
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 23 (2006) 6845–6855 doi:10.1088/0264-9381/23/23/015

Proof of the (local) angular momentum–mass
inequality for axisymmetric black holes

Sergio Dain

Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, 14476 Golm, Germany

Received 30 June 2006
Published 20 October 2006
Online at stacks.iop.org/CQG/23/6845

Abstract
We prove that for any vacuum, maximal, asymptotically flat, axisymmetric
initial data for Einstein equations close to extreme Kerr data, the inequality√

J � m is satisfied, where m and J are the total mass and angular momentum
of the data. The proof consists in showing that extreme Kerr is a local minimum
of the mass.

PACS numbers: 04.70.Bw, 04.20.Dw, 04.20.Ex, 04.20.Fy

1. Introduction

Physical arguments led to the conjecture that for every axisymmetric, vacuum, asymptotically
flat, complete, initial data set for Einstein equations the following inequality should hold:√

|J | � m, (1)

where m is the mass of the data and J is the angular momentum in the asymptotic region.
Moreover, the equality in (1) should imply that the data are the slice of the extreme Kerr
black hole. For a more detailed discussion of the motivations and relevance of (1) and related
inequalities see [5–8, 10].

In [6], the proof of (1), for maximal data, was reduced to a variational problem. In
this paper, we will prove that this variational problem has a local minimum at the extreme
Kerr solution, and hence we prove that inequality (1) is satisfied for axisymmetric, maximal,
vacuum data sufficiently close to extreme Kerr data.

We first present the mathematical formulation of the variational problem. Let ρ, z, φ be
cylindrical coordinates in R

3, and let v, Y be the two functions which depend only on ρ, z.
Consider the functional defined in [6]1

M(v, Y ) = 1

32π

∫
R

3
(|∂v|2 + ρ−4 e−2v|∂Y |2) dµ, (2)

where dµ = ρ dz dρ dφ is the volume element in R
3 and ∂ denotes the partial derivative with

respect to ρ and z, that is |∂v|2 = v2
,z + v2

,ρ . Let v0 and Y0 denote the extreme Kerr initial

1 We have slightly changed the notation in [6]: we rescale v → 4v.
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data given explicitly in appendix A. These functions depend on a free parameter J, the angular
momentum of the data. Set

v = v0 + α, Y = Y0 + y. (3)

To simplify the notation, we will write ϕ ≡ (α, y), u ≡ (v, Y ) and u0 ≡ (v0, Y0). Let � be
a (unbounded) domain in R

3. We introduce the following weighted spaces of C1 functions
in �:

‖f ‖C1
β (�) = sup

x∈�

{σ−β |f | + σ−β+1|∂f |}, (4)

with β < −1/2 and σ =
√

r2 + 1, r =
√

ρ2 + z2.
Let ρ0 > 0 be a constant and Kρ0 be the cylinder ρ � ρ0 in R

3. We define the domain
�ρ0 by �ρ0 = R

3\Kρ0 . The perturbation y is assumed to vanish in Kρ0 . This is consistent
with the physical requirement that the perturbations keep fixed the angular momentum J (see
equation (17) and also [6, 5]). The Banach space B is defined by

‖ϕ‖B ≡ ‖α‖C1
β (R3) + ‖y‖C1

β (�ρ0 ). (5)

We consider M as a functional on M : B → R. The following is the main result of this paper.

Theorem 1.1. The functional M : B → R defined by (2) has a strict local minimum at u0.
That is, there exist ε > 0 such that

M(u0 + ϕ)〉M(u0), (6)

for all ϕ ∈ B with ‖ϕ‖B < ε and ϕ �= 0.

For simplicity, we have assumed that y vanished at Kρ0 ; the theorem is expected to be
true if we impose appropriate decay conditions for y at the axis; however, the analysis in this
case is more complicated. We also expect that u0 is an absolute global minimum of M in B
(see [6]).

