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Abstract
In recent work, we used pseudo-differential theory to establish conditions that
the initial-boundary value problem for second-order systems of wave equations
be strongly well-posed in a generalized sense. The applications included the
harmonic version of the Einstein equations. Here we show that these results
can also be obtained via standard energy estimates, thus establishing strong
well-posedness of the harmonic Einstein problem in the classical sense.

PACS numbers: 04.20.Ex, 04.25.Dm, 04.25.Nx

1. Introduction

In the harmonic description of general relativity, the Einstein equations reduce to a constrained
system of ten quasilinear wave equations for the components of the spacetime metric. Recently
[1] we used the theory of pseudo-differential operators to prove that one can construct
constraint-preserving boundary conditions of the Sommerfeld type such that the resulting
initial-boundary value problem (IBVP) is well-posed in the generalized sense. We show in
this paper that the decisive estimate can also be obtained by integration by parts. It follows
that the full quasilinear system can be treated by standard energy estimates to establish that
the harmonic IBVP is strongly well-posed in the classical sense [2].

Our results have broad applications to other systems of second-order wave equations
besides general relativity, e.g. to elasticity theory, acoustics and electromagnetic theory. Most
analytic and computational treatments of the IBVP utilize the well-developed theory of first-
order symmetric hyperbolic systems. We develop our results here in their natural second-order
form, which avoids the integrability constraints associated with the extra variables introduced
in a reduction to first order.
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In view of the wide range of potential applications, instead of the geometrical notation of
general relativity, we present our main results in sections 2 and 3 in a style familiar to a broad
audience of computational mathematicians and physicists. We use the notation and definitions
of the classic treatise [2] on the IBVP. In these sections, we treat systems of wave equations
with constant coefficients, which arise in the frozen coefficient form of the harmonic Einstein
equations. In appendix A, we show that our results extend locally in time to the well-posedness
of quasilinear problems, such as the harmonic IBVP.

There is an intimate interplay between the treatment of the analytic theory using energy
estimates and its finite difference approximation [2, 3]. The proof of existence of analytic
solutions outlined in appendix A is based upon a convergent finite difference approximation
incorporating semi-discrete energy estimates via summation by parts. Conversely, using
summation by parts, the energy estimates of the analytic theory can be parroted by discrete
energy estimates which guarantee the stability of a finite difference approximation [3]. In
previous treatments of the second-order wave equation, the discrete energy approach has been
used to develop stable difference algorithms for Neumann and Dirichlet boundary conditions
[4, 5] and this treatment has been extended to the Einstein equations [6]. The results presented
here provide a guide for applying the discrete energy approach to second-order systems with
a wide range of boundary conditions. These include the Sommerfeld condition, which has
important applications to outgoing wave problems, but also more complicated conditions
involving derivatives tangential to the boundary.

The set of constraint-preserving boundary conditions allowed for the Einstein system is
quite extensive. The selection of a ‘preferred’ choice, e.g. Dirichlet, Neumann or Sommerfeld,
rests upon additional geometrical or physical criteria depending upon the nature of the
problem. An important example is the description of an isolated radiating system, for which
the physically appropriate boundary condition should be adapted to the absence of external
influences. Unless the treatment of such a system is extended to infinity, this requires the
introduction of an artificial boundary for which boundary data may not be known, so that it
becomes advantageous to use a boundary condition for which homogeneous data are a good
approximation. We defer this issue to future work where we will present a geometric version
of the results of this paper to formulate boundary conditions appropriate for an isolated
gravitational system. Additional subtleties arise in the treatment of boundaries which are
moving, such as an oscillating conducting boundary in an electromagnetic wave problem or
the artificial boundaries that arise in the dynamically curved spacetime of general relativity.
In appendix B, we illustrate for the wave equation on a curved space background how the
geometric approach can be used to simplify the formulation of energy estimates for such
moving boundaries.

