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1 Introduction

This introduction is meant to indicate some properties of general relativity
theory (GRT) which distinguish it from other branches of physics considered
in this book, to relate it to other branches of physics and to mention some
of its achievements and open problems. The subsequent chapters will give
details.

1.1 GRT is the only empirically supported theory in which the spacetime
structure is treated as dynamical, and not specified once and for all,
independently of physical processes. Since the spacetime metric is interre-
lated to matter and field variables via field equations, the distinction between
kinematics and dynamics is abolished in GRT.

Conceptually, the background independence must be seen as the principal
achievement of GRT; it is, however, at the same time the main obstacle to
overcome if GRT and quantum theory are to be united.

1.2 According to GRT the spacetime metric (and the connection and curva-
ture derived from it) represents both the “metric” in the original sense – time,
distance, causal order – and the gravitational inertial field; it unifies geometry,
chronometry, gravity and inertia. (Einstein: “gravitational field and metric are
manifestations of the same physical field”.)

1.3 GRT may be viewed as encompassing in a coherent system all of macro-
scopic, phenomenological physics, from laboratory scales to cosmology.

1.4 So far, all physical theories, classical or quantum, employ a metric to
represent matter or fields and their interactions. For this reason GRT is, in
principle, a basic ingredient of physics even if gravitation is quantitatively
negligible in many contexts. Since inertial mass is inseparable from active,
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gravity-producing mass, an ultimate understanding of mass can be expected
only from a theory comprising inertia and gravity.

1.5 Mathematically, GRT is fairly well understood. Several physically
interpreted exact solutions to its field equations, with and without matter,
are known, as well as general existence and uniqueness theorems [1]. For com-
plex realistic circumstances, perturbation schemes and numerical methods are
available. There is, at least in principle, no interpretation problem.

1.6 The existence of a Lorentz metric, the most basic assumption of GRT,
implies the approximate validity of special relativity theory (SRT) in spacetime
regions which are small compared to the time and distance scale set by the
curvature of spacetime. Even in neutron stars this scale is much larger than
the scales relevant for the properties of bulk matter, atoms or nuclei. There-
fore equations of state, cross sections, transport coefficients etc. derived from
quantum theory can be incorporated into the classical matter models used in
GRT in spite of the fact that these theories are in principle incompatible.

1.7 So far all experimental tests of GRT have supported the theory [2]. This
concerns laboratory experiments which test the existence of a Lorentz met-
ric or, equivalently, of local inertial frames; experiments with clocks, satel-
lites and electromagnetic signals around the Earth and in the solar system,
and the dynamics of binary pulsar systems including gravitational radiation
damping. GRT has also been used increasingly to analysze and interprete
astrophysical and cosmological phenomena. (Here one so far unexplained
observation, the “pioneer anomaly” [3], deserves to be mentioned, which has
been related tentatively to quintessence [4].)

1.8 At present, gravitational physics is one of the most active areas of research.
Great efforts are being made to directly detect gravitational waves, with the
prospect to open another window into the universe. Another goal is to find di-
rect evidence supporting the assumption that the large concentrations of mass
in the centers of galaxies are indeed black holes. High energy astrophysics of-
fers additional challenges such as the explanation of gamma ray bursts. At a
more conservative side, the investigation of gravitomagnetism, opened up by
gravity probe B, might be mentioned. This shows that classical GRT is not
a closed subject; compared to electrodynamics, gravitational physics has not
yet reached the stage of Hertz’s experiments.

1.9 The fundamental problem of unifying quantum theory and GRT
is considered in other contributions to this book. Here I want to remark only
that, in my view, “quantizing general relativity” is a rather inadequate way
to address the problem. A unification presumably requires basic changes of
quantum theory as well as of GRT, at least if the resulting theory is to remove
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infinites from both theories and to bring light to issues such as non-baryonic
dark matter and dark energy.

2 Basic Assumptions of GRT

2.1 In GRT as well as in Newtonian physics and SRT, spacetime, the
arena of directly perceivable phenomena, is represented as a connected real,
4-dimensional differentiable manifold M . This manifold is not generally iden-
tified with R4, however. M depends on the situation to be modelled; it can
only be determined in connection with a solution to the field equation (see
3.5). M by itself has no physical meaning; it gets meaning only through fields
defined on it.

