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We present an algorithmic approach to calculate the quantum-noise spectral density of photocurrents gen-
erated by optical fields with arbitrary discrete classical spectrum in coherent or squeezed states. The measure-
ment scheme may include an arbitrary number of demodulations of the photocurrent. Thereby, our method is
applicable to the general heterodyne detection scheme, which is implemented in many experiments. For some
of these experiments, e.g., in laser-interferometric gravitational-wave detectors, a reliable prediction of the
quantum noise of fields in coherent and squeezed states plays a decisive role in the design phase and detector
characterization. Still, our investigation is limited in two ways. First, we consider only coherent and squeezed
states of the field, and second, we demand that the photocurrent depends linearly on the field’s vacuum
amplitudes, which means that at least one of the classical components is comparatively strong.
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I. INTRODUCTION

Investigations of the quantum-noise spectrum usually
elaborate on the properties and correlations of the quantum
vacuum while assuming simple classical components of the
field �1–3�. In another publication the authors investigate the
quantum-noise contribution to a slightly more complex clas-
sical spectrum, i.e., the outcome of a heterodyne power mea-
surement including one subsequent demodulation of the pho-
tocurrent �4�. However, the classical spectrum of fields inside
real instruments is usually more complex, comprised of
many pairs of heterodyning sidebands �5,6�. In addition, one
may be interested in measurement schemes, which include
more than one demodulation of the photocurrent. In this pa-
per, we extend previous analyses by allowing for an arbitrary
number of discrete classical components and an arbitrary
number of demodulations. Furthermore, our approach is al-
gorithmic, which means that the results can be implemented
straightforwardly in the code of simulators of quantum-noise
spectra.

In Sec. II, we introduce our notational conventions and
calculate spectral densities for power measurements of fields
in coherent states. The complexity is gradually increased,
starting with a measurement of discrete components without
demodulation and ending with multicomponent fields includ-
ing arbitrarily many demodulations. These results are further
generalized in Sec. III to include fields in squeezed states.
For this purpose, the representation of the photocurrent is
slightly but essentially modified to take account of the intri-
cate sideband correlations occurring in squeezed fields. Fi-
nally, in Sec. IV, the algorithm is applied to investigate the
photocurrent noise spectrum for a specific multicomponent,
squeezed field configuration, which is meant to clarify the
abstract approach outlined in previous sections.

II. QUANTUM-NOISE SPECTRUM OF COHERENT
FIELDS

Let us first calculate the quantum-noise spectral density of
a coherent field, which is determined by a single classical

amplitude c0 at frequency f0. Denoting the quantum vacuum
noise amplitudes by q̂�f�, the electric field can be written

Ê�t� = c0e−2�if0t + c0
*e2�if0t + �

0

�

df�q̂�f�e−2�ift + q̂†�f�e2�ift� .

�1�

Factoring out the oscillating phase exp�−2�if0t� of the clas-
sical field, the quantum vacuum integration is carried out
over sideband frequencies F= f − f0. The range of sideband
frequencies is restricted since we consider a limited measure-
ment bandwidth: F� �−B ,B� �B� f0�. We also split the field

into two Hermitian conjugate parts Ê�+��t�, Ê�−��t� and so the
positive-frequency field is

Ê�+��t� = e−2�if0t�c0 + �
−B

B

dFq̂�f0 + F�e−2�iFt� . �2�

When talking of spectral densities, we mean the power spec-
tral density of the photocurrent after demodulations. Ideally,

the photocurrent Î�t� is proportional to the power of the field.
For real photodiodes, this does not have to be true for arbi-
trarily large detection bandwidths. In the simplest case the
current spectral density has to be multiplied with a factor,
which accounts for the frequency dependent response of the
photodiode. Let us assume that B is small enough so that

Î�t�� P̂�t�. The power of the field Eq. �2� averaged over a
period much smaller than c /B is given by

P̂�t� = Ê�−��t�Ê�+��t� =
1

2
�c0�2 + �

−B

B

dFc0
*q̂�f0 + F�e−2�iFt + H.c.