2. The main estimate

Consider the wave equation

utt = uxx + uyy + uzz + F (1)

on the half-space

x � 0, −∞ < y < ∞, −∞ < z < ∞,

with boundary conditions

αut = ux + β1uy + β2uz + αq, for x = 0, α > 0, β2
1 + β2

2 < α2, (2)

with boundary data q and initial data

u = f1, ut = f2, t = 0 (3)
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of compact support. The subscripts (t, x, y, z) denote partial derivatives, e.g. ut = ∂u
∂t

. We
assume that all coefficients, the data and the solution are real and that α > 0, βj are constants.
Also, we use the notation

(u, v), ‖u‖2 = (u, u); (u, v)B, ‖u‖2
B = (u, u)B

to denote the L2-scalar product and norm over the half-space and boundary space, respectively.
Strong well-posedness of an IBVP extends the requirements of a well-posed Cauchy

problem to include estimates of boundary values [2]. In order to adapt the standard definition
to second-order systems, we write u = (u, ut , ux, uy, uz) to represent the solution u and its
derivatives, and similarly for the initial data we write f1 = (f1, f1x, f1y, f1z). For the problem
(1)–(3), strong well-posedness requires the existence of a solution satisfying the estimate

‖u(t)‖2 +
∫ t

0
‖u(s)‖2

B ds � KT

(
‖f1‖2 + ‖f2‖2 +

∫ t

0
‖F(s)‖2 ds +

∫ t

0
‖q(s)‖2

B ds

)
,

where for every finite time interval 0 � t � T the constant KT is independent of F, f1, f2

and q.
In [1] we used pseudo-differential theory to prove that the problem (1)–(3) is well-posed

in the generalized sense and that it is boundary stable. The proof in [1] is only given in 2D.

In 3D the necessary and sufficient condition for α is α >

√
β2

1 + β2
2 . This same inequality

governs the strong well-posedness of the problem. (It corresponds to the timelike property of
the vector field T b in the geometric treatment of appendix B.)

We now want to prove that results can also be obtained in terms of standard estimates
using integration by parts. For simplicity of presentation, we restrict our attention here to
estimates of the derivatives of u. An estimate for u itself can easily be obtained by the change
of variable u → eγ tu, as described in appendix A. We start with

Lemma 1. Let γ1, γ2 be real and γ 2
1 + γ 2

2 < 1. Then

E = ‖ut‖2 + ‖ux‖2 + ‖uy‖2 + ‖uz‖2 − 2(ut , γ1uy + γ2uz) (4)

is a norm for the derivatives (ut , ux, uy, uz).

Proof. Since γ 2
1 + γ 2

2 < 1, we can choose δ with 0 < δ < 1 such that

2|(ut , γ1uy + γ2uz)| � (1 − δ)‖ut‖2 +
1

1 − δ

(
γ 2

1 + γ 2
2

)
(‖uy‖2 + ‖uz‖2)

� (1 − δ)(‖ut‖2 + ‖uy‖2 + ‖uz‖2).

This proves the lemma. �

Let γ1 = β1

α
, γ2 = β2

α
. Now we can prove that there is a standard energy estimate.

Theorem 1. The solution of (1)–(3) satisfies the energy estimate

∂

∂t
E +

1

α
‖ux‖2

B � E + ‖F‖2 + α‖q‖2
B. (5)

Proof. Integration by parts gives us

∂

∂t
‖ut‖2 = 2(ut , utt ) = − ∂

∂t
(‖ux‖2 + ‖uy‖2 + ‖uz‖2) + 2(ut , F ) − 2(ut , ux)B (6)

2
∂

∂t
(ut , γ1uy + γ2uz) = 2(utt , γ1uy + γ2uz)

= −2(ux, γ1uy + γ2uz)B + 2(F, γ1uy + γ2uz), (7)
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where, for example, we have used (uyy, uz) = −(uy, uyz) = 0. Since (2) implies

2(ut , ux)B = 2

α
‖ux‖2

B + 2(ux, γ1uy + γ2uz)B + 2(ux, q)B,

by subtracting (7) from (6) we obtain

∂

∂t
E = 2(ut − γ1uy − γ2uz, F ) − 2

α
‖ux‖2

B − 2(ux, q)B

� ‖ut − γ1uy − γ2uz‖2 + ‖F‖2 − 1

α
‖ux‖2

B + α‖q‖2
B.

The identity

‖ut − γ1uy − γ2uz‖2 = E − ‖ux‖2 − ‖uy‖2 − ‖uz‖2 + ‖γ1uy + γ2uz‖2

then implies (5) and thus proves the theorem. �

The theorem tells us that we can estimate

E(T ) and
∫ T

0
‖ux‖2

B dt in terms of E(0),

∫ T

0
‖F‖2 dt and

∫ T

0
‖q‖2

B dt.

