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Abstract: For almost a century, the cosmological constant has been a
mysterious object, in relation to both its origin and its very small value. By
using a Bose–Einstein condensate analogue model for gravitational dynam-
ics, we address here the cosmological constant issue from an analogue gravity
standpoint. Starting from the fundamental equations describing a system
of condensed bosons, we highlight the presence of a vacuum source term for
the analogue gravitational field, playing the role of a cosmological constant.
In this simple system it is possible to compute from scratch the value of this
constant, to compare it with other characteristic energy scales and hence
address the problem of its magnitude within this framework, suggesting a
different path for the solution of this longstanding puzzle. We find that,
even though this constant term is related with quantum vacuum effects, it
is not immediately related to the ground state energy of the condensate. On
the gravity side this result suggests that the interpretation and computation
of the cosmological term as a form of renormalized vacuum energy might be
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misleading, its origin being related to the mechanism that instead produces
spacetime from its pregeometric progenitor, shedding a different light on
the subject and at the same time suggesting a potentially relevant role of
analogue models in the understanding of quantum gravity.

0.1 Introduction

The cosmological constant [1] has been one of the most mysterious and
fascinating objects for both cosmologist and theoretical physicists since its
introduction almost one century ago [2]. Once called by Einstein his greatest
blunder, it seems nowadays the driving force behind the current accelerated
expansion of the universe. At the theoretical level, the explanation of its ori-
gin is considered one of the most fundamental issues for our comprehension
of general relativity (GR) and quantum field theory (QFT).

Since this constant appears in Einstein’s equations as a source term
present even in the absence of matter and with all the symmetries of the
vacuum (i.e. a stress-energy tensor of the form TΛ

µν ∝ gµν), it is usually
interpreted as a vacuum energy, essentially related to the zero point fluctua-
tions of quantum fields. This reasonable point of view has originated what is
often called the “worst prediction of physics”. Indeed, its theoretical value,
which is näıvely obtained by integrating the zero-point energies of modes
of quantum fields below Planck energy (but can be computed also by more
sophisticated renormalization arguments), is about 120 orders of magnitude
larger than the measured value. We can summarize the situation by saying
that, given the absence of custodial symmetries protecting the cosmological
term from large renormalization effects, the only option we have to explain
observations is fine tuning [3, 4].

Despite the large number of attempts (most notably supersymmetry [5],
which, however, must be broken at low energy) to improve this estimate,
this problem is still waiting for a complete and satisfactory solution.

This huge discrepancy is plausibly due to the use of effective field the-
ory (EFT) calculations for a quantity which can be computed only within
a full quantum gravity (QG) theory (see, however, [6] for a proposal in the
semiclassical gravity limit). Unfortunately, to date, we do not have any
conclusive theory at our disposal, allowing a complete calculation of the
gravitational effective action from basic principles, and solving the natural-
ness problem associated to the cosmological constant.

Therefore, in order to give support to this idea, some other arguments
have to be presented. Analogue models for gravity [7], in this respect, give us
the possibility to study the emergence of given EFT with certain geometrical
content from microscopic constitutents (typically interacting atoms, fluids,
etc.), keeping the process under control at every stage of the transition,
and hence allowing us to show at which point of the calculation the EFT
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intuition of the cosmological constant as a vacuum energy term fails.
Already in [8, 9, 10] it was shown that a näıve computation of the ground

state energy using the EFT (the analogue that one would do to compute the
cosmological constant) would produce a wrong result. The unique way to
compute the correct value seems to start from the full microscopic theory,
working out the macroscopic quantities from it.

Given the deep difference in the structure of the equations of fluid dy-
namics and those of GR (and other gravitational theories) it is not possible
to have an accurate analogy at the dynamical level: indeed, this is forbid-
den by the absence of diffeomorphism invariance. However, in [11] it has
been shown for the first time that the evolution of the acoustic metric in a
Bose–Einstein condensate (BEC) is described by a Poisson equation for a
nonrelativistic gravitational field, thus realizing a (partial) dynamical anal-
ogy with Newtonian gravity. Noticeably, this equation is endowed with a
source term which is present even in the absence of real phonons and can
be naturally identified as a cosmological constant.

