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Abstract
We describe an explicit in time, finite-difference code designed to simulate
black holes by using the excision method. The code is based upon the
harmonic formulation of the Einstein equations and incorporates several
features regarding the well-posedness and numerical stability of the initial-
boundary problem for the quasilinear wave equation. After a discussion of
the equations solved and of the techniques employed, we present a series of
testbeds carried out to validate the code. Such tests range from the evolution
of isolated black holes to the head-on collision of two black holes and then
to a binary black hole inspiral and merger. Besides assessing the accuracy of
the code, the inspiral and merger test has revealed that the marginally trapped
surfaces contained within the common apparent horizon of the merged black
hole can touch and even intersect. This novel feature in the dynamics of the
marginally trapped surfaces is unexpected but consistent with theorems on the
properties of these surfaces.

PACS numbers: 04.25.Dm, 02.70.−c, 02.70.Bf, 02.60.Lj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The numerical calculation of the inspiral and merger of a binary black hole system attracted
early attention because its dynamic and strongly relativistic gravitational fields were expected
to play a major role in astrophysics and to provide an excellent arena for studying the fully
nonlinear behaviour of gravitation. It has long been known [1] that the final decay, coalescence
and ringdown of such a system is a very strong source of gravitational radiation. Because of
their complexity and nonlinearity, and the lack of any continuous symmetries, the Einstein
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equations cannot be solved analytically for these systems. Rather, direct numerical integrations
must be used.

Building on an earlier attempt by Hahn and Lindquist [2], the first successful numerical
simulations of binary black hole systems were performed in the 1970s by Čadež [3], Eppley
[4], DeWitt, and their colleagues [5–7]. These simulations were restricted to axisymmetry, and
used the Arnowitt–Deser–Misner (ADM) formulation of the Einstein equations [8]. However,
the ADM equations are now known to be only weakly hyperbolic [9], so they are not suitable
for long-term numerical evolutions despite large-scale efforts [10].

Starting with the first long-term evolutions by Pretorius [11], there has been remarkable
progress in the simulation of binary black holes. Several groups have since tracked the
inspiral and merger phases using codes solving a conformal-traceless formulation of the
Einstein equations and treating the black holes either by the excision method [12] or by
the moving-punctures method [13–16]. Since Pretorius’ original work, there has also been
substantial progress in developing mathematical theorems which establish the well-posedness
of the harmonic initial-boundary value problem and the stability of its finite difference
approximations. We have incorporated some of this theory in developing an explicit in
time, finite-difference harmonic code to treat the excision problem. We present here some
promising initial results indicating that the binary black hole merger can be treated using
excision with a minimal amount of dissipation and with sufficient accuracy to reveal new and
interesting dynamics of the individual marginally outer trapped surfaces (MOTS) contained
within the common apparent horizon.

Harmonic coordinates were first introduced by de Donder [17] to reduce Einstein’s
equations to ten quasilinear wave equations and they were later extensively developed by
Fock [18] and used by Choquet-Bruhat [19] to give the first well-posed version of the Cauchy
problem for the gravitational field. In a harmonic gauge the spacetime coordinates xµ (viewed
as a set of four scalar functions) satisfy the curved-space wave equation ∇c∇cxµ = 0. The
principal part of the Einstein equations then reduces to a second-order hyperbolic form or
to a first-order symmetric hyperbolic form, for which there is an extensive mathematical
and computational literature. Many researchers have since implemented numerical evolution
schemes for harmonic formulations of Einstein’s equations [11, 20–30] and the related Z4

formulation [31, 32].
The AEI harmonic code presented here has its roots in the Abigel code [22, 23, 25],

a second-order accurate, finite-difference code which incorporates theorems establishing
the well-posedness and numerical stability of the harmonic initial-boundary value problem.
In addition, the AEI code incorporates a black-hole excision algorithm which allows for
motion of the excised region across the grid, a superluminal evolution algorithm and, except
for regions near the boundaries and for some aspects of the mesh refinement, a fourth-
order accurate finite-difference approximation. It also utilizes an apparent horizon finder
[33, 34], vertex-centred mesh-refinement techniques [35], black hole initial data sets and
other features of the Cactus computational toolkit [36] necessary for black hole simulations.
A Runge–Kutta integration is used to carry out an explicit time evolution. Note that this
differs from the approach of Pretorius who uses a pointwise Newton–Gauss–Seidel relaxation
scheme.

Although some aspects of the code are still under development, most notably the excision
boundary and the outer boundary treatments, we report here a series of testbeds carried out to
validate the code. Such tests range from the evolution of isolated black holes to the head-on
collision of two black holes and then to a binary black hole inspiral and merger. While these
tests have now become standard, we have found a new feature in our study of the binary inspiral
and merger. In particular, after a common apparent horizon has formed, our simulations show
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that the two individual MOTS approach and continue on to intersect each other. This novel
feature in the dynamics of the MOTS is unexpected but not unreasonable if these surfaces
have to maintain their smoothness as they meet. It is also consistent with recent theorems
concerning the properties of MOTS [37].