For the application to the Einstein equations, we also need estimates of the boundary norms
of uy and uz. We have

∂

∂t
(ux, ut ) = (uxt , ut ) + (ux, utt )

= −1

2
‖ut‖2

B + (ux, uxx) + (ux, uyy) + (ux, uzz) + (ux, F )

= −1

2
‖ut‖2

B − 1

2
‖ux‖2

B +
1

2
‖uy‖2

B +
1

2
‖uz‖2

B + (ux, F ). (8)

The boundary conditions (2) give us, for any δ with 0 < δ < 1,

‖ut‖2
B =

∥∥∥∥γ1uy + γ2uz +
1

α
ux + q

∥∥∥∥
2

B

� ‖γ1uy + γ2uz‖2
B + 2‖γ1uy + γ2uz‖B

∥∥∥∥ 1

α
ux + q

∥∥∥∥
B

+

∥∥∥∥ 1

α
ux + q

∥∥∥∥
2

B

� (1 + δ)‖γ1uy + γ2uz‖2
B +

(
1 +

1

δ

)∥∥∥∥ 1

α
ux + q

∥∥∥∥
2

B

� (1 + δ)
(
γ 2

1 + γ 2
2

) (‖uy‖2
B + ‖uz‖2

B

)
+

(
1 +

1

δ

)∥∥∥∥ 1

α
ux + q

∥∥∥∥
2

B

.

Since � := γ 2
1 + γ 2

2 < 1, we can choose δ such that (1 + δ)� � (1 − δ). Therefore, by (8),

δ
(‖uy‖2

B + ‖uz‖2
B

)
�

(
1 +

1

δ

)∥∥∥∥ 1

α
ux + q

∥∥∥∥
2

B

+ ‖ux‖2
B + 2

∂

∂t
(ux, ut ) − 2(ux, F ).

Since (ux, ut ) can be estimated by E, we have proved

Theorem 2.∫ T

0

(‖ut‖2
B + ‖ux‖2

B + ‖uy‖2
B + ‖uz‖2

B

)
dt

� const

(
E(0) +

∫ T

0
‖F‖2dt +

∫ T

0
‖q‖2

B dt

)
.
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The results can easily be generalized to half-plane problems for wave equations of the
general form

utt = P0ut + P1u, x1 � 0, −∞ < xj < ∞, j = 2, 3, (9)

with boundary conditions

αut = ux1 + β1ux2 + β2ux3 , x1 = 0. (10)

P0 =
3∑

j=1

cj ∂/∂xj , P1 =
3∑

i,j=1

aij ∂
2/∂xi∂xj , aii > 0

and P1 is strongly elliptic.
By general coordinate transformations, we can transform (9), (10) to the simple problem

(1)–(3), except if the coordinate system moves normal to the boundary. To discuss this case we
consider a boundary moving with constant velocity c/

√
1 + c2 in the x-direction and transform

(1) according to

x = x ′ + ct ′√
1 + c2

, t = t ′, y = y ′, z = z′,

so that the moving boundary is located at x ′ = 0. After dropping the primes, we obtain

utt = 2cuxt + uxx + uyy + uzz + F (1′)
and we consider the problem (1′), (2), (3). The same pseudo-differential technique as in
section 2 of [1] shows that this new problem is well-posed in the generalized sense if and only
if

α + c√
1 + c2

>

√
β2

1 + β2
2 .

Subject to this inequality, in appendix B we use a geometric approach to establish strong
well-posedness for this moving boundary problem by the energy method.

