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Geometric Flows and 3-Manifolds

Gerhard Huisken
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

Am Mühlenberg 1, 14476 Golm, Germany
e-mail: gerhard.huisken@aei.mpg.de

The current article arose from a lecture1 given by the author in October 2005 on the
work of R. Hamilton and G. Perelman on Ricci-flow and explains central analytical in-
gredients in geometric parabolic evolution equations that allow the application of these
flows to geometric problems including the Uniformisation Theorem and the proof of the
Poincare conjecture. Parabolic geometric evolution equations of second order are non-
linear extensions of the ordinary heat equation to a geometric setting, so we begin by
reminding the reader of the linear heat equation and its properties. We will then in-
troduce key ideas in the simpler equations of curve shortening and 2-d Ricci-flow before
discussing aspects of three-dimensional Ricci-flow.

1 The Heat Equation

A function u : IRn × [0, T ] → IR is a solution of the heat equation if

d

dt
u = ∆u =

n∑
i

DiDiu (1.1)

holds everywhere on [0, T ]. The heat equation is the gradient flow of the Dirichlet energy

E(u) =
1

2

∫
IRn
|Du|2 dµ (1.2)

with respect to the L2-norm and has the fundamental property of smoothing out all
derivatives of a solution even for non-smooth initial data in a precise quantitative way:
For example, a uniform bound on the absolute value of |u| on some time interval [0, t)
implies a corresponding bound

sup |Dku(·, t)| ≤ Ck

tk/2
sup

IRn×[0,t)

|u| (1.3)

1Oberwolfach Lecture delivered in connection with the general meeting of the Gesellschaft für mathe-
matische Forschung e.V. (GMF) in Oberwolfach on October 16th, 2005.
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for each higher derivative Dku after some waiting time. The scaling behavior of the
equation arises from the fact that with u for each positive λ also the function

uλ(x, t) = u(λx, λ2t) (1.4)

is a solution of the heat equation. With respect to this scaling the heat-kernel

ρ(x, t) =
1

(4πt)n/2
exp

(
− |x|

2

4t

)
(1.5)

is a selfsimilar solution of the heat equation and thus connects the geometry of IRn with
important analytical properties of heat-flow such as the Harnack inequality: For any
positive solution u > 0 of the heat equation on IRn × (0, T ) one has the differential
inequality

∆u− |Du|2

u
+

n

2t
u ≥ 0, (1.6)

with equality being valid on the heat-kernel. This inequality is equivalent to

d

dt
log u ≥ |D log u|2 − n

2t
(1.7)

and implies by integration a sharp Harnack inequality for the values of u. General differ-
ential Harnack inequalities in the context of smooth Riemannian manifolds (M, g) were
established in the work of Li and Yau, compare [9] . In the Euclidean case the inequality
reads

u(x2, t2) ≥ u(x1, t1)
(t1
t2

)n/2
exp

(
− |x2 − x1|2

4(t2 − t1)

)
(1.8)

for all x1, x2 ∈ IR and t2 > t1 > 0 since the expression

|x2 − x1|2

4(t2 − t1)
(1.9)

minimizes the action
1

4

∫
γ
|γ̇|2dτ (1.10)

among curves γ connecting the events (x1, t1), (x2, t2). It turns out that sharp inequalities
of this type that hold with equality on selfsimilar solutions are one key to the understand-
ing of the behavior of the Ricci-flow and its singularities.

2 Harmonic Map Heat-flow

When considering more general maps u : (Mm, g) → (Nn, h) between two Riemannian
manifolds one studies again the L2- gradient flow of the Dirichlet energy

E(u) =
1

2

∫
Mm

||du||2g,h dµg, (2.1)
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where the energy density ||du||2 is now computed with respect to the metrics g, h. The
resulting parabolic system of equations

d

dtu
= ∆g,hu (2.2)

is linear in the second derivatives of u but has a quadratic nonlinearity in du due to the
dependence of the target metric on the map u. The stationary points of this system are
harmonic maps and it was the first triumph of geometric evolution equations when Eells
and Sampson were able to show that in the case of negatively curved target manifolds the
flow has a long time solution that converges to a harmonic map in the same homotopy
class, see [1]. This striking result motivated the search for other evolution equations that
would be able to deform a given geometric object into some canonical representative of
its class. On the other hand the harmonic map heat-flow also provided the first examples
of singularitie s in solutions of a geometric evolution equation when positive curvature in
the target manifold forced so called bubbling phenomena.