The manifold M is assumed to carry a Lorentz metric gαβ. This as-
sumption guarantees that (i) SRT with its non-gravitational laws remains
approximately valid locally even if gravitational fields are taken into account
(2.2, 2.3); (ii) the connection Γαβγ (or covariant derivative operator ∇α) de-
termined by gαβ provides a natural way to express the influence of gravity on
“matter” (2.4 – 2.6); and (iii) the interaction between matter and gravity can
be expressed via the curvature associated with Γαβγ (2.7). Here “matter” is
used to denote all physical entities besides gαβ, i.e. everything which carries
localizable energy and momentum.

The beauty of GRT is due to the fact that one mathematical object, the
metric field gαβ and fields derived from it, provides all three aspects of gravity
listed above, without the need to introduce additional structures.

On the other hand, the division of physical entities into the metric and
“everything else” calls perhaps for a more democratic or, even better, a monis-
tic structure which, however, apparently is not in sight.

2.2 Given a point (“event”) x on a spacetime (M, gαβ), there exists a co-
ordinate system (xα) on a neighbourhood N of x such that xα = 0 at x and,
on N ,

gαβ(xε) = ηαβ + pαγβδ(xε)xγxδ (1)

where ηαβ = diag(1, 1, 1,−1), the functions p have the symmetries of the
curvature tensor Rαγβδ associated with gαβ, and pαγβδ(0) = − 1

3Rαγβδ(0). For
fixed x, such “normal” coordinates are unique up to Lorentz transformations.1

1 The statements about normal coordinates are equivalent to a coordinate-
independent fact: a neighbourhood of the zero vector of the tangent space at
x can be mapped diffeomorphically onto a neighbourhood of x in M such that
straight lines go into geodesics starting at x. In spite of their usefulness in GRT,
(1) and (2) are rarely mentioned; I found it only in Pauli’s relativity article in the
Encyclopedia of Mathematics and Mathematical Sciences. The theorem is true
for arbitrary dimensions and signatures; it holds if the metric is C2. A proof has
recently been given by B.G. Schmidt (unpublished) .
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These coordinates satisfy

(at x) : gαβ = ηαβ , gαβ,γ = 0, gαβ,γδ =
2
3
Rα(γδ)β (2)

Coordinates obeying the first line of (2) are called“locally inertial at x”;
normal coordinates form a subclass of them.2 The existence of normal coor-
dinates indicates that any Lorentz metric can be approximated by the flat
Minkowski metric ηαβ in a region small compared to the curvature scale,
max|Rαγβδ|−1/2, and (2) identifies the curvature tensor as a measure of an
“intrinsic” gravitational field, i.e. one that cannot be “transformed away” by
a coordinate change.

2.3 As a global restriction on physical spacetimes one assumes the manifold M
to be orientable and (M, gαβ) to be time-oriented. This last property means
that there exists a continuous, never-vanishing timelike vector field which is
said to point into the future. Timelike and lightlike vectors pointing into the
same half of the null cone as that specified vector are then also called future
pointing. These (rather weak) global restrictions are made to give meaning
to the discrete symmetry operations T (time reversal) and P (parity), and to
formulate local laws which presuppose a time-orientation such as the second
law of thermodynamics, molecular chaos, or the quantum law for transition
probabilities.

2.4 The existence of normal coordinates suggests the transfer of local physical
laws from special to general relativity: formulate the law in SRT as a tensor
equation with respect to inertial coordinates and substitute gαβ, ∇α for ηαβ ,
∂α, respectively, to obtain a tensorial GRT law. This law is seen to be identical
to the original law at the origin x of any normal coordinate system, hence it
will differ from its ancestor very little in a sufficiently small neighbourhood of
any event x.

