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Abstract. We derive the two-loop Bethe ansatz for the sl(2) twist operator
sector of N = 4 gauge theory directly from the field theory. We then analyse
a recently proposed perturbative asymptotic all-loop Bethe ansatz in the limit
of large spacetime spin at large but finite twist, and find a novel all-loop
scaling function. This function obeys the Kotikov–Lipatov transcendentality
principle and does not depend on the twist. Under the assumption that one may
extrapolate back to leading twist, our result yields an all-loop prediction for the
large spin anomalous dimensions of twist 2 operators. The latter also appears as
an undetermined function in a recent conjecture of Bern, Dixon and Smirnov for
the all-loop structure of the maximally helicity violating n-point gluon amplitudes
of N = 4 gauge theory. This potentially establishes a direct link between the
worldsheet and the spacetime S matrix approach. A further assumption for
the validity of our prediction is that perturbative BMN (Berenstein–Maldacena–
Nastase) scaling does not break down at four-loop level or beyond. We also
discuss how the result gets modified if BMN scaling does break down. Finally,
we show that our result qualitatively agrees at strong coupling with a prediction
of string theory.
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1. Introduction and main results

There is mounting evidence that planar N = 4 gauge theory might be ‘exactly solvable’.
For example, it was recently proposed that higher loop maximally helicity violating (MHV)
n-point gluon amplitudes should be iteratively expressible through the (regulated) one-
loop amplitudes [1, 2]. On the basis of sophisticated two-loop [3, 1] and three-loop [2]
computations, a conjecture for the all-loop MHV n-point gluon amplitudes Mn in 4− 2 ε
dimensions was formulated in [2]:

Mn = exp

[ ∞∑
�=1

a�
ε

(
f (�)(ε) M (1)

n (� ε) + C(�) + E(�)
n (ε)

)]
. (1)

Here E
(�)
n (ε) vanishes as ε → 0, C(�) are finite constants, and M

(1)
n (� ε) is the (� ε)-regulated
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one-loop n-point amplitude. At ε = 0 we have limε→0 aε = g2 where g2 is defined as

g2 =
g2
YM N

8 π2
=

λ

8 π2
, (2)

and λ is the ’t Hooft coupling. Finally, the f (�)(ε) are generated in the ε → 0 limit by the
function

f(g) = 4

∞∑
�=1

g2 � f (�)(0). (3)

This function is in fact related to the large spin anomalous dimension of so-called leading
twist operators in the gauge theory [4]. Alternative names are ‘soft’ anomalous dimension,
and ‘cusp’ anomalous dimension. The simplest representatives of N = 4 twist operators
are found in the sl(2) sector:

Tr(DsZL) + · · · . (4)

Here D is a light-cone covariant derivative, Z is one of the three complex scalars of
the N = 4 model, s measures the spacetime spin, and the twist L is to equal to, in
this sector, one of the so(6) R-charges. The leading twist is L = 2. The dots in (4)
indicate that the true quantum operators are complicated mixtures of states, where the
s covariant derivatives may act in all possible ways on the L fields Z. Mixing with
multi-trace operators is suppressed in the planar theory. The function f(g) is obtained
by considering the large spin s → ∞ limit of the anomalous scaling dimension of the
quantum operators (4), which is expected to scale logarithmically as

Δ = s + f(g) log(s) + O(s0). (5)

We will call f(g) of (3), (5) the scaling function. Note that the scaling structure in (5) is
a highly non-trivial structural property of the exact finite s expression for Δ = Δ(s, g).
Individual Feynman diagrams contributing at intermediate stages of the perturbative
calculation of Δ certainly contain higher (k > 1) powers logk(s). The one-loop O(g2)
contribution to Δ was first computed in [5, 6] for all s, and indeed behaves as in (5). The
O(g4) two-loop answer was found in [7, 8], and the O(g6) three-loop one, inspired by a
fully fledged computation in QCD [9], in [10]. Again, the result indeed scales as in (5),
and the state of the art up to now has been [10]

f(g) = 4 g2 − 2
3
π2 g4 + 11

45
π4 g6 + · · · . (6)

Fascinatingly, this agrees via (3) with the three-loop n = 4 calculation of (1) by Bern et
al [2].

There is also mounting evidence that planar N = 4 theory might be ‘exactly
integrable’. This means that the spectral problem, i.e. the spectrum of all possible scaling
dimensions {Δ} of the N = 4 gauge theory, is encoded in a Bethe ansatz. This was
established for the complete set of possible operators of N = 4 theory at one-loop
level [11, 12]. It was then conjectured, on the basis of two- and three-loop computations
in the model’s su(2) sector, that integrability extends to all orders in perturbation theory,
and, one hopes, to the non-perturbative level [13]. This was subsequently backed up in
various studies [14]–[19], and culminated in a proposal for the asymptotic all-loop Bethe
equations of the theory [20], further supported by [21]. Here ‘asymptotic’ means that
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the ansatz of [20] is only expected to correctly yield the anomalous dimension up to,
roughly, O(g2L−2), where L is the number of constituent fields (not counting covariant
derivatives) of the quantum operators considered1. Very recently a proposal was made for
circumventing the asymptoticity restriction for the su(2) sector by relating the dilatation
operator, whose eigenvalues are the dimensions Δ, to a Hubbard Hamiltonian [22]. It
would be exciting to also ‘Hubbardize’ the sl(2) sector of twist operators.

Let us stress that ‘solvability’ and ‘integrability’ are distinct concepts. The latter is
a rather precise but narrow concept referring to the spectral problem of the gauge theory.
It means that the spectrum is described by one-dimensional factorized scattering of a
set of appropriate elementary excitations. Equivalently, it means that there is a Bethe
ansatz. Exactly solving the Bethe ansatz, in a given situation, is rarely easy, and actually
generically impossible. Integrability allows one to prove that there will never be a ‘plug-in’
formula for the spectrum of N = 4 gauge theory!

On the other hand, ‘solvability’ is a significantly less precise concept. Nevertheless,
there is much evidence that in N = 4 gauge theory many quantities beyond the scaling
dimensions allow for a precise mathematical description. We have begun our discussion
with the conjecture (1), which clearly contains more than just spectral information.
Another example is provided by coordinate space correlation functions of more than two
local composite operators. Certain intriguing iterative structures were e.g. noticed in
four-point functions some time ago [23]–[25]. At the time of writing, the precise relation
between the observed solvable structures and the integrable structures is somewhat
reminiscent of the well-known paradox of the chicken and the egg.

Recall that a three-loop sl(2) Bethe ansatz for gauge theory was conjectured in [18]
by taking inspiration from the integrable structures appearing in string theory [26], and
indeed reproduced (6). We will further back up the conjecture of [18] by calculating
in section 2 the two-loop S matrix of the sl(2) sector directly from the field theory.
An alternative two-loop derivation, using algebraic methods, was recently presented by
Zwiebel [19] (actually, for the bigger sector su(1, 1|2)).

It is amusing to note that (6) is thus reproduced by three completely independent
procedures [10, 18, 2], none of them completely rigorous. However, the various approaches,
including their assumptions, seem to be completely independent. So (6) is very likely to
be correct!

In this paper we will apply the asymptotic all-loop Bethe ansatz of [20] in order to
compute all further perturbative corrections to the expression (6). Strictly speaking, the
asymptotic ansatz does not apply to leading twist L = 2; see above. We will however
argue that the scaling function (5) is universal in that it describes the behaviour of the
lowest state of any sl(2) operator as long as L � s. For a very recent discussion of this
point, at the one-loop level, see [27]. Our argument for the validity of our scaling function,
as regards the leading twist operators, is therefore based on two assumptions: (1) that
it is indeed correct to pick L sufficiently large to stay in the ‘asymptotic’ regime of the
Bethe ansatz, while keeping L � s, and (2) that the Bethe ansatz of [20] indeed describes
the gauge theory, for sufficiently ‘long’ operators, at four-loop level and beyond. The first
assumption is very likely to be true, while the validity of the second is, at the time of

1 In the case of twist L = 2 operators the asymptotic ansatz actually works to O(g6) instead of the naively
expected O(g2) because of superconformal invariance [18, 20].
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writing, much less clear. However, our computation might actually help to decide this
issue; see below.

As a highly non-trivial check of our procedure, we will prove that the anomalous
dimension Δ is indeed of the expected scaling form (5) to all orders in perturbation
theory. We will find the scaling function to be given by the integral representation

f(g) = 4 g2 − 16 g4

∫ ∞

0

dt σ̂(t)
J1(

√
2 g t)√

2 g t
, (7)

where the fluctuation density σ̂(t) is determined by the solution of the integral equation

σ̂(t) =
t

e t − 1

[
J1(

√
2 g t)√

2 g t
− 2 g2

∫ ∞

0

dt′ K̂(
√

2 g t,
√

2 g t′) σ̂(t′)

]
, (8)

with the non-singular kernel

K̂(t, t′) =
J1(t) J0(t

′) − J0(t) J1(t
′)

t − t′
. (9)

The functions J0(t), J1(t) in the above equations are standard Bessel functions.
We have been unable to find an explicit solution of the integral equation. It would

be quite interesting if this could be achieved. It is however straightforward to obtain the
weak coupling expansion of the fluctuation density σ̂(t) by iterating (8). Using (7) we
then obtain the perturbative solution of the scaling function f(g). To e.g. four-loop order
one has

f(g) = 4 g2 − 4 ζ(2) g4 + (4 ζ(2)2 + 12 ζ(4)) g6

− (4 ζ(2)3 + 24 ζ(2)ζ(4)− 4 ζ(3)2 + 50 ζ(6)) g8 + · · · . (10)

Using the fact that ζ functions of even argument may be expressed as products of rational
numbers and powers of π, this may be simplified to

f(g) = 4 g2 − 2
3
π2 g4 + 11

45
π4 g6 −

(
73
630

π6 − 4 ζ(3)2
)

g8 + · · · . (11)

As a further non-trivial check of our procedure, and thus the validity of (7), we shall
find that f(g) obeys the Kotikov–Lipatov principle of maximal transcendentality [7], which
was actually used in [10] in order to extract, even at finite spin s, the N = 4 dimensions
from the QCD calculation of [9]. When applied to the large s limit, the principle holds
that the sum over all the arguments of the products of zeta functions appearing as
additive terms at a given loop order � always adds up to 2 � − 2; see (10), and (81)
below.

It would be exciting if the four-loop prediction (11) could be tested by a field theoretic
computation, perhaps by way of extending the results of [2] to higher order. Incidentally,
even if field theory fails to reproduce (11), we will gain crucial knowledge on the integrable
structure of the gauge theory; see section 3.4. The reason is that we are able to predict
how transcendentality will break down if it breaks down. The e.g. four-loop term in the
scaling function f(g) in (11) would then get modified to

−( 73
630

π6 − 4 ζ(3)2 + 8 β ζ(3)) g8, (12)
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where β is an a priori unknown number2. Furthermore this number would then show up in
the four-loop anomalous dimensions of all operators of the N = 4 theory; see section 3.4.
In particular, it would manifest itself in the four-loop dimensions of operators with a large
R-charge J , and would in fact induce a perturbative breakdown of BMN scaling [28]. The
argument may also be turned around: proving that (11) holds as stated would establish
that β = 0, and would therefore be indirect proof that BMN scaling holds up to the
four-loop level.

Finally, there is a prediction from string theory [29, 30], assuming the AdS/CFT
correspondence, for the strong coupling g → ∞ behaviour of the scaling function f(g):

fstring(g) = 2
√

2 g − 3

π
log(2) + O

(
1

g

)
, (13)

where 2
√

2 g =
√

λ/π; cf (2). The leading O(g) = O(
√

λ) piece is obtained from a
classical string spinning with a large angular momentum s on the AdS space [29], while
the O(g0) = O(λ0) term is the first quantum correction obtained in [30].

On the other hand, performing the strong coupling limit for our scaling function as
defined from the integral equation (8) with (7), (9) (see section 3.5) we do vindicate the
O(g) asymptotics predicted from string theory: the leading contribution to σ is of order
1/g2 and eliminates the first term on the rhs of (7). However, our analysis is currently
not precise enough to decide whether or not the subleading O(g) term matches (13). We
hope to present a more complete solution of the strong coupling problem in future work.

2. The factorized two-loop sl(2) S matrix

In this preliminary chapter we will recall the Bethe ansatz for the sl(2) sector of
N = 4 twist operators (4) at one-loop level [12] and beyond [18, 20]. We will then derive
it at two-loop level by Feynman diagram computations, successfully checking part of the
conjecture of [18]. A complimentary two-loop approach was recently accomplished by
Zwiebel [19], who worked out the full (even non-planar) dilatation operator of the bigger
su(1, 1|2) sector by algebraic means, and also demonstrated the emergence of the two-loop
two-body S matrix of [18].

The Bethe ansatz is obtained through the diagonalization of an integrable spin chain,
whose Hamiltonian is equivalent to the dilatation operator. For a general introduction
to this technology see [31]. The states of the spin chain are represented by removing the
trace from the gauge theory states. With s1 + s2 + · · ·+ sL−1 + sL = s, one has

×Tr
(
(Ds1Z)(Ds2Z) . . . (DsL−1Z)(DsLZ)

)
−→ |s1, s2, . . . , sL−1, sL〉, (14)

corresponding to a chain of length L. The si are the spins of the chain, and can, if s is
sufficiently large, take on any value due to the non-compact character of the sl(2) sector.
The Hamiltonian of the chain acts on this state space. Anomalous dimensions Δ are then
related to the energies E(g) (i.e. the eigenvalues of the Hamiltonian) through

Δ = L + s + g2 E(g). (15)

2 The alert reader will notice that transcendentality could still be preserved if β turned out to be a rational
number times ζ(3). The important point is that our calculation leads to a detection mechanism for BMN scaling
violation. If a future field theory calculation finds β �= 0, BMN scaling breaks down.
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Recall the one-loop Bethe ansatz for sl(2), corresponding to a XXX− 1
2

nearest

neighbour spin chain where the subscript indicates a non-compact spin −1
2

representation
of sl(2): (

uk + (i/2)

uk − (i/2)

)L

=

s∏
j=1
j �=k

uk − uj − i

uk − uj + i
, k = 1, . . . , s. (16)

The cyclicity constraint and the one-loop energy E0 := E(0) are

s∏
k=1

uk + (i/2)

uk − (i/2)
= 1 and E0 =

s∑
k=1

1

u2
k + (1/4)

. (17)

For a pedagogical derivation of these expressions from the Hamiltonian, using the
coordinate space Bethe ansatz, see [18]. A rigorous proof, for any representation of sl(2),
may be found in [33].