In this chapter we will consider such analogue model for gravity and
directly show that the cosmological constant term cannot be computed
through the standard EFT approach [12], confirming the conjecture of [8, 9].
Somehow unexpectedly, we find that also the total ground state energy of
the condensate does not give the correct result: indeed, the cosmological
constant is comparable with that fraction of the ground state energy corre-
sponding to the quantum depletion of the condensate, i.e. to the fraction of
atoms inevitably occupying excited states of the single particle Hamiltonian.

This result is twofold. First, it gives an explicit calculation showing
qualitatively and quantitatively where the EFT intuition might fail to grasp
the nature of the vacuum term. Second, it shows that the subject of analogue
models is not just a mere curiosity for condensed matter physics, but it is
also of great interest for research in quantum gravity, for their ability in
providing guidance and patterns to be used to address what is the most
urgent problem there, that is the recovery of the continuum semiclassical
limit.

0.2 The cosmological constant problem in EFT

The cosmological constant Λ enters Einstein’s equation

Rµν −
1

2
gµνR+ Λ gµν =

8πG

c4
Tµν (1)

as a term multiplying the metric tensor gµν . This means that we can inter-
pret Λ as a vacuum energy density

EΛ =
c4Λ

8πG
(2)
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and hence see the cosmological term as a vacuum stress energy term

TΛ
µν = −E gµν . (3)

The other way around, this argument implies that every vacuum energy
is in the form of a cosmological constant term and must be thus identified
with Λ.

The problem arises when computing the renormalization of this term
using quantum field theory techniques. Summing up all the zero-point en-
ergies of all normal modes of some quantum field of mass m up to a cutoff
energy µ, one obtains [13]

E =

∫ µ/~c

0

4π k2dk

(2π)3
1

2
~c

√

k2 +
m2c2

~2
≈ µ4

16π2(~c)3
. (4)

If we compute this term with a Planck-scale cutoff, we obtain [1] an estimate
for the vacuum energy of the order of

EP ≈ 10110 erg/cm3, (5)

while if we lower the cutoff to a much smaller energy scale, like the QCD
scale, we expect

EQCD ≈ 1036 erg/cm3. (6)

The cosmological observations give

Eobs ≈ 10−10 erg/cm3, (7)

a value hardly explained in terms of obvious particle physics scales.
In a proper semiclassical renormalization procedure of the whole theory

(gravity plus quantum fields) a suitable bare cosmological constant Λb has
to be introduced to tune the renormalized Λ to match its observed value [14].
However, since the order of magnitudes of ΛEFT and the observed one are
so different, such a procedure would require an extremely fine tuning of Λb.

Furthermore, another obscure issue should be clarified. In quantum
field theory in Minkowski spacetime, the zero-point energy has no particular
meaning, since energy does not gravitate. Actually, it can be safely removed
by normal ordering. On the contrary, when gravity is turned on, this is no
longer possible, since energy directly enters Einstein’s equations: besides
the very difficulty of defining a normal ordering prescription in curved dy-
namical spacetimes, different zero-point energies yield different stress-energy
tensors Tµν and, therefore, different solutions of Einstein’s equations.

What is then the correct vacuum energy that must be put into Einstein’s
equations?

From such considerations, it seems that there is no way out to this
problem. The only possibility to compute Λ would be to directly know
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the underlying QG theory from which both GR and EFT emerge as a low
energy limit. Under this hypothesis there is no hope of computing Λ from
scratch working only in a semiclassical gravity framework. In a certain sense
Λ is an emergent quantity that parametrizes in one number certain details
of the microscopic structure and dynamics of spacetime and influences the
macroscopic equations of GR and EFT, and, as such, cannot be justified
avoiding a discussion of the microphysics.

As an example of this emergence mechanism, let us mention the propa-
gation of phonons in BECs. In that case, the equation of motion of phonons
can be written using only microscopic quantities (speed of sound c, velocity
v, and density of the fluid ρ) plus the healing length

ξ ≡ ~√
2mc

(8)

which, through the combination of microscopic quantities (m is the mass of
bosons), defines the scale at which the dispersion relation

ω2 = c2k2
(

1 +
k2ξ2

2

)

(9)

is no more in the relativistic regime ω2 = c2k2. If an observer could only
make measures of phonons, he/she would measure the healing length, but
he/she would not be able to compute it from first principles, just because
he/she would not know the whole theory of BECs but only the phonon EFT.