�3�

Contributions quadratic in the vacuum amplitudes are ne-
glected, which is a valid approximation whenever P0	�c0�2
�hf0 /�, where � denotes the measurement time. It follows

that the optical quantum noise of the photocurrent ÎQM�t� is
proportional to
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ÎQM�t� � �
−B

B

dFc0
*q̂�f0 + F�e−2�iFt + H.c. �4�

The proportionality factor � between current and light
power—the photodiode responsivity—typically assumes val-
ues �=0.2–0.7 A/W at f 
3�1014 Hz �7�. Since subse-
quent calculations are based on a frequency independent re-
sponsivity, there is no real distinction between light power
and photocurrent power spectral densities except for a factor
of �2. Throughout this paper the explicit dependence of the
photocurrent on � is omitted.

Vacuum amplitudes like any classical amplitudes of sta-
tionary noise are numerically ill defined �the Fourier trans-
form of stationary noise being infinite� and serve exclusively
as algebraically meaningful quantities. Nevertheless, the
power spectral density of stationary noise is well defined and
there exists a simple relationship between stationary vacuum
noise amplitudes q̂ and its �single-sided� noise spectral den-
sities Sq,

1

2
	�f − f��Sq�f� =

1

2
�q̂�f�q̂†�f�� + q̂†�f��q̂�f�� =

1

2
	�f − f��hf .

�5�

The corresponding quantum noise spectral density of the
photocurrent Eq. �4�, which results from the power measure-
ment of a coherent field reads �8�

SI
QM�F� = �c0�2Sq�f0� = P0hf0. �6�

The invalidity of the latter equation for squeezed states of the
field and the fact that the spectral density does not depend on
the sideband frequency F is clarified in Sec. III �see Eq.
�28��. At this point, we only wish to draw attention to the
apparently simple algorithm for coherent fields, which leads
to Eq. �6� starting from Eq. �2�: square the classical ampli-
tude and multiply the result by hf0.

In fact, the algorithm stays valid for a wider class of
power measurements. Consider a set of classical components
with amplitudes ci	c�f i�, i� 
0,1 , . . . ,N−1�. Like before,
we factor out the phase of the component c0, which formally
converts all optical oscillations into sideband oscillations
with respect to the reference frequency f0. Defining Fi	 f i
− f0, the positive-frequency field is cast into the form

Ê�+��t� = e−2�if0t�
i=0

N−1 �cie
−2�iFit + �

Fi−B

Fi+B

dFq̂�f0 + F�e−2�iFt� .

�7�

We demand that Pi	�ci�2�hf0 /� is valid for all classical
components. If that condition did not hold for some classical
components �typically for signal sidebands�, then the respec-
tive amplitudes would not influence the quantum-noise
power spectrum as long as at least one high power compo-
nent exists and so for our purpose we may safely neglect
weak components. A power measurement yields a photocur-
rent whose quantum noise is determined by

ÎQM�t� = �
i=0

N−1 �
Fi−B

Fi+B

dFci
*q̂�f0 + F�e−2�i�F−Fi�t + H.c.

= �
i=0

N−1 �
−B

B

dFci
*q̂�f0 + F + Fi�e−2�iFt + H.c. �8�

Provided that all intervals �Fi−B ,Fi+B� are mutually dis-
jointed, the quantum-noise power spectral density of the pho-
tocurrent is given by

SI
QM�F� = �

i=0

N−1

�ci�2Sq�f0 + Fi� = �
i=0

N−1

h�f0 + Fi�Pi. �9�

Unfortunately, there are no more simple example cases that
could be presented. Let us now skip to the next section and
introduce demodulations of photocurrents.

A. Single demodulation

There are two well-known demodulation techniques. Ei-
ther the photocurrent is multiplied by a harmonic function

Î�t�cos�2�Dt+
� or one rectifies the photocurrent, which

means the final output is �Î�t��. In practice, the low-frequency
spectra �B�Fi� drawn from these two outputs differ by a
constant factor, the spectrum of the harmonic demodulation
being smaller by a factor of �� /4�2. Anyway, the spectrum of
the harmonically demodulated current is calculable by much
simpler algebra. In addition, we want to study measurement
schemes, which implement multiple demodulations charac-
terized by a set of demodulation frequencies Di and demodu-
lation phases 
i. For these two reasons, we consider har-
monic demodulations throughout this paper. Let us perform a
single demodulation of the current Eq. �8�,