The conjectured asymptotic all-loop Bethe ansatz for sl(2) [20] is then obtained by
‘deforming’ the spectral parameter u, where the deformation parameter is the Yang–Mills
coupling constant g:

u ± i

2
= x± +

g2

2x± . (18)

It reads (
x+

k

x−
k

)L

=

s∏
j=1
j �=k

x−
k − x+

j

x+
k − x−

j

1 − g2/2x+
k x−

j

1 − g2/2x−
k x+

j

, k = 1, . . . , s, (19)

with the new cyclicity constraint and the asymptotic all-loop energy E(g) being given by

s∏
k=1

x+
k

x−
k

= 1 and E(g) =

s∑
k=1

(
i

x+
k

− i

x−
k

)
. (20)

It generalizes a three-loop Bethe ansatz first proposed in [18]. Very recently, much
additional support of the ansatz was obtained in [21]. It should be noted, however, that
we still cannot currently prove that the ansatz (19), (20) really diagonalizes the gauge
theory at four-loop level and beyond. The reason is that we do not know how to fix
possible ‘dressing factors’ (see [21] and references therein).

Directly proving the higher loop ansatz from the gauge field theory is hard. For all
loops it will certainly require ideas that go far beyond ‘summing up Feynman diagrams’.
To illustrate the complexity we will nevertheless derive the Bethe ansatz at two-loop level
by traditional methods. Actually, we will be able to find the S matrix, and we will succeed
in checking two-loop factorization of the three-body problem. This is, according to [32],
a strong test for integrability. Completing the proof would require us to demonstrate the
factorization of the s-body problem for arbitrary s, which we have not attempted to do.
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2.1. One-loop Bethe ansatz and three-body factorization

The sl(2) sector contains composite operators built from only one complex scalar field Z
of the N = 4 SYM set of fields and the Yang–Mills covariant derivative Dμ. The operators
are taken to carry symmetric traceless irreps of the Lorentz group. We may project all
indices onto the complex direction z = (x1 + ix2)/

√
2, which guarantees symmetrization

while the trace terms automatically vanish.
Single-trace operators of this type have a natural description as spin chains: each field

Z is interpreted as an empty site which may be occupied by any number of derivatives
Dz. The spin chain Hamiltonian

H(0) =
L∑

i=1

H(0)
i (21)

involves a nearest neighbour interaction H(0)
i that cyclically acts on all sites of the chain

of length L. Alternatively, one may consider the asymptotic case, i.e. an open chain of
infinite length. The Hamiltonian can transfer derivatives and it is conveniently expressed
using matrices containing amplitudes for such processes.

The one-loop Hamiltonian was worked out in [34]: let us denote the number of
derivatives on two adjacent sites as {s1, s2}. Then

H(0)
i ({s1, s2} → {s1, s2}) = h(s1) + h(s2),

H(0)
i ({s1, s2} → {s1 − d, s2 + d}) = − 1

|d|
(22)

where h(k) is the kth harmonic number. The matrix elements refer to a basis in which
{s1, s2} is divided by s1!s2! in order to account for the indistinguishability of the derivatives
at each site.

The Bethe ansatz rests on the observation that the derivatives Dz behave like particles
(or ‘magnons’) whose motion is governed by a discrete Schrödinger equation. Let us assign
a position xi and a momentum pi to each magnon. One constructs a wavefunction for
each magnon number s:

s = 1 :
∑
x1

Ψ(0)(x1) |x1〉,

s = 2 :
∑

x1≤x2

Ψ(0)(x1, x2) |x1, x2〉,

s = 3 :
∑

x1≤x2≤x3

Ψ(0)(x1, x2, x3) |x1, x2, x3〉 . . . .

(23)

Here |x1〉 denotes a state with a magnon at position x1 etc. The Hamiltonian reshuffles
these ‘kets’ as it can shift magnons. On the other hand, the kets form a complete set of
states whose mutual independence one may use to transform the Schrödinger equation

H(0)
∑

x1≤x2≤···
Ψ(0)(x1, x2, . . .) |x1, x2, . . .〉 = E(0)

∑
x1≤x2≤···

Ψ(0)(x1, x2, . . .) |x1, x2, . . .〉 (24)

into a difference equation on the wavefunction Ψ(0). We find e.g. for only one magnon

2 Ψ(0)(x1) − Ψ(0)(x1 − 1) − Ψ(0)(x1 + 1) = E(0) Ψ(0)(x1). (25)

doi:10.1088/1742-5468/2006/11/P11014 8

http://dx.doi.org/10.1088/1742-5468/2006/11/P11014


J.S
tat.M

ech.
(2006)

P
11014

Integrability and transcendentality

This can be solved by Fourier transformation:

Ψ(0)(x1) = eip1x1 , E(0) = 4 sin2

(
p1

2

)
. (26)

The one-magnon problem thus defines the dispersion law, i.e. the dependence E(p) of the
energy on the momentum of the particle. It is an essential assumption of the Bethe ansatz
that the dispersion law for several magnons is simply a sum over the contributions of the
individual pseudo-particles given by (26).

For two magnons the arguments of the wavefunction Ψ(0)(x1, x2) should obey x1 ≤ x2

in order to avoid overcounting. Since the one-loop Hamiltonian is a two-site interaction,
the plane wave solution remains valid when the separation of the magnons is greater than
or equal to two. The corresponding difference equation looks in fact like two copies of (25):

2 Ψ(0)(x1, x2) − Ψ(0)(x1 − 1, x2) − Ψ(0)(x1 + 1, x2)

+ 2 Ψ(0)(x1, x2) − Ψ(0)(x1, x2 − 1) − Ψ(0)(x1, x2 + 1)

= g2M (E(0)(p1) + E(0)(p2)) Ψ(0)(x1, x2). (27)

It is a special feature of the Hamiltonian (22) that this equation remains valid when
x1 = x2 − 1. However, we do find a new equation when x1 = x2 [18]:

3
2
Ψ(0)(x1, x2) − Ψ(0)(x1 − 1, x2) − 1

2
Ψ(0)(x1 − 1, x2 − 1)

+ 3
2
Ψ(0)(x1, x2) − Ψ(0)(x1, x2 + 1) − 1

2
Ψ(0)(x1 + 1, x2 + 1)

= g2M (E(0)(p1) + E(0)(p2)) Ψ(0)(x1, x2). (28)

A simple plane wave does not obey this equation, but we can solve this using an ansatz
of the form

Ψ(0)(x1, x2) = eip1x1+ip2x2 + S(0)(p2, p1)e
ip2x1+ip1x2. (29)

The physical intuition behind the last formula is that the particles may scatter by
exchanging their momenta; the second plane wave is related to this, whereby the factor
S(0) is called the scattering matrix. It can be determined from (28):

S(0)(p2, p1) = −eip1+ip2 − 2eip1 + 1

eip1+ip2 − 2eip2 + 1
. (30)

Note that the two plane waves in (29) (with straight and flipped momenta, respectively)
are independent as functions. Equation (28) therefore yields two conditions, although
they are equivalent in this case.

For three magnons one writes an ansatz involving a wavefunction Ψ(0)(x1, x2, x3)
subject to x1 ≤ x2 ≤ x3 and proceeds to set up difference equations. As before, the
magnons do not feel each other when x1 + 1 < x2 < x3 − 1. One might expect special
behaviour when x1 = x2 − 1 or x3 = x2 + 1, but due to the structure of the Hamiltonian
this actually does not yield any new conditions. Thus it remains to investigate the cases

(i) x1 = x2 < x3, (ii) x1 < x2 = x3, (iii) x1 = x2 = x3. (31)
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We write an ansatz which straightforwardly generalizes the two-magnon formula (29):

Ψ(0)(x1, x2, x3) = eip1x1+ip2x2+ip3x3 + S
(0)
132e

ip1x1+ip3x2+ip2x3

+ S
(0)
213e

ip2x1+ip1x2+ip3x3 + S
(0)
231e

ip2x1+ip3x2+ip1x3

+ S
(0)
312e

ip3x1+ip1x2+ip2x3 + S
(0)
321e

ip3x1+ip2x2+ip1x3. (32)

If x1 = x2 < x3, the difference equation can be separated into three independent pieces
according to which momentum multiplies x3 in the exponentials. The case x3 = x2 > x1

obviously allows for a similar distinction w.r.t. x1. Five of the resulting six equations are
independent, so that one may solve

S
(0)
132 = S(0)(p3, p2),

S
(0)
213 = S(0)(p2, p1),

S
(0)
231 = S(0)(p2, p1) S(0)(p3, p1),

S
(0)
312 = S(0)(p3, p1) S(0)(p3, p2),

S
(0)
321 = S(0)(p2, p1) S(0)(p3, p1) S(0)(p3, p2).

(33)

This solution persists when all three magnons coincide, which is again a non-trivial
consequence of the structure of the Hamiltonian. We see that the scattering remains
non-diffractive, i.e. the momenta are unaltered while they may be exchanged between
the magnons. What is more, the three-particle S matrices factor into two-particle
processes.

2.2. Bethe ansatz and three-body factorization at two-loop level

The original Bethe ansatz described in the last section may be generalized to higher
orders in perturbation theory [18]. To this end one writes a perturbation expansion of
all relevant quantities, namely the Hamiltonian, the ingoing wave and the S matrix. The
central topic of this section is deriving the two-loop correction to the S matrix in the
sl(2) sector directly from the N = 4 field theory, and checking three-body factorization
to two-loop level.

In the appendices A and B we derive the two-loop Hamiltonian for one, two, and three
magnons from a graph calculation using N = 2 superfields [35] and the SSDR scheme
(supersymmetric dimensional reduction) [36]. The supergraph formalism is preferable
because it minimizes the number of Feynman integrals; for the present purpose the N = 2
formulation is superior to N = 1 supergraphs. We end up with a manageable calculation
involving about twenty graphs. SSDR is the best suited regulator since it allows one to
treat superfields in a version of dimensional regularization3.

We attack the problem of calculating quantities with open indices by tensor
decomposition and employ the QCD package Mincer [37] to evaluate the resulting scalar
integrals. The package uses 4 − 2ε-dimensional vectors so that we explicitly have to
symmetrize and take out trace terms. This makes the computer algebra very awkward so
that we have limited the scope of the present work to low magnon numbers. The method
was detailed in [38] by one of the authors. We will draw heavily upon this reference in the

3 At the current loop order the scheme cannot lead to ambiguities arising from the ε tensor.
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appendices4. Appendix A reviews the renormalization of two-loop two-point functions in
dimensional regularization. In appendix B we introduce operators D̃1, D̃2 which generate
the singular parts of the one- and two-loop two-point functions and we show that the
second anomalous dimensions are matrix elements of the combination D̃2 − 1/2 D̃2

1, thus
reproducing the two-loop effective vertex given in [13], where the renormalization of the
dilatation operator in dimensional regularization was first discussed. Finally, the D̃i are
constructed from the supergraphs and the two-loop Hamiltonian is worked out for one,
two, and three magnons.

In this section we display the Hamiltonian as it arises from D̃2 − 1/2 D̃2
1 alone. One

can introduce into it a number of gauge parameters which do not appear in the difference
equations defining the wavefunction and the S matrix. This freedom is (more than)
sufficient for making the Hamiltonian Hermitian and for making the sum of all elements
in each row or column disappear, as was the case for the one-loop dilatation operator.
In appendix B we also give another set of transfer rules which includes the contribution

of a term −1/4 [H(0)
1 i ,H(0)

0 i ], which is needed when the dilatation operator is required to
reproduce the O(g2) remixing of the sl(2) sector operators. This term cannot be made
Hermitian by the aforementioned gauge transformations and thus from the point of view
of the Bethe ansatz it is perhaps best omitted. It is interesting to note, however, that the
commutator term does not change the S matrix, while it seems to make redundant any
wavefunction renormalization in the Bethe picture.

The disconnected pieces of the two-loop combinatorics do not influence the
Hamiltonian. The connected two-loop graphs can stretch over three adjacent sites. The
basis elements below denote the number of covariant derivatives at these three sites; we
have explicitly indicated a factor 1/(s1! s2! s3!) with which they were rescaled.

Spin 1. Basis: {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}:

H(2)
i (1) =

⎛
⎝−3

4
1 −1

2

1 −3
2

1

−1
2

1 −3
4

⎞
⎠ .