To shed some light on this problem, it is interesting to have a toy model of
gravity where one can compute from first principles both the vacuum energy
and the cosmological constant. In this way one can compare them and check
if they are the same quantity or they are unrelated instead. In order to do
this, one needs a model where it is possible to derive not only the dynamics
of a field leaving in an effective geometry described by some metric gµν , as
usual in analogue models [7], but also the equation governing the dynamics of
the metric itself. That is, analogue Einstein’s equations are needed, so that
the analogue cosmological constant can be directly read from them. Such a
model was studied in [11], using a BEC with U(1)-symmetry breaking. The
computation of the analogue cosmological constant is performed in [12] and
reported in Sec. 0.4, together with a revision of the model of [11].

0.3 Volovik’s proposal

The idea of using analogue models to understand the origin of the cosmolog-
ical constant is not original of [12] but was firstly developed by Volovik [8, 9]
for a quantum liquid and presented in [10] also for a Bose gas. However,
his approach is completely different from that of [12]. It is worth briefly
reviewing it, to make a comparison with ours.
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Even if Volovik did not have an analogue model with an equation de-
scribing the dynamics of the geometry as in [11], he nevertheless used a nice
argument to determine the analogue cosmological constant. His argument is
based on the identification of the proper thermodynamical potential for the
particular considered problem. In this case, we are interested in the emer-
gence of an analogue QFT in condensed matter. The many-body system of
identical atoms constituting the quantum liquid is described by the grand
canonical Hamiltonian

Ĥ = Ĥ − µN̂, (10)

where Ĥ is the second-quantized Hamiltonian, µ is the chemical potential,
and N̂ the particle number operator.

The correct vacuum energy density for the QFT emerging in the many-
body system (corresponding to the analogue cosmological constant) is there-
fore the expectation value of Eq. (10) on a state |0〉 with no phonons, in the
thermodynamic limit in which both the volume V and the particle number
N goes to infinity

Evac =
1

V
〈0|Ĥ − µN̂ |0〉. (11)

Using the Gibbs–Duhem relation of thermodynamics [15], stating that at
thermodynamic equilibrium

E − TS − µN = −pV, (12)

where E and N are the expectation value of Ĥ and N̂ , respectively, T is the
temperature of the system, S its entropy, and p its pressure, one obtains

Evac = −p, (13)

because T = 0 in the phonon ground state |0〉.
Equation (13) is the key result of this analysis, since it exactly represents

the correct equation of state for the cosmological constant. To summarize,
if the vacuum energy is the density of the expectation value of the grand
canonical Hamiltonian on the zero-temperature state (no excitations), then
p = −Evac by thermodynamic relations. The second interesting feature is
that, if H = 〈Ĥ〉 of Eq. (10) were really the quantity that gravitates in
place of the energy E = 〈Ĥ〉, the freedom in the choice of the zero-point
energy would not affect the gravitating quantity H. If the energy of each
atom were shifted by a factor of α, the Hamiltonian would be shifted by
αN̂ . However, also the chemical potential would have to be shifted of α,
such that the grand canonical Hamiltonian, being the difference of Ĥ and
µN̂ , would not change under this transformation. In so doing, there would
be a definite gravitating quantity, allowing at the same time for the freedom
in the choice of the zero-point energy.

Unfortunately, this argument does not use any dynamical equations for
the spacetime geometry. This is, in our opinion, the weakness of the above
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treatment. Indeed, the cosmological constant is the quantity that gravi-
tates in the absence of matter, encoding the microscopic properties of the
spacetime structure. It may be a vacuum energy of some field, but this
interpretation may be also wrong. As discussed in the previous section, the
only way to obtain a reliable result for the cosmological constant would be to
derive a dynamical equation for the metric, from which Λ might be directly
read off.

0.4 A lesson from BECs

As we have argued above, the only safe way to compute the cosmological
constant would be to know the microscopic structure of the spacetime and to
derive Einstein’s equations from it. In this section we apply this procedure
to a particular analogue system, a BEC with U(1) breaking [11], for which
an equation describing the analogue gravitational dynamics exists.

