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Abstract. The Mock LISA Data Challenge is a worldwide effort to solve the
LISA data analysis problem. We present here our results for the Massive Black
Hole Binary (BBH) section of Round 1. Our results cover Challenge 1.2.1, where
the coalescence of the binary is seen, and Challenge 1.2.2, where the coalescence
occurs after the simulated observational period. The data stream is composed
of Gaussian instrumental noise plus an unknown BBH waveform. Our search
algorithm is based on a variant of the Markov Chain Monte Carlo method that uses
Metropolis-Hastings sampling and thermostated frequency annealing. We present
results from the training data sets and the blind data sets. We demonstrate that
our algorithm is able to rapidly locate the sources, accurately recover the source
parameters, and provide error estimates for the recovered parameters.

http://arxiv.org/abs/gr-qc/0701167v1
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1. Introduction

Massive black hole binaries (BBH) are expected to be one of the strongest candidate
sources for the Laser Interferometer Space Antenna, LISA, a joint ESA-NASA
mission that will search for gravitational waves (GW) is the frequency bandwidth
10−5 ≤ f/Hz ≤ 1 [1]. The detection of BBHs by LISA is important for many reasons.
Firstly, it will allow us to carry out a test of gravity in the highly nonlinear strong-
field regime [2, 3, 4]. Secondly, it will allow us, in conjunction with other astronomical
methods, to investigate such things as galaxy interactions and mergers out to very
high redshift (z ≥ 10). It will also allow us to test galaxy formation models such as
Hierarchical formation, where it is believed that modern day galaxies were formed from
the merger of smaller “seed” galaxies. Due to their high masses, the inspiral phases for
these systems occur at frequencies which are unavailable to the ground based detectors
due to their low frequency cutoffs. Also, unlike galactic binaries and Extreme Mass
Ratio Inspirals (EMRIs), the BBHs are very clean sources with detectable signal to
noise ratios (SNR) of order ∼ 10 − 1000s. This means that we will not have to deal
with confusion noise between sources [5], something which is very important in the
search for galactic binaries and to a lesser extent in the search for EMRIs.

Here we describe our analysis of the BBH component of the Mock LISA Data
Challenge [6]. Our search algorithm is a variant of the Markov Chain Monte Carlo
method (MCMC) which has been described in References [5, 8, 9]. The algorithm
uses a mixture of frequency annealing with thermostated heat, simulated annealing,
plus a 5-D exploration of the posterior distributions for the search parameters (we
use a generalized F -statistic to automatically search over the distance, inclination,
polarization and initial phase). We refer the reader to Reference [5] for a full
description of the algorithm.

In our earlier work we used the Low Frequency Approximation (LFA) [10] to
model the instrument response, but to our surprise this proved to be insufficiently
accurate for the MLDC data sets where the full detector response is used. Since the
maximum frequencies of the injected signals were below 2 mHz, we had expected the
LFA to be adequate, but when running on the training data sets we found systematic
offsets in many of the parameters. The parameter recovery improved significantly
when we upgraded our instrument response to the Rigid Adiabatic Approximation
(RAA) [11], which includes finite armlength effects. Our interpretation of this finding
is that while the differences between the LFA and RAA are small at 2 mHz, the
differences are amplified by the very large contribution to the signal to noise ratio that
comes from from the final cycles of the inspiral. Indeed, we suspect that the remaining
small systematic offsets in the recovered masses can be traced to the approximate
nature of the RAA.

We modified our barycenter waveforms and signal tapers to agree with those used
to inject the simulated signals [12], but rather than searching over initial phase (the
phase parameter used to generate the waveforms), we continued our earlier practice of
searching over the phase at coalescence, as we have found this to give better acceptance
rates in the search chains.

The organization of the rest of the paper is as follows : In Section 2 we present a
very short discussion of the search algorithm used. We define the Metropolis-Hastings
sampling, the frequency annealing with thermostated heat and the simulated annealing
scheme used. Section 3 contains a presentation of results for both the training and
blind data sets for the challenges.
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2. The Search Algorithm.

Our search algorithm, which is again explained in more detail in [5] is based on a
Metropolis-Hastings sampling, which is the central engine of the standard Markov
Chain Monte Carlo method (MCMC). Our method incorporates both simulated and
frequency annealing schemes at various stages in the search. The algorithm uses a
number of proposal distributions to jump around the parameter space, as well as a
maximization over the time to coalescence. To quickly summarize : Starting with the
signal s(t) and some initial template h(t, ~x) the (un-normalized) posterior density at
~x is computed. We then draw from a proposal distribution and propose a jump to
another point in the space ~y. The posterior and proposal densities at ~x and ~y are then
compared by forming the the Metropolis-Hastings ratio

H =
π(~y)p(s|~y)q(~x|~y)

π(~x)p(s|~x)q(~y|~x)
. (1)

Here π(~x) are the priors of the parameters, p(s|~x) is the likelihood, and q(~x|~y) is the
proposal distribution. This jump is then accepted with probability α = min(1, H),
otherwise the chain stays at the proposal point.