This rule is unambiguous if the SRT-law is algebraic or of first differential
order. It provides a physical interpretation of the metric and the matter vari-
ables involved. The consistency of the laws so obtained is not implied by the
rule itself.3

Simple consequences of this hypothesis are Einstein’s generalized law of
inertia freely; falling test particles have timelike geodesic world lines given by

2 Given a timelike geodesic G, it is also possible to introduce local coordinates
in a neighbourhood of G such that G is the “spatial origin”, and such that the
first two equations of (2) are valid on G. Such coordinates are “locally inertial
on G” and represent Einstein’s elevator better that those defined in the text. It
is instructive to consider how “freely falling test masses” contained in a drag-
free satellite realize, as precisely as possible, geodesics enclosed in a local inertial
frame.

3 Examples where difficulties arise have been discovered by H.A. Buchdal, G. Velo
and D. Zwanziger. For discussion and refs. see, e.g., [5].
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ẍα + Γαβγẋ
β ẋγ = 0 ; (3)

ideal clocks measure proper time
∫ |gαβdxαdxβ |1/2 along their (not necessarily

geodesic) world line; light rays in vacuo correspond to lightlike geodesics.
The rule also supplies GRT-laws for classical matter models including ki-

netic theory and hydro-, elasto-, thermo- and electrodynamics. These matter
models each contain an energy–momentum tensor Tαβ. The total energy–
momentum tensor obeys, in agreement with the correspondence rule SRT →
GRT , the law

Tαβ ;β = 0 (4)

which, because of the covariant derivative, is not a conservation law in the
ordinary sense. This comes as no surprise since the gravitational field acts on
matter. (See 3.8.)

The considerations of this section, which concern non-gravitational mat-
ter laws in gravitational fields, may be taken as an exact expression of (many
formulations of) Einstein’s heuristic “principle of equivalence”.

2.5 Energy is usually asumed to be positive and to dominate stresses.
Accordingly, Tαβ is said to be energy dominated if its components with re-
spect to any orthonormal basis satisfy

T 00 ≥ |Tαβ| (5)

for all α, β.
Hawking [6] has shown: if (4) and (5) hold, and if Tαβ = 0 on a compact

part S of a spacelike hypersurface, then Tαβ = 0 in the domain of dependence
of S. Thus, matter obeying (4) and (5) cannot move faster than light into an
empty region, since otherwise it could enter the domain of dependence of S
from the outside of S. This result is remarkable, since (4) represents 4 equa-
tions for 10 unknowns; without (5) the conclusion does not hold.

2.6 In GRT the concept “free particle” is abandoned since all matter seems to
be universally coupled to gravity. Accordingly the law of inertia is replaced in
GRT by the geodesic law (3) to represent free fall. No concept of mass enters
that law (or its predecessor, Galileo’s law), though for historical reasons it
is said to express the universal proportionality (or equality) of inertial and
gravitational mass.

It follows from (3) that the relative position vector rα of two infinitesimally
close (in the sense of a variation), freely falling particles obeys the equation
of geodesic deviation

r̈α = Rαβγδẋ
β ẋγrδ (6)

where the dot indicates covariant differentiation with respect to the proper
time of one of the geodesics ẋα(τ).
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This equation characterizes the curvature tensor. It shows that the ordi-
nary law of inertia, if expressed in terms of relative motions, holds, within the
framework of Lorentzian spacetimes, if and only if the spacetime is flat, and it
provides the interpretation of the curvature tensor as the gravitational tidal
field.

2.7 So far, the assumptions which have been introduced hold in any “metric”
theory of spacetime including SRT, since no field equation has been imposed
on gαβ .

To obtain a field equation relating gαβ to matter, Einstein assumed, in
analogy to Poisson’s law, an equation of the form

V αβ(g.., ∂g.., ∂2g..) = κTαβ

where the l.h.s. is a tensor-valued function depending on the arguments indi-
cated; it is assumed to be linear in the second derivatives gαβ,γδ.

Remarkably these assumptions determine V αβ , as follows. Equation (2)
shows: A function like V αβ can be expressed algebraically in terms of gαβ
and Rαβγδ (specialize to the origin of normal coordinates), linearly in Rαβγδ.
Therefore V αβ must be a linear combination of Rαβ , gαβ and Rgαβ with
constant coefficients. Hence, the looked-for field equation is equivalent to the
“tracefree equation”

Rαβ − 1/4gαβR = κ(Tαβ − 1/4gαβT ) (7a)

and a relation involving the traces R, T .
Equation (7a), the contracted Bianchi identity, and (4) imply that R+κT

is constant. Putting

R + κT = 4Λ (7b)

gives Einstein’s gravitational field equation

Rαβ − 1/2Rgαβ + Λgαβ = κTαβ (7)

Equation (7a) may be considered as that part of the gravitational field
equation which is independent of the “mechanical” or “matter” law (4), while
(7b) expresses the compatibility of (7a) with (4). In this argument Λ appears
as an integration constant.