ÎQM�t� =
1

2 �
i=0

N−1 �
−D−B

−D+B

dFci
*q̂�f0 + F + Fi�e−i�2��F+D�t+
�

+
1

2 �
i=0

N−1 �
D−B

D+B

dFci
*q̂�f0 + F + Fi�e−i�2��F−D�t−
�

+ H.c., �10�

or shifting the frequency range, the current noise finally as-
sumes the form

ÎQM�t� =
1

2 �
i=0

N−1 �
−B

B

dFe−2�iFt�ci
*e−i
q̂�f0 + F + Fi − D�

+ ci
*ei
q̂�f0 + F + Fi + D�� + H.c. �11�

Now, if all frequency intervals �Fi−D−B ,Fi−D+B�, �Fi

+D−B ,Fi+D+B� are mutually disjointed, then one obtains
the same spectral density as in Eq. �9� except for an addi-
tional factor 1/2, which is basically due to the fact that by
demodulating we multiply the photocurrent with a function
which, in terms of power, has a gain of 1/2. However, this
situation is uncommon in real experiments.

It is time to introduce a graphical auxiliary in order to
understand what is happening. For simplicity we start with
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two classical components—a carrier and a subcarrier—at fre-
quencies F0=0 Hz and F1=30 MHz. The photocurrent is de-
modulated with D=15 MHz and the detection bandwidth is
limited to B=1000 Hz. This choice of frequencies also cor-
responds to a very common situation in optical experiments,
namely, the heterodyne measurement where the two classical
components are generated by a 15 MHz modulation of a car-
rier field, which oscillates at high optical frequencies �f0


1015 Hz�. A discussion of this problem focusing on signal-
to-noise ratios can be found in �4�. We point out that B
� �F0±D � , �F1±D � , �F0±F1�, which significantly simplifies
the problem. The four frequency values F00	F0−D, F01
	F0+D, F10	F1−D, and F11	F1+D are marked on a fre-
quency axis �see Fig. 1� and collected inside a matrix F�N
=2,2�= 
F00,F01; F10,F11�. Since two intervals identically
overlap, each vacuum amplitude at frequencies inside that
interval enters twice into the spectral density calculation.
These two contributions have to be added coherently before
taking the absolute square. The expression Eq. �11� for the
current tells us that all vacuum amplitudes q̂�f0+F
+15 MHz� have to be added coherently. In conclusion, the
spectral density in this particular example turns out to be

SI
QM�F� =

1

4
�h�f0 − 15 MHz�P0 + h�f0 + 15 MHz��c0

*e−i


+ c1
*ei
�2 + h�f0 + 45 MHz�P1�

�
hf0

4
�P0 + P1 + �c0

*e−i
 + c1
*ei
�2� . �12�

Henceforth, we will always assume that overlapping fre-
quency ranges represented by black boxes in Fig. 1 overlap
completely, but never partially. The overlap condition guar-
antees that whenever two frequencies inside the frequency
matrix F do not coincide, then the two respective detection
ranges do not overlap and one does not have to worry about
coherent summation of the respective amplitudes. This is cer-
tainly a reasonable demand for a first approach to an algo-
rithmic realization of the calculation.

We are now prepared to calculate the spectral density for
measurements with a single demodulation and an arbitrary
number of classical components. It is not possible to give
explicit results, because as we have seen these depend on the
chosen set of field and demodulation frequencies. Our focus
lies on extending the algorithm, which leads to the spectral
density. Consider N classical components ci at frequencies Fi
and a single demodulation of the photocurrent. The first step
is to calculate the frequency matrix

F�N,2� =�
F00 F01

F10 F11

� �
FN−1,0 FN−1,1

� , �13�

where Fi0	Fi−D and Fi1	Fi+D. The second step is to find
coinciding frequencies of the matrix. Use the matrix indices
of these pairs, e.g., �n1 ,d1� and �n2 ,d2�, to calculate the con-
tribution to the spectral density as follows

SI
QM

„F,�n1,d1�,�n2,d2�… =
h�f0 + Fn1d1

�

4
�cn1

* e�− 1�d1+1i


+ cn2

* e�− 1�d2+1i
�2. �14�

All remaining unique frequencies Fnd contribute according to

SI
QM

„F,�n,d�… =
h�f0 + Fnd�

4
�cn�2. �15�

In most experiments f0�Fnd and the quantum vacuum ener-
gies can be approximated by hf0. Finally, one has to sum up
all these contributions.