The likelihood was calculated using a generalized F -Statistic [13], which allows for
an analytic extremization over the extrinsic parameters: luminosity distance; orbital
inclination, polarization and orbital phase at coalescence. Consequently, the Markov
Chain portion of our search returns a marginalized posterior distribution. For future
Challenges, we intend to follow the initial detection with a full parameter search so as
to obtain the full posterior.

In the first section of the search we use a frequency annealing scheme to speed
up the search. The search templates and the inner products used to compute the
F -Statistic are terminated at a cut-off frequency fcut, which is initially set at 4×10−5

Hz. The cut-off frequency is then increased as the chain progresses according to

fcut =







10−B(1−i)fmax f < fmax

fmax f ≥ fmax

, (2)

where i is the number of steps in the chain, B is a growth parameter and fmax is the
maximum frequency the signals could reach give the priors on the masses etc.. As the
cut-off frequency is incremented, more of the BBH signal is revealed, and the SNR of
the best fit templates increases. Thus, frequency annealing acts in a similar way to
traditional simulated annealing, but with the added benefit of saving in the cost of the
template generation and F -Statistic computation. In testing we found that the search
chains would sometimes lock onto secondary maxima during the frequency annealing
phase, so we introduced a “thermostating” procedure to control the effective SNR of
the recovered signals. This was done by multiplying the noise spectral density in the
noise weighted inner products by a “heat” factor β, which was adjusted based on the
SNR of the current template:

β =







1.0 0 ≤ SNR ≤ 20

(

SNR
20

)2
SNR > 20

, (3)
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Once the frequency annealing stage was completed, the chain was cooled using the
simulated annealing scheme

β =







10−ξ(1− j

Nc
) 0 ≤ j ≤ Nc

1 j > Nc

, (4)

with ξ = log10 βmax where βmax is the heat factor at the end of the frequency
annealing stage. The index j counts from the end of the frequency annealing, and
the cool down lasts Nc steps. A standard MCMC exploration of the marginalized
posterior distribution function (PDF) commences once β = 1 and continues for Ne

steps. Finally, over the course of Nf steps, we freeze the chain to a heat of β = 0.01
to aid in the extraction of Maximum Likelihood Estimates (MLEs) for each of the
parameters.

3. Conducting the Challenge.

The MLDC for binary black holes was broken into two parts. Challenge 1.2.1 had a
source that coalesced inside the observation period, while Challenge 1.2.2 had a source
coalescing outside of the observation period. The data sets provided consisted of 221

data points sampled every 15 seconds giving approximately one year of data.

3.1. Challenge 1.2.1.

Priors on the source parameters were given for each challenge. For Challenge 1.2.1
we were told that mass ranges were restricted such that m1 ∈ [1, 5] × 106M⊙ and
m2 = m1/x, where 1 ≤ x ≤ 4, and that the time to coalescence lay in the range
tc ∈ [5, 7] months. We were also told that the system would have a signal to noise in
the range 450 ≤ SNR ≤ 500 in one interferometer. No priors were given on the other
source parameters. In addition to the blind data set, a training data set was made
available with parameters drawn from the same set of priors.

For the 1.2.1 training data set we ran several 50,000 point chains. These chains
were composed of a 10,000 point frequency annealing search, a 10,000 point simulated
annealing phase cooldown, a 20,000 point MCMC chain to explore the PDFs, and
a final 10,000 point freezing of the chain to extract the MLEs. In Figure 1 we plot
three different search chains for eight of the nine waveform parameters in the 1.2.1
training set. We have omitted the search chain for the initial phase. We plot the
extrinsic parameter chains even though their values were determined by analytical
extremization at each point in the chain. While the angular variables employ a
linear scale for the number of steps in the search, the other parameters are plotted
against a logarithmic scaling to highlight the early convergence that occurs for the
parameters such as the time to coalescence and the masses. The training data set
provided for Challenge 1.2.1 proved to be more challenging than similar test cases we
generated for ourselves. In particular, the sky position of the source was not recovered
to the accuracy predicted by a Fisher matrix estimate of the measurement errors. We
attribute this to an unfortunate alignment of the source with respect to the LISA at
the time of coalescence. At coalescence the motion of the detector turns out to be
perpendicular to line of sight to the source, so there is little or no Doppler shift of the
gravitational waves right at the time when most of the SNR is accumulating. Thus,
directional information gets less weighting than is typical, and the small differences
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Figure 1. A plot of three search chains for eight of the nine parameters in the
Challenge 1.2.1 training set. The solid lines in each cell denote the true value.