3 Mean Curvature Flow

For F0 : Mn → IRn+1 a smooth immersion of an n–dimensional hypersurface in
Euclidean space, n ≥ 1, the evolution of M0 = F0(M) by mean curvature flow is the
one–parameter family of smooth immersions F : Mn × [0, T [→ IRn+1 satisfying

∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈Mn, t ≥ 0, (3.1)

F (·, 0) = F0. (3.2)

Here H(p, t) and ν(p, t) are the mean curvature and the outer normal respectively at the

point F (p, t) of the surface Mn
t = F (·, t)(Mn). The signs are chosen such that −Hν = ~H

is the mean curvature vector and the mean curvature of a convex surface is positive.
In case n = 1 this flow is called the curve shortening flow. It is the gradient flow of
n-dimensional area with respect to the L2-norm and has similar scaling and smoothing
properties as the heat equation and the harmonic map heat-flow. However, since now the
righthand side of the equation,

−H(p, t)ν(p, t) = ∆tF (p, t), (3.3)

is computed from the Laplace-Beltrami operator with respect to the evolving induced
metric on the hypersurface, the system of equations depends on first derivatives of the
solution and is only quasilinear. It leads to a system of reaction-diffusion equations for
the evolving second fundamental form of the solution surface,

d

dt
hi

j = ∆hi
j + |A|2hi

j. (3.4)
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The nonlinear term can cause blowup of the curvature, an example is a shrinking sphere

with Mn
t = Sn

R(t)(0) and R(t) =
√

R2
0 − 2nt. Here the curvature H2 blows up with the

rate (T − t)−1 at the singular time T . It is a remarkable fact that despite the singularity
the diffusion part of the equation is strong enough to enforce a selfsimilar structure in the
formation of the singularity.

The following uniformisation theorem for curves in the plane proven by Grayson [2]
following work of Gage and Hamilton is a highly nontrivial one-dimensional demonstration
of how a geometric evolution equation can straighten out a given geometry:

Theorem 3.1 (M. Grayson) If F0 : S1 → IR2 is an embedded initial curve, then the
solution of the curve shortening flow (3.1) remains embedded and becomes convex after
some finite time. It then converges smoothly to a point while its shape approaches a
selfsimilar shrinking circle.

One successful strategy for the proof of this result that we would like to briefly sketch
consists in classifying all possible singularities of the curve shortening flow in the plane
together with arguments that rule out all such possibilities accept the known shrinking
circle.

Main ingredient for this approach is a monotonicity formula involving surface area

with a heat-kernel as a weighting function: Let u(x, t) =
√

2(T − t)ρ(x, T − t) be the
backward heat-kernel adapted to the n-dimensional hypersurface, then

d

dt

∫
Mn

u dµ = −
∫
Mn
|H +∇ν log u|2u dµ, (3.5)

compare [7]. Since the zeros of the RHS are exactly the selfsimilar shrinking solutions
of mean curvature flow, one can deduce with parabolic rescaling that all singularities of

the flow with the natural blowup rate 1/
√

2(T − t) for the second fundamental form are
asymptotically selfsimilar - and among these the shrinking circle is the only embedded
possibility. The proof of Grayson’s result is then complete if one can show that there is
no singularity with a higher blowup rate of curvature than observed in the case of the
shrinking circle. By a rescaling argument again this can be done if all convex translating
solutions of mean curvature flow can be ruled out as the profile of the singularity. The
key ingredient in this last step is a Harnack inequality for the curvature of convex curves
moving by the curve shortening flow, that is fully analogous to the differential Harnack
inequality (1.6) in the linear heat equation:

κss −
|κs|2

κ
+

1

2t
κ ≥ 0. (3.6)

It can be deduced that the ”grim reaper” curve y(x, t) = − log cos(x) + t is the only
convex translating solution of the flow and this singularity profile can then be ruled out
using the global embeddedness assumption for the initial curve in a quantitative way.

In summary, it is not necessary to control the shape of the evolving curves at intermedi-
ate times, the classification of all relevant singularities is sufficient. And this classification
is achieved with the help of a sharp Harnack inequality and sharp integral estimates that
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characterize selfsimilar solutions of the flow. We will find exactly the same ingredients
when studying the approach to the classical uniformisation theorem and the Poincare
conjecture by Ricci-flow.

4 Ricci-Flow

Given a Riemannian manifold (Mn, g0) in 1982 Richard Hamilton proposed to solve
the evolution equation [3]

d

dt
g = −2Rc(g) (4.1)

with the given metric g0 as initial datum. Here Rc(g(t)) is the Ricci curvature of the
evolving metric and the manifold is assumed to be compact without boundary. The
equation is a quasilinear parabolic system of equations which is in many ways analogous
to mean curvature flow. E.g. the evolution equation for the curvature resulting from
Ricci-flow is again a system of reaction-diffusion equations that have the Laplace-Beltrami
operator as their leading part in all components of the system:

d

dt
Riem = ∆Riem + Quad(Riem). (4.2)

The algebraic properties of the quadratic reaction term determine the interplay of the
various curvature quantities during the flow. In three dimensions the Riemann curvature
tensor can be fully expressed in terms of the Ricci tensor, allowing a concentration of
attention on the behavior of the three eigenvalues of this symmetric tensor field during
the evolution. In [3] Hamilton was able to fully understand the 3-dimensional case with
positive Ricci curvature:

Theorem 4.1 If the initial Riemannian metric g0 on a closed 3-manifold has positive
Ricci curvature then the solution of Ricci flow contracts smoothly to zero volume in finite
time and appropriate rescalings of the metric converge to a smooth metric of constant
sectional curvature. In particular, any 3-manifold carrying a metric of positive Ricci
curvature is diffeomorphic to a spherical space-form.