We discuss now the application of theorem 1.1 to the proof of inequality (1) in a
neighbourhood of extreme Kerr data. What follows is a summary of the results presented
in [6]. A maximal initial data set for Einstein’s vacuum equations consists in a Riemannian
metric h̃ab and a trace-free symmetric tensor field K̃ab such that the vacuum constraint
equations

D̃bK̃
ab = 0, (7)

R̃ − K̃abK̃
ab = 0, (8)

are satisfied, where D̃a and R̃ are the Levi-Civita connection and the Ricci scalar associated
with h̃ab. In these equations, the indices are moved with the metric h̃ab and its inverse h̃ab.

We will assume that the initial data are axially symmetric, that is, there exists an axial
Killing vector ηa such that

£ηh̃ab = 0, £ηK̃ab = 0, (9)

where £ denotes the Lie derivative.
The Killing vector ηa is assumed to be hypersurface orthogonal. Under these conditions,

the metric h̃ab can be characterized by two functions q, v of the coordinates ρ, z. These
functions are specified as follows. We write the metric in the form

h̃ab = evhab, (10)
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where the conformal metric hab is given by

h = e−2q(dρ2 + dz2) + ρ2 dφ2. (11)

In these coordinates, we have ηa = (∂/∂ϕ)a and its norm with respect to the metric h̃ab will
be denoted by X:

X = ηaηbh̃ab = evρ2. (12)

The function q is assumed to be smooth with respect to the coordinates ρ, z. At the axis,
we impose the regularity condition

q(ρ = 0, z) = 0, (13)

and at infinity, we assume the following fall-off:

q = o(r−1), q,r = o(r−2). (14)

The potential Y is calculated in terms of the second fundamental form. Define the vector
S̃a by

S̃a = K̃abη
b − X−1η̃aK̃bcη

bηc, (15)

where η̃a = h̃abη
b. Using equations (7), (9) and the Killing equation we obtain

D̃[bKa] = 0, Ka = ε̃abcS̃
bηc, (16)

where ε̃abc is the volume element of h̃ab. Then there exists a scalar function Y such that
Ka = D̃aY . This function contains the angular momentum J of the data

J = 1
8 (Y (ρ = 0,−z) − Y (ρ = 0, z)) , z �= 0. (17)

For any data (h̃ab, K̃
ab) which satisfy these assumptions, we have a pair v, Y and its

corresponding angular momentum J. Let u0 ≡ (v0, Y0) be the extreme Kerr data with the same
J and define ϕ ≡ (α, y) by (3). We have the following result.

Corollary 1.2. Let (h̃ab, K̃
ab) be a maximal, axisymmetric, vacuum, initial data with mass

m and angular momentum J, such that the metric satisfies (10)–(11) and (13)–(14). Define ϕ

as above. Then, there exists ε > 0 such that for ‖ϕ‖B < ε the inequality (1) holds. Moreover,
m = √

J in this neighbourhood if and only if the data are the extreme Kerr data.

Proof. In [6], it has been proved that under the present assumptions we have

m � M(u0 + ϕ). (18)

By theorem 1.1, we have

m � M(u0 + ϕ)〉M(u0), (19)

for ϕ �= 0. Since u0 is the extreme Kerr data, we have M(u0) = √|J | (see [6]), then the
conclusion follows. �

Finally, we mention that these results are similar in spirit to the local proof of the positivity
of the mass given in [2, 4].
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2. Preliminaries

Let us assume ϕ ∈ B and consider the real-valued function

iϕ(t) = M(u0 + tϕ). (20)

The first derivative of iϕ(t) with respect to t is given by

i ′ϕ(t) = 1

16π

∫
R

3
{∂v∂α + (∂Y∂y − α|∂Y |2)X−2} dµ, (21)

where the t dependence on the right-hand side of (21) is encoded in the functions v, Y,X

defined by

v ≡ v(t) = v0 + tα, Y ≡ Y (t) = Y0 + ty (22)

and

X ≡ X(t) = ρ2 ev(t), X0 ≡ X(0) = ρ2 ev0 . (23)