The paper is organized as follows. In section 2, we present the system of evolution
equations and describe its reduction to first-order in time form, as well as our use of gauge
conditions and boundary conditions. In section 3, we give a brief discussion of the numerical
techniques we have employed. Section 4 collects the results of our tests and the calibration
of the code’s accuracy. Finally, section 5 summarizes our results and the prospects for future
work.

2. Harmonic evolution system

2.1. The evolution system

Although completely redesigned, the AEI harmonic evolution code is based on the work
presented in Babiuc, Szilágyi et al [22, 23, 25] with modifications to allow for a smooth
transition from subluminal to superluminal evolution, together with higher-order finite-
difference operators and the possibility of excising an arbitrary portion of the grid (moving
black-hole excision).

In a generalized harmonic gauge [38], the coordinates xµ = (t, xi) = (t, x, y, z, ) satisfy

−∇a∇axµ = �µ = Fµ, (1)

where

�µ := gρσ �µ
ρσ = − 1√−g

∂νg̃
µν, (2)

with gauge source functions Fµ(xρ, gρσ ) (which may depend on the spacetime coordinates
and the metric) and with the densitized 4-metric

g̃µν := √−ggµν (3)

playing the role of the basic evolution variable. In this harmonic formulation, the constraints
reduce to the gauge condition

Cµ := �µ − Fµ = 0, (4)

and the evolution system is based upon the reduced Einstein tensor

Eµν := Gµν − ∇(µ�ν) + 1
2gµν∇α�α. (5)

Here �ν is treated formally as a vector in constructing the ‘covariant’ derivative ∇µ�ν . When
the constraints (4) are satisfied, this gives rise to a hyperbolic evolution system

Eµν = −∇(µF ν) + 1
2gµν∇ρF

ρ. (6)

Provided the gauge source functions do not depend upon derivatives of the metric, they do
not enter the principal part of the system and do not affect its well-posedness or numerical
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stability. The evolution system (6) takes the specific form of quasilinear wave equations

∂ρ (gρσ ∂σ g̃µν) − 2
√−ggρσ gτλ�µ

ρτ�
ν
σλ − √−g(∂ρg

ρσ )(∂σ gµν) +
gρσ

√−g
(∂ρg

µν)(∂σ g)

+
1

2
gµν

(
gρσ

2g
√−g

(∂ρg)(∂σ g) +
√−g�τ

ρσ ∂τ g
ρσ +

1√−g
(∂σ g)∂ρg

ρσ

)

+ 2
√−g∇(µF ν) − √−ggµν∇ρF

ρ +
√−gAµν = 0, (7)

where we have included the possibility of a constraint-adjustment term

Aµν := CρAµν
ρ (xρ, gρσ , ∂τ gρσ ), (8)

i.e., a term which vanishes when the constraints are satisfied and which does not affect the
principal part of the evolution system.

Note that we do not explicitly enforce the harmonic constraints (4) during the evolution.
Instead, we invoke the Bianchi identities which imply wave equations of the homogeneous
form

gρσ ∂ρ∂σCµ + Lµρ
σ ∂ρC

σ + Mµ
σ Cσ = 0, (9)

where the matrices L and M are functions of the metric and its first and second derivatives.
Given constraint-preserving initial and boundary conditions, the uniqueness of the

solutions to (9) guarantees that the harmonic constraints be conserved during the evolution. On
the other hand, constraint-preserving initial data also require that the initial Cauchy data satisfy
the standard Hamiltonian and momentum constraints. Also, since the harmonic constraints
imply evolution equations for the lapse and shift, the only remaining free initial data in addition
to the usual Cauchy data (the 3-metric and extrinsic curvature of the Cauchy hypersurface)
are the initial choices of lapse and shift and of the gauge source functions. Note that an initial
choice of the gauge source functions is effectively equivalent to a choice in the initial evolution
of the lapse and shift.

2.2. Constraint adjustment and damping

The constraint adjustments implemented in the code are those investigated by Babiuc et al
[25] and have the general form

Aµν := − a1√−g
Cρ∂ρg̃

µν +
a2C

ρ∇ρt

ε + eστCσCτ
CµCν − a3√−gtt

C(µ∇ν)t, (10)

where the ai > 0 are adjustable parameters (in the runs reported here we have set ai = 1), eστ

is the natural metric of signature (++++) associated with the Cauchy slicing and ε is a small
positive number chosen to ensure numerical regularity. The effects of these adjustments in
suppressing long wavelength instabilities in standardized tests for periodic boundary conditions
have been discussed by Babiuc et al [25].

In particular, the first and second terms in the adjustments (10) have been shown to be
effective in suppressing constraint-violating nonlinear instabilities in shifted gauge-wave tests.
The third term in (10), on the other hand, was first considered in [39] and leads to constraint
damping in the linear regime. Although it has been used effectively by Pretorius [11, 27] in
black-hole simulations, it was not effective in the nonlinear regime of the shifted gauge-wave
test [25].