0.4.1 Settings

The model used in [11] is a modified BEC system including a soft breaking
of the U(1) symmetry associated with the conservation of particle number.
This unusual choice is a simple trick to give mass to quasiparticles that are
otherwise massless by Goldstone’s theorem. In second quantization, such a
system is described by a canonical field Ψ̂†, satisfying

[Ψ̂(t,x), Ψ̂†(t,x′)] = δ(3)(x− x
′), (14)

whose dynamics is generated by the grand canonical Hamiltonian

Ĥ = Ĥ − µN̂, (15)

where

Ĥ =

∫

d3x

[

~
2

2m
∇xΨ̂

†∇xΨ̂ + V Ψ̂†Ψ̂ +
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂− λ

2

(

Ψ̂Ψ̂ + Ψ̂†Ψ̂†
)

]

(16)
is the Hamiltonian and

N̂ =

∫

d3x Ψ̂†Ψ̂ (17)

is the standard particle number operator for Ψ̂. In the Hamiltonian, g is the
coupling constant of the two-body interaction, while λ, having dimensions
of energy, represent a U(1) breaking term, associated to a violation of the
conservation of the number operator. For further details on this model and
on possible physical realizations, see [11]. See also [16] for a generalization
to condensates with many components.
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We describe the formation of a BEC at low temperature through the
complex function Ψ0 for the condensate and the operator φ̂ for the pertur-
bations on top of it, defined by

Ψ̂ = Ψ0(1 + φ̂). (18)

The canonical commutation relation is directly obtained from the commu-
tation rules of the boson field Ψ̂ [Eq. (14)]:

[φ̂(t,x), φ̂†(t,x′)] =
1

ρ0(x)
δ(3)(x− x

′). (19)

Using Eq. (18), it is convenient to expand the grand canonical Hamiltonian
Ĥ of Eq. (15) up to second order in φ̂

Ĥ ≈ H0 + Ĥ1 + Ĥ2, (20)

where

H0 =

∫

d3x

[

Ψ∗
0

(

− ~
2

2m
∇2

x + V − µ+
g

2
ρ0

)

Ψ0 −
λ

2

(

Ψ2
0 +Ψ∗

0
2
)

]

, (21)

Ĥ1 =

∫

d3x

[

Ψ∗
0φ̂

†

(

− ~
2

2m
∇2

x + V − µ+ gρ0

)

Ψ0 − λΨ∗
0
2φ̂†

]

+ h.c., (22)

Ĥ2 =

∫

d3x ρ0

{

φ̂†

[

Tρ − iv~∇x − ~
2

2m

∇2
xΨ0

Ψ0
+ V − µ+ 2gρ0

]

φ̂

+
ρ

2

(

φ̂†2 + φ̂2
)

+
λ

2ρ0

(

Ψ2
0φ̂

2 +Ψ∗
0
2φ̂†2

)

}

. (23)

For a stationary condensate, ∂tΨ0 = 0 and the grand canonical Hamil-
tonian (22) generates a modified Gross–Pitaevskii equation

[

− ~
2

2m
∇2

x + V − µ+ gρ0 − λ
Ψ∗

0

Ψ0

]

Ψ0 = 0. (24)

Moreover, to compute the analogue cosmological constant, it is enough to
consider homogeneous backgrounds. Thus, one can assume that V = 0 and
the condensate is at rest, such that Ψ0 has a constant phase, that one can
put to 0 (Ψ∗

0 = Ψ0 =
√
ρ0). With these assumptions, Eq. (24) simplifies to

µ = gρ0 − λ. (25)

Under the same assumptions, the equation of motion of the quasiparticles,
generated by the second order Hamiltonian (23), reads

i~∂tφ̂ =

[

− ~
2

2m
∇2

x + gρ0 + λ

]

φ̂+ (gρ0 − λ) φ̂†. (26)
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To solve this equation it is convenient to define at first a two-component
field [17]

Ŵ ≡
(

φ̂

φ̂†

)

. (27)

Then Eq. (26) can be written in a compact form

i~∂tŴ = BŴ , (28)

B = (T + gρ0 + λ)σ3 + i (gρ0 − λ)σ2, (29)

where T is the kinetic energy operator

T ≡ − ~
2

2m
∇2

x (30)

and σi are the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (31)

Since the field Ŵ is invariant under the conjugation operation defined by

S̄ ≡ σ1S
⋆, (32)

the structure of Ŵ must be

Ŵ =

∫

d3k(Wkâk + W̄kâ
†
k
), (33)

where Wk is a doublet of C-functions.