between the RAA and the full response used to generate the data sets is amplified.
The problem went away when we tested our search algorithm on the same source
using data that was simulated with the RAA. In future Challenges we plan to use a
full detector response model to generate the search templates.

The sky location for the 1.2.1 blind data set proved to be easier to pin down and
we were able to get away with shorter search chains of 25,000 points. These chains
were composed of a 5,000 point frequency annealing search, a 5,000 point simulated
annealing phase cooldown, a 10,000 point MCMC chain to explore the PDFs at unit
heat, ending with a 5,000 point freezing of the chain to extract the MLEs. We have
plotted the search chains for the blind data set in Figure 2, along with the values of the
injected source parameters which were revealed after we had submitted our results.
We see that the chains typically find the three most important parameters (Mc, µ, tc)
in around 1000 steps. Once again the sky positions took longer to converge, but in
this instance the chains converged on the injected parameter values. The search also
accurately recovered the extrinsic parameters, save for the initial phase. The failure to
recover the initial phase was due to a bug in our F -Statistic routine that we overlooked
when working on the training data. We should also mention that while the recovered
value for the polarization ψ is off by π from what was injected, the polarization angle
is only defined up to multiples of π so the solution is physically identical.

In Figure 3 we have plotted the marginalized PDFs for the extrinsic parameters
based on the merged MCMC chains from each different run. The solid line in each
cell is the Fisher matrix prediction for the marginalized posteriors. While the chains
we not long enough to fully characterize the posteriors, we see that the merged chains
show good agreement with Fisher predictions for (Mc, θ, φ). The Fisher predictions
for (µ, tc) do not agree very well with the MCMC results. At this time we do not have
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Figure 2. A plot of three search chains for eight of the nine parameters for the
blind Challenge 1.2.1 data set. The solid lines in each cell denote the true value.

an explanation for the disagreement.
In Table 1 we compare that values of the key file against the MLEs for the training

set (top) and the blind set (bottom). We also quote the 1-σ error estimation from the
Fisher matrix, and the error in multiples of the 1-σ error estimates from the Fisher
matrix. In the table, tc is recorded in seconds. While again we did not search for them,
the MLEs obtained for (ι, lnDL, ψ) give errors of (3.86× 10−3, 6.62× 10−2, 1.43) and
(1.7× 10−2, 4.15× 10−2,−2.7× 10−4) for the training and blind data setsrespectively.
The ψ value is obtained from converting ψ → ψ+π. For the blind data set, the source
had a combined SNR of 664.78, while we recovered a SNR of 658.38 . Again the
mismatch is due, we feel, to a phasing issue in the code which has since been rectified.
Each run took approximately 24 hours on a single Mac G5 processor.

3.2. Challenge 1.2.2.

The priors for Challenge 1.2.2 gave a time to coalescence of 400± 40 days and masses
chosen such that m1 ∈ [1, 5] × 106M⊙ and again m2 = m1/x, where 1 ≤ x ≤ 4. No
priors were given on the other six parameters, save that the source would have an SNR
in the range of 20 ≤ SNR ≤ 100 in one interferometer. For both the training and
blind sets, we used 25,000 point search chains. These chains were composed of a 5,000
point frequency annealing search, a 5,000 point simulated annealing phase cooldown,
a 10,000 point MCMC chain to explore the PDFs at unit heat, ending with a 5,000
point freezing of the chain to extract the MLEs.

In Figure 4 we plot three search chains for the training data set. The chirp mass
and time to coalescence are recovered in under 1000 steps. For this particular source,
the chains also rapidly converge on the correct sky position. Again, while not explicitly
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Figure 3. A comparison of the marginalized PDFs from the MCMC chains for
the intrinsic parameters of 1.2.1 against the Fisher prediction (solid line) from the
mean of the chain. The means of the chain have been subtracted and the values
scaled by the square root of the variances of the chains.

searched for, the search correctly recovered the inclination of the orbit and luminosity
distance. However, the recovered polarization angle is not very good. We should note
here that we have mapped the key file value back into a 0 to π range.