3. The Einstein equations

We consider the half-plane problem treated in [1] for the harmonic Einstein equations, which
we now describe. In the frozen coefficient formalism based upon an orthonormal frame, the
components of the densitized spacetime metric satisfy the wave equations

(
− ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
⎛
⎜⎜⎝

γ tt γ tx γ ty γ tz

γ tx γ xx γ xy γ xz

γ ty γ xy γ yy γ yz

γ tz γ xz γ yz γ zz

⎞
⎟⎟⎠ = F,

x � 0, t � 0, −∞ < y < ∞, −∞ < z < ∞, (11)

where F consists of lower order terms.
These equations are subject to the constraints

Ct = ∂

∂t
γ tt +

∂

∂x
γ tx +

∂

∂y
γ ty +

∂

∂z
γ tz = 0,

Cx = ∂

∂t
γ tx +

∂

∂x
γ xx +

∂

∂y
γ xy +

∂

∂z
γ xz = 0,

Cy = ∂

∂t
γ ty +

∂

∂x
γ xy +

∂

∂y
γ yy +

∂

∂z
γ yz = 0, (12)

Cz = ∂

∂t
γ tz +

∂

∂x
γ xz +

∂

∂y
γ yz +

∂

∂z
γ zz = 0.



5978 H-O Kreiss et al

Because the constraints satisfy homogeneous wave equations, if Ca(0, x, y, z) = 0 and
∂
∂t

Ca(0, x, y, z) = 0, a = (t, x, y, z), then they remain zero at later times if Ca = 0 are part
of the boundary conditions for (11) at x = 0.

As in [1], we consider the choice of boundary conditions

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ tt

γ tx

γ xx

γ ty

γ xy

γ tz

γ xz

γ yy

γ yz

γ zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∂

∂x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
a1 a2 a3 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 b1 b2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 c1 c2 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ tt

γ tx

γ xx

γ ty

γ xy

γ tz

γ xz

γ yy

γ yz

γ zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∂

∂y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ tt

γ tx

γ xx

γ ty

γ xy

γ tz

γ xz

γ yy

γ yz

γ zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∂

∂z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ tt

γ tx

γ xx

γ ty

γ xy

γ tz

γ xz

γ yy

γ yz

γ zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= q, (13)

where q represents the boundary data. Here a1, a2, a3, b1, b2 and c1, c2 are real constants such
that the eigenvalues λj of⎛

⎝0 1 0
0 0 1
a1 a2 a3

⎞
⎠ ,

(
0 1
b1 b2

)
and

(
0 1
c1 c2

)
(14)

are real and negative. The constraints vanish on the boundary provided qta = 0, a =
(t, x, y, z).

We can now obtain standard energy estimates for the Einstein equations both in the interior
and on the boundary. The following theorem strengthens the results in section 3 of [1] to strong
well-posedness:
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Theorem 3. The half-plane problem for the system (11) with constraints (12) and boundary
conditions (13) is strongly well-posed if the eigenvalues of the matrices (14) are real and
negative.

Proof. As explained in appendix A, it suffices to show that all the first derivatives are bounded.
We start with the last components. Since the boundary conditions do not contain terms in the
tangential direction, theorems 1 and 2 tell us that all the first derivatives of γ zz can be bounded
in terms of ‖F‖ and ‖q‖B. Thus, we gain one derivative both on the boundary and in the
interior. The same result holds for the derivatives of γ yz and γ yy. �

In the same way as in [1], the boundary conditions for γ tz, γ xz can be decoupled by a
unitary matrix U such that

U

(
0 1
c1 c2

)
U ∗ = −

(
λ1 c12

0 λ2

)
, λ1, λ2 > 0.

Introducing new variables by(
γ̃ tz

γ̃ xz

)
= U

(
γ tz

γ xz

)
,

we obtain the equations

∂

∂t

(
γ̃ tz

γ̃ xz

)
=

(
λ1 c12

0 λ2

)
∂

∂x

(
γ̃ tz

γ̃ xz

)
+

(
q̃ tz

q̃xz

)
,

where (
q̃ tz

q̃xz

)
= U

(
− ∂

∂y

(
γ yz

0

)
− ∂

∂z

(
γ zz

0

)
+

(
qtz

qxz

))
.

We already have estimates of q̃ tz and q̃xz. Therefore, we can estimate all the first derivatives
of γ̃ xz in terms of ‖F‖ and ‖q‖B. The same is true for γ̃ tz. This process can be continued for
the remaining components. Thus we have proved theorem 3 of [1], where we can remove ‘in
the generalized sense’.

Theorem 3 is also valid when the matrices of (13) for the tangential derivatives are upper
triangular, i.e. only terms above the diagonal are not zero (or equivalent to that form by unitary
transformation). This allows the sequential argument in the proof. It also generalizes to full
matrices which are sufficiently close to an upper triangular form. A fuller discussion of the
most general case will be given in future work.