In three dimensions the algebraic properties of the reaction terms in (4.2) strongly favor
metrics of constant positive sectional curvature while the second Bianchi identities allow
control of the gradient of the scalar curvature through the gradient of the tracefree part of
the Ricci tensor. It was then possible to prove the theorem with the maximum principle
being the essential tool.

On two dimensional spheres the maximum principle seems not to be enough to control
the size of the curvature and an appeal to integral estimates and a Harnack estimate
becomes an alternative avenue just like in the curve shortening of embedded curves.
Hamilton [4] proved that a Li-Yau type Harnack inequality holds for the scalar curvature
R in 2-d Ricci flow that is analogous to the ordinary heat equation, we only state the
scalar version

∆R− |DR|2

R
+

n

2t
R ≥ 0. (4.3)
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Using this inequality it is possible in a fashion analogous to the case of curve shortening to
prove that the only possible singularities of 2-spheres are either asymptotic to shrinking
selfsimilar spheres or to a ”cigar”-type capped cylinder that satisfies Ricci-flow by moving
under diffeomorphisms along a radial gradient vectorfield on IR2. The metric of such a
”translating soliton solution” is explicitly given by

ds2 =
dx2 + dy2

1 + x2 + y2
(4.4)

and satisfies the corresponding soliton equation

d

dt
gij = (LXg)ij = 2DiDjf = −2Rij, (4.5)

where X = Df is the gradient vector field driving the diffeomorphism.
Again in parallel to the case of curve shortening this last model for a singularity can

then be ruled out for example by an isoperimetric inequality satisfied by 2-d Ricci-flow.
Gathering all cases and using an extra argument due to Chow it follows from the work of
Hamilton that the Ricci flow has the best possible behavior on all 2-d surfaces:

Theorem 4.2 For any initial metric on a two-dimensional Riemann surface the solution
of Ricci flow converges to a metric of constant Gauss curvature in the same conformal
class (when appropriately rescaled).

We note that in the spherical case the shrinking surface has to be scaled up while in the
case of negative Gauss curvature the Ricci flow is expanding the surface such that it has
to be scaled down; in the case of the torus the volume stays constant and no rescaling
is necessary. As a final comment we note that the eternal selfsimilar solutions of curve
shortening flow (”grim reaper”) and Ricci-flow respectively (”cigar”) that appeared in our
analysis of singularities are of independent interest in the theory of Renormalisationgroup
flows where they are known as the ”hairpin” solution of curve shortening flow and the
”2-d Riemannian black hole” respectively.

5 Ricci-Flow singularities in 3 dimensions

If the assumption of positive Ricci curvature is dropped in dimension n = 3 new
singularities become possible, in particular when a long thin neck of type S2 × [a, b]
connecting two larger pieces of the three-manifold begins to pinch off under the influence
of the large sectional curvature present in the small S2. Such neckpinch singularities will
inevitably happen for general initial data and cannot be avoided.

The great idea driving the work of Hamilton and Perelman in three dimensions is that
this is essentially the only singularity that the Ricci flow can develop in finite time and
that this singular behavior of the flow can in fact be turned to advantage: According to the
geometrisation conjecture of Thurston every closed three-manifold admits a decomposition
into irreducible pieces of eight different types along spherical and toroidal necks. The
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expectation is that standard neckpinch singularities at finitely many space-time instances
of Ricci flow will happen at just the right places to effect the desired decomposition along
spherical necks automatically and that the pinching of toroidal necks only happens in
infinite Ricci flow time in a controllable way. One hopes to construct a standard surgery
procedure for thin necks which replaces a piece of a spherical neck close to some cylinder
S2 × [a, b] by two positively curved spherical caps while keeping track of all curvature
quantities -this procedure should then be carefully used each time a neckpinch forms. In
particular, on a simply connected closed 3-manifold it is expected that after finitely many
spherical neckpinch singularities which cut up the 3-manifold into disjoint pieces there will
be only finitely many singularities asymptotic to selfsimilar shrinking 3-spheres analogous
to the 2-d case: If this were true, we could retrace our flow backwards and conclude that
the original surface was a finite connected sum of standard 3-spheres, hence a 3-sphere,
thus proving the Poincare conjecture.