In 1915, Einstein had assumed in addition that the Minkowski metric
should satisfy the vacuum field equation. Then Λ = 0. In 1917 he added
Λ to allow for a static model of the universe with pressureless matter.
For a discussion of the present views on Λ in physics and cosmology, see
Part VII.

By construction, the field equation (7) implies the energy–momentum law
(4). Thus (7) accounts both for the inertia of matter and for its power to
attract gravitationally. The constant κ = 8πGc−4 is chosen such that for
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weak fields and slowly moving and weakly stressed matter, Newton’s theory
emerges as an approximation [7] (c = speed of light, G = Newtons’s constant
of gravity).

Just as in Newtonian gravity the Poisson equation contains the trace of
the tidal field tensor, so in GRT (7) contains a “trace” Rαβ of the curvature
tensor.

3 General Comments on the Structure of GRT

3.1 The field equation (7) has physical meaning only if Tαβ is specified;
this specification always contains the metric. Mathematical studies often con-
sider the vacuum case, Tαβ = 0, with or without Λ. Matter models stud-
ied in some detail include perfect fluids, electromagnetic fields, collisionless
particle systems idealized by kinetic theory and, to a lesser extent, elastic
bodies. In these cases the system of partial differential equations consist-
ing of (7) and the relevant matter law admits a (locally) well-posed initial
value problem.

A model of a physical system in GRT thus consists of a structure
(M, gαβ ,m), where m stands for matter variables. Two such models are phys-
ically equivalent if their underlying manifolds can be smoothly and bijectively
mapped onto each other such that the fields gαβ,m of one model are mapped
into those of the other one. Ideally, a particular model should be characterized
by invariant properties. For example, Einsteins’s static universe is character-
ized as the only static solution of (7) with pressureless matter, with the density
ρ being the only independent invariant.

3.2 Contrary to appearance, the Einstein equation (7) does not imply matter
to be the source that determines the gravitational potential gαβ, for only (at
least) the pair (Tαβ, gαβ) describes matter, not Tαβ by itself. Equation (7)
states a mutual inter-action between metric and matter.

3.3 Equation (7) is incompatible with point particles as matter models. For
static, stellar models the mass/radius ratio has an upper bound c2/2G. The
simplest “objects” of GRT which may be taken to replace mass points are
black holes, see (4.5) below.

3.4 The tensors in (7) are symmetric. This follows from Einstein’s assuptions
stated in 2.6. The symmetry of the total energy–momentum tensor is, there-
fore, essentially a consequence of the assumption that gravity is completely
represented by gαβ and fields derived from it. The same holds for the special
kind of non-linearity (“self interaction”) of the l.h.s. of (7).

3.5 A solution of (7) is usually constructed in some local coordinate system.
Frequently the components gαβ in that system exhibit singularities. These
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may either be due to the choice of coordinates or to the existence of an intrin-
sic singularity. A solution can be considered as fully understood only if it has
been maximally extended. A maximal solution may be free of singularities;
otherwise its (suitably defined) boundary will be singular. The problems of
finding maximal extensions and/or characterizing singularities are difficult;
we know examples, but no general theorems.

3.6 The background independence, mentioned already in 1.1, is an
important characteristic of GRT. Its meaning is not properly grasped by
“general covariance”, i.e. the possibility to formulate the laws such that ar-
bitrary local coordinates may be used; that can be done for SRT as well
as for Newton’s theory. Rather, “absence of background” means that the
laws of GRT, in contrast to those of Newtonian physics and SRT, do not
presuppose the existence of an “absolute” spacetime structure which is spec-
ified categorically prior to dynamical laws and not influenced by physical
processes.