Local existence theorems for quasilinear equations follow by iteration of the linearized
equations, as described in appendix A. These results establish strong well-posedness, locally
in time, of the quasilinear harmonic IBVP.

4. Discussion

We have shown that the results of [1], obtained using pseudo-differential theory, can also be
derived in a more transparent way based upon integration by parts to establish strong well-
posedness of a broad class of IBVPs governed by second-order quasilinear wave equations.
The underlying arguments require no need to rewrite the wave equations as a first-order system.
As shown in appendix A, for smooth data there exist estimates for arbitrarily high derivatives
(which is a key requirement for treating the quasilinear case). The boundary conditions are
flexible and are stable against perturbation of their coefficients. These properties are important
for numerical calculations.
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We anticipate that these results will have applications to the broad class of problems
based upon second-order wave equations. For the standard wave equation (1), the chief
restriction is that the coefficient α of ut in the boundary condition (2) is positive and satisfies
α2 > β2

1 +β2
2 ; for the general wave equation on a curved space background, the corresponding

restriction is that the vector T a introduced in appendix B is timelike and future directed. This
encompasses boundary conditions of the Sommerfeld type. The application to Maxwell’s
equations expressed in terms of a vector potential in the Lorentz gauge is straightforward.

A prime motivation for this work is the formulation of a well-posed IBVP for the system
of harmonic Einstein equations. The importance of numerical simulations in general relativity
has spurred a large number of works which have established many of the necessary ingredients
for a well-posed IBVP. For a review, see [7]. The first complete well-posed formulation was
given by Friedrich and Nagy [8] for a version of Einstein’s equations in which the curvature
tensor, i.e. quantities constructed out of second derivatives of the metric, was included in the
evolved variables. Choquet–Bruhat’s first proof of the well-posedness of the Cauchy problem
for Einstein’s equation was given in the harmonic formulation [9]. It is satisfying to extend her
work to the harmonic IBVP. Our results also immediately apply to the generalized harmonic
formulation in which harmonic forcing terms are allowed [10], since this does not change the
principle part of the system.

Since the pioneering results of Pretorius [11, 12], there has been rapid progress in the
development of numerical codes based upon the generalized harmonic formulation with the
capability of simulating relativistic binaries consisting of black holes or relativistic stars
[13–15]. This difficult problem requires extensive computational tools that do not enter
the analytic treatment considered here, namely grid refinement and numerical dissipation.
Nevertheless, our results provide the analytic background necessary to justify a successful
numerical treatment and, at least for finite difference codes, they provide further guidance
on how to establish robust boundary conditions. Examples of the boundary conditions
considered here have been incorporated in a unigrid, second differential order, harmonic
code and successfully tested on model problems [16]. It is beyond the scope of the present
work to suggest how they might be incorporated in specific black hole codes. However, in
future work we will show how the geometric approach of appendix B can be further developed
to yield boundary conditions which are well tailored to the treatment of isolated astrophysical
systems.
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Appendix A. The quasilinear case

The preceding energy estimates establish that a solution of the IBVP with frozen coefficients
is unique and depends continuously on the data. In this section we want to show that local
existence theorems and energy estimates for second-order quasilinear wave equations are
proved in the same way as for first-order symmetric hyperbolic systems. It all depends on
a priori estimates for arbitrarily high derivatives of the solutions of linear equations with
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variable coefficients. Consider the half-plane problem for

utt = Pu + Ru + F, x � 0, −∞ < y < ∞, (A.1)

with boundary conditions

αut = ux − γ u + ru + q, α(y, z, t) � δ > 0, (A.2)

and initial data

u(t = 0) = f1, ut (t = 0) = f2. (A.3)

Here

Pu = (aux)x + (buy)y − 2γ ut − γ 2u

and

Ru = c1ut + c2ux + c3uy + c4u.

Ru are terms of lower (first and zeroth) differential order. All coefficients are smooth functions
of x, y, t and a � a0 > 0, b � b0 > 0; a0, b0 and δ are strictly positive constants. The initial
data are smooth functions which are compatible with the boundary conditions. Here, γ > 0 is
a constant obtained by the change of variables u → eγ tu′ and then deleting the ‘prime’. This
introduces the term γ 2‖u‖2 in the energy E in (A.4), which provides an estimate of ‖u‖2.