In Figure 5 we plot three search chains for the blind data set. All five intrinsic
parameters lock-in after a few thousand steps. Except for the luminosity distance,
the extrinsic parameters are far from the true values. We attribute this to the fact
the phase at coalescence is essentially undetermined for systems where we do not see
coalescence. In Figure 6 we plot the marginalized PDFs for the extrinsic parameters
based on the merged MCMC chains from multiple runs. The solid line in each cell is
the prediction of the Fisher matrix at the mean of the chain. There is a discrepancy
between the Fisher prediction and the posteriors from the chains. A visual inspection
of the chains indicates a large autocorrelation that extends over thousands of points.
This slow mixing of the chains implies that we would need to run much longer MCMC
segments in order to get meaningful posterior distributions to compare to the Fisher
predictions.

In Table 2 we compare that values of the injected parameters against the MLEs.
We again quote the 1-σ error estimation from the Fisher matrix and the error in
multiples of the Fisher matrix based on the MLEs. Also, based on the F -Statistic
search for the intrinsic parameters, the MLEs obtained for (ι, lnDL, ψ) give errors of
(−0.0313, 0.0124, 1.09) and (−0.71, 0.273,−2.16) for the training and blind data sets
respectively. The source had a combined SNR of 106.54, while we recovered a SNR of
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λX λMLE σFisher
λX nσFisher

λX

Mc 1.023866× 106 1.024227× 106 45.06 -8.01
µ 5.373042× 105 5.38975× 105 269.55 -6.19
θ 1.8339 2.0488 6.673 × 10−2 -3.22
φ 3.7945 0.3.9981 4.414 × 10−2 -4.61
tc 1.6545493× 107 1.6545493× 107 13.67 5.43

Mc 1.20859× 106 1.2087× 106 23.78 -5.004
µ 5.81196× 105 5.818 × 105 173.35 -3.5
θ 2.0631 2.0619 1.81 × 10−3 0.63
φ 0.8658 0.8645 2.12 × 10−3 0.63
tc 1.3374027× 107 1.3374031× 107 5.53 -0.62

Table 1. This table compares the injected parameter values, the MLE for each
parameter, the 1σ error predicted by the Fisher matrix at the injected values, and
the difference between the MLEs and the injected values in multiples of the Fisher
1σ error estimate the Challenge 1.2.1 training set (top) and blind set (bottom).

Figure 4. A plot of three search chains for eight of the nine parameters of the
Challenge 1.2.2 training data set. The solid lines in each cell denote the true
value.

105.72 . Each run took approximately 6 hours on a single 2 GHz Mac G5 processor.
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Figure 5. A plot of three search chains for eight of the nine blind parameters in
Challenge 1.2.2. The solid lines in each cell denote the true value.

λX λMLE σFisher
λX n× σFisher

λX

Mc 1.47637× 106 1.4765× 106 209.5 -0.66
µ 8.4183× 105 8.4748× 105 8466.8 -0.67
θ 1.7802 1.7862 4.09 × 10−3 1.47
φ 0.9737 0.9904 4.22 × 10−3 -3.95
tc 3.559836× 107 3.559978× 107 2361.8 -0.6

Mc 7.4146× 105 7.4169× 105 97.78 -2.35
µ 3.848 × 105 3.989× 105 5,273 -2.66
θ 1.6947 1.6758 5.1 × 10−3 3.73
φ 1.3674 1.362 5.27 × 10−3 1.03
tc 3.63076× 107 3.63142× 107 2,827 -2.33

Table 2. This table shows the injected parameter values, the MLE for each
parameter, the 1σ error predicted by the Fisher matrix at the injected values
and the difference between the MLEs and the injected values in multiples of the
Fisher 1σ error estimate for the Challenge 1.2.2 training set (top) and blind data
set (bottom).
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Figure 6. A comparison of the marginalized PDFs from the MCMC chains for
the intrinsic parameters of 1.2.2 against the Fisher prediction (solid line) from the
mean of the chain. The means of the chain have been subtracted and the values
scaled by the square root of the variances of the chains.

4. Conclusion.

The Mock LISA Data Analysis Challenge data sets for binary black hole inspirals
proved to be a valuable testing ground for our Metropolis-Hastings search algorithm.
Overall the algorithm performed very well, recovering the injected parameters to
an accuracy largely consistent with the theoretical error margins. There were also
some surprises, such as needing to go over to a more accurate treatment of the
instrument response in our template generation, and a problem with our conventions
when extracting the initial orbital phase. Work is now underway on the much more
complicated multi-source Challenge 2 data sets, and early results from runs on the
training data look very promising.
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