Let us summarize our preliminary results as a list to be
processed when calculating the current noise spectral den-
sity:

�1� Calculate the matrix F according to Eq. �13�.
�2� Collect index pairs �n ,d� of coinciding frequencies

Fnd inside F.
�3� Collect contributions to the current noise spectral den-

sity from unique frequencies, which are determined by Eq.
�15�.

�4� Collect contributions to the current noise spectral den-
sity from coinciding frequencies, which are determined by
Eq. �14�.

�5� Sum up all contributions.
This algorithm needs an extension in order to account for

multiple demodulations. This task is accomplished in the
next section.

B. M demodulations

Methodically, increasing the number of demodulations
means to increase the number or range of indices in the pre-
vious calculations. The first step of the algorithm is always to
collect all relevant frequencies inside a matrix. Again, we
consider a set of N classical components ci at frequencies Fi.
The demodulations are determined by M demodulation fre-
quencies Di and phases 
i. The final output of the measure-
ment is given by

Î�t� �
i=0

M−1

cos�2�Dit + 
i� = Î�t�
1

2M �
i=1

2M

cos��
j=0

M−1

�− 1��i/2M−j−1�

��2�Djt + 
 j�� , �16�

with �x� denoting the decimal truncating floor function.
Evaluating Eq. �16� for a few small number of demodula-

FIG. 1. Representation of the relevant frequency ranges for a
classical heterodyne power measurement. The black boxes indicate
the detection bandwidth.
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tions, one recognizes that the arguments of the harmonic
functions consist of all possible ± combinations of modula-
tion frequencies and phases. Since the complete sum of these
harmonic functions is multiplied with the photocurrent, it
should be obvious that each row i of the frequency matrix F
contains all frequencies of the form Fi±D0± ¯ ±DM−1. In
which order should these 2M frequencies appear? One may
argue that the order does not matter, in principle. However, a
specific combination of frequencies is associated with an
analogous combination of demodulation phases, which then
appears in formulas such as Eq. �14�. If two frequencies of F
turn out to be equal, then the two pairs of matrix indices have
to encode the ± combination, which determines the respec-
tive combination of phases. Algorithmic tractability of the
problem requires a good sorting scheme of these frequencies.
We propose a sorting scheme, which is derived from a tree
structure like that in Fig. 2. The frequencies themselves do
not obey Fi0�Fi1�¯ since we do not assume a magnitude-
sorted vector of demodulation frequencies. Now, the remain-
ing problem is to derive from each column index the respec-
tive combination of demodulation phases. If each row vector
of F is tree sorted then one first converts the decimal column
index j into a binary number �j�bin= �b0b1b2b3¯bM−1� and
then calculates a total phase according to


�j� = − �
i=0

M−1

�− 1�bi
i. �17�

This phase is to be used in order to calculate contributions to
the quantum-noise spectral density when C frequencies of F
coincide. If the respective pairs of indices are �nj ,dj�, j
� 
0, . . . ,C−1�, then the spectral density reads

SI
QM

„F,
�nj,dj��… =
h�f0 + Fn0d0

�

4M ��
j=0

C−1

cnj

* ei
�dj��2

. �18�

The contribution from unique frequencies Fnd is given by

SI
QM

„F,�n,d�… =
h�f0 + Fnd�

4M �cn�2. �19�

Finally, let us apply the algorithm to the case with N=2
classical components and M =3 demodulations. The respec-
tive frequency matrix is written

F�2,8� = �F00 F01 F02 F03 F04 F05 F06 F07

F10 F11 F12 F13 F14 F15 F16 F17
� .

