
AstroGrid-D

Deliverable D6.2

Requirements on grid-enabled Monitoring &
Steering Methods in AstroGrid-D Applications1

Deliverable D6.2

Authors Thomas Radke (AEI)

Editors Thomas Radke (AEI)

Date 22 December 2006

Document Version 1.0.0

Current Version 1.0.0

Previous Versions

A: Status of this Document

Approved document for project deliverable D6.2.

B: Reference to project plan

This deliverable document refers to the task TA VI-II ”Feststellung der Anforderungen an gridfähige

Überwachungs- und Steuerungsmethoden” and milestone M6 of work package WP-6 in the project
plan.

1This work is part of the D-Grid initiative and is funded by the German Federal Ministry of Education and Research
(BMBF).

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

C: Abstract

This document describes the requirements of individual use cases on grid-enabled monitoring and
steering methods in AstroGrid-D applications.

D: Changes History

Version Date Name Brief summary

0.1.0 20 November 2006 Thomas Radke Working Draft Creation

0.1.1 21 November 2006 Thomas Radke Introduction and Requirements Overview

0.1.2 23 November 2006 Thomas Radke Specific Requirements Added

0.1.3 24 November 2006 Thomas Radke Finished Requirements, Outlook Added

0.2.0 1 December 2006 Thomas Radke Working Draft submitted to entire Project with Request for
Comments

0.2.1 8 December 2006 Thomas Radke Comments and Suggestions from Project Members Added

1.0.0 22 December 2006 Thomas Radke Document finally approved

AstroGrid-D - 2 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

E:

Contents

1 Introduction 4

2 Requirements 5

2.1 Interactive Access to stdout/stderr Logs . 5

2.2 Interactive Access to Application Logfiles . 7

2.3 Application-specific Monitoring Methods . 7

2.4 Application-specific Steering Methods . 8

3 Further Steps 9

References 10

AstroGrid-D - 3 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

1 Introduction

Based on the information gathered in the use case enquiry about AstroGrid application scenarios,
this document determines the WP-VI-specific requirements on grid-enabled monitoring & steering
methods. It also incorporates the results from the analysis of already existing monitoring and
steering facilities in AstroGrid applications as described in the first deliverable of this Working
Group (D6.1: ”Existing Monitoring & Steering Functionality in AstroGrid-D Applications” [1]).

Monitoring & steering methods are required mostly by astrophysical simulation applications. Data
analysis codes typically do not need interactive steering, and monitoring methods are used here
mainly for debugging purposes. Robotic telescopes (RTs) will have their own monitoring/steering
capabilities built-in. Because actual work on RTs is scheduled to start not before the first year
into the project, no RT-specific requirements are contained in this document. Instead, they will be
assessed in a following requirements enquiry.

Based on the list of detailed requirements on application monitoring & steering as described in this
document, the next task in Working Group VI will be to define an overall architecture which outlines
the necessary steps towards the design and implementation of generalized grid-enabled monitoring
and steering methods for AstroGrid. Such an architectural design will then be presented in the
upcoming D6.3 deliverable design document.

AstroGrid-D - 4 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

2 Requirements

Given the AstroGrid use case descriptions in [1] and [2], a list of concrete requirements is derived in
the following. Also named are interdependencies of Working Group VI with other work packages.

Because many use cases have very similar requirements especially in terms of monitoring, the
individual requirements have been generalised into different classes:

1. interactive access to stdout/stderr logs

2. interactive access to application logfiles

3. application-specific monitoring methods

4. application-specific steering methods

Each class, which is described in a separate subsection, lists the use cases for which this requirement
is relevant, hence each use case itself may be listed in multiple classes.

Table 2 denotes the mapping of individual use cases and their abbreviations as used in the following
requirements descriptions. The list of use cases and their numbering scheme corresponds to the
results obtained from the use case inquiry taken at the beginning of the project.

Only such uses case are listed which did actually specify concrete requirements on application
monitoring and steering. The full list of AstroGrid use cases and their descriptions are available on
the AstroGrid intranet webpages [2].

Use Case Number Title Responsible

UC1 NIRVANA AIP
UC2 AMIGA AIP
UC3 NBODY6++ ZAH
UC4 DYNAMO AIP
UC5 Cactus AEI
UC6 Gadget AIP/MPA
UC7 Astrometric Matching MPE
UC8 ClusterFinder MPE
UC11 Millenium Processing MPE
UC12 GEO600 AEI

Table 2: AstroGrid Use Cases with requirements on monitoring and steering

2.1 Interactive Access to stdout/stderr Logs

Required in use cases: UC3, UC5, UC6, UC8, UC11, UC12

Local jobs:

Many applications print runtime information to stdout and important notification, warning, and
error messages to stderr. When started interactively, users can directly follow a local job’s progress
by monitoring the stdout/stderr streams on the console.