Spin 2. Basis: {1
2
{2, 0, 0}, {1, 1, 0}, {1, 0, 1}, 1

2
{0, 2, 0}, {0, 1, 1}, 1

2
{0, 0, 2}}:

H(2)
i (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15
32

19
16

−1
2

1
2

−1
4

− 1
16

13
16

−5
2

1 23
16

−1
4

−1
4

−1
2

1 −3
2

0 1 −1
2

1
2

17
16

0 −63
16

17
16

1
2

−1
4

−1
4

1 23
16

−5
2

13
16

− 1
16

−1
4

−1
2

1
2

19
16

−15
32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4 The calculation of the two-loop anomalous dimension of the twist 2 operators [8] uses similar techniques; it is
more fully automated but renounces on the use of supergraphs.
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Spin 3. Basis: {1
6
{3, 0, 0}, 1

2
{2, 1, 0}, 1

2
{2, 0, 1}, 1

2
{1, 2, 0}, {1, 1, 1}, 1

2
{1, 0, 2}, 1

6
{0, 3, 0},

1
2
{0, 2, 1}, 1

2
{0, 1, 2}, 1

6
{0, 0, 3}}:

H(2)
i (3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85
288

115
144

−1
2

43
72

−1
4

− 1
16

71
216

−1
6

− 1
24

− 1
54

1
48

−209
96

1 29
24

−1
4

−1
4

19
24

−1
6

− 7
48

− 1
24

−1
2

1 −39
32

0 19
16

−1
2

0 1
2

−1
4

− 1
16

3
8

29
24

0 −247
48

17
16

1
2

109
48

− 1
12

−1
6

−1
6

−1
4

−1
4

13
16

23
16

−7
2

13
16

0 23
16

−1
4

−1
4

− 1
16

−1
4

−1
2

1
2

19
16

−39
32

0 0 1 −1
2

71
216

41
72

0 215
144

0 0 −971
144

215
144

41
72

71
216

−1
6

−1
6

1
2

− 1
12

17
16

0 109
48

−247
48

29
24

3
8

− 1
24

− 7
48

−1
4

−1
6

−1
4

1 19
24

29
24

−209
96

1
48

− 1
54

− 1
24

− 1
16

−1
6

−1
4

−1
2

71
216

43
72

115
144

85
288

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us now focus on the Bethe ansatz. The spin chain Hamiltonian up to two-loop level
is

H =
∑

i

H(0)
i + g2 H(2)

i + · · · , g2 =
g2

Y MN

8π2
(34)

and it has energy eigenvalues E = E(0) + g2E(2) + · · ·. The wavefunctions of the form

Ψ(x1, x2, . . .) = Ψ(0)(x1, x2, . . .) + g2 Ψ(2)(x1, x2, . . .) + · · · (35)

are contracted on the kets |x1, x2, . . .〉 defined in section 2.1.
For one magnon we may scale away Ψ(2). The Schrödinger equation∑

i

H(2)
i (1)

∑
x1

Ψ(0)(x1) |x1〉 = E(2)
∑
x1

Ψ(0)(x1) |x1〉 (36)

leads to the difference condition

−1
2
Ψ(0)(x1 − 2) + 2 Ψ(0)(x1 − 1) − 3 Ψ(0)(x1) + 2 Ψ(0)(x1 + 1) − 1

2
Ψ(0)(x1 − 2)

= E(2) Ψ(0)(x1) (37)

which can again be solved by Fourier transformation:

Ψ(0)(x1) = eip1x1 , E(2) = −8 sin4

(
p1

2

)
. (38)

Hence the solution of the two-loop one-magnon problem yields the correction to the one-
loop dispersion law (26) for the magnon energy E(p) = E(0)(p) + g2 E(2)(p) +O(g4). It is
identical to that of the su(2) [15] and su(1|1) [18] sectors, and consistent with the proposed
all-loop dispersion law of [16]:

E(p) =
1

g2

(√
1 + 8 g2 sin2

(
p

2

)
− 1

)
.
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The lowest order of the two-magnon problem was discussed in the last section. The
two-loop part of the Schrödinger equation reads∑

i

H(0)
i

∑
x1≤x2

Ψ(2)(x1, x2) |x1, x2〉 +
∑

i

H(2)
i

∑
x1≤x2

Ψ(0)(x1, x2) |x1, x2〉

= (E(0)(p1) + E(0)(p2))
∑

x1≤x2

Ψ(2)(x1, x2) |x1, x2〉

+ (E(2)(p1) + E(2)(p2))
∑

x1≤x2

Ψ(0)(x1, x2) |x1, x2〉. (39)

The resulting difference equations are perhaps not particularly illuminating. We will
rather comment on how to solve the system: the interaction length of the two-loop

Hamiltonian H(2)
i is 3. The two magnons must therefore behave as free particles when

x1 < x2 − 2. Thanks to the special form of H(2)
i the same difference equation still holds

when x1 = x2 − 2. The cases of interest are thus

(i) x1 = x2 − 1, (ii) x1 = x2, (40)

which both lead to new equations. In order to satisfy both conditions we must allow for
a correction not only to the S matrix but also to the ingoing wavefunction. Let

ψ(p1, p2) = (1 + g2 δx1,x2 f(p1, p2))e
ip1x1+ip2x2 . (41)

The wavefunction renormalization (‘fudge factor’) is local. We write the ansatz

Ψ(x1, x2) = ψ(p1, p2) + S(p2, p1) ψ(p2, p1), S = S(0) + g2 S(2) (42)

whose expansion in the coupling constant defines Ψ(0), Ψ(2).
Case (i) gives a condition relating f(p1, p2) to f(p2, p1). Substituting this into (ii)

makes the fudge factors disappear from the equation so that we can solve for the S
matrix:

S(2)(p2, p1) = −
8i sin(p1

2
) sin(p1−p2

2
) sin(p2

2
)

(
sin2(p1

2
) + sin2(p2

2
)
)

(sin(p1−p2

2
) + 2i sin(p1

2
) sin(p2

2
))2

. (43)

This result nicely confirms the conjecture for the two-loop S matrix of the sl(2) sector
in [18].

The wavefunction renormalization f is not fully determined. It is tempting to assume
it to be symmetric under the exchange of p1, p2 since the magnons are indistinguishable.
In this case we find

f(p1, p2) = sin2

(
p1

2

)
+ sin2

(
p2

2

)
− 1

2
sin2

(
p1 + p2

2

)
. (44)

The alternative choice for the two-loop Hamiltonian from appendix B yields f(p1, p2) = 0
if f is symmetric.

The discussion of the two-loop three-magnon scattering combines elements of the one-
loop three-magnon case with the two-magnon situation described in the last paragraph.
We write for the ingoing wave

ψ(p1, p2, p3) = (1 + g2M ( δx1,x2 l(p1, p2, p3) + δx2,x3 r(p1, p2, p3)

+ δx1,x2 δx2,x3 u(p1, p2, p3)))e
ip1x1+ip2x2+ip3x3 (45)

doi:10.1088/1742-5468/2006/11/P11014 13

http://dx.doi.org/10.1088/1742-5468/2006/11/P11014


J.S
tat.M

ech.
(2006)

P
11014

Integrability and transcendentality

and make the ansatz

Ψ(x1, x2, x3) = ψ(p1, p2, p3) + S132 ψ(p1, p3, p2) + S213 ψ(p2, p1, p3) + S231 ψ(p2, p3, p1)

+ S312 ψ(p3, p1, p2) + S321 ψ(p3, p2, p1), (46)

Sijk = S
(0)
ijk + g2 S

(2)
ijk.

As might be expected by now, the free situation must arise when x1 + 2 < x2 < x3 − 2,
but in fact nothing changes when x1 +2 = x2 or x2 = x3 − 2. We thus have to discuss the
cases

(i) x1 + 1 = x2 < x3 − 1,

(ii) x1 = x2 < x3 − 1,

(iii) x1 + 1 < x2 = x3 − 1,

(iv) x1 + 1 < x2 = x3,

(v) x1 + 1 = x2 = x3 − 1,

(vi) x1 = x2 = x3 − 1,

(vii) x1 + 1 = x2 = x3,

(viii) x1 = x2 = x3.

(47)

In the first four cases only one x has disappeared, whereby one may use the functional
independence of the various exponential factors to organize each difference equation into
three separate constraints. Cases (i) and (ii) are equivalent to a two-magnon problem
with positions x1 and x2: one may solve (i) for three conditions relating l(p1, p2, p3) to
l(p2, p1, p3) etc and then substitute the three equations into (ii). This eliminates the left
fudge factor l from the equations. Likewise, we can use (iii) to eliminate the right fudge

factor r from (iv). We are left with six equations on the five S
(2)
ijk matrices. A unique

solution exists:

S
(2)
132 = S(2)(p3, p2),

S
(2)
213 = S(2)(p2, p1),

S
(2)
231 = S(0)(p2, p1) S(2)(p3, p1) + S(2)(p2, p1) S(0)(p3, p1),

S
(2)
312 = S(0)(p3, p1) S(2)(p3, p2) + S(2)(p3, p1) S(0)(p3, p2),

S
(2)
321 = S(0)(p2, p1) S(0)(p3, p1) S(2)(p3, p2) + S(0)(p2, p1) S(2)(p3, p1) S(0)(p3, p2)

+ S(2)(p2, p1) S(0)(p3, p1) S(0)(p3, p2).

(48)

In other words, the complete S matrix S = S(0)+g2 S(2) factors into two-particle processes
also at two-loop level.

Once knowing that H(2)
i (3) reproduces a two-magnon problem when only two

arguments coincide, it is natural to put l(p1, p2, p3) = f(p1, p2) = r(p3, p1, p2) and so
on. With these identifications the cases (i) and (iii) reduce to the condition on the two-
magnon fudge factor f found earlier. Of our remaining cases, (v) is empty while the last
three all lead to one and the same condition on the ultralocal fudge factor u. There is
not enough information at this loop order to solve for u—again, one may speculate that
it should be chosen so as to make the ingoing wave symmetric when all three positions
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coincide. The solution is then similar to (44) if the two-loop Hamiltonian is as defined in

this section, or it vanishes for the alternative choice of H(2)
i from appendix B.

In conclusion, our analysis confirms the possibility of extending the sl(2) sector Bethe
ansatz to the two-loop level. It proves the functional form of the two-loop S matrix
conjectured in [18], and it shows that the three-magnon S matrix factors into two-particle
blocks.

3. The asymptotic all-loop large spin limit

3.1. One-loop large spin limit

Consider the one-loop Bethe equations (16), (17) in the large spin limit s → ∞. This
problem was solved in great detail in the context of Reggeized gluon scattering for the
very similar case of a non-compact sl(2) spin = 0 representation, i.e. for an XXX0

Heisenberg magnet, in [39]. The changes required to treat our present case of non-compact
sl(2) spin = −1

2
are minor. Here we will proceed in a slightly different fashion as compared

to [39], where methods involving the Baxter Q function are employed. The reason is that
the higher loop generalization of the Baxter function is not yet known. We will therefore
directly work with the one-loop Bethe equations (16), (17), which nicely turn into a
(singular) integral equation in the large spin limit. Our method will then be extended to
the asymptotic all-loop equations (19), (20) in the next section. Interestingly, the effective
higher loop integral equation will turn out to be non-singular.

Much intuition may be gained from the fact that the twist L = 2 case is, at one-loop
level, explicitly solvable for arbitrary spin s; cf appendix C. Studying this solution one
finds that the Bethe roots are all real5 and symmetrically distributed around zero. The
root distribution density has a peak at the origin (in particular, there is no gap around
zero) and the outermost roots grow linearly with the spin as max{|uk|} → s/2. We
therefore introduce rescaled variables ū, and a density ρ̄0(ū) normalized to 1:

uk

s
→ ū with ρ̄(ū) =

1

s

s∑
k=1

δ0

(
ū − uk

s

)
and thus

∫ b̄

−b̄

ρ̄0(ū) = 1. (49)

We now take the usual logarithm of the Bethe equations (16) and multiply either side by
−i:

−i L log

(
uk + (i/2)

uk − (i/2)

)
= 2 π nk − i

s∑
j=1
j �=k

log
uk − uj − i

uk − uj + i
. (50)

The integers nk reflect the ambiguity in the branch of the logarithm, and may be
interpreted as (bosonic) quantum mode numbers. In the case of twist L = 2 there is
only one state. Its root distribution is real and symmetric under u ↔ −u. All positive
(negative) roots have mode number n = 1 (n = −1). In the case of higher twist L > 2

5 It may be shown that, in contrast to the case for the su(2) spin = 1
2

Heisenberg magnet, the roots of the
sl(2) spin = − 1

2
Bethe equations are, for all L and s, always real. We thank Kazakov and Zarembo for a

discussion of this point.
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there is more than one state6. However, for the lowest state the root distribution is again
real symmetric with n = sgn(u). Since s is assumed large, and uk = O(s) for nearly all
roots, we furthermore expand (50) in 1/u:

L

uk

= 2 π nk − 2
s∑

j=1
j �=k

1

uk − uj

. (51)

In this large s limit the rescaled Bethe roots condense onto a smooth cut on the interval
[−b̄, b̄] on the real ū-axis. We may therefore take a continuum limit of (51) which yields,
using (49),

0 = 2 π ε(ū) − 2 −
∫ b̄

−b̄

dū′ ρ̄0(ū
′)

ū − ū′ , (52)

where ε(ū) = sgn(ū). In particular, the dependence on L in (51) drops out: the lowest
state leads to the same large s root distribution, and therefore energy, for arbitrary finite
twist L.

The singular integral equation (52) is easily solved by inverting the finite Hilbert
transform with standard methods. The solution for the rescaled one-loop root density is
then found to be

ρ̄0(ū) =
1

π
log

1 +
√

1 − 4 ū2

1 −
√

1 − 4 ū2
=

2

π
arctanh

(√
1 − 4 ū2

)
, (53)

where we have set the interval boundary to b̄ = 1
2
, as obtained from the density

normalization condition. The result (53) of our procedure agrees with the Baxter Q
approach of [39].