We also note that the work reported in [25] has shown that adjustments which scale
quadratically with Cµ (or with higher powers) take effect too late to counter the growth of a
constraint-violating instability; and this has led to the specific form for the denominator of the
second term in (10).
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2.3. Gauge conditions

As noted earlier, the gauge source functions Fµ may be chosen to be arbitrary functions of the
spacetime coordinates and metric. They can be viewed as differential gauge conditions on the
densitized metric. This serves two important purposes. Firstly, it allows for convergence tests
based upon a known spacetime, whose analytic metric g

µν

(0)(x
ρ) is specified in a non-harmonic

gauge, by choosing

Fµ = − 1√−g(0)

∂ν g̃
µν

(0). (11)

Using these analytic gauge source functions, in combination with initial and boundary data
consistent with the analytic solution, gives rise to numerically evolved spacetimes that are
identical to the analytic solution up to discretization error. This is how the convergence
tests reported here have been carried out for the Schwarzschild spacetime expressed in
(non-harmonic) Kerr–Schild coordinates. Secondly, and most importantly, the gauge source
functions can be used to avoid gauge pathologies.

A major restriction for the form of the gauge source functions is that they cannot depend
on the derivatives of the metric. In particular, they cannot depend on the location or shape of
the MOTS and this is a problem when moving black holes are present, and where it is important
for the coordinates to be able to ‘respond’ to the black hole motion. In our simulation of binary
black holes, we have used the gauge source function

Fµ = ω√−g
(g̃tµ − ηtµ), (12)

where ηµν is the Minkowski metric and where ω = ω(xi) is a smooth, spherically symmetric,
time-independent weighting function with ω = 1 over most of the computational domain,
but with ω = 0 in some neighbourhood of the outer boundary. When spatial derivatives are
neglected and ω = 1, the resulting gauge condition takes the simpler form

∂t g̃
tµ = −(g̃tµ − ηtν), (13)

showing that it forces the densitized lapse and shift to relax to their Minkowski values.
In our first attempts at binary black hole simulations, we have found that this choice of

gauge source function keeps the lapse and shift under reasonable control. Similar choices of
gauge source functions have been used with success in other binary black hole simulations
[11, 27].

2.4. Boundary conditions

Our evolution domain has a timelike outer boundary and a smooth, spacelike excision boundary
inside each MOTS. The harmonic evolution system, in the second-order form (7), consists of
quasilinear wave equations whose characteristics are identical to the null directions determined
by the metric. As a result, all characteristics leave the spacelike excision boundaries and no
boundary conditions are necessary (or allowed).

At the timelike outer boundary, any dissipative boundary condition for the wave equation
with shift leads to a well-posed initial-boundary value problem (IBVP). Such dissipative
boundary conditions were first worked out in the one-dimensional (1D) case [40–42] and
general results for the 3D case have been discussed recently in [23, 43]. For a boundary with
normal in the +x direction, such dissipative boundary conditions have the form

[(1 − κ)∂t + κgzρ∂ρ]g̃µν = qµν, 0 � κ � 1, (14)
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for each component g̃µν , where qµν are the boundary data. The choice κ = 0 gives a Dirichlet
condition and κ = 1 gives a Neumann condition. Dirichlet and Neumann conditions are
marginally dissipative in the sense that they are purely reflective for modes with qµν = 0. A
strictly dissipative Sommerfeld-type condition arises when κ is chosen so that the derivative
on the left-hand side of (14) lies in the outgoing null direction.

In order for the IBVP to be constraint preserving, the boundary data qµν must be assigned
to enforce a homogeneous, dissipative boundary condition on the constraints Cµ. Then, with
proper initialization, the uniqueness of solutions to equations (9) ensures that the constraints are
satisfied throughout the evolution. The first proposal for such constraint-preserving boundary
conditions for the harmonic system consisted of a combination of three Dirichlet and seven
Neumann conditions on the components of g̃µν [22]. However, numerical studies [23] showed
that these Dirichlet–Neumann boundary conditions were effective in carrying the signal off
the grid but that their marginally dissipative nature reflected the noise and gave poor results in
highly nonlinear tests.

The first example of strictly dissipative constraint-preserving boundary conditions which
would in principle allow numerical error to leave the grid, was given for a tetrad formulation
of the Einstein equations by Friedrich and Nagy [44]. Constraint-preserving boundary
conditions of the Sommerfeld type which lead to a well-posed IBVP for the nonlinear
harmonic formulation have subsequently been formulated [45]. These Sommerfeld-type
boundary conditions have been incorporated in a numerical code which gives vastly superior
performance in nonlinear test problems than the Dirichlet–Neumann scheme [24]. However,
we have not yet implemented these conditions here; instead we have used a naive version
of Sommerfeld boundary conditions which not only is not constraint-preserving but whose
numerical implementation is only second-order accurate. In addition, as explained further
in section 3, the code uses summation-by-parts (SBP) difference operators which are fourth-
order accurate in the interior but only second-order accurate in the vicinity of the outer
boundary.

2.5. Reduction to first-order in time

In contrast to what is done in [11, 27], where the harmonic evolution system is second-order
in time, we find it convenient to discretize and use the method of lines to time-integrate an
evolution system which is first-order in time. We note that the reduction to first-order in time
can be done in a number of ways, some of which may have very different stability properties
when discretized (see appendix for a discussion).