Using ∇T
x = −∇x, T

T = T and the properties of Pauli matrices, one
verifies that the scalar product

〈W1|W2〉 ≡
∫

d3x ρ0(x)W
∗T
1 (t, x)σ3W2(t, x) (34)

is conserved under time evolution when Wi are solution of (28), since

B∗Tσ3 = σ3B. (35)

Imposing the following normalization for the modes

〈Wk|Wk′〉 = −〈W̄k|W̄k′〉 = δ(3)(k− k
′), (36)

〈Wk|W̄k′〉 = 0, (37)

one gets

[âk, â
†
k′ ] = [〈Wk|Ŵ 〉,−〈W̄k′ |Ŵ 〉] = 〈Wk|Wk′〉 = δ(3)(k− k

′), (38)
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which shows that âk and â†
k
are in fact destruction and creation opera-

tors. Moreover, all the other scalar products and all the other commutators
vanish.

By homogeneity and stationarity, the doublets must have the following
form

Wk =
e−iωt+ik·x

√

ρ0(2π)3

(

uk
vk

)

, (39)

where
√

ρ0(2π)3 is a convenient normalization factor and uk and vk are

constant. The field φ̂ can now be expanded as

φ̂ =

∫

d3k
√

ρ0(2π)3

[

uke
−iωt+ik·xâk + v∗ke

+iωt−ik·xâ†
k

]

(40)

and the Bogoliubov coefficients uk and vk obey the standard normalization

|uk|2 − |vk|2 = 1, (41)

which follows by inserting the above expansion of φ̂ in Eq. (36). In term of
these Fourier components, Eq. (26) reads

[

~ω −
(

~
2
k
2

2m
+ gρ0 + λ

)]

uk = (gρ0 − λ) vk,

[

~ω +

(

~
2
k
2

2m
+ gρ0 + λ

)]

vk = − (gρ0 − λ)uk.

(42)

By imposing that this system has nontrivial solutions, one obtains the quar-
tic dispersion relation

~
2ω2 = 4λgρ0 +

gρ0 + λ

m
~
2k2 +

~
4k4

4m2
, (43)

describing massive phonons with ultraviolet corrections, mass M

M =
2
√
λgρ0

gρ0 + λ
m, (44)

and speed of sound cs [11]

c2s =
gρ0 + λ

m
. (45)

Finally, by using the mode normalization (41), the system (42) and the
dispersion relation (43), it is possible to compute uk and vk:

u2k =
1

1−D2
k

, v2k =
D2

k

1−D2
k

, (46)

where both uk and vk are chosen to be real and

Dk ≡ ~ω −
(

~
2
k
2/2m+ gρ0 + λ

)

gρ0 − λ
. (47)
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0.4.2 Analogue gravitational dynamics

When the homogeneous condensate background is perturbed by small in-
homogeneities, the Hamiltonian for the quasi-particles can be written as
(see [11])

Ĥquasip. ≈ Mc2s −
~
2∇2

x

2M +MΦg. (48)

Ĥquasip. is the non-relativistic Hamiltonian for particles of mass M [see
Eq. (44)] in a gravitational potential

Φg(x) =
(gρ0 + 3λ)(gρ0 + λ)

2λm
δρ(x) (49)

and δρ(x) = [(ρ0(x)/ρ∞)− 1]/2, where ρ∞ is the asymptotic density of the
condensate. Moreover, the dynamics of the potential Φg is described by a
Poisson-like equation

[

∇2
x − 1

L2

]

Φg = 4πGNρp + CΛ, (50)

which is the equation for a non-relativistic short-range field with length scale

L =
a

√

16πρ0a3
(51)

and gravitational constant

GN =
g(gρ0 + 3λ)(gρ0 + λ)2

4π~2mλ3/2(gρ0)1/2
. (52)

Despite the obvious difference between Φg and the usual Newtonian grav-
itational potential, we insist in calling it the Newtonian potential because
it enters the acoustic metric exactly as the Newtonian potential enters the
metric tensor in the Newtonian limit of GR.