�20�

Coincidences are found say between frequencies F05 and F11.
The binary representation of the first column index is �5�bin

=101 and �1�bin=001 for the second. According to Eq. �17�,
one obtains 
�5�=
0−
1+
2 and 
�1�=−
0−
1+
2. The
respective spectral density is given by

SI
QM

„F,�0,5�,�1,1�… =
h�f0 + F11�

64
�c0

*ei
�5� + c1
*ei
�1��2,

�21�

which does not depend on 
1 and 
2. Contributions coming
from unique frequencies are calculated as usual. The first
part of this paper is finished. We have treated the calculation
of quantum noise when the field is coherent, which entails
that the noise is time stationary. In fact, the algorithm is valid
for any type of time-stationary noise including technical la-
ser noise when phase and amplitude noise are not correlated.
In that case, one has to substitute the quantum vacuum ener-
gies in Eqs. �18� and �19� by another noise spectral density,
which characterizes the power of the technical noise at the
photodiode. The next step is to take into account the intricate
correlation between quantum-noise amplitudes at different
frequencies due to squeezing, or in other words, due to
amplitude-phase correlations.

III. QUANTUM-NOISE SPECTRUM OF SQUEEZED
FIELDS

A widely applied mechanism, which correlates vacuum
noise amplitudes at different frequencies is the generation of
squeezed fields. Squeezed fields are formed in nonlinear
crystals �9� and theory predicts that ponderomotive squeez-
ing occurs when light is reflected from suspended mirrors
�10�. In order to understand the meaning of squeezing, one
has to know that correlations are built up between sideband
frequencies F with respect to a reference frequency f i. The
squeezing transformation of fields is characterized by a
squeezing factor r, which quantifies the strength of correla-
tions between different frequencies and a squeezing phase 
.
Perfect correlation corresponds to a squeezing factor r=�. In
practice, the reference frequency is realized by means of a
single classical component, which is named seed or carrier
field depending on whether the squeezing is generated by
crystals or ponderomotively. Now, if 
=0 one can show that
the correlation between sidebands diminishes the quantum
amplitude noise of the classical field and for 
=� /2, the
quantum phase noise is decreased. Interpretation of the
squeezing phase for intermediate values requires a more so-
phisticated representation of fields �8�. In principle, the ref-
erence frequency does not have to be related to a classical

FIG. 2. Sorting scheme for three demodulation frequencies.
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field. In that case, the squeezing phase has no ad hoc inter-
pretation. Denoting amplitudes of squeezed fields by ŝ and
amplitudes of coherent fields by q̂, the squeezing transforma-
tion is governed by �8�

ŝ�f i ± F� = cosh�r�q̂�f i ± F� + sinh�r�e2i
q̂†�f i � F� .

�22�

How does this squeezing transformation relate to our previ-
ous investigation of quantum-noise spectral densities? To
find an answer, we have to return to Eq. �8�. That equation
determines the time-dependent photocurrent where F, the
former optical sideband frequencies, now become true fre-
quencies of the current spectrum. Similarly to expansions of
electric fields, we should conform to a strict decomposition
into positive and negative frequencies

ÎQM�t� = �
i=0

N−1 �
0

B

dFe−2�iFt�ci
*ŝ�f0 + F + Fi�

+ ciŝ
†�f0 − F + Fi�� + H.c., �23�

where the vacuum amplitudes have been renamed to indicate
the possibility of squeezing. Thereby, the impact of Eq. �22�
on the power spectral density of the photocurrent becomes
clear. Two amplitudes at different frequencies of the optical
vacuum are added to form a single amplitude of the photo-
current. If these two amplitudes are uncorrelated then the
spectral density is calculated as before making implicit use
of the identity