In GRT the metric is said to be “dynamical”. This involves two interrelated
aspects: (i) a gαβ-field is specifiable by independent initial data (“has degrees
of freedom”) which determine, together with matter data, its evolution (see
Sect. 4.3), (ii) the gαβ-field not only acts on matter as, e.g., via (4), but
interacts with matter, (7).

The history of physics shows that some essential changes in the foundation
of theories consisted in substituting dynamical structures for absolute ones.
It appears to be generally accepted that a fundamental theory should be
free of any background structure, i.e. its basic structures, not only those of
spacetime, should be dynamical, not absolute ones. One might call this the
“Mach–Einstein principle”.

Historically, the formulation of a theory directly identified its absolute
structures. Systematically and in general, it is difficult (if at all possible) to
identify these structural elements of a theory unambiguously, especially since
a theory may be based on different basic concepts. If, however, the variables
and laws to be taken as basic are specified, the distinction absolute/dynamical
is unambiguous, in my view.

The issue briefly considered here, and its relation to the principles of gen-
eral covariance, general relativity and diffeomorphism invariance, is discussed
carefully in the next chapter by D. Guilini. For a related discussion from a
different viewpoint, see [8], Sects. 2.2.5 and 2.3.

3.7 The assumptions introduced in Sect. 2 are not independent. That light
rays are given by lightlike geodesics, e.g., can be deduced from the generally
covariant Maxwell equations, the geodesic law can be deduced from (4), (5),
and a definition of “test particle”, and dynamical clock models can be shown
to exhibit proper time. It appears that GRT is semantically consistent, though
a complete axiomatic has not been given.
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3.8 As remarked in 2.3, (4) is not a conservation low; integration cannot
transform it into a statement saying that the amount of energy contained in
some finite volume changes only in accordance with a flux through the bound-
ary. This fact cannot be remedied by adding to the matter energy tensor a
gravitational energy tensor; according to GRT, such a tensor does not exist.
The reason is simple: The state of a gravitational field, i.e. its Cauchy data, is
given by some components of gαβ and its first partial derivatives. From these
data at a point one cannot construct a tensor as required.

It is possible to find non–tensorial energy–momentum “complexes” which,
added to Tαβ (or to its densitized version), obey ordinary divergence equa-
tions in consequence of (7), and which give rise to non-tensorial integral
conservation laws. Such complexes and laws are used in connection with ap-
proximation methods to express GRT-relations in familiar energy terms. It is
possible, however, to describe all observable relations of GRT without such
non-covariant tools.

In contrast to energy–momentum, scalar quantities like electric or bary-
onic charges do admit “decent” local and integral conservation laws since
scalars at different events can be added unambiguously while vectors cannot.

4 Theoretical Developments, Achievements
and Problems in GRT

4.1 Einstein’s gravitational field equation (7) is the Euler–Lagrange equation
associated with the action functional (with c ≡ 1)

AD[g,m] =
∫

D

{

1
2κ

(R(g)− 2Λ) + L(g,m)
}

dV (8)

in which D denotes a compact domain of spacetime, g stands for the
metric, m for matter variables and dV =

√|detgαβ |d4x is the invariant vol-
ume element of spacetime. Up to a divergence, the curvature scalar is the
only invariant function of the metric and its derivatives (of any order) whose
variational derivative is of second order in the metric. Up to a divergence,
R is a quadratic form in the connection coefficients. The action density L of
matter contains the metric and the connection, but not the curvature. The
energy tensor is obtained as the variational derivative of L,

1
2
Tαβ =

1
√|g|

∂(
√|g|L)
∂gαβ

(9)

Varying A with respect to g gives (7); varying it with respect to m gives
the matter equations. These statements summarize the mathematical contents
of Chap. 2 if the appropriate expressions for L are chosen.

For first-order Lagrangian field theories in SRT, the rule for general-
izing them to GRT stated in 2.3 is equivalent to the simple device of
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substituting g and ∇ for η and ∂ in the matter action density. This pre-
scription includes that no curvature term should be introduced into the
matter action; this minimal coupling rule may be considered as a version
of Einstein’s equivalence principle. In this form the principle can be ap-
plied not only to the classical matter models mentioned in 2.3, but also to
the formally classical, Lagrange-based standard model of particle physics.
That requires, however, that spacetime is considered as the base manifold
of a principal fibre bundle with structure group U(1) × SU(2) × SU(3); see
Part II.