The second derivative is given by

i ′′ϕ(t) = 1

16π

∫
R

3
{|∂α|2 + (2α2|∂Y |2 − 4α∂Y∂y + |∂y|2)X−2} dµ. (24)

The integrand of the functional M is singular at ρ = 0. However, we have defined the space
B only for functions y with support in �ρ0 . Then, the domain of the integration of the terms
in which ∂y appears is in fact �ρ0 , and hence the integrand is clearly regular for those terms.
Moreover, we have the following.

Lemma 2.1. Let ϕ ∈ B, then the function iϕ(t) is C2 in the t variable.

Proof. This is a straightforward computation. We will show the third derivative exists for
all t. From equation (24), we compute

i ′′′ϕ (t) = 1

8π

∫
R

3
(−2α3|∂Y |2 + 6α2∂Y∂y − 3α|∂y|2)X−2 dµ. (25)

The terms which contain ∂y in (25) have support in �ρ0 , using inequalities (A.7) and (A.6)
they can be easily bounded by the norm B. The only term which does not contain ∂y is given
by

−2α3|∂Y0|2. (26)

To bound this term we use inequality (A.6). �

In [6], we have proved that the extreme Kerr initial data are critical points of M, that is
we have

i ′ϕ(0) = 0, for all ϕ ∈ B. (27)

In the following section, to prove that the second derivative is coercive, we will need the
following auxiliary Hilbert space H, which is defined in terms of the weighted Sobolev norms:

‖α‖2
H1

=
∫

R
3
|∂α|2 dµ +

∫
R

3
|α|2r−2 dµ, (28)

‖y‖2
H2

=
∫

�ρ0

|∂y|2ρ−4 dµ +
∫

�ρ0

|y|2ρ−6 dµ, (29)
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and its corresponding scalar products. Note that both the domain of integration and the weight
functions are different in these definitions. The norm in H is defined by

‖ϕ‖2
H ≡ ‖α‖2

H1
+ ‖y‖2

H2
, (30)

with its corresponding scalar product. We have B ⊂ H.
The following weighted Poincare inequalities will be important in the proof of

lemma 2.3.

Lemma 2.2. Let ϕ ∈ H and δ �= 0 a real number. Then

|δ|−1
∫

R
3
|∂α|2r−2δ−1 dµ �

∫
R

3
|α|2r−2δ−3 dµ, (31)

|δ|−1
∫

�ρ0

|∂y|2ρ−2δ dµ �
∫

�ρ0

|y|2ρ−2δ−2 dµ. (32)

Proof. Inequality (31) is proved in [1] (theorem 1.3). Using a similar argument we will
prove (32). It is sufficient to consider functions y with compact support in �ρ0 . The key is the
following identity:


(ln ρ) = 0, in �ρ0 , (33)

where 
 is the Laplacian in R
3. Testing this equation with ρ−2δy2 gives∫

�ρ0

∂(ρ−2δy2)∂(ln ρ) dµ = 0. (34)

Which expands to∫
�ρ0

ρ−2δ−2y2 � |δ|−1
∫

�ρ0

ρ−2δ−1|y||∂ρy| dµ, (35)

and Hölders inequality gives (32). �

The following lemma shows that i ′′ϕ(t) is uniformly continuous with respect to the H
norm.