Our derivation is closely modelled after the discussion of [40]; in particular, we refer
the reader to appendix C of that article. There the ‘spinning strings’ solutions of (16),
(17), where both s and L are large and of the same order of magnitude, O(L) = O(s),
were studied. The difference is that in this case the lhs of (51) is not negligible. The
ensuing potential L/u on the lhs of (51) opens up a gap [−ā, ā] of the root distribution
in the vicinity of ū = 0. The resulting density for the lowest state therefore has compact
support on two cuts [−b̄,−ā] and [ā, b̄] and is expressible through an elliptic integral of
the third kind (see equation (C.8) in [40]). One easily checks that when L → 0 the
gap disappears, i.e. ā → 0, and the elliptic density, after rescaling the roots in [40]
by ū → (s/L)ū in order to adapt conventions, simplifies to the expression (53), with
b̄ → 1

2
.

However, the one-loop anomalous dimension as obtained in [40] does not reproduce
the expected logarithmic scaling of (5) upon taking the limit s/L → ∞. Instead, it
behaves like ∼ log2(s); cf (E.1) of [40]. This is a classic order-of-limits problem. Assuming
s, L large with s/L finite, and subsequently taking s/L → ∞ does not yield the same
result as taking s large while keeping L either finite or, at least, L � s. For a very recent,
quite extensive discussion of this fact see [27]. For a recent study of some of the fine
structure of the spinning strings limit see [41].

6 The reader might find it instructive to consult table 2 of [18], where a complete list of the three-loop spectra of
the first few states of the sl(2) sector may be found.

doi:10.1088/1742-5468/2006/11/P11014 16

http://dx.doi.org/10.1088/1742-5468/2006/11/P11014


J.S
tat.M

ech.
(2006)

P
11014

Integrability and transcendentality

The correct result is obtained by a careful derivation of the expression for the energy
in the continuum limit s → ∞. From the right equation in (17) we find, using (49),

E0 =
1

s

∫ 1/2

−1/2

dū
ρ̄0(ū)

ū2 + (1/4 s2)
. (54)

Therefore, as opposed to the case for the limit of [40] (see the expression in (C.4)) it is
nonsensical to use the unregulated expectation value

∫
dū ρ̄0(ū)/ū2 for the energy. The

correct expression (54) is actually related to the resolvent G(ū), which is defined for
arbitrary complex values of ū barring the interval [−1/2, 1/2] (this integral is not of
principal part type) as

G(ū) =

∫ 1/2

−1/2

dū′ ρ̄0(ū
′)

ū′ − ū
, (55)

through

E0 =
2

i
G

(
i

2s

)
. (56)

Note that this further distinguishes the large spin limit from the ‘spinning strings’ limit,
where the resolvent generates the full set of commuting charges [42]. One then finds
from (53) that

G(ū) = i log

√
1 − 4 ū2 + 1√
1 − 4 ū2 − 1

. (57)

Using now (56) and taking s → ∞ we find

E0 = 4 log(s) + O(s0), (58)

which is the well-known correct result, as may also be checked directly from the exact
finite s result E = 4 h(s), see (C.4).

3.2. Asymptotic all-loop large spin limit

Let us now generalize the analysis of the previous section to the higher loop case. We would
therefore like to compute the corrections to the one-loop density (53) and energy (58) as
generated by the deformed Bethe equations (19), (20). Compelling arguments for its
validity to three-loop level were presented in [18] (in particular the equations reproduce
the conjecture of [10] based on the QCD calculation [9], and they agree with [2]). Their
all-loop form was conjectured in [20]. See also [21].

We begin by rewriting the asymptotic all-loop Bethe equations (19) with the help
of (18) in the following fashion:

(
uk + (i/2)

uk − (i/2)

)L (
1 + g2/2(x−

k )2

1 + g2/2(x+
k )2

)L

=

s∏
j=1
j �=k

uk − uj − i

uk − uj + i

(
1 − g2/2x+

k x−
j

1 − g2/2x−
k x+

j

)2

,

k = 1, . . . , s. (59)
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Let us again take a logarithm on both sides of the equations, and multiply by i:

2L arctan(2 uk) + i L log

(
1 + g2/2(x−

k )2

1 + g2/2(x+
k )2

)
= 2 π ñk − 2

s/2∑
j=−s/2

j �=0

arctan (uk − uj)

+ 2i

s/2∑
j=−s/2

j �=0

log

(
1 − g2/2x+

k x−
j

1 − g2/2x−
k x+

j

)
. (60)

Here we have also relabelled the s roots uk such that the index k runs over the set
k = ±1,±2, . . . ,±s/2. We have furthermore chosen, for convenience, to employ a different
choice for the branches of the logarithms as compared to (50). Whereas in (50) the branch
cuts run through uk = 0 and uk = uj, in our alternative choice in (60) the arctan functions
are analytic at uk = 0 and uk = uj. This replaces the ‘bosonic’ mode numbers nk of (50)
by ‘fermionic’ mode numbers ñk. For the lowest state (the only one for L = 2) we have,
for even s,

ñk = k +
L − 3

2
ε(k) for k = ±1,±2, . . . ,±s

2
. (61)

To avoid confusion: we are still focusing on the same states, and just chose to change the
description.

Let us now proceed in close similarity to the computation of the thermodynamic
antiferromagnetic ground state of the Heisenberg magnet (see e.g. [33]). In order to have
a uniform spacing between the indices of all roots it is convenient to define k′ = k−ε(k)/2
such that

ñk = k′ +
L − 2

2
ε(k) for k′ = ±1

2
,±3

2
, . . . ,±s − 1

2
. (62)

As s → ∞ we introduce a smooth continuum variable x = k′/s. The excitation density
may now be defined as ρ(u) = dx/du. We divide (60) by s, use (62), replace the sums by
integrals, and, finally, take a derivative w.r.t. u. Note that we do not rescale u by 1/s.
Then (60) becomes

L

s

1

u2 + 1
4

+
i L

s

d

du
log

(
1 + g2/2(x−(u))2

1 + g2/2(x+(u))2

)

= 2 π ρ(u) +
2 π

s
(L − 2) δ(u) − 2

∫ b

−b

du′ ρ(u′)

(u − u′)2 + 1

+ 2i

∫ b

−b

du′ ρ(u′)
d

du
log

(
1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)
. (63)

It is convenient to split the density ρ(u) into a one-loop piece ρ0(u) and a higher loop piece
σ̃(u): ρ(u) = ρ0(u) + g2 σ̃(u). Let us, accordingly, also split off from (63) the one-loop
contribution

L

s

1

u2 + (1/4)
= 2 π ρ0(u) +

2 π

s
(L − 2) δ(u) − 2

∫ s/2

−s/2

du′ ρ0(u
′)

(u − u′)2 + 1
, (64)

doi:10.1088/1742-5468/2006/11/P11014 18

http://dx.doi.org/10.1088/1742-5468/2006/11/P11014


J.S
tat.M

ech.
(2006)

P
11014

Integrability and transcendentality

while the higher loop (two-loop level and beyond) part of (63) becomes

0 = 2π σ̃(u) − 2

∫ ∞

−∞
du′ σ̃(u′)

(u − u′)2 + 1

+
2i

g2

∫ s/2

−s/2

du′ ρ0(u
′)

d

du
log

(
1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)

+ 2i

∫ ∞

−∞
du′ σ̃(u′)

d

du
log

(
1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)
. (65)

We have dropped the second term on the lhs of (63), as it is easily seen to be suppressed
to leading order in the large s limit. This reflects the independence of the large s scaling
behaviour of the lowest state on the twist L even beyond the one-loop approximation, as
long as L � s. We have also extended the range of integration of the second and fourth
integrals in (65) from ±s/2 to ±∞, to be justified below.

As a consistency check of our procedure let us rederive the one-loop solution of the
previous section from (64). There we used rescaled variables ū = u/s, and a rescaled
density ρ̄0(ū) = s ρ0(u) such that dū ρ0(ū) = du ρ0(u). Using the large s expansions

1

2 s

1

ū2 + 1/4s2
= π δ(ū) + O

(
1

s

)
, (66)

1

s

1

(ū − ū′)2 + 1/s2
= π δ(ū − ū′) +

1

s

P
(ū − ū′)2

+ O
(

1

s2

)
, (67)

where P indicates a principal part, we find from (64)

0 = 4 π δ(ū) + 2 −
∫ b̄

−b̄

dū′ ρ̄0(ū
′)

(ū − ū′)2
, (68)

which is, since ε′(ū) = 2 δ(ū), precisely the derivative of the one-loop singular integral
equation (52). Note that the L dependence has indeed again dropped out. We therefore
find the same one-loop result as in the previous section. It should be stressed that, even
though the kernel in (64) is of difference form, and the interval boundary values tend to
±∞, it is incorrect to solve this equation by naive Fourier techniques.

Luckily, however, applying a Fourier transform leads to progress with the higher
loop equation (65). The reason is that the higher loop density fluctuations σ̃(u) are
concentrated in the vicinity of u = 0, i.e. σ̃(u) 
= 0 iff |u| � s/2. This may be verified for
twist L = 2 operators by using the exact one-loop solution of appendix C, and numerically
solving the linear problem of computing the higher loop corrections to the roots of the
Hahn polynomials from the Bethe equations (19). We were thus indeed entitled to replace
the integral boundaries ±s/2 by ±∞ in the second and fourth terms on the rhs of (65).
The ‘scale’ of the fluctuations σ̃(u) is set by the third term on the rhs of (65). Let us
calculate it, using ρ0(u) = ρ̄0(ū)/s, with ρ̄0(ū) given by (53):

2i

g2

∫ s/2

−s/2

du′ ρ0(u
′)

∂

∂u
log

(
1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)

= − 2i

g2

∞∑
r=1

1

r

(
g2

2

)r ∫ s/2

−s/2

du′ ρ0(u
′)

∂

∂u

[
1

x+(u)r

1

x−(u′)r
− 1

x−(u)r

1

x+(u′)r

]

=
E0

s

(
1

2

d

du

) [
1

x+(u)
+

1

x−(u)

]
+ · · · , (69)
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where we have only kept the leading contribution. Note that only the first, r = 1 term in
the expansion of the logarithm contributes to this result, and we have used, cf. (55), (56),
the relation ∫ s/2

−s/2

du′ ρ0(u
′)

1

x±(u′)
=

∫ s/2

−s/2

du′ ρ0(u
′)

1

u′ ± (i/2)
+ · · ·

=
1

s
G

(
∓i

2s

)
+ · · · =

∓i

2s
E0 + · · · , (70)

which is valid to leading order at large s. It is now clear from (58) that E0/s �
4 log(s)/s sets the scale of the density fluctuation σ̃(u) in (65). We therefore define
σ̃(u) = −(E0/s) σ(u), i.e.

ρ(u) = ρ0(u) − g2 E0

s
σ(u). (71)

To this leading order, the density fluctuation does not change the density normalization∫ b

−b
du ρ(u) = 1, i.e.

∫ b

−b
du ρ0(u) = 1 + · · · since lims→∞ E0/s = 0; see (58). Then (65)

becomes

0 = 2π σ(u)

− 2

∫ ∞

−∞
du′ σ(u′)

(u − u′)2 + 1

−
(

1

2

d

du

) [
1

x+(u)
+

1

x−(u)

]

+ 2i

∫ ∞

−∞
du′ σ(u′)

∂

∂u
log

(
1 − g2/2x+(u)x−(u′)

1 − g2/2x−(u)x+(u′)

)
. (72)

We now introduce the Fourier transform σ̂(t) of the fluctuation density σ(u):

σ̂(t) = e−t/2

∫ ∞

−∞
du e−itu σ(u), (73)

where we have also included a factor e−t/2 for notational convenience. Fourier transforming
e−t/2

∫ ∞
−∞ du eitu × equation (72) we find, after some calculation (see appendix D),

0 = 2π σ̂(t) − 2πe−t σ̂(t) − 2πe−t J1(
√

2 g t)√
2 g

+ 4π g2 te−t

∫ ∞

0

dt′ K̂(
√

2 g t,
√

2 g t′) σ̂(t′),

(74)

where the four terms in (74) correspond, respectively, to the four terms in (72), and the

kernel K̂ is given in terms of Bessel functions by

K̂(
√

2 g t,
√

2 g t′) =
1√
2 g

J1(
√

2 g t) J0(
√

2 g t′) − J0(
√

2 g t) J1(
√

2 g t′)

t − t′
. (75)

Note that the Fourier transform only diagonalizes the ‘main’ scattering term in (72),
i.e. the kernel 1/((u − u′)2 + 1). So we are still left with an integral equation. However,
the higher loop equation (74) is, in view of (75), and in contradistinction to the one-loop
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equation (52), non-singular. It may be rewritten in the form (8) stated in the introduction.
Finally, the all-loop energy is found from (20) to be

E(g) = s

∫ s/2

−s/2

du ρ(u)

(
i

x+(u)
− i

x−(u)

)
+ · · ·

= E0 − g2 E0

∫ ∞

−∞
du σ(u)

(
i

x+(u)
− i

x−(u)

)
+ · · · (76)

to leading order in s. In terms of the Fourier transformed density σ̂(t), cf (73), this
becomes (see again appendix D)

E(g) = E0

(
1 − 4 g2

∫ ∞

0

dt σ̂(t)
J1(

√
2 g t)√

2 g t

)
+ · · · (77)

with E0 = 4 log(s) + · · ·. Notice that, in line with general expectations, we have just
shown that the Bethe ansatz of [20] indeed leads to the logarithmic scaling behaviour (5)
to all orders in perturbation theory, in agreement with general expectations; see e.g. the
discussions in [10, 39, 27]. In view of (5), (15), (58) this indeed yields our proposed
conjecture for the all-loop scaling function f(g) announced in (7). The proposed scaling
function as found from the Bethe ansatz possesses further remarkable properties, to which
we will now turn our attention.