The action (8) is also the starting point for Hamiltonian formulations of
gravity, either in terms of metric variables or connection variables (see 4.2).
These formulations make it possible to introduce canonical variables and to
try canonical quantization of gravity.

4.2 In the standard model of particle physics, principal connections play the
part of mediating interactions between massive particles. But although GRT
was the first theory in which a connection appeared, besides objects related to
linear representations of an underlying group, and the name “gauge” derives
from Weyl’s attempt to unify electromagnetism and gravitation, GRT is not
a pure gauge theory since the gravitational connection Γαβγ is not a basic field,
but is derived from the metric. This is related to the fact that, in contrast
to pure gauge theories, the points of the fibres of the SO(3,1) bundle over M
are orthonormal frames of (M, g); the bundle space is said to be soldered to
the base space. This special role of the spacetime connection shows up in the
gravitational Lagrangian density R = gαβRαβ , which is linear, not quadratic,
in the curvature like that of Maxwell and Yang–Mills fields. It appears that
this is another characteristic feature of gravity which distinguishes it from
the other fundamental interactions. In gravity, the gauge potential Γαβγ itself
derives from a potential, the metric.

A historical remark: the procedure

gαβ → Γαβγ → Rαβγδ (10)

consisting of two non-linear steps of first differential order leads from a tensor
via a connection to a tensor. The impossibility to form tensors from gαβ by
differentiation without the intervention of a non-tensorial field was one of the
obstacles Einstein had to overcome on his arduous way to his general theory of
relativity. Connections as quantities independent of a metric were introduced
only in 1918 by J.A. Schouten and H. Weyl after T. Levi-Civita’s introduction
of metric connections in 1917. While only the second step in (10) occurs in
gauge theories, the first step is peculiar to gravity; it was a step which enabled
Einstein to make the metric dynamical and to identify it with (a new kind of)
gravitational potential.

4.3 An essential test for the viability of a classical field theory is whether its
field equations admit a well-posed initial value problem. Solving the Cauchy
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problem requires identifying initial data and, thereby, states and degrees of
freedom, as well as to determine the dependence of the evolved field on its
data, i.e. the causal behaviour of the field.

Carrying out this analysis for Einsteins’s field equation (7), without or
with coupling to matter, turned out to be difficult for reasons which can all
be traced back to diffeomorphism invariance. Here I report only the main
results without technical details.

The equations split into two subsets. One of these imposes conditions,
usually in the form of non-linear elliptic partial differential equations, on the
initial data specified on a 3-dimensional Riemannian space (constraint equa-
tions). The free data for the gravitational field turn out to correspond to two
degrees of freedom per space point, as in the case of ordinary electromag-
netism. The second subset consists of the evolution equations. After imposi-
tion of coordinate conditions, these turn out to be hyperbolic, non-linear wave
equations. For all matter models mentioned in this survey,4 classical ones as
well as Dirac and Yang–Mills fields, the outermost characteristics turn out
to be lightlike hypersurfaxes, i.e. wave fronts propagating with fundamental
speed c. This expresses Einstein causality.

Hyperbolicity means the following: the laws imply relations between the
fields within finite domains of spacetime, relations which are not affected by
the fields outside that domain. The laws, and data on a compact part S of
space, uniquely determine the fields in the (finite) domain of dependence of
S. This kind of determinism is fundamentally different from that of Laplace
which requires data on the whole, infinite space at one instant.

A further important fact is that the first set is preserved under the evo-
lution. Thus, later states of the field again satisfy the so-called “constraint
equations”. Finally, irrespective of coordinate conditions, the evolved field is
determined by the data uniquely up to diffeomorphisms in the domain of
dependence of the data.

Spacetimes determined by initial data are said to be globally hyperbolic;
their manifolds M are products of a 3-manifold “space” and a 1-manifold
“time”. The initial value problem for the vacuum field equation with Λ = 0
has been used to prove the existence of global, singularity free, asymptoti-
cally flat spacetimes filled with gravitational radiation only. Such solutions
arise from initial data close to trivial data giving flat spacetime. They de-
scribe how incoming gravitational radiation scatters on itself and propagates
out again. Theorems about global solutions with Λ are also known.