Here, we introduce the auxiliary variables

Q̂µν := gtt ∂t g̃
µν + wgti∂i g̃

µν, (15)

where w = w(xi) is a smooth weighting function with w = 1 over most of the computational
domain but with w = 0 in a neighbourhood of the outer boundary. We rewrite definition (15)
to obtain the time derivatives of g̃µν in terms of Q̂µν and spatial derivatives of g̃µν

∂t g̃
µν = 1

gtt
(Q̂µν − wgti∂i g̃

µν). (16)

Next, we use identity (16) to re-express the principal part of the harmonic evolution
equations (7) as

∂ρ (gρσ ∂σ g̃µν) = ∂tQ̂
µν + (1 − w)∂t (g

ti∂i g̃
µν) + ∂i(g

it ∂t g̃
µν) + ∂i(g

ij ∂j g̃
µν), (17)

and after using (16) to convert all time derivatives of g̃µν in (17) and (7) into spatial derivatives,
we obtain an equation of the form

∂t Q̂
µν = Fµν(g̃, ∂i g̃, ∂ij g̃, Q̂, ∂iQ̂). (18)
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Equations (16) and (18) represent our basic evolution equations for the field variables g̃µν and
Q̂µν , respectively.

3. Numerical implementation

3.1. Finite-difference algorithms

The code solves the finite-difference equations on a Cartesian grid with finest resolution
xi = h, using a cubic outer boundary and with excision boundaries for each black hole.
Vertex-centred mesh refinement is applied using the Carpet driver [35], within the framework
of the Cactus computational toolkit [36]. The time evolution is carried out by the method
of lines using a fourth-order Runge–Kutta scheme, with a fifth-order spatial prolongation
and a second-order time interpolation to provide fine-grid boundary data at mesh-refinement
boundaries.

While the bulk of the code uses fourth-order accurate centred difference operators to
approximate spatial derivatives, in a neighbourhood of the outer boundary we approximate the
spatial derivatives by diagonal norm SBP difference operators of fourth-order interior accuracy
and of second-order accuracy at the boundary. More specifically, on a grid xI = x0 + ih with
boundary at x0, these operators, as described by Mattsson and Nordström [46], are

(∂xf )i=1 → 1

h

(
1

2
f[2] − 1

2
f[0]

)
, (19)

(∂xf )i=2 → 1

h

(
− 4

43
f[4] +

59

86
f[3] − 59

86
f[1] +

4

43
f[0]

)
, (20)

(∂xf )i=3 → 1

h

(
− 4

49
f[5] +

32

49
f[4] − 59

98
f[2] +

3

98
f[0]

)
, (21)

and

(
∂2
xf

)
i=1 → 1

h2
(f[2] − 2f[1] + f[0]), (22)

(
∂2
xf

)
i=2 → 1

h2

(
− 4

43
f[4] +

59

43
f[3] − 110

43
f[2] +

59

43
f[1] − 4

43
f[0]

)
, (23)

(
∂2
xf

)
i=3 → 1

h2

(
− 4

49
f[5] +

64

49
f[4] − 118

49
f[3] +

59

49
f[2] − 1

49
f[0]

)
. (24)

For grid points at the outer boundary, on the other hand, all components of Q̂µν are
updated using a flat-spacetime, homogeneous Sommerfeld boundary condition. With the
outer boundary located in the weak-field regime, a Sommerfeld condition applied to Q̂µν

is equivalent to setting the Sommerfeld derivative of g̃µν to the value of this Sommerfeld
derivative at t = 0, as determined by the initial data. (By implication, our boundary algorithm
is compatible with the initial data.) This boundary condition is effective in maintaining
numerical stability. However, it is not constraint-preserving and is a prime target for future
code improvement.

In the part of the computational domain near the outer boundary where w = 0, the
evolution algorithm for Q̂ and g̃ reduces to a fourth-order version of the subluminal evolution
algorithm for evolving the wave equation with shift discussed in [43]. This algorithm is known
to be unstable in the region where the shift is superluminal (e.g. near the excision boundary).
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In this superluminal region, we set w = 1 so that the definition of Q̂ (cf equation (15)) makes
Q̂ the derivative of g̃ in the normal direction to the Cauchy hypersurfaces, which stabilizes the
algorithm. A more detailed discussion of this subluminal–superluminal blending is discussed
in appendix.

Another important ingredient of our code is numerical dissipation. We find this essential
in keeping the algorithm stable in the neighbourhood of the excision domain. In addition, this
is also helpful in killing off high-frequency noise generated at the mesh-refinement boundaries.
In the interior of the grid, numerical dissipation is added at O(h5) in the form

∂2
t g̃µν → ∂2

t g̃µν +
1

64
h5

∑
i

εi(D+iD−i )
3∂t g̃

µν, (25)

where D±i are the forward and backward difference operators in the xi direction and εi is a
smooth weighting function. In the neighbourhood of a face of the outer boundary with normal
in the x-direction, we set εx = 0 so that the dissipation applies only in the tangential directions.
In carrying out convergence tests for a Schwarzschild black hole, we choose εi = 0.2 outside
the apparent horizon (AH) and εi = 2 inside the AH (except for a transition region). In the
two black hole simulations, we choose εi = 1 outside the AH and εi = 2 inside the AH.