Lemma 2.3. Let 0 < t < 1. For every ε > 0 there exist η(ε) such that for ‖ϕ‖B < η(ε), we
have

|i ′′ϕ(t) − i ′′ϕ(0)| � ε‖ϕ‖2
H. (36)

Proof. The proof is a straightforward but tedious calculation. Using (24) we calculate

i ′′ϕ(t) − i ′′ϕ(0) =
∫

R
3
(A + B + D) dµ, (37)

where

A = 2α2

( |∂Y |2
X2

− |∂Y0|2
X2

0

)
, (38)

B = −4α∂y

(
∂Y

X2
− ∂Y0

X2
0

)
, (39)

D = |∂y|2 (
X−2 − X−2

0

)
. (40)
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We decompose further A and B in the following way:

A = A1 + A2 + A3, B = B1 + B2, (41)

where

A1 = 2α2 |∂Y0|2
X2

0

(e−2tα − 1), (42)

A2 = 4t
α2

X2
0

e−2tα∂Y0∂y, (43)

A3 = 2t2 α2

X2
0

e−2tα|∂y|2 (44)

and

B1 = −4(e−2tα − 1)αX−2
0 ∂y∂Y, (45)

B2 = −4tαX−2
0 |∂y|2. (46)

In the following, we will bound each individual term. We will repeatedly use inequalities
(A.6)–(A.12) given in appendix A for the extreme Kerr initial data.

Note that A1 is the only term without ∂y, and hence the only term with support in R
3, the

other terms have support in �ρ0 . To bound A1, we use inequality (A.6)∫
R

3
A1 dµ � 2C1(e

2η − 1)

∫
R

3
α2X−2

0 dµ � 2C1(e
2η − 1)‖ϕ‖H, (47)

where we have used

|α| � σβ‖α‖C1
β (R3) � ‖α‖C1

β (R3) � ‖ϕ‖B � η. (48)

To bound the other terms, we will use inequality (A.7). For A2, we have∫
�ρ0

A2 dµ � 4 e2ηη

∫
�ρ0

α
∂Y

X0

∂y

X0
dµ, (49)

� 4 e2ηη

(∫
�ρ0

α2 |∂Y |2
X2

0

dµ

)1/2 (∫
�ρ0

|∂y|2
X2

0

dµ

)1/2

, (50)

� 4C1 e2ηη‖ϕ‖2
H, (51)

where in the second line we have used Hölder inequality and in the third line inequalities (A.6)
and (A.7).

The terms A3 is simpler∫
�ρ0

A3 dµ � 2 e2ηη2‖ϕ‖2
H. (52)

In the similar way, we get∫
�ρ0

B1 dµ � 4(e2η − 1)

(∫
�ρ0

α2 |∂Y |2
X2

0

dµ

)1/2 (∫
�ρ0

|∂y|2
X2

0

dµ

)1/2

(53)

� (e2η − 1)C1‖ϕ‖2
H. (54)
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For B2, we get ∫
�ρ0

B2 dµ � 4η‖ϕ‖2
H. (55)

Finally, for D we have∫
�ρ0

D dµ � (e2η − 1)‖ϕ‖2
H. (56)

Since all the coefficients multiplying ‖ϕ‖2
H are smooth with respect to η and go to zero as η

goes to zero we get (36). �

3. Positivity of the second variation

From equation (24), it is far from obvious that the second variation evaluated at the critical point
u0 is positive definite. In order to prove that, the key ingredient is the following remarkable
identity proved by Carter [3]. In terms of our variables, it has the following form:

F + αG′
v + yG′

Y + 2αyGY − X−2y2Gv = ∂(α∂α + yX−1∂(yX−1)), (57)

where

Gv(t) = 
v + X−2|∂Y |2, (58)

GY (t) = ∂(X−2∂Y ), (59)

the derivatives with respect to t of these functions are given

G′
v(t) = 
α + (2∂y∂Y − 2α∂aY∂aY )X−2, (60)

G′
Y (t) = ∂(X−2 (∂y − 2α∂Y )), (61)

and the positive definite function F is given by

F(t) = (∂α + yX−2∂Y )2 + (∂(yX−1) − X−1α∂Y )2 + (X−1α∂Y − yX−2∂X)2 (62)

The identity (57) is valid for arbitrary v, Y, α, y and it is straightforward to check.
For ϕ ∈ B, integrating by part we obtain