4.4 An important task for any gravitation theory it the modelling of an iso-
lated system such as a single star, the solar system or a binary star system
far removed from other bodies. All quantitative tests of the field equation (7)

4 For models of bulk matter such as fluids, equations of state have to be restricted,
however, to exclude, e.g., superluminal sound waves. This holds in SRT already.
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are based on approximate solutions to such spacetimes. In this subsection we
put Λ = 0.

One expects the spacetime of an isolated system to resemble flat space-
time at large distance from the bodies. To express that asymptotic behaviour
R. Penrose proposed to rescale the metric gαβ → Ω2gαβ and to let Ω tend
to zero at large physical distances such that one can attach a “boundary
at infinity” where Ω = 0, Ω,α �= 0. The boundary consists of ideal end-
points of outgoing and incoming light rays, respectively, and of spacelike in-
finity. Such spacetimes may contain outgoing and/or incoming gravitational
and electromagnetic radiation. Some exact implications of the vacuum field
equation about the asymptotic behaviour of such radiation have been de-
rived, but the motion of bodies emitting radiation so far is the domain
of analytical, post-Newtonian approximations and, increasingly, numerical
relativity.

For asymptotically flat spacetimes a constant total 4-momentum at space-
like infinity has been defined, and a celebrated result says that it is future-
directed timelike; so it has positive energy (except, of course, for Minkowski
spacetime, where it is zero), provided Tαβ is energy dominated. A total 4-
momentum at null infinity whose (positive) energy decreases towards the fu-
ture according to the amount of the outgoing radiation has also been defined.

4.5 The vacuum field equation with Λ = 0 has asymptotically flat, particle like
solutions, black holes. Their stationary states are characterized by only three
parameters, namely mass, angular momentum and charge. The outer part of a
black hole spacetime, connected to infinity, is separated from an interior part
by a horizon which acts as a one-way membrane: test particles and radiation
can pass through from the outside only, not from the inside.

A thermodynamic of black holes has been elaborated [9]; its relation to
statistical mechanics, quantum and string theories is a subject of current
research.

In astrophysics, black holes are considered as objects which may form when
a massive star collapses at the end of its thermonuclear evolution. They are
also thought to exist at the centres of most galaxies. Efforts are being made
to observe spectroscopic features characteristic of the geometry near a horizon.

4.6 Light cones not only govern the propagation of electromagnetic and grav-
itational radiation, but they determine causal relations, too. While in flat
spacetime light cones are, apart from their vertices, smooth hypersurfaces, in
curved spacetimes they have self-intersections and caustics. Observationally
these geometric properties show up as the phenomena of gravitational lensing
[10]. Distant galaxies, e.g., are observed in different images which differ in
brightness and shape. Modelling such phenomena has become a useful tool in
astronomy for determining the masses and mass distributions of the deflecting
matter including dark matter. The successes of such modelling provide direct
evidence for spacetime curvature. They support the light deflection measure-
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ments which followed, with ever increasing accuracy, the famous solar eclipse
measurements of 1919.

4.7 Relativistic celestial mechanics which began with Einstein’s perihelion
paper of 1915 has been much developed since about 1980, in the form of post-
Newtonian dynamics whose approximate equations of motion now include
corrections of Newton’s laws of order up to (vc )

7, where v is a typical relative
speed, e.g., in a binary system.

This theory, or rather its first post-Newtonian version which includes only
(vc )

2 corrections, has been used to test whether GRT-predictions of relations
between observable parameters agree with real observations made on binary
systems composed of neutron stars. So far, agreement prevails, which is very
remarkable in view of the precision of the data. The predictions include the
slowing down rates of the orbital periods, and the agreement with measured
values has given indirect evidence for the existence of gravitational waves.

The higher-order approximations are applied tentatively to late stages of
compact binaries when the components approach each other ever closer until
they “plunge” together to form a single object, perhaps a black hole. Such
processes are thought to emit bursts of gravitational radiation which might be
detected by gravitational wave interferometers which have started to operate.
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