3.2. Moving excision

The excision algorithm is driven by the apparent horizon finder algorithm [33, 34]. Strictly
speaking, this algorithm searches for MOTS, regardless of whether these are apparent horizons
or not. We recall that MOTS are defined as smooth, compact two-dimensional surfaces whose
outgoing normal null geodesics have zero expansion. With respect to a 3 + 1 foliation, the
apparent horizon is defined as the three-dimensional hypersurface traced out by the outer
boundary of the trapped region in each time slice. If sufficiently smooth, the apparent horizon
is foliated by MOTS.

A smooth spacelike boundary is used to excise a region inside each MOTS, resulting
in a jagged boundary in the Cartesian grid. The excision boundary is chosen to be centred
inside the MOTS and scaled in coordinate size to be 0.7 the size of the MOTS in the binary
simulations and 0.8 in the Schwarzschild black hole tests.

We keep the same interior evolution stencil near the excision boundary by introducing
the necessary ghost points. Because the dissipation operator (25) would require an excessive
number of ghost points we replace it with a third-order form h3(D+iD−i )

2 near the excision
boundary. Values at the required ghost points are supplied by an extrapolation scheme which
was proved to be stable for the case of a boundary aligned with the grid [43]. We have
generalized this to the case of a generic smooth boundary in a Cartesian grid following
the ‘embedded-boundary’ method developed by Kreiss and Petersson [47] for formulating a
stable Neumann condition. More specifically, we construct a vector vi by taking the flat-space
displacement from the centroid of the excised region to the current position, and require that∑

i

(viD±i )
3g̃µν = 0 and

∑
i

(viD±i )
3Q̂µν = 0, (26)

where the one-sided differences D±i correspond to the sign of vi . The extrapolation condition
(26) is applied iteratively at the points near the boundary until the full stencil of ghost points
is updated.

Extra care needs to be paid to the identification of ghost points when the excision domain is
moving across the grid. In particular, grid points that become interior points at tN := t0 +Nt

but were ghost points at tN−1 need to be treated as ghost points, i.e., the excision algorithm
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must fill them with extrapolated values during the time integration from tN−1 to tN . However,
when evolving from tN to tN+1, these same grid points need no longer be treated as ghost
points and can then be labelled as evolution points.

4. Code tests

We now present a series of tests to validate our code’s stability and accuracy, starting with
the evolution of Schwarzschild black holes using static gauge source functions, followed by
the head-on collision of two equal-mass black holes and finally the inspiral and merger of the
QC-0 initial data set for binary black holes.

4.1. Single black holes

We have evolved Schwarzschild black holes for long periods of time to test the stability and
accuracy of our evolution algorithm, excision scheme and outer boundary treatment. To study
the code’s convergence with resolution, we made evolutions with the finest grid spacing set to
h = 0.100M, 0.080M, 0.0666M and 0.050M . Each evolution used a similar grid structure,
with five levels of nested 2:1 mesh refinement with the finest grid (spacing h) extending from
the origin to 4M + 9h, the next coarsest (spacing 2h) from the origin to 8M + 9h and so on, up
to the coarsest grid (spacing 16h) from the origin to 64M . The tests were carried out in octant
symmetry. For representative runs, we cross-checked that identical output was produced in
full-space simulations.

Each evolution was run for 1000M , with no sign of instability for this full duration. We
measure the accuracy of these evolutions by monitoring the apparent horizon’s areal radius
and the harmonic constraint C0. (Convergence results for the error in g̃00 are very similar to
those for C0.)

Figure 1 shows the error in the apparent horizon areal radius rAH/M − 2 for these
evolutions. After an initial transient, each evolution displays a slow growth (roughly linear in
time) in the apparent horizon. The growth rates are small, and show fourth-order convergence
to zero with the resolution. Figure 2, on the other hand, shows the magnitude of C0 along
the x-axis at t = 200M . It is clear that while there are regions of excellent pointwise fourth-
order convergence, there are also regions where mesh-refinement and other effects make the
convergence more problematic.

To gain a clearer picture of the overall convergence behaviour of these evolutions and
because the error is by far and large dominated by a small set of grid points near the excision
boundary, we use a ‘masked’ 2-norm ‖C0‖2 defined as the root-mean-square norm of C0

over only those grid points which are outside the apparent horizon and do not have any finer-
refinement-level grid points overlaying them. For example, all of the finest grids outside the
apparent horizon would be included in the masked norm, but only that part of the grid with
spacing 2h which is outside 4M+9h would be included, and similarly for the other coarser
refinement levels.

After a short initial transient (lasting a time comparable to the outer-boundary crossing
time), ‖C0‖2 is essentially time-independent in each run. Figure 3 shows the variation of
‖C0‖2 with resolution at selected times. As can be seen, the norm decreases with resolution,
with a convergence exponent which is always �3, but varies with resolution. We attribute this
behaviour to not having sufficient resolution to see the asymptotic convergence behaviour as
introduced by the dissipation operator.

Similar results have also been obtained for spinning black holes, which we have evolved
with very high spins. Simulations of Kerr black-holes with spins J/M2 up to 0.99 have



S284 B Szilágyi et al
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Figure 1. Error rAH/M − 2 in the areal radius of the apparent horizon as a function of time
for evolutions of Schwarzschild initial data at four different resolutions. The main figure shows
rAH/M − 2, while the inset shows (0.1M/h)4 × (rAH/M − 2), demonstrating that the error shows
fourth-order convergence to zero as the resolution is increased.