S�q̂1 + q̂2� = S�q̂1� + S�q̂2�, q̂1, q̂2 uncorrelated. �24�

The optical field may exhibit correlations due to squeezing
and the latter equation can no longer be applied. So the re-
maining problem is the calculation of the modified spectral
density depending on the squeezing factor and phase. There
exist two possibilities. Either squeezing is generated whose
reference frequency coincides with one of the frequencies
f0+Fi, which appear in the current expansion Eq. �23� and
the squeezing factor is significant only within a frequency
range comparable to the detection bandwidth B, or the
squeezing violates either of these two conditions. We start
with an investigation of the case when both conditions are
fulfilled, which is in some sense the only expedient one. It is
then also straightforward to treat fields, which are squeezed
at some or all of the frequencies f0+Fi, with potentially dif-
ferent factors and phases. The correction is derived from the
quantum-noise amplitude of the photocurrent;

p̂�F,ci
*,Fi� 	 ci

*ŝ�f0 + F + Fi� + ciŝ
†�f0 − F + Fi� . �25�

Before or after squeezing, the field may be subject to linear
�frequency preserving� transformations such as propagations
or reflections from fixed mirrors. If some mirrors are sus-
pended then already squeezed fields experience further
squeezing. Consequently, a more generic case is considered
here described by the following pair of transformations:

ŝ�f i + F� = t00�f i + F�q̂�f i + F� + t01�f i − F�q̂†�f i − F� ,

ŝ†�f i − F� = t10�f i + F�q̂�f i + F� + t11�f i − F�q̂†�f i − F� .

�26�

The two transfer functions t10, t01 map input amplitudes to
output amplitudes at the photodiode with mutually different
frequencies, whereas t00, t11 comprise nonlinear and linear
transfers as mentioned above. The input vacuum is coherent
and therefore all amplitudes q̂ of the input vacuum are un-
correlated. Inserting the last equation into the amplitude of
the photocurrent and defining tmn

i �±�	 tmn�f0±F+Fi�, one
obtains

p̂�F,ci
*,Fi� = �ci

*t00
i �+ � + cit10

i �+ ��q̂�f0 + F + Fi�

+ �ci
*t01

i �− � + cit11
i �− ��q̂†�f0 − F + Fi� .

�27�

The power spectral density associated with the noise ampli-
tude p̂�F ,ci

* ,Fi� is given by

S„p̂�F,ci
*,Fi�… =

h�f0 + Fi�
2

��ci
*t00

i �+ �

+ cit10
i �+ ��2�1 +

F

f0 + Fi
� + �ci

*t01
i �− �

+ cit11
i �− ��2�1 −

F

f0 + Fi
�� . �28�

First, this equation explains the observation that the spectral
density of photocurrents when measuring coherent fields is
white �i.e., frequency independent�. For coherent fields �t01

= t10=0 , �t00�2= �t11�2=1�, the two absolute squares can be sub-
stituted by �ci�2 and the dependence on F cancels. Since in
most practical situations f0�F, it is also common to omit the
frequency dependence of the spectrum for squeezed states.

The next step is to include demodulations of the photo-
current. In terms of the amplitudes defined in Eq. �27�, a
singly demodulated photocurrent, Eq. �11�, assumes the form

ÎQM�t� =
1

2 �
i=0

N−1 �
0

B

dFe−2�iFt�p̂�F,ci
*e−i
,Fi − D�

+ p̂�F,ci
*ei
,Fi + D�� + H.c. �29�

Hereupon, a simple analogy argument leads to the full-
fledged multiple demodulation power spectral density of the
photocurrent including squeezed states of the field. If C fre-
quencies with indices �nj ,dj�, j� 
0, . . ,C−1� of the fre-
quency matrix F coincide, then the respective contribution to
the power spectral density is determined by �compare with
Eq. �18��

QUANTUM-NOISE POWER SPECTRUM OF FIELDS WITH… PHYSICAL REVIEW A 76, 023803 �2007�

023803-5



SI
QM

„F,
�nj,dj��… =
1

4M S��
j=0

C−1

p̂�F,cnj

* ei
�dj�,Fn0d0
�� =

h�f0 + Fn0d0
�

2 � 4M ���
j=0

C−1

�cnj

* ei
�dj�t00�f0 + F + Fn0d0
� + cnj

e−i
�dj�t10�f0 + F

+ Fn0d0
���2�1 +

F

f0 + Fn0d0

��� + ��
j=0

C−1

�cnj

* ei
�dj�t01�f0 − F + Fn0d0
� + cnj

e−i
�dj�t11�f0 − F + Fn0d0
���2

��1 −
F

f0 + Fn0d0

�� , �30�

and unique frequencies Fnd contribute with

SI
QM

„F,�n,d�… =
1

4M S„p̂�F,cn,Fnd�… . �31�

The spectral density on the right-hand side is determined by
Eq. �28�.