3.3. Weak coupling expansion and transcendentality

The Fredholm form of the higher loop integral equation (8) or (74) is ideally suited for the
explicit perturbative expansion of the scaling function f(g) of (5) to high orders. Both the
inhomogeneous first term and the kernel of (8) have a regular expansion in even powers
of g around g = 0. We may therefore also expand the transformed density σ̂(t) in even
powers of g and solve (8) iteratively:

σ̂(t) =
1

2

t

et − 1
− g2

(
1

8

t3

et − 1
+

1

2
ζ(2)

t

et − 1

)
+ · · · , (78)

where we have used the following representation of the Riemann zeta function:

ζ(n + 1) =
1

n!

∫ ∞

0

dt tn

et − 1
. (79)

Furthermore, the expression for the scaling function (7) may also be expanded in a Taylor
series in g2:

f(g) = 4 g2 − 4 g4

∫ ∞

0

dt t

et − 1
+ g6

(
2

∫ ∞

0

dt t3

et − 1
+ 4 ζ(2)

∫ ∞

0

dt t

et − 1

)
+ · · · . (80)

We again use (79) and we find to e.g. six-loop order

f(g) = 4 g2 − 4 ζ(2) g4 + (4 ζ(2)2 + 12 ζ(4)) g6

− (4 ζ(2)3 + 24 ζ(2)ζ(4)− 4 ζ(3)2 + 50 ζ(6)) g8

+ (4 ζ(2)4 + 36 ζ(2)2ζ(4)− 8 ζ(2)ζ(3)2 + 100 ζ(2)ζ(6)

− 40 ζ(3)ζ(5) + 39 ζ(4)2 + 245 ζ(8)) g10
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− (4 ζ(2)5 + 48 ζ(2)3ζ(4) − 12 ζ(2)2ζ(3)2 + 150 ζ(2)2ζ(6)

− 80 ζ(2)ζ(3)ζ(5) + 114 ζ(2)ζ(4)2 + 490 ζ(2)ζ(8)− 18 ζ(3)2ζ(4)

− 210 ζ(3)ζ(7) + 345 ζ(4)ζ(6)− 102 ζ(5)2 + 1323 ζ(10)) g12 + · · · . (81)

It is easy to go to much higher orders if desired (we have expanded to 20-loop order g40).
It is seen that the �-loop O(g2�) contribution to the anomalous dimension is a sum of
products of zeta functions. What is more, the arguments of the zeta functions of each
product always add up to the number 2 � − 2. This is a test of the ‘transcendentality
principle’ of Kotikov, Lipatov, Onishchenko and Velizhanin as spelled out in [7, 8, 10],
and we see that our Bethe ansatz is consistent with this principle7. Finally it is also seen
that the numerical coefficients in front of each zeta function product are integers8.

Note that the expansion (81) may be written more compactly when expressing the
zeta functions of even arguments through powers of π times rational numbers:

f(g) = 4 g2

− 2
3
π2 g4

+ 11
45

π4 g6

−
(

73
630

π6 − 4 ζ(3)2
)

g8

+
(

887
141 75

π8 − 4
3
π2 ζ(3)2 − 40 ζ(3)ζ(5)

)
g10

−
(

136 883
3742 200

π10 − 8
15

π4 ζ(3)2 − 40
3

π2 ζ(3)ζ(5)

− 210 ζ(3)ζ(7)− 102 ζ(5)2
)

g12

+ · · · . (82)

Clearly each π contributes one ‘unit’ of transcendentality. This however obscures the
integer nature of the numerical coefficients (cf footnote 8).

It is instructive to investigate whether the (BMN scaling-preserving) ‘AFS’ dressing
factor [43, 18, 20] for the (approximate; see [44]–[46]) string9 Bethe ansatz (19), (20) is
compatible with the transcendentality principle. Possible (BMN scaling violating) gauge
dressing factors are briefly treated in section 3.4.

The AFS ansatz leads to a modification, at three-loop level and beyond, of the integral
equation (8)

σ̂(t) =
t

et − 1

[
K ′(

√
2g t, 0) − 2 g2

∫ ∞

0

dt′ K ′(
√

2g t,
√

2g t′), σ̃(t′)

]
, (83)

7 To be more precise, here we have tested a weaker form of the transcendentality principle of [10]. The stronger
form applies to the finite s case, and states that the indices of certain harmonic sums add up to 2�−1. We suspect
that our all-loop Bethe ansatz is also consistent with the stronger version; see also [18]. Our finding certainly
supports this, as the weaker principle is a consequence of the stronger one. It would be exciting to fully prove the
latter from the L = 2 finite s Bethe equations (19), (20).
8 Actually, with our convention (2), higher terms beyond the order we have printed in (81) develop powers of 2
in the denominator. We however checked up to order g40 that our scheme does indeed yield integer numbers in
front of the zeta functions if g is rescaled as g →

√
2 g, which is the Lipatov et al convention.

9 Our motivation here is not so much string theory as such (in particular we investigate the dressing factor at
weak coupling, while its original design demands strong coupling), but rather the fact that such dressing factors
are known to naturally appear in certain variant, asymptotically integrable spin chains [47]. While these studies
were done for compact magnets, it is likely that they may be generalized to the non-compact case of interest in
this paper. The variant models tend to violate the Feynman rules of the gauge field theory, which is our main
motivation for investigating whether they preserve the transcendentality principle.
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where the modified kernel K ′, see appendix D, reads

K ′(
√

2g t,
√

2g t′) = K̂(
√

2g t,
√

2g t′) +
√

2g K̃(
√

2g t,
√

2g t′), (84)

with

K̃(t, t′) =
t(J2(t) J0(t

′) − J0(t) J2(t
′))

t2 − t′2
, K̃(t, 0) =

J2(t)

t
. (85)

The dressing factor then modifies the scaling function f(g) → f(g)+ δf(g) in the following
fashion:

δf(g) = 0 × g2

0 × g4

− 4 ζ(3) g6

+ (4
3
π2 ζ(3) + 20 ζ(5)) g8

− (23
45

π4 ζ(3) + 20
3

π2 ζ(5) + 105 ζ(7)− 4 ζ(3)2) g10

+ ( 71
315

π6 ζ(3) + 79
30

π4 ζ(5) + 35π2 ζ(7)− 8 ζ(3)3 + 588 ζ(9)

− 2 π2 ζ(3)2 − 36 ζ(3)ζ(5)) g12

+ · · · (86)

We see that the integrable modification of the long-range Bethe ansatz of [20] by the
‘stringy’ AFS [43] dressing factor violates the transcendentality principle10, as now the
arguments of the Riemann zeta functions no longer add up to 2 � − 2.

3.4. Breakdown of BMN scaling and the scaling function

Here we will demonstrate interesting connections between BMN scaling [28] on the one
hand and our Bethe ansatz method for the scaling function on the other. It is by now
rather firmly established that BMN scaling in perturbative gauge theory can only break
down, at four-loop level or beyond, through a dressing factor of the general type just
discussed; see in particular [47, 21]. This happens in e.g. the plane wave matrix model;
see [48].

Let us sketch the quantitative derivation of this effect, restricting ourselves for
simplicity to four-loop level, where its detection might still be within reasonable reach
of sophisticated field theory methods, perhaps along the lines of [2].

The first modification of the asymptotic Bethe equations of [20] which is still consistent
with current knowledge on the integrable structure of N = 4 gauge theory would lead to
the following correction of the higher loop Bethe equations (19):(

x+
k

x−
k

)L

=

s∏
j=1
j �=k

x−
k − x+

j

x+
k − x−

j

1 − g2/2x+
k x−

j

1 − g2/2x−
k x+

j

σ2(uk, uj) (87)

10 For the gauge theory ansatz the transcendentality principle is a consequence of scaling: the arguments of
the potential and kernel in (74) are

√
2g t,

√
2g t′ so that the order in g is linked to the total power of t and t′

which defines the level of transcendentality. The string theory ansatz (83) breaks the pattern only because of the
presence of the extra

√
2g in front of K′ in equation (84). Initially this introduces a mismatch by one unit; by

iteration the effect fans out higher up in the perturbative expansion.
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with

σ2(uk, uj) = exp(i β g6 (q2(uk) q3(uj) − q3(uk) q2(uj)) + · · ·); (88)

see [43, 20, 47, 45, 21] for details11, and the definition of the charges qr(u). The dots indicate
further terms which might affect the five-loop level and higher levels.

A non-zero value for β leads to ‘soft breaking’ of BMN scaling: the two-excitation
problem can be solved exactly [11], because the momentum constraint implies u2 = −u1.
For spin chain length L = J , where J is the BMN R-charge, the different states are
distinguished by the Bethe roots u1,n = 1

2
cot(πn/(J + 1)). The higher order corrections

similarly come out in terms of trigonometric functions. The string spectrum Δ − J is
reproduced by Taylor expanding in 1/J when n is small:

Δ − J = 2 + 8 g2
(nπ

J

)2

− 16 g4
(nπ

J

)4

+ 64 g6
(nπ

J

)6

− 320 g8
(nπ

J

)8

− 512 g8β

J

(nπ

J

)6

+ · · · . (89)

The dots stand for higher orders in g2 and, at any given order, terms subleading in 1/J .
We see the emergence of the effective coupling constant g2/J2 in the first four terms of the
last formula, while the last term has g8/J7, so that it diverges in the BMN limit g, J → ∞
with g/J fixed.

The modified Bethe ansatz (87) requires replacing the kernel in (75) by

K̂(
√

2g |t|,
√

2g |t′|) → K̂(
√

2g |t|,
√

2g |t′|) + 2 β (
√

2g)
J2(

√
2 g |t|) J1(

√
2 g |t′|)

|t t′| + · · · .

(90)

The third term on the rhs of (72) becomes

−
(

1

2

d

du

) [
1

x+(u)
+

1

x−(u)

]
− β g4 d

du
q3(u) + · · · , (91)

or, after Fourier transforming (cf third term in (74)),

−2πe−t

(
J1(

√
2 g t)√
2 g

+ 2 β g2 J2(
√

2 g t)

)
+ · · · . (92)

This modifies the four-loop O(g8) term of the scaling function (82) to

−( 73
630

π6 − 4 ζ(3)2 + 8 β ζ(3)). (93)

Note that transcendentality is violated unless β is a rational number times ζ(3) (or π3).
A particularly curious case would be β = 1

2
ζ(3), which would lead to the much simpler

four-loop answer − 73
630

π6.
Note that such a modified Bethe ansatz would also change the anomalous dimensions

of all operators in other sectors. For example, in the su(2) sector we would find for the

11 The detailed argumentation which allows us to draw this conclusion is actually rather subtle and requires
putting together various results. The main steps are: (1) the three-loop Bethe ansatz is solidly known; (2) the
structure of the four-loop Bethe ansatz is also known, up to the term involving β in (87), in the su(2) sector [47];
(3) the multiplicative modification affecting the su(2) sector as in (87) must also multiplicatively affect in the
same fashion the sl(2) sector, as first conjectured in [18] and later proved in [21].
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Figure 1. The density of Bethe roots at weak (left) and strong coupling (right).

length L = 5 operator Tr X2 Z3 + · · · (this case is actually equivalent to the sl(2) twist 3
operator Tr D2 Z3 + · · ·) to four-loop level

E(g) = 4 − 6 g2 + 17 g4 − (115
2

+ 8 β) g6 + · · · . (94)

It would be very interesting if the modification were non-rational12. Incidentally, we see
that β 
= 0 would also rule out the Hubbard Hamiltonian as a candidate for the su(2)
dilatation operator beyond three-loop order; cf equation (68) in [22].

3.5. Strong coupling expansion and string theory

The Fourier transformed integral equation (74) does not lend itself to strong coupling
analysis due to the oscillatory nature of the kernel (75). We rather return to the
configuration space integral equation (72).

The two diagrams in figure 1 give a series of plots of the root density for progressively
higher values of the coupling constant. The left picture shows the weak coupling regime;
the graphs depict the root density at

√
2g = 0, 1/4, 1/2, 1, respectively. The

√
2g = 0

distribution is the tallest peak. It is given by the Fourier back-transform of the first term
in (78):

σ0(u) =
π

4

1

cosh2(π u)
. (95)

All other curves are numerical solutions of (72). Augmenting the coupling constant makes
the peak around u = 0 become wider and flatter.

In the second diagram we plotted 2g2 σ(u/(
√

2g)) for
√

2g = 1, 4, 16, 64. With
increasing coupling the graphs rise; they develop peaks at ±1 while the middle parts
tend to 1/π. On undoing the scaling we would nevertheless recover the tendency seen
at weak coupling, i.e. the support of the root density roughly stretches to the interval

12 Clearly the Bethe ansätze [20] proposed so far also lead to a transcendentality principle at weak coupling: if we
assign, in accordance with the meaning of the word, transcendentality degree 0 to rational or algebraic numbers,
then weak coupling dimensions of operators carrying finite charges (i.e. without taking limits of large R-charges
or large spin quantum numbers) are always of zero degree in the currently proposed ansätze. On the other hand,
zeta functions do appear naturally in individual higher loop Feynman diagrams, and, from this point of view,
might well appear in high order contributions to anomalous dimensions.
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[−
√

2g,
√

2g] within which the density tends to

σ∞(u) =
1

2πg2
. (96)

Note that the constant function σ(u) = 1/(2πg2) is an exact solution of (72) if the
support is extended to the entire real axis (likewise σ(t) = δ(t)/g2 is a solution of (74)).
Furthermore, σ∞(u) would exactly cancel the leading O(g2) contribution to the scaling
function (77), thus yielding the O(g) asymptotics expected from string theory.

Numerically, we could confirm the cancellation of the O(g2) part of the scaling function
up to an error of a few per cent, but reliable predictions for subleading terms remained
out of reach. It is indispensable to understand the strong coupling regime by analytic
means. We hope to clarify the issue in future work.
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Appendix A. Two-point functions in the sl(2) sector

A.1. Perturbative CFT in the dimensional reduction scheme

We shall restrict our attention to leading N (planar) two-point functions of single-trace
operators in the sl(2) sector. For any given spin chain with length = twist L there are
many distinct operators differing in the total number of derivatives and their positioning
on the sites of the chain.