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 2  5  10  20  50

(0
.1

M
/h

)4  ×
 C

0  / M
-1

r/M

h=0.100M
(0.100/0.080)4 × h=0.080M

(0.100/0.0666)4  × h=0.0666M
(0.100/0.050)4  × h=0.050M

Figure 2. Scaled harmonic constraint (0.1M/h)4×C0 at t = 200M along the x axis, for evolutions
of Schwarzschild initial data at four different resolutions.

shown no apparent signs of instability up to t = 100M . We have not yet investigated them
further.
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Figure 3. Masked 2-norm of the harmonic constraint ‖C0‖2 as a function of the finest grid
resolution h, at selected times, for evolutions of Schwarzschild initial data at four different
resolutions. Note that the t = 200M, t = 500M , and t = 1000M curves are almost coincident
(because the norms are almost time-independent over this range of times).

4.2. Binary black hole mergers

4.2.1. Head-on collision. The binary black hole collision we have carried out is an equal-
mass, non-spinning head-on collision of two Brill–Lindquist black holes of masses 0.5 each,
located on the z-axis at z = ±1.16.

The test was carried out in octant symmetry, using a pure harmonic gauge (i.e.,
Fµ = 0). The numerical grid was set up using nine levels of refinement, with grid step
h(n) = 3.2 × 2−n, n = 0, . . . , 8 giving a grid step of h = 0.0125 on the finest refinement level
and an outer boundary at 144M . The chosen grid setup is such that the initial black holes are
contained within the bounding box of the finest grid and hence no motion of the finer grids is
needed.

After the merger, when the final horizon has an ellipsoidal shape with maximum and
minimum radii in a ratio rmin/rmax � 0.6, the finest refinement level is dropped. This is
justified by the fact that the coordinate radius of the final apparent horizon radius is more
than double that of the two individual MOTS. Overall, the simulation shows no sign of
instability and figure 4 shows the � = 2,m = 2, even-parity multipole of the Zerilli function
Q+

20 as extracted at R = 60M , indicating a well-captured quasi-normal ringing of the black
hole.

4.2.2. QC-0 inspiral. We next consider the evolution of the QC-0 initial data defined by [48]
and constructed with the highly-accurate spectral elliptic solver of [49]. In contrast with what
was done for the head-on collision, we here use the gauge source function (12) in order to
keep the lapse from collapsing and the shift from forming large coordinate distortions in the
strong-field region. While helping in terms of stability, these gauge source functions also lead
to a coordinate growth of the MOTS.

The simulation started out with nine levels of mesh refinements, with the spacing on the
individual refinement levels being h(n) = 2.048 × 2−n, n = 0, . . . , 8 and yielding a resolution
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Figure 4. Zerilli waveform for the head-on problem, extracted at R = 60M . The outer boundary
in this test was at L = 144M .

of 0.008M on the finest refinement level, with an outer boundary at ≈160M . The simulation
was carried out in the x � 0, z � 0 quadrant, taking advantage of the reflection symmetry
across z = 0 and the π/2 rotation symmetry around the z-axis. Around each black hole we
have used a set of refinement levels of size L(n) = RAH(t = 0) × 2(9−n) so that the finest grid
(n = 8) would initially be twice the size of the apparent horizon. This refinement structure
follows the motion of the black holes across the grid and, as the coordinate growth of the
MOTS takes place, we adjust our grid structure by first dropping the finest and later the second
finest refinement level. After dropping the second finest level, we re-adjust our grid structure
by setting L(n) = RAH(t) × 2(7−n), n = 0, . . . , 6, keeping the ratio L(n)/RAH(t) constant as
the MOTS grows further.

At the time of the formation of the common apparent horizon the finest grid has
h(6) = 0.032M . The individual MOTS were tracked as long as possible. Eventually the
horizon finder algorithm hits the excision domain of the other black hole, at which time the
individual MOTS are lost.

Figures 5 and 6 reveal an interesting feature of the MOTS dynamics following the
formation of a common apparent horizon. The individual MOTS continue to inspiral until
they touch (apparently at a single point) and then overlap. Note that, by definition, at the
time of touch (and of later intersection) of the individual MOTS, there already exists a third,
common MOTS, which is now the apparent horizon. We measure a coordinate velocity
of v ≈ 0.16 of the MOTS as they approach each other. This phenomenon, including the
approximate value of v, was reproduced using a variety of numerical parameters, including
varying resolutions, regridding rules and outer boundary locations. Finer grids allow longer
tracking by the apparent horizon finder, which in turn leads to larger overlaps between the
individual horizons. The figures we present here were obtained with our best-resolved run.