Lemma 2. There is an energy estimate which is stable against lower order perturbations.

Proof. Integration by parts gives

∂

∂t
E := ∂

∂t
(‖ut‖2 + (ux, aux) + (uy, buy) + γ 2‖u‖2)

= −4γ ‖ut‖2 + 2(ut , F ) + 2(ut , Ru) − 2(ut , aux)B + at‖ux‖2 + bt‖uy‖2

� const (‖F‖2 + E) − 2(ut , aux)B. (A.4)

Using the boundary conditions gives

−(ut , aux)B = −(ut , αaut )B − (ut , γ au)B + (ut , ru + q)B

= −(ut , αaut )B − (ut , γ a0u)B − (ut , γ (a − a0)u)B + (ut , aru + aq)B

� −1

2
γ a0

∂

∂t
‖u‖2

B − 1

2
(ut , αaut )B + const

(‖u‖2
B + ‖q‖2

B

)
.

Therefore, we obtain from (A.4)

∂

∂t
(E + γ a0‖u‖2

B + (ut , αaut )B) � const
(
E + ‖u‖2

B + ‖F‖2 + ‖q‖2
B

)
. (A.5)

This proves the lemma. �

Now we can estimate the derivatives. Let v = uy,w = ut . Differentiating the differential
equation gives us

vtt = Pv + Rv + Ryu + (ayux)x + (byv)y + Fy,
(A.6)

wtt = Pw + Rw + Rtu + (atux)x + (btv)y + Ft ,

respectively.
Ryu and Rtu are linear combinations of first derivatives of u which we have already

estimated and can be considered part of the forcing.
The differential equation (A.1) tells us that

auxx = wt − bvy + terms we have already estimated.
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Thus uxx is lower order with respect to v,w and, except for lower order terms, v,w are
solutions of the same differential equation as u. The same is true for the boundary conditions.
Therefore, we can estimate all second derivatives. Repeating the process, we can estimate any
number of derivatives.

We can now proceed in the same way as in [2], where we have considered first-order
systems, to obtain existence theorems for equations with variable coefficients. We approximate
the differential equation by a stable difference approximation and prove, using summation by
parts, that the corresponding estimates for the divided differences hold independently of the
gridsize. In the limit of vanishing gridsize, we obtain the existence theorem. Since we can
estimate any number of derivatives, it is well known, using Sobolev’s theorem, that we can
obtain similar, although local in time, estimates for quasilinear systems. By the same iterative
methods as for first-order symmetric hyperbolic systems, it follows that well-posedness extends
locally in time to the quasilinear case, as well as other standard results such as the principle of
finite speed of propagation.

Appendix B. Geometric derivation of the estimates

We now use a geometric approach to show how the estimates established in section 2 can be
extended to the general initial-boundary value problem for the second-order wave equation on
a curved spacetime. A similar geometric approach has been used to implement the second-
order harmonic formulation of Einstein’s equations as an evolution-boundary code based upon
summation by parts [16]. See also [17] for another application of the geometric approach to
the treatment of boundaries.

Using standard notation of general relativity, we consider the wave equation

gab∇a∇bφ = F (B.1)

for a massless scalar field propagating on a Lorentzian manifold with boundary of the form
M = [0, T ] × 	, where 	 is a compact, three-dimensional manifold with smooth boundary
∂	, each time-slice 	t = {t}×	 is spacelike and the boundary T = [0, T ] × ∂	 is timelike.
Here, ∇ denotes the covariant derivative associated with the spacetime metric g with signature
(−, +, +, +). The initial-boundary value problem consists in finding solutions of (B.1) subject
to the initial conditions

φ|	0 = f, nb∇bφ|	0 = h,

with Cauchy data f and h on 	0, and the boundary condition

[(T b + aNb)∇bφ]T = q

with data q on T . Here nb and Nb denote the future-directed unit vector field to the time-slices
	t and the outward unit normal vector field to T , respectively, T b is an arbitrary future-directed
timelike vector field which is tangent to the boundary surface T and a > 0. The motion of the
boundary is described geometrically by the hyperbolic angle Nbnb.