Renormalization must be done in such a way as to unmix these states and to make
their correlators finite. The theory is then seen to be conformally invariant; for example
the two-point function of a renormalized primary operator of spin s has the form [49]

〈P s(1)P̄ s(2)〉 =
c(g2)Jμ1ν1(x12) . . . Jμsνs(x12)

(x2
12)

Δ(g2)
, (A.1)

where

Jμν(x) = ημν − 2
xμxν

x2
(A.2)

is the inversion tensor, and the μ and ν indices are separately made traceless and
symmetric. Knowledge of any one term in the product of inversion tensors is sufficient for
reconstructing the full correlator. In [38] we considered the term with no η symbol, because
we were interested in a minimal set of graphs (trace terms are potentially more divergent
and there are also a few Feynman diagrams which always carry at least one power of η on
dimensional grounds). In the present work we wish to construct the asymptotic two-loop
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dilatation operator in the sl(2) sector. The task is greatly simplified by focusing on the
pure trace terms, because these obviously cannot exist between operators of different spin.
This property becomes important when subtracting out disconnected parts.

As before, we use N = 2 superfields and regularize by SSDR (supersymmetric
dimensional reduction) [36] in x-space. This amounts to doing the superalgebra as in four
dimensions, while the underlying scalar propagator is modified as in standard dimensional
regularization:

〈Z(1)Z̄(2)〉 =
c0

x2
12

(μx2
12)

ε, c0 = − 1

4π2
, �1〈Z(1)Z̄(2)〉 = δ(x12), (A.3)

although we suppress the mass scale μ throughout the paper13. The tree level correlators
of operators of length L and spin s thus contain the x-space structure

X(L, s) =
NLηs

zz̄

(−4π2)L(x2
12)

L(1−ε)+s
(A.4)

and a whole series of terms with x12 with open indices, which may be recovered by
appealing to conformal invariance.

In order to extract the one- and two-loop anomalous dimensions we must keep track
of the leading and subleading order in the ε expansion of the bare correlators:

〈Oi Ōj 〉 = X(L, s)

[
(T0 ij + ε T1 ij) + g2

(
A11 ij

1

ε
+ A10 ij

)
(x2

12)
ε

+ g4

(
A22 ij

1

ε2
+ A21 ij

1

ε
+ A20 ij

)
(x2

12)
2ε + · · ·

]
(A.5)

where the Yang–Mills coupling constant is dressed by14

g2 =
g2

Y MN

8π2
(A.6)

and the fractional powers of x2
12 arise from the integration measure in the Feynman graphs

defining the one- and two-loop contributions.
Consistency of N = 4 as a conformal field theory grants that T0, A11, A22 are

simultaneously diagonalizable. In a diagonal basis {Oi} they obey

A11 = Γ1 T0, A22 = 1
2
Γ2

1 T0. (A.7)

Here Γ1 is also diagonal and contains the one-loop anomalous dimensions γ1 i.
The divergences are removed by introducing Z matrices of the form

Z = R + g2 B + g4

(
C1

1

ε
+ C0

)
+ · · · (A.8)

where R is diagonal and has as its entries the Z factors for the individual operators

Zi = 1 + g2 z11 i

2ε
+ g4

(
z22 i

4ε2
+

z21 i

4ε

)
+ · · · (A.9)

13 Our discussion of the renormalization of conformal correlators in x-space using the SSDR scheme is built upon
the works [17, 50, 38].
14 We deviate from the convention in [38] by a coupling constant rescaling so as to be more in line with the
literature.
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while B, C have zero on the diagonal. The Z factors and the anomalous dimensions are
determined from the bare two-point functions by imposing

F = Z 〈O Ō〉Z† (A.10)

where F is again diagonal and is defined by the renormalized two-point functions

fi = X(L, s)|ε=0 (a0 i + g2 a1 i + g4 a2 i) (x2
12)

−g2 γ1 i−g4 γ2 i + · · · . (A.11)

To be more precise, we demand that both sides be equal at each order in g2 up to positive
powers of ε. The resulting system of equations does not completely fix C1, C0, so that
we limit our scope to the determination of R, B, a0i, a1i, γ1i, γ2i. We may thus drop the
constant part A20 of the g4 two-point functions from our analysis.

A.2. Graphs

We exploit the N = 2 superfield formalism in order to minimize the number of Feynman
diagrams. For a quick review of the essentials of the formalism and expressions for the
graphs we would like to refer the reader to [38], where two-loop two-point functions of
operators of length 3 are discussed. Our notation and conventions are in fact borrowed
from that work; in particular, the article contains a list of graphs upon which we draw
here. However, in [38] the (xzxz̄)

s term of the two-point functions was used, so that some
graphs could be omitted because they always come with ηzz̄.

At order g2, we additionally have to take into account a graph F (see figure A.2) in
which a free vector line goes from the connection in Dz on the left end of the two-point
function to that in Dz̄ on the right (the Feynman gauge vector propagator is proportional
to η). Correspondingly, there is an O(g4) graph consisting of the same free line paired
with the divergent one-loop graph G0. On the other hand, we do not need to consider
the combination of the free vector line with the ‘BPS-like’ O(g2) integral B0 since this
configuration stays finite. Next, in [38] we were able to drop the product G0 ∗ B0 as G0

only has a simple pole (in x-space) while the part of B0 without η is a contact term also
when there are partial derivatives on the outer legs, i.e. it is always O(ε). Terms in B0

which involve ηzz̄ are finite, i.e. O(1), so that in the present context the product G0 ∗ B0

becomes relevant.
With respect to the genuine two-loop integrals there are not many changes: the

finiteness of some terms which we dropped from graph G3 remains guaranteed and hence
we may take over the simplified sum G3 +G4 given in formula (61) in [38]. The ‘BPS-like’
graphs behave in the same manner as B0: the part without η is a contact term and the
other parts are finite. They can still safely be omitted.

A first difference is that graphs G10 and G11 start to contribute: before, the poles
from these graphs cancelled in the sum over all diagrams within each class; this is not the
case in the new situation. We point out an error in formula (55) in the original version
of [38]: two parts of the integral were added with a wrong relative sign. The cancellation
of the associated poles in the calculation of [38] can be verified for both ‘halves’ on their
own so that the mistake did not show. The correct expression for G10 is

G10 = (12)[∂ν14∂μ23 + ημν�34/4 − (1 − (12)(1−2−))∂μ13∂ν24]. (A.12)

But there are also three genuinely new graphs (see figure A.1).
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1

1’

2

G16 G17 G18

Figure A.1. Additional graphs at order g4.

G0a G0b B0 Fa Fb

Figure A.2. Graphs defining the one-loop dilatation operator.

Like in the pictures in [38] we have omitted free matter propagators. Point 1 is on
the left and point 2 on the right of the graphs. The connection carries the indices μ and
ν there, respectively, while the connection at 1′ has index ρ. The lines are split only for
convenience of drawing—the notation 1′ in G18 does not refer to a new point. It was
introduced in order to distinguish the two vector propagators joining the cubic vertex
from the left.

After the evaluation of Grassmann and SU(2) integrations we find

G16 = (12) [−ημν/4], (A.13)

G17 = ημν/2, (A.14)

G18 = i[(∂1 − ∂1′)ν ημρ/4 − (∂1 − ∂2)ρ ημν/4 + (∂1′ − ∂2)μ ηνρ/4 ]. (A.15)

In the same way as graphs G3, G4 in [38] occur together, we may add G16 and its mirror
image G̃16 into G11 because their combinatorics are equal:

G11 + G16 + G̃16 = (12) [−∂ν13∂μ23 + ημν(∂13 − ∂23) · (∂14 − ∂24)/4

+ ημν(�14 + �24)/4 + · · ·]. (A.16)

(The dots indicate omitted finite terms.)
The rest of the calculation proceeds along the same lines as before (appropriately

adapted to the new tensor component), i.e. the reconstruction of the Fourier transform
of integrals with open indices from projections with the total momentum q and the η
symbol, which are built into Mathematica and evaluated by the Mincer package [37].

A.3. The length 3, spin 3 mixing problem

As an illustration of what has been said before we re-examine the mixing of the length 3
operators:

{s1, s2, s3} = Tr((Ds1
z Z)(Ds2

z Z)(Ds3
z Z)) (A.17)
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at leading order in N . In particular, the spin 3 mixing problem involves the operators

B = {{3, 0, 0}, {2, 1, 0}, {1, 2, 0}, {1, 1, 1}}. (A.18)

The one-loop logarithms and the constant order T0 of the tree level correlators are
diagonalized by choosing the directions

O = {1, 3, 3, 2},
K = {1,−1,−1,−2},
V1 = {2,−9,−9, 24},
V2 = {0, 1,−1, 0}

(A.19)

relative to the basis B. Note that V1,V2 have identical first anomalous dimension and
therefore the eigenspace may be spanned by any two independent directions. We have
made a splitting into an even and an odd part under reversal of the trace; as a consequence
V2 decouples from the other operators. Renormalization in the MS scheme outlined above
yields the anomalous dimensions

γO = 0,

γK = g24 − g46,

γV1 = g2 15
2
− g4 225

16
,

γV2 = g2 15
2
− g4 225

16
,

(A.20)

up to terms of O(g6). The individual Zi are given by the anomalous dimensions in the
standard way. As explained above, the system does not entirely determine the C matrices,
while we can fix B:

B =

⎛
⎜⎜⎝

0 0 0 0
−1

2
0 0 0

3
4

−165
28

0 α

0 0 −315 α 0

⎞
⎟⎟⎠ . (A.21)

The parameter α is not calculable from our system of equations because the anomalous
dimensions of V1,V2 are degenerate. We may put it to zero, bearing in mind that an
arbitrary remixing of the two operators is possible.

The anomalous dimensions and the entries of B are independent of whether we
calculate the (ηzz̄)

3 terms as outlined in this paper or the (xz xz̄)
3 part of the correlators

as in [38], although now in MS.15

The operators V1 and V2 are conformal primaries of spin 3. The numerator of their
renormalized two-point functions should contain three powers of the inversion tensor
Jzz̄ = ηzz̄ − 2xzxz̄/x

2, and correspondingly we find that the normalization of the (xz xz̄)
3

terms differs by −8 from that of the (ηzz̄)
3 part. The operator K is a first derivative of

the primary K6 [38]. The normalizations of the two terms in 〈K K̄〉 are indeed consistent
with being derivatives of a common spin 2 two-point function; similarly for the protected
operator O = 1/3 D3

z {0, 0, 0}. In conclusion, in this example renormalization works in
the same way for these two components of the tensor structure. Conformal invariance is
manifest.

15 In [38] we deviated from the strict MS prescription by choosing the basis B in an ε dependent way, so that T1

became diagonal as well. This had the advantage of decoupling the protected operator O.
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Appendix B. The dilatation operator and renormalization

B.1. Matrix elements of the dilatation operator in dimensional regularization

Suppose there are linear operators D̃1, D̃2

D̃1 Oi =

(
1

ε
D11 ij + D10 ij

)
Oj , (B.1)

D̃2 Oj =

(
1

ε2
D22 ij +

1

ε
D21 ij

)
Oj , (B.2)

such that

〈Oi Ōj〉g2 = 〈(D̃1Oi) Ōj〉g0 =

(
1

ε
D11 T0 + (D10 T0 + D11 T1)

)
ij

, (B.3)

〈Oi Ōj〉g4 = 〈(D̃2Oi) Ōj〉g0 =

(
1

ε2
D22 T0 +

1

ε
(D21 T0 + D22 T1)

)
ij

. (B.4)

The eigenvectors of D11 constitute the aforementioned diagonal basis Oi. In this frame
D11 = −Γ1, by which token the pole part of D̃1 is the negative of the one-loop dilatation
operator.

We will now consider the epsilon expansion of equation (A.10) order by order in g2

up to O(ε). For the rest of this section we assume the operators to be eigenvectors of D11.
We may take X(L, s) out of our system of equations: any set of renormalization factors

that renders finite the bare correlators without the X(L, s) factor remains a solution on
multiplication by X(L, s) because the latter is not singular in ε.

From the constant part at g0 we immediately identify a0 i = t0 ii. At O(g2) the epsilon
expansion yields simple logarithms, simple poles and a constant part. From the first two
sets of terms and the diagonal of the third we learn that

γ1 i = z11 i = −D11 ii, a1 i = D10 ii t0 ii, (B.5)

while the off-diagonal part of the constant term constrains B but is not sufficient to fix
it completely; hermiticity of the two-point function on the lhs of (B.3) halves the number
of independent equations. (This places constraints on D10. Similarly D21 is constrained
by the hermiticity of the lhs of (B.4).)