AstroGrid-D - 5 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

For non-interactive jobs (eg. a simulation submitted as a batch job to a cluster resource), the
queuing system takes care of redirecting stdout/stderr into job-specific logfiles as specified in
the user’s batch script; depending on how the queuing system is configured, intermediate logfiles
are created and being written to while the job is running, and moved to their final user-specified
location only after the job has finished. In such a case the user needs some knowledge about the
local queuing system’s naming scheme (eg. a filename template "<pbs server>.<pbs jobid>")
and output location (eg. PBS SPOOLDIR as a local spool directory on the first node where the job
is running) for intermediate logfiles. This logic can be hidden in a (queuing system specific) helper
script which determines the names of a batch job’s intermediate logfiles and fetches them from
their location.
In general, for non-interactive jobs stdout/stderr information is written into logfiles, and a user
who wants to monitor the progress of these jobs typically checks the latest contents of such files
periodically (eg. using the UNIX command tail -f).

Grid jobs:

For Grid jobs, stdout/stderr monitoring should work similarly as for local jobs: interactively
started jobs can be monitored directly on the console, whereas monitoring of non-interactive
jobs requires access to their logfiles. The Globus framework itself already provides commands
(globus-job-get-output, globus-job-get-output-ws[3]) to fetch remote logfiles of simple
Grid jobs (ie. ones that were not submitted as batch jobs to some local queuing system); only the
job ID – or some equivalent unique contact address as created during grid job submission – must
be specified, names and location of stdout/stderr logfiles are handled internally by the Globus
job manager.

For non-interactive Grid jobs submitted as batch jobs, the coupling between the Globus job manager
and the local queuing system may be such that logfiles become accessable to Globus only after the
job has finished; intermediate logfiles are managed by the local job manager only, and not passed
on to Globus. In this case, a higher-level service on top of Globus seems necessary which determines
the configuration of the local queuing system (filename template for intermediate logfiles, location
of local spool directory) and then uses basic Grid file management services (eg. GridFtp) to fetch
such logfiles.

Conclusion:

Monitoring should be straightforward for simple Grid jobs: the Grid job management service (as
being developed in AstroGrid’s working group WG-V) must – in addition to the submission of
Grid jobs – also provide the corresponding Globus commands to monitor the job’s stdout/stderr
output at runtime.

For Grid jobs submitted to a batch system, a proprietary solution is needed to provide the func-
tionality missing in the standard Globus toolkit: the names and location of intermediate logfiles
for batched jobs must be determined, eg. by querying the AstroGrid information service (as being
developed in working group WG-II) about metadata for the given local queuing system configura-
tion. Then standard Grid file management services (as being developed in working group WG-III)
are used to fetch these files by the client. Special care needs to be taken to prevent the consistency
of files which are still open and being written to: a local copy of the current intermediate logfile
contents may need to be created and transfered.

Only job owners should be allowed to monitor their applications (jobs) via interactive logfile access.

AstroGrid-D - 6 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

2.2 Interactive Access to Application Logfiles

Required in use cases: UC1, UC2, UC3, UC4, UC5, UC6, UC8

In addition to writing to stdout/stderr, some AstroGrid applications also create their own log-
files and continuously append runtime information for monitoring the job’s progress, or even to
publish intermediate results. The names and location of such logfiles are solely determined by the
application itself and therefore specific for each individual AstroGrid use case – they might be fixed
in the code or set by the user as an application startup parameter. Apart from their different
naming conventions, application-specific logfiles are typically used for monitoring in the same way
as stdout/stderr logfiles: users check their latest contents periodically (eg. using the UNIX
command tail -f).

For the interactive access to application logfiles of Grid jobs, a very similar approach as for
stdout/stderr monitoring of Grid jobs submitted to a batch system can be applied: in the
job description which is used as input for the Grid job submission service (developed in WG-V), the
user also specifies the names and location of application-specific logfiles. Such metadata about the
Grid job is then stored in the AstroGrid information service (WG-II) and queried by a monitoring
service (WG-VI, with support from WG-V’s job management service) to determine the URLs for
such logfiles. Finally, standard Grid file management services (WG-III) are used to fetch the remote
logfiles by the client.

2.3 Application-specific Monitoring Methods

Required in use cases: UC3, UC5

UC3 (NBODY6++) and UC5 (Cactus) have built-in monitoring methods which are very specific
to the underlying application code.

The development version of the NBODY6++ code already implements capabilities for remote
online monitoring and data visualisation (see section 3.3.1 in [1]). A special data transfer and
service protocol SEAP[4] is used to connect from a client through a GUI client interface to an
NBODY6++ job running on a remote supercomputer. The connection to the application is one-
directional (from client to application) and established indirectly via a SEAP proxy machine, hence
it is also possible to connect to an NBODY6++ simulation running on an internal cluster node
with no direct access to the (external) internet. A VISIT[4] plugin for UNICORE provides single
sign-on and secure transportation facilities (based on X.509 certificates).
Due to their per se grid-awareness (the possibility to connect to a remote application and exchange
data via some network protocol which is also suitable for Grid environments), the above described
monitoring mechanisms seem sufficient to be used also for NBODY6++ simulations submitted as
Grid jobs. The SEAP proxy server will need to be configured to use the Globus ephemeridal port
range (rather than its own predefined port range) in order to make it work in a Globus environment.
No additional requirements are imposed.