We conclude this section with a brief discussion of “off-
centered” squeezing, i.e., some of the squeezing reference
frequencies of the field do not coincide with any of the fre-
quencies Fnd or that squeezing factors r decay over fre-
quency ranges, which are comparable to Fnd�B. We leave a
detailed investigation of both problems for the future. One
reason is that in each case amplitudes of the measured field
at the photodiode may depend on input amplitudes at more
than two frequencies. In other words, one squeezing process
may correlate amplitudes at say f1=1015 Hz+50 MHz and
f2=1015 Hz+30 MHz; another squeezing process then corre-
lates amplitudes at f2 and f3=1015 Hz−30 MHz. The output
field at f2 depends on input frequencies f1, f2, and f3. Mul-
tiple correlations are prevented by demanding that the fre-
quency difference of correlated amplitudes is sufficiently
small so that different correlations occur at well separated
parts of the spectrum. If that condition is fulfilled but “off-
centered” squeezing is still allowed, then one has to take
greater care when calculating the transfer functions tij. What
if the squeezing reference frequency happens to be at f0+F
+5B, which is close enough to the measured frequency range
�f0−B , f0+B� to exhibit some influence on its vacuum noise
amplitudes? The answer is derived from Eq. �22�. Let us
assume that the squeezing factor and phase are constant over
�f0−B , f0+B�. Then, provided that B� f0, the photocurrent
spectral density, Eq. �6�, is modified according to

SI
QM�F� = P0hf0�cosh2�r� + sinh2�r�� = P0hf0 cosh�2r� ,

�32�

which means the quantum noise spectral density is necessar-
ily increased! Therefore, any detector whose sensitivity is
limited by optical quantum noise should avoid off-centered
squeezing.

Again, the previous analysis is not restricted to quantum-
noise spectra. The results are valid for any classical, techni-
cal noise, which is coherent or exhibits amplitude-phase cor-
relations, which can be described by transformations such as

Eq. �26�. One may say that these transformations embody the
simplest kind of amplitude-phase correlations.

IV. EXEMPLARY CALCULATION

Concluding the paper with an explicit application of our
results should be helpful. We consider the following case:
four classical components, one demodulation, and squeezing
centered at one of the components Fnd of the frequency ma-
trix F. The N=4 classical components have frequencies F0
=0 Hz, F1=100 MHz, F2=130 MHz, and F3=230 MHz.
These sideband frequencies are defined with respect to a
large optical frequency f0
1015 Hz. The photocurrent is de-
modulated with D0=15 MHz. These parameters determine
the frequency matrix

F�4,2� =�
− 15 MHz 15 MHz

85 MHz 115 MHz

115 MHz 145 MHz

215 MHz 245 MHz
� . �33�

We assume squeezing centered around frequency F11
=F20=115 MHz, which extends locally over frequencies
comparable to the detection bandwidth B=1000 Hz; all other
frequencies contribute coherent vacuum noise. We already
stated that two components of the matrix F are equal and the
respective frequency value coincides with the squeezing ref-
erence frequency. Let us first evaluate the contributions from
all unique frequencies. The corresponding vacuum fields are
coherent and so the spectral density Eq. �28� simplifies to

Snd
coh = h�f0 + Fnd��cn�2 = h�f0 + Fnd�Pn. �34�

These spectral densities have to be inserted into Eq. �31� and
summed up for all unique frequencies

SI
QM�F� =

h

4
��2f0 + F00 + F01�P0 + �f0 + F10�P1 + �f0 + F21�P2

+ �2f0 + F30 + F31�P3� �
hf0

4
�2P0 + P1 + P2 + 2P3� .

