the definition of Spitzer (1987),

Trh = 0.138N
ln �

(
R3

1/2

GMcl

)1/2

. (B5)

For a Plummer model, the half-mass radius is R1/2 = 1.305 R. Mcl

is the total stellar mass.
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