Cactus also has sophisticated monitoring methods built into the code (see section 3.3.2 in [1]).
They are based on the standard HTTP protocol: a user can use a standard web-browser to connect
to a remote Cactus simulation by specifying a unique simulation URL (consisting of the hostname
of the first node the job is running on, and a predetermined port number). HTTP communication
channels are bi-directional (from client to application, from application back to client) and by default

AstroGrid-D - 7 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

established as direct connections. This usually imposes no problems for Cactus jobs running on a
local resource (eg. an in-house cluster).
In a Grid environment, however, direct connections are sometimes not possible, for instance when
the jobs are running on a cluster which is behind a firewall, or whose compute nodes are networked
via VPN and hence invisible to the outside world. Currently users can bypass this problem manually
by setting up an HTTP proxy on the cluster’s head node using SSH tunnelling. In a production
Grid environment this technical task should be taken over by a Grid application monitoring service
which would automatically establish a proxy connection if necessary.
Because clients can also feed back information to the application (eg. in order to steer it), special
care needs to be taken for security: only authorised users (eg. the job owner) should be allowed
to interact with the application. Currently such security mechanisms are implemented via HTTP
password authentication; for Grid jobs, however, GSI authentication should also be supported.

Another possibility of monitoring Cactus simulations is to have a job actively announce information
about its progress (eg. startup/termination time) as well as other monitoring data to some external
information service (WG-II) which then can be queried by users. The connection between client and
application is indirect in this scenario; Cactus needs to establish only an outgoing connection to such
a service which releases some of the security aspects mentioned before. However, the information
service should have means to authenticate users appropriately, based on GSI user certificates.

2.4 Application-specific Steering Methods

Required in use cases: UC2, UC3, UC5

Two AstroGrid simulation code use cases UC2 (AMIGA) and UC3 (NBODY6++) provide function-
ality for controlled termination of jobs: a user can trigger a job to gracefully terminate by creating
a special file in the job’s output directory. The simulation code is periodically checking after each
timestep whether such a file exists.
In order to provide this simple application steering mechanism also for Grid jobs, users need to be
able to create the termination files remotely on the resource where the job is running. This can
be implemented straightforward using the AstroGrid job management service (WG-V) to find out
where the job is running and the file management service (WG-III) to actually create the file.

UC3 (NBODY6++) provides via the xnbody interface [5] as well a steering method: through its
user interface certain parameters of the run (time step control, error margin, termination time) can
be changed while the remote run is ongoing.
By grid-enabling the SEAP protocol (see section 2.3), remote steering of NBODY6++ simulations
is ready to be used also in a Grid context.

As described above in section 2.3, UC5 (Cactus) provides a bi-directional HTTP-based webserver
interface which can be used both for monitoring and steering Cactus simulations. The requirements
on this existing functionality to make it grid-aware are again: a) network connections between client
and application must be established reliably even if the latter is running on a cluster with internal-
only network, and b) access by users to monitor and – especially – to steer Cactus simulations must
be made secure using GSI-based user authentication.

AstroGrid-D - 8 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

3 Further Steps

After analysing and defining the requirements of individual use cases in this document, the next task
in working group WG-VI will be to design a general architectural picture for grid-enabled monitoring
& steering methods in AstroGrid applications and to come up with concrete suggestions on how
the functionality necessary to meet these requirements can be implemented.

An architecture overview will be presented in the upcoming D6.3 deliverable document.

AstroGrid-D - 9 - Deliverable D6.2

Requirements on on grid-enabled Monitoring & Steering Methods Version 1.0.0

F: References / Bibliography

References

[1] Existing Monitoring & Steering Functionality in AstroGrid-D Applications. Comparison Study,
Work Group VI deliverable document D6.1, AstroGrid project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_1.pdf

[2] AstroGrid-D Use Case inquiry. AstroGrid Intranet webpage;
http://mintaka.aip.de:8080/lenya/intranet/live/project-documents/

usecases.html

http://mintaka.aip.de:8080/lenya/intranet/live/project-documents/

UseCasesNew.html

[3] Globus man page for globus-job-get-output-ws. Globus Toolkit 4.0 online documentation;
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/rn01re05.html

[4] Thomas Eickermann, Wolfgang Frings, Anke Häming: VISIT 2.0 online documentation. Insti-
tut für angewandte Mathematik, Forschungszentrum Jülich.
http://www.fz-juelich.de/zam/visit/visit20beta/manual/node144.html

[5] Xnbody: an online visualization tool for nbody6++. Institut für angewandte Mathematik,
Forschungszentrum Jülich.
http://www.fz-juelich.de/zam/xnbody/

AstroGrid-D - 10 - Deliverable D6.2