−
∫

R
3
(αG′

v + yG′
Y ) dµ = 16πi ′′ϕ(t). (63)

Equation (27) is equivalent to Gv(0) = GY (0) = 0. If we integrate the identity (57) in
R

3 for t = 0, the boundary terms on the right-hand side vanishes for all ϕ ∈ B, then we get

i ′′ϕ(0) =
∫

R
3
F(0) dµ � 0. (64)

Moreover, i ′′ϕ(0) is strictly positive. Assume that we have i ′′ϕ(0) = 0 for some ϕ ∈ B. Then,
F(0) = 0. We rewrite the second and the third terms in (62) in the following form:

(X∂ȳ + ȳ∂X − X−1α∂Y )2 + (X−1α∂Y − ȳ∂X)2 � 2−1X2(∂ȳ)2, (65)

where

ȳ = y

X2
. (66)

From this, we deduce that F(0) = 0 implies ∂
(
yX−2

0

) = 0, and hence, by the assumption
ϕ ∈ B, we obtain y = 0. Then we deduce α = 0 from the first term in (57).
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Equation (64) is a necessary condition for a local minimum, however it is not sufficient.
The following lemma gives the sufficient condition used in the proof of theorem 1.1. Note that
in order to formulate this coercive condition we need the auxiliary Hilbert space H defined in
the previous section.

Lemma 3.1. There exists λ > 0 such that for all ϕ ∈ B we have

i ′′ϕ(0) � λ‖ϕ‖2
H. (67)

Proof. Let ϕ ∈ B. Note that i ′′ϕ(0), as function of ϕ, defines a bilinear form a(ϕ, ϕ) given by

a(ϕ, ϕ) ≡ i ′′ϕ(0) =
∫

R
3
F(0) dµ, (68)

where F is given explicitly by (62).
Inequality (67) is equivalent to the following variational problem:

λ = inf
ϕ∈B

a(ϕ, ϕ)

‖ϕ‖2
H

. (69)

Since a(γ ϕ, γ ϕ) = γ 2a(ϕ, ϕ) for every real number γ , this variational problem is equivalent
to

λ = inf
ϕ∈M

a(ϕ, ϕ), (70)

where

M = {
ϕ ∈ B : ‖ϕ‖2

H = 1
}
. (71)

It is clear that λ � 0 because a(ϕ, ϕ) is positive definite. We want to prove that λ > 0.
Let us assume that λ = 0. Then, there exists a sequence {ϕn} such that

‖ϕn‖H = 1, for all n, (72)

and

lim
n→∞ a(ϕn, ϕn) = 0. (73)

By inequality (65) we have

lim
n→∞ a(ϕn, ϕn) � 2−1

∫
�ρ0

X2
0(∂ȳn)

2 = 0. (74)

Using bounds (A.7), (A.9) and the Poincare inequality (32) we have∫
�ρ0

X2
0(∂ȳn)

2 dµ �
∫

�ρ0

ρ4(∂ȳn)
2 dµ (75)

� 2
∫

�ρ0

ρ2|ȳn|2 dµ (76)

� 2

C2
2

∫
�ρ0

ρ−6|yn|2 dµ. (77)

Then,

lim
n→∞

∫
�ρ0

ρ−6|yn|2 dµ = 0. (78)
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Replacing ȳn by X−2
0 yn in (74) we get the inequality

a(ϕn, ϕn) +
1

4

∫
�ρ0

X−2
0 |yn|2|∂ ln X0|2 � 4

∫
�ρ0

X−2
0 (∂yn)

2. (79)

From this inequality, using bounds (A.7), (A.9) and (A.12), we obtain

a(ϕn, ϕn) +
C3

4

∫
�ρ0

ρ−6|yn|2 � 4C2

∫
�ρ0

ρ−4(∂yn)
2. (80)

We apply (78) and (73) to get

lim
n→∞

∫
�ρ0

ρ−4|∂yn|2 dµ = 0, (81)

and then we have

lim
n→∞ ‖yn‖H2 = 0. (82)