We have measured the convergence of our QC-0 test by comparing results obtained at
three different resolutions. At the time of the overlap of the MOTS, the grid steps were
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Figure 5. Three-dimensional representation of the QC-0 merger. The axes are (x, y, t). The
overlap of the MOTS is clearly visible. Note that these surfaces are actually smooth everywhere;
their apparent non-smoothness in some parts of this figure is an artefact of the perspective projection.

hh = 0.032M,hm = 0.04M and hl = 0.044M . The MOTS touching time for the three
resolutions was Th ≈ 10.73M,Tm ≈ 10.36M and Tl = 10.29. As a first measure of the
numerical error, we checked the convergence of ‖C0‖∞ at t ≈ 10.956. With the excision
being a major source of numerical error, the L∞ norm is a reflection of the constraint error
near the excised points, including those within the region of overlapping MOTS. Overall, we
measure that ∥∥C0

l

∥∥
∞∥∥C0

h

∥∥
∞

≈
(

hl

hh

)2.25

. (27)

Such a convergence order can be explained by bearing in mind that the derivatives of the
metric contained in the constraint C0 are computed using five-point centred stencils. Near
the excision boundary, however, two of those five points are updated by extrapolation, using
the available three points. This effectively implies that the quantity C0 is computed near the
excision boundary using a three-point non-centred, first-order derivative stencil, which has an
error of O(h2).

As an additional measure of the convergence order we have computed the L2 norm of
the differences between the coordinate shapes S of the MOTS for the different gridsizes.
Given the fact that the three runs had shape information available at different discrete time
values, first we interpolated in time, from all three sets of data, to a common set of time
slices

tn = tmin +
n − 1

N − 1
× (tmax − tmin), n = 1, . . . , N. (28)

The value of N was not critical in this convergence test, given the smooth behaviour of the
surfaces. We used N = 1000 for the individual MOTS and N = 100 for the common apparent
horizon.



S288 B Szilágyi et al
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Figure 6. Intersection of the MOTS with the z = 0 plane at the time when the individual MOTS
first touch (t ≈ 10.73M) and just before the individual MOTS are lost (t ≈ 11.47M); for the latter
time the individual horizon-finder angular grid points are also shown. At the times shown here
the finest grid has h(6) = 0.032M; this is illustrated in the plot legend. Note that the MOTSs are
well-resolved on both the Cartesian and angular grids at all times, and that they clearly overlap at
the latter time.

At each time level tn, for each resolution, we had a set of grid points labelled by their
angular grid index [I, J ] as well as Cartesian coordinates. (Note that for convenience we
used the same angular grid resolution of the horizon-finder algorithm for all our runs.) For a
given choice of tmin, tmax and N we define the L2 norm of the error in the shape of the MOTS
to be

‖Sl − Sh‖2 =
√√√√∑

I,J,n

3∑
i=1

[
(xi

l (tn, I, J ) − xi
h(tn, I, J )

]2/
(NINJ N). (29)

We set tmax = 11.0 based on the maximum physical time for which horizon data were
available for the coarsest run. The convergence rate for the individual MOTS (with tmin = 0)
was

‖Sl − Sh‖2

‖Sm − Sh‖2
≈

(
hl

hm

)2.42

. (30)

The accuracy of the touching and overlapping MOTS was measured by restricting the L2 norm
to t � tmin = 10.4. The measured convergence rate is O(h2.59), while the common (apparent)
horizon shape was convergent to O(h2.57).

Overall the accuracy of our QC-0 test is between second- and third-order, which is lower
than what was measured for the case of an isolated Schwarzschild spacetime. As mentioned
above, the most likely causes of the larger error are the close proximity of the moving
excision algorithm to the apparent horizon finder interpolation stencils and the O(dt3) time
interpolation in the mesh refinement algorithm. (Note that, for time-independent test cases
such as a Schwarzschild black hole, the time-interpolation error will effectively not be seen
due to the small coefficient in front of the corresponding O(dt3) error term.)
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New insight into the peculiar features of apparent horizons has been revealed in recent
numerical simulations [50] and some mathematical machinery has been developed to deal with
their properties in a rigorous way [51, 52]. In particular, a recent theorem due to L Andersson
and J Metzger [37] requires that an outer common horizon must already exist if two MOTS
come into contact. It is reassuring and stimulating that our results are consistent with this
theorem.

5. Conclusions

Over the last few years substantial progress has been made in developing mathematical
theorems which establish the well-posedness of the harmonic initial-boundary value problem
and the stability of its finite difference approximations. We have incorporated some of this
theory in developing an explicit in time, finite-difference harmonic code and for which we
have presented a series of tests assessing its validity and accuracy. Such tests range from
the evolution of isolated black holes to the head-on collision of two black holes and over
to a binary black hole inspiral and merger. All of them indicate that stable, convergent and
accurate solutions of the Einstein equations in fully nonlinear regimes can be carried out.
Furthermore, the merger simulations have also revealed that individual MOTS can touch and
even intersect. This novel feature in the dynamics of the MOTS was not found before but is
consistent with theorems on the properties of MOTS. This finding raises new questions about
the mathematical features of MOTS, which we look forward to exploring.

Overall, these initial results are an important indication that the AEI harmonic code is
capable of contributing to the physical understanding of binary black holes currently being
achieved by numerical simulation. A key assurance of the validity of numerical results for
binary black holes is their confirmation by a variety of codes based upon different theoretical
formulations and numerical methods.