There are several major analytical obstacles to this program: There will be degenerate
spherical neckpinches where some small 3-dimensional bubble doesn’t pinch off properly
and instead a 3-dimensional hemisphere gets squashed into a long thin horn developing
rapidly towards a cusp. Again, this behavior is expected and cannot be avoided. A
further difficulty lies in the need to demonstrate that these singularities are almost exactly
axisymmetric in a precise quantitative way: Only then it will be possible to devise a
detailed quantitative surgery algorithm for both cutting off the horns and cutting out the
spherical necks.

By using first maximum principle estimates on the reaction-diffusion system for the
Ricci curvature establishing that all singularities in 3-d are asymptotically non-negatively
curved (Hamilton-Ivey estimates) and then proving a higher dimensional version of the Li-
Yau type Harnack inequality for the Ricci tensor Hamilton gave a preliminary classification
of finite time singularities of 3-d Ricci flow in [5]: The classification includes the selfsimilar
shrinking 3-sphere, the expected selfsimilar spherical neckpinch singularity S2 × IR and
the translating Ricci solitons of strictly positive curvature modelling the tip of the horn
in a degenerate spherical neckpinch. Unfortunately there is one more possible singularity
model on the list, namely the ”cigar” type translating 2-d soliton from (4.4) cross IR. The
presence of such a singularity could indicate a degenerating cross-section of a pinching
neck and would make the proposed surgery and continuation of the flow impossible. A
further complication lay in the fact that Hamilton’s classification only applied in regions
where the curvature of the manifold is of comparable size to the maximum curvature in
the region - making it inapplicable in certain situations. Just like in curve shortening or in
2-d Ricci flow a new estimate was needed to rule out the undesirable ”cigar” singularity.

Perelman in his breakthrough contributions in [10] discovered new estimates for weighted
volume distributions on the evolving three-manifold that enabled him to rule out the cigar
type solitons since they have very little volume in large regions of small curvature, so called
”collapsed regions”, which are not present in the other singularity models.

One of the crucial new concepts developed by Perelman for this purpose is the concept
of a new action on curves γ : [τ1, τ2] → (M3, g(t)) in Ricci flow space-time, given by

L(γ) :=
∫

γ

√
τ(R(γ(τ)) + |γ̇(τ)|2)dτ (5.1)
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that leads to the concept of a L-shortest curve in a natural way. Fixing a point p ∈ M3

and τ1 = 0 we let L(q, τ) be the L-length of the L-shortest curve connecting p and q and
denote by l(q, τ) = 1

2
√

τ
L(q, τ) the reduced distance. Then Perelman proves

Theorem 5.1 The reduced volume

V (τ) =
∫
M

τ−
n
2 exp (−l(q, τ))dq (5.2)

is monotonically increasing in τ if the metric satisfies d
dτ

gij = 2Rij.

This result following from a careful analysis of the variational behavior of the L− geodesics
should be seen as related in spirit to the monotonicity formulae for mean curvature flow
and harmonic map heat-flow discussed earlier in this article since the integrand resembles
a nonlinear backward heat-kernel adapted to the space-time geometry of the Ricci flow.
Also compare the L−integral with the action appearing in the Li-Yau Harnack inequality
(1.10).

The theorem just explained can be seen to exclude collapsing behavior on finite time
intervals, thus ruling out the undesirable ”cigar”-type singularity in 3-d Ricci flow at finite
times. This is the starting point for a precise quantitative description of the remaining sin-
gularities involving spherical neckpinches and for encorporating the quantitative surgery
procedure on necks and horns developed by Hamilton in [6].

Perelman sketches in [11] how to set up an algorithm from smooth Ricci flow and
intermittent surgeries that maintains all the a priori estimates controlling the flow and
keeps the total number of surgeries finite on finite time intervals. Finally, in [12] Perelman
outlines that for a subclass of 3-manifolds containing all possible counterexamples of the
Poincare conjecture the Ricci flow must stop at a finite time when the volume tends to
zero. Simply connectedness and the classification of singularities described above ensures
that there are only finitely many spheres left at this stage of the procedure which is the
desired outcome implying the Poincare conjecture.

Since the time of the lecture in Oberwolfach three careful manuscripts have appeared
that give details of the above results, by Kleiner-Lott [13], by Cao-Zhu [14] and Morgan-
Tian [15]. The first two manuscripts include details also for the whole geometrisation
conjecture while the last manuscript follows Perelman’s arguments in [12] on finite time
extinction providing a shorter route to the Poincare conjecture. Hamilton has announced
an algorithm based on his previous work and Perelman’s non-collapsing estimate that
follows the strategy of [6]. Finally, in [8] Huisken and Sinestrari constructed a mean
curvature flow with surgery for two-convex hypersurfaces that is inspired by Hamilton’s
surgery approach in [6].
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