In the previous inequalities, we have only used the second and the third terms of F, the
first term implies∫

�ρ0

y2
nX

−4
0 |∂Y0|2 dµ + a(ϕn, ϕn) � 2−1

∫
R

3
|∂αn|2. (83)

We have ∫
�ρ0

y2
nX

−4
0 |∂Y0|2 dµ � C1

∫
�ρ0

y2
nr

−2ρ−4 � C1

∫
�ρ0

y2
nρ

−6 dµ, (84)

where in the last inequality we have used that r � ρ.
From (84), (83) and (78) we deduce

lim
n→∞

∫
R

3
|∂αn|2 dµ = 0, (85)

and using the Poincare inequality (31), we finally obtain

lim
n→∞ ‖αn‖H1 = 0. (86)

Equations (86) and (82) contradict (72), hence we have that λ > 0. �

4. Proof of theorem 1.1

Proof. The proof follows standard arguments, see for example [9] chapter 5 and [11]
chapter 40.

In lemma 2.1, we have proved that the function iϕ(t) is C2 with respect to t. The classical
Taylor theorem for t = 1 yields

M(u0 + ϕ) − M(u0) = iϕ(1) − iϕ(0) = i ′′ϕ(ϑ)

2
, 0 < ϑ < 1. (87)

To prove (6), we will show that i ′′ϕ(ϑ) � 0 and i ′′ϕ(ϑ) = 0 ⇒ ϕ = 0.
From lemma 2.3, we have that for every ε > 0 there exist η(ε) such that the following

inequality holds:

|i ′′ϕ(ϑ) − i ′′ϕ(0)| � ε‖ϕ‖2
H, (88)

for every ‖ϕ‖B < η(ε). From this inequality, we deduce

i ′′ϕ(0) − ε‖ϕ‖2
H � i ′′h(ϑ). (89)

We use lemma 3.1 and inequality (89) to conclude that

(λ − ε)‖ϕ‖2
H � i ′′ϕ(ϑ). (90)

Choosing η(ε) such that ε < λ the desired result follows. �
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Appendix. Extreme Kerr initial data

Consider the extreme Kerr metric, with angular momentum J, in Boyer–Lindquist coordinates
(t, r̃, θ, φ). The corresponding potentials X0, Y0 are given by

Y0 = 2J (cos3 θ − 3 cos θ) − 2J 2 cos θ sin4 θ

�
, (A.1)

and

X0 =
(

(r̃2 + |J |)2 − r2|J | sin2 θ

�

)
sin2 θ, (A.2)

=
(

r̃2 + |J | +
2|J |3/2r̃ sin2 θ

�

)
sin2 θ, (A.3)

where

r̃ = r +
√

|J |, � = r̃2 + |J | cos2 θ, (A.4)

The function v0 is given by the definition (23)

v0 = ln X0 − 2 ln ρ, (A.5)

where ρ = r sin θ .
From (A.1) and (A.2), we get the following inequality:

|∂Y0|2
X2

0

� C1r
−2 in R

3. (A.6)

From equation (A.3), we obtain a lower bound for X0

ρ2 � X0 in R
3. (A.7)

To get an upper bound, we use equation (A.2) to obtain

X2
0 � 16ρ4

(
1 +

√|J |
r

)4

. (A.8)

From this equation we deduce

X2
0 � C2ρ

4 in �ρ0 , (A.9)

where

C2 = 16ρ4

(
1 +

√|J |
ρ0

)4

. (A.10)

Note that limρ0→0 C2 = ∞.
From equations (A.3) and (A.5), we obtain

|∂v0|2 � C ′
3r

−2 in R
3, (A.11)

where C ′
3 > 0 and then

|∂ ln X0|2 � |∂v0|2 + 4ρ−2 � C3ρ
−2 in R

3, (A.12)

where C3 = C ′
3 + 4 and we have used that r � ρ.
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