�35�

The remaining problem is to calculate the correlated spectral
density at frequency F11=F20=115 MHz. For simplicity we
assume that the nonlinear transfer is pure squeezing
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t00�f0 + F + F11� = cosh�r� ,

t01�f0 − F + F11� = sinh�r�ei2
,

t10�f0 + F + F11� = sinh�r�e−i2
,

t11�f0 − F + F11� = cosh�r� . �36�

Next, we expand the sums in Eq. �30� and substitute all
known parameter values

SI
QM

„F,
�1,1�,�2,0��… =
hf0

8
���c1

*ei
0 + c2
*e−i
0�cosh�r�

+ �c1e−i
0 + c2ei
0�sinh�r�e−2i
�2

+ ��c1
*ei
0 + c2

*e−i
0�sinh�r�e2i


+ �c1e−i
0 + c2ei
0�cosh�r��2� .

�37�

All vacuum energies are approximated by hf0 and 
0 denotes
the demodulation phase. There are at least two experimen-
tally adjustable phases: the demodulation phase 
0 and the
squeezing phase 
. What is the minimum of the spectral
density depending on these two phases? Defining 

	arg�c1e−i
0 +c2ei
0�, Eq. �37� assumes the form

SI
QM

„F,
�1,1�,�2,0��… =
hf0

4
�c1

*ei
0 + c2
*e−i
0�2 � �cosh�r�

+ sinh�r�e2i�
−
��2. �38�

Minimization with respect to the squeezing phase is trivial.
Setting 
opt=� /2+
 and further defining �
	arg�c2�
−arg�c1�, the minimized spectral density contribution from
the squeezed part of the spectrum simplifies to

SI
QM

„F,
�1,1�,�2,0��… =
hf0

4
�P1 + P2 + 2�P1P2 cos�2
0

+ �
��e−2r. �39�

Finally, we add this result to Eq. �35�, which yields

SI
QM =

hf0

2
�P0 +

1

2
�1 + e−2r�P1 +

1

2
�1 + e−2r�P2

+ �P1P2 cos�2
0 + �
�e−2r + P3�
=

hf0

2
�P0 +

1

2
�1 + e−2r�P1 +

1

2
�1 + e−2r�P2 − �P1P2e−2r

+ P3� . �40�

In the last step, we have minimized the noise power by in-
serting the optimal demodulation frequency 
0

opt= ��

−�
� /2. The reader who is exclusively interested in mini-
mized spectral densities may easily generalize this final re-
sult including squeezing at different frequencies and an arbi-
trary number of classical components. The optimization
procedure partly relies on the fact that the squeezing factor
and phase are frequency independent. In general, experimen-
tal realization of the smallest possible noise spectral density
requires further degrees of freedom, which are incorporated
into the transfer functions tij, i.e., the light has to be filtered
before the power measurement �1,11�. One should keep in
mind that, per se, a minimal noise spectral density does not
have to be optimal in terms of detector sensitivity. The rea-
son is that noise minimization simultaneously affects the
measured power of the signal. Sensitivity optimization se-
verely depends on the detector topology �11�. It was shown
in �4� that the sensitivity optimizing demodulation frequency
is 
0

opt=−�
 /2, which goes along with a maximized noise
power contribution from Eq. �39�.

V. CONCLUSION

We have presented explicit formulas, which govern the
power spectral density of photocurrents generated by power
measurements of coherent and squeezed fields. We have also
furnished an appropriate algorithm, which can be easily
implemented in quantum-noise simulations. The algorithm is
based on a few limitations concerning the classical spectrum
and the squeezed spectrum of the field. However, these limi-
tations are modest and probably insignificant for most ex-
periments. Our results provide a long-sought-for extension of
the Schottky formula �12,13� to squeezed photon statistics
with multiple classical components. Of special importance is
that the shot noise spectrum may be calculated for any of the
currently operating and next generation interferometric
gravitational wave detectors. Theoretically, the method can
be generalized in two ways, which we consider to be algo-
rithmically tractable in principle. First, the transfer functions
between different frequencies—which correspond to classi-
cal nonlinearities—may couple more than three amplitudes
at different frequencies. Thereby, multiple squeezing cen-
tered around different frequencies with overlapping ranges of
nonvanishing squeezing factor could be described. Second,
one may want to give up the overlap condition between dif-
ferent ranges of detected field amplitudes. In that case, cor-
related contributions to the final current spectral density have
to be revealed by means of a more elaborate scheme, which
calculates the intersection boundaries of a partial overlap.
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