Without loss of generality, we can assume that T b is normalized such that gbcT
bT c = −1.

A Sommerfeld boundary condition then corresponds to the choice a = 1 for which T b + Nb

points in an outgoing characteristic (null) direction picked out by the geometry. See [16]
for a numerical study of the harmonic Einstein system carried out with such a Sommerfeld
condition, with evolution in the T b direction. In [16], the choice of matrices governing the
tangential derivatives in the boundary conditions (13) was made for mathematical simplicity.
In future work, we will explore more physically and geometrically motivated choices.
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In order to establish estimates, we introduce the notation φa = ∇aφ and the energy
momentum tensor of the scalar field


a
b = φbφ

a − 1
2δa

bφ
cφc.

The essential idea is the use of an energy associated with a timelike vector ua = T a + δNa ,
where δ > 0, so that ua points outward from the boundary. The corresponding energy E(t)

and the energy flux F(t) through the boundary 	t are

E(t) =
∫

	t

ub
a
bna

and

F(t) =
∫

∂	t

ub
a
bNa.

It follows from the timelike property of ua that E(t) is a norm for φa(t).
Energy conservation for the scalar field, i.e. integration by parts, gives

∂tE = F −
∫

	

(
ab∇aub + uaφaF )

so that

∂tE � F + const

(
E +

∫
	

F 2

)
. (B.2)

The required estimates arise from considering the flux density

ub
a
bNa = NaφaT

bφb + δ(Naφa)
2 − δ

2
φaφa

= NaφaT
bφb +

δ

2
(Naφa)

2 +
δ

2
(T aφa)

2 − δ

2
Habφaφb

= − δ

2
((Naφa)

2 + (T aφa)
2 + Habφaφb) + NaφaT

bφb + δ(Naφa)
2 + δ(T aφa)

2,

where Hbc = gbc + TbTc − NbNc is the positive definite metric in the tangent space of the
boundary orthogonal to T a . By using the boundary condition to eliminate T aφa in the last
group of terms, we obtain

ub
a
bNa = − δ

2
((Naφa)

2 + (T aφa)
2 + Habφaφb)

+ (−a + δ(1 + a2))(Naφa)
2 + (1 − 2aδ)Naφaq + δq2

so that

ub
a
bNa = − δ

2
((Naφa)

2 + (T aφa)
2 + Habφaφb) + (−a(1 − ε) + δ(1 + a2))(Naφa)

2

− εa

(
Naφa − (1 − 2aδ)

2aε
q

)2

+

(
δ +

(1 − 2aδ)2

4aε

)
q2.

In the above equation, we have introduced the ε-terms, with 0 � ε � 1, in order to establish
the inequality

ub
a
bNa � − δ

2
((Naφa)

2 + (T aφa)
2 + Habφaφb)

+ (−a(1 − ε) + δ(1 + a2))(Naφa)
2 +

(
δ +

(1 − 2aδ)2

4aε

)
q2. (B.3)
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The boundary estimate of φa now follows by requiring −a(1 − ε) + δ(1 + a2) � 0, which
guarantees that ua is timelike. With the choice

δ = a(1 − ε)

(1 + a2)
,

(B.2) and (B.3) give

∂tE +
∫

∂	

δ

2
((Naφa)

2 + (T aφa)
2 + Habφaφb) � const

(
E +

∫
	

F 2 +
∫

∂	

q2

)
. (B.4)

In analogy with (A.5), this leads to the required estimate of the gradient φa on the boundary (as
well as the usual estimate of the gradient at a fixed time) to prove that the problem is strongly
well-posed. An estimate of φ itself follows by introducing a mass term in (B.1) through the
change of variable φ → eγ tφ′, as described in appendix A. Energy estimates for the problem
(1′), (2), (3) in section 2 follow from the choice T b = (T t , T x, T y, T z) = τ(α′, 0,−β ′

1,−β ′
2)

with Nb = −νgba∇ax = −ν(c, 1, 0, 0), where τ and ν are positive normalization constants
and α′ and β ′

i are related to the coefficients α and βi in (2) by

α = τα′

aν
− c

βi = τβ ′
i

aν
, i = 1, 2.
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