The work reported here also suggests that there is room for a great deal of improvement
in the numerical methods we have adopted. We have already emphasized the need for
implementing a constraint-preserving treatment of the outer boundary. In addition, we
have carried out very little exploration to optimize the use of constraint adjustments, the
blending of the subluminal and superluminal algorithm, the extrapolation scheme at the
extraction boundary, mesh refinement, the addition of numerical dissipation, the choice of
gauge conditions, etc. It is particularly reassuring that the code remains stable even though
a large amount of error is being generated at the jagged excision boundary. It appears that
the outflow nature of the boundary, i.e., its spacelike geometry combined with the lightlike
direction of all characteristics of the system, leads to an equilibrium between noise generation
and its flux out of the grid.

A number of design choices of our code are based on both the experience gained while
building the Abigel code and the published work of Pretorius. It is an optimistic sign that our
present results could be obtained by using what was in a number of cases our initial choice
for the various code details. We regard this as evidence of the fundamental robustness of the
harmonic formulation.
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Appendix. Blended subluminal–superluminal evolution

The evolution system (7) consists of coupled quasilinear wave equations whose numerical
stability is determined by the principal part. By the principle of frozen coefficients [53],
the stability analysis can be reduced to a consideration of the wave equation with shift.
Although finite difference approximations to the wave equation are a well-studied problem,
the complications introduced by a non-zero shift are peculiar to the black hole excision
problem. This was first recognized in [54], where it was suggested that the superluminal shift
introduced by tracking the excision boundary could be treated by implicit methods.

Subsequent studies established the stability of explicit finite-difference algorithms, with
second-order accuracy, for the case of superluminal evolution. This was first achieved for the
1D wave equation with shift

gtt ∂2
t � + 2∂t∂xg

xt� + gxx∂2
x� = 0, (A.1)

in work by Calabrese [40] and Szilágyi et al [41]. The standard choice of energy for this
system,

E(t) = 1

2

∫
dx[(−gtt (∂t�)2 + gxx(∂x�)2], (A.2)

gives rise to a norm when the evolution direction ∂t is timelike. In that subluminal case,
summation by parts (SBP) can be used to establish stability of the semi-discrete approximation

gtt ∂2
t � + 2gxtD0∂t� + gxxD+D−� = 0, (A.3)

where D+,D− and D0 are, respectively, the standard forward, backward and centred finite
difference approximations for ∂x . This ensures that the numerical error is controlled by an
estimate for the semi-discrete version of the energy norm E(t). For most methods of lines time
integrators, e.g. Runge–Kutta, this estimate extends to the fully discretized system. Algorithm
(A.3) has been extended to the 3D subluminal case to give a stable SBP boundary treatment
[23].

However, algorithm (A.3) is unstable (and cannot be stabilized by Kreiss–Oliger-type
dissipation) when the evolution is superluminal, i.e., when the shift is large enough so that ∂t

is spacelike and

gxx = hxx +
(gxt )2

gtt
< 0, (A.4)

where hxx > 0 is the inverse to the spatial metric of the t = const Cauchy hypersurfaces. In
that case, when the energy E(t) is no longer a norm, stability can be based upon the positive
energy associated with the time-like normal nµ to the Cauchy hypersurfaces,

E(n) = 1

2

∫
dx

[
− 1

gtt
(gtt ∂t� + gtx∂x�)2 + hxx∂2

x�

]
. (A.5)

As discussed in the 1D case [40, 41], the discretization

gtt

(
∂t +

gxt

gtt
D0

)2

� + hxxD+D−� = 0 (A.6)
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yields a stable second-order accurate superluminal algorithm. Stable superluminal evolution
algorithms for the 3D case have been given by Motamed et al [43], where the global stability
of a model black hole excision problem is treated.

Although a stable boundary treatment for the superluminal algorithm (A.6) has been
proposed [42], its extended stencil (due to the D2

0 operator) makes this complicated and an
SBP boundary version has not yet been formulated. For this reason we use the 3D version of
the subluminal algorithm (A.3) in the neighbourhood of the outer boundary and blend it with
the superluminal algorithm (A.6) by introducing the vector

n̂µ = (gtt , wgit ) (A.7)

and the evolution variable

Q̂ = n̂µ∂µ�, (A.8)

where w(xi) is a spherically symmetric smooth blending function, with w = 0 near the outer
boundary and w = 1 (so that n̂µ = nµ) in the interior. It suffices to discuss the frozen
coefficient case in which the 1D wave equation (A.1) gives rise to the evolution system for Q̂

and �,

gtt ∂t Q̂ = −(2gxt − n̂x)∂x(Q − n̂x∂x�) − gttgxx∂2
x�

gtt ∂t� = Q̂ − n̂x∂x�.
(A.9)

Note that introduction of the auxiliary variable Q̂, which reduces the system to first-order in
time, introduces no associated constraints.

For a second-order accurate approximation, we discretize (A.9) according to

gtt ∂t Q̂ = −(2gxt − n̂x)D0Q + (2gxt − n̂x)n̂xD+D−� − gttgxxD+D−�

gtt∂t� = Q̂ − n̂xD0�.
(A.10)

In the neighbourhood of the outer boundary, this reduces to the subluminal algorithm (A.3) and
in the interior where w = 1 it reduces to the superluminal algorithm (A.6). The harmonic code
uses a fourth-order accurate version of (A.10) in the interior region. An alternative scheme
for switching between stable subluminal and superluminal algorithms across the ‘artificial
horizon’ where det(gij ) = 0 is given in [43].
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