At O(g4) there are a number of conditions to solve: the double pole and the double
logarithm in the epsilon expansion of (A.10) yield two equations implying that

z22 i = D22 ii = 1
2
γ2

1 i (B.6)

while the log(x2
12)/ε terms give nothing new. The diagonals of the simple logarithm and

simple pole parts lead to

γ2 i = z21 i = −2 (D21 ii − D10 ii D11 ii). (B.7)

The rhs of the last equation is actually the action of a combination of D̃1, D̃2:

1

ε
(D21 ii − D10 ii D11 ii) =

((
D̃2 −

1

2
D̃2

1

)
Oi

)
i

. (B.8)

The off-diagonal entries of the simple logarithm part depend on B and those of the simple
pole part on B and C1. The matrix C1 cannot yet be fixed uniquely, but we now have
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enough equations for computing B. The resulting matrix equation is the off-diagonal part
of

B D11 − D11 B = −2 (D21 − 1
2
(D11 D10 + D10 D11) − 1

4
(D11 D10 − D10 D11)). (B.9)

Remarkably, the last term in this expression does not contribute on the diagonal, because
D11 is diagonal. Hence the matrix

D2 = −2 (D21 − 1
2
{D11, D10} − 1

4
[D11, D10]) (B.10)

has γ2 i on its diagonal and it determines B through (B.9).
It was shown in [51] that the two-loop dilatation generator acts in precisely this way:

suppose that the dilatation operator has an expansion

Δ = 1 + g2 Δ1 + g4 Δ2 + · · · . (B.11)

We want to solve the eigenvalue problem

Δ (O + g2 B O + · · ·) = (1 + g2 Γ1 + g4 Γ2 + · · ·)(O + g2 B O + · · ·). (B.12)

Here Γ1, Γ2 are diagonal matrices containing the anomalous dimensions of the individual
operators, and the lowest order remixing of the operators is named B. The dilatation
operator acts on the vector of operators O as a linear map

Δ1 O = D1 O, Δ2 O = D2 O. (B.13)

Once again, we choose the basis for the operators to be the set of eigenvectors of D1, so
that Δ1 O = D1 O = Γ1 O. The eigenvalue problem at order g4 yields

D2 = Γ2 + (Γ1 B − B Γ1) (B.14)

exactly like D2 from (B.10). Note that the diagonal of B remains undetermined—it
corresponds to trivial operator rescalings and may be put to zero.

We have thus identified the matrix elements of the two-loop dilatation operator from
the renormalization procedure in dimensional regularization. The next section addresses
the construction of the dilatation operator itself.

B.2. The one-loop dilatation operator

In the planar limit the combinatorics for the two-point functions 〈X Ȳ〉 has the following
features:

• At tree level, we find a cyclic sum over, say, site 1 in X joining site i in Ȳ . All other
lines are parallel.

• At loop level, the interaction is between adjacent sites. It can occur at any site in
each part of the tree level configuration.

The O(g2) contribution to the correlator 〈X Ȳ〉 originates from the N = 2 supergraphs
(see figure A.2) where, of course, the underlying Feynman integral is the same in G0a, G0b.
It was called G0 in [38] and is one-loop divergent. The ‘BPS-like’ graph B0 is finite.
The third structure F simply has a free vector line; it involves no loop integration. The
configurations G0a, G0b occur with the gauge line emanating from any of the four end
points; likewise, Fa, Fb must be joined by the opposite constellations.
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It is natural to interpret the one-loop interaction as a sum over a two-site
‘Hamiltonian’ shifting over all sites in X , which is then contracted on Ȳ much as in
the tree level correlator. The combinatoric factors for the Feynman graphs can be found
by looking at the correlator

F1(s1, s2, s3, s4) = 〈Tr(T a Ds1
z Z Ds2

z Z)(1) Tr(Ds4
z̄ Z̄ Ds3

z̄ Z̄ T b)(2)〉 (B.15)

at leading order in N (i.e. N2), which is in a manner of speaking the one-loop interaction
excised from the full correlator 〈X Ȳ〉. We find a −2 for the ‘disconnected parts’ G0b, Fb

and a 1 otherwise. The disconnected diagrams can be attributed to the two-site interaction
to their left or to their right, so that we scale by 1/2 in order to avoid overcounting.

If the interaction connects sites i, i + 1 in X to j, j + 1 in Y , then the other fields in
the operators are joined by parallel free lines:

Π(s1, s2) = ∂s1
z 1∂

s2
z̄ 2 Π12 = −δs1,s2

ηs2
zz̄ 2s2 s2!

∑s2

k=1(k − ε)

4π2(x2
12)

(s2+1−ε)
+ · · · , (B.16)

where the omitted terms contain xz or xz̄. The key observation is that the X(L, s) term
in the complete correlator can only exist when all free lines have the same spin at both
ends [34]. Coupling between sites with different spins is only possible where the interaction
is; since we want no x12 with free indices the interaction can at most ‘transfer’ a derivative
from one of the two sites to the other. In particular, it must conserve the total spin.

Let us normalize by the inverse of the tree level. This will simply remove all the free
lines and scale down F1:

H(0)
i = F̂1(si, si+1, sj , sj+1)

1

Π(sj, sj) Π(sj+1, sj+1)
, (B.17)

where F̂1 is F1 with the overcounting corrected and the group factor N2δab stripped off.
Without any derivatives, the graphs G0a, G0b, Fa, Fb are absent while B0 = O(ε),

whence F̂1(0, 0, 0, 0) → 0. When the total spin is not zero, H(0)
i (s) is conveniently given

as a matrix:
At spin 1 we can have

{si, si+1}, {sj, sj+1} ∈ {{1, 0}, {0, 1}} (B.18)

and our set of graphs produces

H(0)
i (1) = −1

ε

(
1 −1
−1 1

)
. (B.19)

At spin 2 we have the basis16

{si, si+1}, {sj, sj+1} ∈ {1
2
{2, 0}, {1, 1}, 1

2
{0, 2}} (B.20)

and the rules for transferring derivatives are

H(0)
i (2) = −1

ε

⎛
⎝ 3

2
−1 −1

2
−1 2 −1
−1

2
−1 3

2

⎞
⎠ +

⎛
⎝ 1

2
0 0

−1
2

0 −1
2

0 0 1
2

⎞
⎠ . (B.21)

16 The normalization of the basis elements reflects the fact that several derivatives at the same site are
indistinguishable.
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At spin 3 the basis elements are

{si, si+1}, {sj, sj+1} ∈ {1
6
{3, 0}, 1

2
{2, 1}, 1

2
{1, 2}, 1

6
{0, 3}} (B.22)

while the derivatives may be transferred according to

H(0)
i (3) = −1

ε

⎛
⎜⎜⎜⎝

11
6

−1 −1
2

−1
3

−1 5
2

−1 −1
2

−1
2

−1 5
2

−1

−1
3

−1
2

−1 11
6

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0 0
−2

3
1
2

−1
2

−1
3

−1
3

−1
2

1
2

−2
3

0 0 0 1

⎞
⎟⎟⎠ . (B.23)

The pole part of these rules accurately reproduces the result of [34]: the diagonal entries
are h(si) + h(si+1) where h(n) are the harmonic numbers, and the off-diagonal entries
are −1/d where d counts the number of transferred derivatives. The finite part could
doubtlessly also be fitted: we observed that the contribution from B0 apparently always
equals that of Fa, Fb which is trivial to compute. Graphs G0a, G0b contain only a one-loop
integral, so that a result can be obtained in closed form. In contrast, at the two-loop level
this is not easy due to the complexity of the integrals. Consequently, we limit the scope
of this work to the first few cases obtained by direct calculation.

The one-loop dilatation operator is defined as

D̃1 =
l∑

i=1

Hi, (B.24)

i.e. the ‘Hamiltonian’ runs over all sites in an operator X , mapping it to a sum of terms
with a new distribution of the derivatives over the sites in the chain. By construction,

〈(D̃1 X ) Ȳ〉g0 = 〈X Ȳ〉g2 . (B.25)

We conclude the section with two remarks. First, the definition of H(0)
i in (B.17) is

necessarily asymmetric because we have normalized from the right. Correspondingly, the
constant parts of the transfer rules are not symmetric matrices. On the other hand, the
pole part is symmetric, because in terms of complete two-point functions the matrices
T0 and Γ1 must be simultaneously diagonalizable. Second, it should be stressed that the
X(L, s) terms are by far better suited to the construction of the interaction Hamiltonian
Hi than for example the terms with no traces considered in [38]: those allow non-vanishing
free lines between Ds1

z Z(1) and Ds2
z̄ Z̄(2) for unequal spins s1 
= s2, and the interaction

need not conserve the total spin either. While the pole part of the one-loop dilatation
operator is correctly obtained in this picture, we found it problematic to consistently
subtract out disconnected parts at two-loop level.

B.3. The two-loop dilatation operator

In analogy to (B.15) we try to read off the operator D̃2 from the O(g4) contribution to

F2(s1, s2, s3, s4, s5, s6) = 〈Tr(T a Ds1
z Z Ds2

z Z Ds3
z Z)(1) Tr(Ds6

z̄ Z̄ Ds5
z̄ Z̄ Ds4

z̄ Z̄ T b)(2)〉. (B.26)

In doing so we should remember that matrix elements of the two-loop dilatation operator
were defined by several terms; most prominently γ2 came about as a matrix element of
the combination D̃2 − D̃2

1/2—see equation (B.7) and the comment after it. We fall on
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the renormalization scheme of [13]: the two-loop effective vertex has to be corrected by
subtracting the square of the one-loop vertex. Explicitly, we take out

1
2
D̃2

1 = 1
2

∑
i

H(0)
i

∑
j

H(0)
j

=
∑

i+1<j

H(0)
i H(0)

j + 1
2

∑
i

(1
2
(H(0)

i )2 + H(0)
i H(0)

i+1 + H(0)
i+1H

(0)
i + 1

2
(H(0)

i+1)
2).

(B.27)

(The derivation of the dilatation operator presented here is ‘asymptotic’ in that it assumes
the existence of disconnected pieces.) The first term in the last formula corresponds to
the situation where the two one-loop Hamiltonians do not overlap, and thus all terms are
disconnected. If both pairs {i, i + 1}, {j, j + 1} are outside our ‘window’ F2, they will
simply cancel disconnected parts that we do not see in the excised part. Likewise, if only

one of H(0)
i ,H(0)

j touches the excised part, we would see an order g2 contribution, which
we need not consider. Thus the cases of interest are (we put the left of F2 at position i)

(i) H(0)
i H(0)

i+2, (ii) H(0)
i−1H

(0)
i+1, (iii) H(0)

i−1H
(0)
i+2, (B.28)

whose relevant g4 diagrams may be directly subtracted from the set of graphs in F2. The
second term in (B.27) is unfortunately not amenable to this treatment: by way of example
we do not have a diagram that identically equals two consecutive contributions of G0a.

Our strategy thus starts by setting up an operator Ji from the g4 graphs in F2 with the
subtraction of disconnected parts described in the last paragraph, whereas the overlapping
part of (D̃1)

2/2 will be dealt with later on. To avoid overcounting we have to rescale
contributions with free lines: in complete analogy to the one-loop case we scale down, by
a factor 1/2, such graphs that connect two matter lines but leave the right or left line free.
Note that no rescaling is needed when the free line is the central one; this situation is
particular to exactly one position of the Hamiltonian. Configurations with two free lines
can be arbitrarily shifted between the three positions within the Hamiltonian because
the dilatation operator will involve a sum over positions. In order to compensate for
overcounting we choose to scale by 1/4 if the interaction is concentrated on one of the
outer lines, and by 1/2 if it is on the central line. We define

Ji = F̂2(si, si+1, si+2, sj , sj+1, sj+2)
1

Π(sj , sj) Π(sj+1, sj+1) Π(sj+2, sj+2)
, (B.29)

with F̂2 being F2 after the appropriate modification of the set of graphs and once again
after omission of the group factor N3δab.

The connected part in (B.27) can be derived from the transfer rules for derivatives
given in the last section. Recall that according to equation (B.10) the matrix elements of
the two-loop dilatation operator also contain the term −1

4
(D11D10 − D10D11), when the

dilatation operator is made to reproduce the O(g2) remixing B. By splitting the one-loop

transfer rules into a pole part H(0)
1 i and a constant piece H(0)

0 i , we can construct this term as

an operator in much the same way as the connected part of D̃2
1. Note that −1

4
[H(0)

1, i,H
(0)
0,j ]

has no disconnected part since H(0)
1 and H(0)

0 commute when they do not overlap.
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Finally, the full two-loop dilatation operator takes the form

D2 =
l∑

i=1

H(2)
i |ε−1, (B.30)

with the two-loop Hamiltonian

H(2)
i = Ji − 1

2
(1

2
(H(0)

i )2 + H(0)
i H(0)

i+1 + H(0)
i+1H

(0)
i + 1

2
(H(0)

i+1)
2)

− 1
4
(1

2
H(0)

1 i H
(0)
0 i + H(0)

1 i H
(0)
0 i+1 + H(0)

1 i+1H
(0)
0 i + 1

2
H(0)

1 i+1H
(0)
0 i+1 − (H(0)

1 ↔ H(0)
0 )).

(B.31)

The Hamiltonian H(2)
i has in fact a non-vanishing 1/ε2 part, but the second-order poles

are distributed over the matrices in such a way that they drop out in the sum over all
positions. The transfer rules below and in the main text describe the 1/ε part.

In this appendix we give the transfer rules corresponding to the full Hamiltonian
including the terms in the last line of (B.31). These come from the commutator

−1/4 [H(0)
1 i ,H(0)

0 j ].

Note that this term is anti-Hermitian, so that the transfer rules cannot be transformed
into symmetric matrices. In the main text we omit the commutator term, since in the
context of the Bethe ansatz it is preferable to have a Hermitian Hamiltonian. In any
case, the exact resolution of the mixing is not easy to obtain in the Bethe ansatz picture
which projects out the descendants. Surprisingly, the formulae below do apply to the
length 3, spin 3 mixing problem although they were derived for longer chains for which
disconnected pieces have to be subtracted.

The explicit bases and two-loop transfer rules up to spin 3 are:

Spin 1. Basis: {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}:

H(2)
i (1) =

⎛
⎝−3

4
1 −1

2

1 −3
2

1

−1
2

1 −3
4

⎞
⎠ .

Spin 2. Basis: {1
2
{2, 0, 0}, {1, 1, 0}, {1, 0, 1}, 1

2
{0, 2, 0}, {0, 1, 1}, 1

2
{0, 0, 2}}:

H(2)
i (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−19
32

17
16

−1
2

1
2

−1
4

− 1
16

21
16

−9
4

1 29
16

0 −1
8

−3
4

1 −3
2

−1
2

1 −3
4

1
4

11
16

0 −67
16

11
16

1
4

−1
8

0 1 29
16

−9
4

21
16

− 1
16

−1
4

−1
2

1
2

17
16

−19
32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Spin 3. Basis: {1
6
{3, 0, 0}, 1

2
{2, 1, 0}, 1

2
{2, 0, 1}, 1

2
{1, 2, 0}, {1, 1, 1}, 1

2
{1, 0, 2}, 1

6
{0, 3, 0},

1
2
{0, 2, 1}, 1

2
{0, 1, 2}, 1

6
{0, 0, 3}}:

H(2)
i (3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25
288

11
18

−1
2

77
144

−1
4

− 1
16

71
216

−1
6

− 1
24

− 1
54

43
72

−63
32

1 3
2

0 −1
8

149
144

0 − 1
16

1
72

−5
6

1 −43
32

−1
2

17
16

−3
4

−1
3

1
2

−3
8

− 7
48

91
144

5
4

0 −81
16

11
16

1
4

191
72

0 0 − 1
18

− 7
24

0 21
16

29
16

−3 21
16

−1
6

29
16

0 − 7
24

− 7
48

−3
8

−3
4

1
2

17
16

−43
32

−1
3

−1
2

1 −5
6

− 1
216

19
144

0 19
18

0 0 −1031
144

19
18

19
144

− 1
216

− 1
18

0 1
4

0 11
16

0 191
72

−81
16

5
4

91
144

1
72

− 1
16

−1
8

0 0 1 149
144

3
2

−63
32

43
72

− 1
54

− 1
24

− 1
16

−1
6

−1
4

−1
2

71
216

77
144

11
18

25
288

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Appendix C. Explicit solution for twist 2

The one-loop Bethe equation (16) may be recast as a second-order difference equation for
the Baxter Q function Qs(u):

Ts(u) Qs(u) =

(
u +

i

2

)L

Qs(u + i) +

(
u − i

2

)L

Qs(u − i), (C.1)

where Qs(u) is a polynomial of degree s in the variable u, whose algebraic roots are the
Bethe roots {uk},

Qs(u) = Cs

s∏
k=1

(u − uk), (C.2)

i.e. the solutions of (16), and Cs is a, for our purposes, irrelevant normalization constant.
For twist L = 2 the excitation number s has to be even, and the Baxter equation (C.1) is
exactly solvable in terms of a hypergeometric function:

Qs(u) = 3F2[−s, s + 1, 1
2
− iu; 1, 1; 1] with Ts(u) = 2 u2 − s2 − s − 1

2
. (C.3)

The hypergeometric series terminates if s is an even natural number, and therefore
generates the explicit polynomial solution of the twist 2 Baxter equation17. The roots
are all real and their distribution is even, i.e. the Qs(u) in (C.3) are actually polynomials
in u2. Therefore the cyclicity constraint in (17) is automatically satisfied. The energy is
found from (17), (C.2) to be

Es = 2i
d

du

[
log Qs

(
u +

i

2

)]
u=0

= 4 (ψ(s + 1) − ψ(1)) = 4 h(s). (C.4)

Here h(s) =
∑s

j=1 1/j are the harmonic numbers, which may also be expressed through
the logarithmic derivative of the gamma function ψ(s) = d/ds log Γ(s). In practice, the
roots are easily found with a root finder. For example, with Mathematica one may define

17 The details of the solution (C.3) were worked out by Virginia Dippel (unpublished) by adapting the method
of [39] to the present case. The polynomials (C.3) belong to the family of so-called Hahn polynomials [39].
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Hahn[s_, u_] :=

Expand[HypergeometricPFQ[{-s, s + 1, 1/2 - I u}, {1, 1}, 1]]

and generate a table of all Bethe roots up to spin s, with an accuracy of k digits,

utable[s_] := Table[Flatten[NSolve[Hahn[2 t, u] == 0, u, k]], {t, 1, s/2}]

This is suitable, without further refinements, for finding the Bethe roots up to spin s ∼ 70
with an accuracy, if desired, of hundreds of digits.

Appendix D. Fourier transforms

D.1. The gauge theory ansatz

In this appendix we find the Fourier transform of the fourth term on the rhs of (72), in
which the density σ(u′) is integrated against the kernel:

K(u, u′) = i ∂u log

(
1 − g2/2 x+(u) x−(u′)

1 − g2/2 x−(u) x+(u′)

)2

. (D.1)

The definitions used in the last formula are

u = x(u) +
g2

2 x(u)
, x(u) =

u

2

(
1 +

√
1 − 2g2

u2

)
, (D.2)

u± = u ± i

2
, x±(u) = x(u±). (D.3)

The branch cut of the square root is defined by the principal branch of the logarithm. In
the following we parametrize using

ũ+ = 1
2
− i u = −i u+, ũ− = 1

2
+ i u = i u−, (D.4)

which obey the relation√
(ũ±)2 = ũ± (D.5)

because both ũ+, ũ− have positive real part. Further, let

y(u) =

√
1 +

2g2λ2

u2
(D.6)

and

K±
0 (u) =

1

ũ± y(ũ±)
, K±

1 (u) =
1√
2gλ

(
1 − 1

y(ũ±)

)
. (D.7)

Since we are, in this paper, exclusively interested in symmetric densities, we will consider
a u′ ↔ −u′ symmetrized version of the kernel. Our principal equation is

−i g2

∫ 1

0

dλ λ [∂u (K+
0 (u) − K−

0 (u)) (K+
0 (u′) + K−

0 (u′))

+ ∂u (K+
1 (u) − K−

1 (u)) (K+
1 (u′) + K−

1 (u′))]

=
i

2
∂u log

(
(1 − g2/2 x+(u) x−(u′))(1 + g2/2 x+(u) x+(u′))

(1 − g2/2 x−(u) x+(u′))(1 + g2/2 x−(u) x−(u′))

)2

. (D.8)
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To prove this, we first do the parameter integrals on the left-hand side:∫
dλ

λ

y(ũ) y(ũ′)
=

ũ ũ′

2 g2
log(ũ y(ũ) + ũ′ y(ũ′)),∫

dλ
1

λ y(ũ) y(ũ′)
= log(λ) − log(y(ũ) + y(ũ′)),∫

dλ
1

λy(ũ)
= log(λ) − log(1 + y(ũ)).

(D.9)

Here we rely on (D.5) to simplify. Next, we change back to the original variables u±. We
express the roots in terms of u, x(u) using the second relation in (D.2) in the form√

1 − 2g2

u2
=

2 x(u)

u
− 1 (D.10)

and finally eliminate u in favour of x(u), g2 by the first relation in (D.2). In a last step
we collect all terms into one logarithm and factor the argument. As long as g is small
this will not shift the logarithm by some multiple of π; one may check that the Fourier
transform below commutes with the Taylor expansion in g.

Next, we observe

K±
j (u) =

∫ ∞

0

dt e±i u te−t/2 Jj(
√

2gλ t), j = 0, 1 (D.11)

and hence

K+
j (u) + K−

j (u) =

∫ ∞

−∞
dt ei u te−|t|/2 Jj(

√
2gλ |t|),

−i ∂u (K+
j (u) − K−

j (u)) =

∫ ∞

−∞
dt ei u t |t| e−|t|/2 Jj(

√
2gλ |t|).

(D.12)

Summing up, we have shown that

i

2
∂u log

(
(1 − g2/2 x+(u) x−(u′))(1 + g2/2 x+(u) x+(u′))

(1 − g2/2 x−(u) x+(u′))(1 + g2/2 x−(u) x−(u′))

)2

= g2

∫ ∞

−∞
dt ei u t

∫ ∞

−∞
dt′ ei u′ t′ |t|e−(|t|+|t′|)/2 K̂(

√
2g |t|,

√
2g |t′|), (D.13)

where

K̂(t, t′) =

∫ 1

0

dλ λ [J0(λ t) J0(λ t′) + J1(λ t) J1(λ t′)]

=
J1(t) J0(t

′) − J0(t) J1(t
′)

t − t′
. (D.14)

We conclude that for symmetric σ(u′)

e−|t|/2

∫ ∞

−∞
du e−i t u

∫ ∞

−∞
du′ K(u, u′) σ(u′)

= 2 π g2 |t|e−|t|
∫ ∞

−∞
dt′ K̂(

√
2g |t|,

√
2g |t′|)

[
e−|t′|/2

∫ ∞

−∞
du′ ei u′ t′ σ(u′)

]

= 2 π g2 |t|e−|t|
∫ ∞

−∞
dt′ K̂(

√
2g |t|,

√
2g |t′|) σ̂(t′), (D.15)
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where we have used (73). Now, σ̂(t′) is an even function if σ(u′) is. We may thus reduce
to the positive half-axis, which yields the final form of the last term in (74).

One has, similar to formula (D.11),∫ ∞

0

dt e±i u t e−t/2 Jj(
√

2g t)√
2g t

=
(
√

2 g)j−1

j

(
ũ±

(
1 +

√
1 + 2 g2/(ũ±)2

))−j

, j ≥ 1.

(D.16)

From this one can easily derive the following pretty result for the Fourier transforms
q̂r(t) of the eigenvalues qr(u) of the commuting operators of the integrable magnet. The
expression [16]

qr(u) =
1

r − 1

(
i

x+(u)r−1
− i

x−(u)r−1

)
, (D.17)

turns into18

q̂r(t) =

∫ ∞

−∞
du e−i t u qr(u) = 4 π

(√
2

i g

)r−2

e−|t|/2 Jr−1(
√

2g t)√
2g t

.

In particular, using this result for r = 2 we obtain the expression (77) for the energy E(g)
in Fourier space. As a further corollary we find the Fourier transform of the third term
on the rhs of (72), as stated in (74):

e−|t|/2

∫ ∞

−∞
du e−i t u 1

2
∂u

(
1

x+(u)
+

1

x−(u)

)
= 2 πe−|t| J1(

√
2g |t|)√
2g

. (D.18)

D.2. The string dressing factor

In order to include the dressing factor for the ‘string Bethe ansatz’ [43, 20], as needed in
the discussion at the end of section 3.3, we replace in equation (72) the kernel K(u, u′)
from the gauge theory Bethe ansatz by

Ks(u, u′) = −∂u (u − u′) log

(
(1 − g2/2 x+(u) x−(u′))(1 − g2/2 x−(u) x+(u′))

(1 − g2/2 x+(u) x+(u′))(1 − g2/2 x−(u) x−(u′))

)2

, (D.19)

which will again be needed in a u′ ↔ −u′ symmetrized form. In view of the analysis in
the last section, the question arises of whether this expression can also be written as a
one-parameter integral over pairs of the form K±

j (u) K±
j (u′). As we shall see shortly, this

is indeed the case.
Quite clearly we have to deal with two distinct pieces, namely the part involving

∂u u and that with ∂u u′. In the first case, the expression is explicitly symmetrized in u′

whereas ∂u u on the whole is also even with respect to the integrals on the half-axis that
we may expect to find. We are led to look for combinations involving K+

j (u) + K−
j (u)

and likewise in u′. We remark that under the Fourier transform, ∂u u ↔ −t ∂t. The
differential operator can thus be incorporated at no expense. Surprisingly, the K±

0 alone

18 These expressions were first obtained by Didina Serban (2005, unpublished).
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suit our purpose: in the same fashion as before we may demonstrate that

−1

2
∂u u log

(
(1 − g2/2 x+(u) x−(u′))(1 − g2/2 x−(u) x+(u′))

(1 − g2/2 x+(u) x+(u′))(1 − g2/2 x−(u) x−(u′))

)2

+ (u′ ↔ −u′)

= −g2

∫ ∞

−∞
dt ei u t

∫ ∞

−∞
dt′ ei u′ t′

× 2 |t| ∂|t| e
−(|t|+|t′|)/2

∫ 1

0

dλ λ J0(
√

2gλ |t|) J0(
√

2gλ |t′|). (D.20)

For the second piece we must try K+
j (u)−K−

j (u) and similarly for u′, because the simple
derivative in u is odd while the extra power of u′ forces antisymmetrization on the log
factor. In a beautifully symmetric way we can realize the term as a parameter integral
this time over antisymmetric combinations of only K1:

1

2
∂u u′ log

(
(1 − g2/2 x+(u) x−(u′))(1 − g2/2 x−(u) x+(u′))

(1 − g2/2 x+(u) x+(u′))(1 − g2/2 x−(u) x−(u′))

)2

+ (u′ ↔ −u′)

= −g2

∫ ∞

−∞
dt ei u t

∫ ∞

−∞
dt′ ei u′ t′

× 2 |t| ∂|t′| e
−(|t|+|t′|)/2

∫ 1

0

dλ λ J1(
√

2gλ |t|) J1(
√

2gλ |t′|). (D.21)

In the right-hand sides of the last two formulae the derivatives can either fall upon the
exponential or on the Bessel functions. Accordingly, we reproduce the Fourier transformed
gauge theory kernel K̂ and an additional piece

√
2 g K̃, defined as

K̃(t, t′) = −2

∫ 1

0

dλ λ [∂t J0(λ t) J0(λ t′) + ∂t′ J1(λ t) J1(λ t′)]

=
t [J2(t) J0(t

′) − J0(t) J2(t
′)]

(t − t′)(t + t′)
. (D.22)

Here one should first do the parametric integration in both terms separately and then
differentiate and simplify.

Equation (D.15) is replaced by

e−|t|/2

∫ ∞

−∞
du e−i t u

∫ ∞

−∞
du′ Ks(u, u′) σ(u′)

= 2 π g2 |t|e−|t|
∫ ∞

−∞
dt′ [K̂(

√
2g|t|,

√
2g|t′|) +

√
2g K̃(

√
2g|t|,

√
2g|t′|)] σ̂(t′).

(D.23)
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