The source term in Eq. (50) contains both the contribution of real
phonons (playing the role of matter)

ρp = Mρ0

[

(

〈ζ|φ̂†φ̂|ζ〉 − 〈0|φ̂†φ̂|0〉
)

+
1

2
Re

(

〈ζ|φ̂φ̂|ζ〉 − 〈0|φ̂φ̂|0〉
)

]

, (53)

where |ζ〉 is some state of real phonons and |0〉 is the Fock vacuum of the
quasiparticles (âk|0〉 = 0, ∀k), as well as a cosmological constant like term
(present even in the absence of phonons/matter)

CΛ =
2gρ0(gρ0 + 3λ)(gρ0 + λ)

~2λ
Re

[

〈0|φ̂†φ̂|0〉+ 1

2
〈0|φ̂φ̂|0〉

]

. (54)

Note that the source term in the correct weak field approximation of Ein-
stein’s equations is 4πGN (ρ + 3p/c2). For standard nonrelativistic matter,
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p/c2 is usually negligible with respect to ρ. However, it cannot be neglected
for the cosmological constant, since pΛ/c

2 = −ρΛ. As a consequence the
analogue cosmological constant is

Λ = −CΛ

2c2s
. (55)

0.4.3 BEC ground state energy

By using the formalism developed in Sec. 0.4.1, we compute the vacuum
expectation value of Ĥ in the ground state |0〉. To this aim, it is convenient
to use the expansion of Ĥ in powers of φ̂ given in Eq. (20). The energy
density h0 of the condensate (density of H0) in an homogeneous condensate
is straightforwardly obtained from Eq. (21), using the relation (25) between
the chemical potential µ and the couplings g and λ

h0 = −gρ20
2

. (56)

The expectation value of Ĥ1 vanishes because it contains only odd powers
of the phonon field φ̂. Finally, the density h2 of the expectation value of Ĥ2

can be computed by using the equation of motion of the perturbations (26),
such that the expression of Ĥ2 simplifies to

Ĥ2 =
i~

2

∫

d3x ρ0

[

φ̂†∂tφ̂− (∂tφ̂
†)φ̂

]

. (57)

Inserting the field expansions (40) in the above expression, one obtains

Ĥ2 =

∫

d3k ~ω

[

â†
k
âk −

∫

d3x

(2π)2
|vk|2

]

, (58)

which implies that the density of 〈0|Ĥ2|0〉 is

h2 = −
∫

d3k

(2π)3
~ω|vk|2. (59)

The integral in Eq. (59) is computed by using Eqs. (46) and (47). The
divergence in d = 3 spatial dimensions is regularized by performing the cal-
culation with d < 3 and then going to the limit d → 3. This regularization is
equivalent to the subtraction of higher order interaction terms (see also [15])

h2 =
64

15
√
π
gρ20

√

ρ0a3 Fh

(

λ

gρ0

)

, (60)

where a = 4πgm/~2 is the scattering length, Fh is plotted in Fig. 1 (dashed
line) and Fh(0)=1. The total grand canonical energy density is therefore



0.4. A LESSON FROM BECS 15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Λ�gΡ0

F

Figure 1: Fh [dashed line, Eq. (60)], Fρ [dotted line, Eq. (67)], Fφφ [dot-
dashed line, Eq. (70)], and FΛ [solid line, Eq. (71)].

h = h0 + h2 =
gρ20
2

[

−1 +
128

15
√
π

√

ρ0a3 Fh

(

λ

gρ0

)]

. (61)

To compute the energy density ǫ = h+µρ, that is the density of 〈0|Ĥ |0〉 =
〈0|H + µN̂ |0〉), we have to express at first the density of condensed atoms ρ0
in terms of the total number density ρ. To this aim, we expand the particle
number operator N̂ in powers of φ̂

N̂ = N0 + N̂1 + N̂2, (62)

where, as in Eq. (20), N0, N̂1, and N̂2 contain respectively no power of φ̂,
only first powers, and only second powers

N0 =

∫

d3x ρ0, (63)

N̂1 =

∫

d3xΨ0 φ̂
† + h.c., (64)

N̂2 =

∫

d3x ρ0 φ̂
†φ̂. (65)

The density of N0 is then simply

ρ0 = |Ψ0|2, (66)

〈0|N̂1|0〉 vanishes, and the density of 〈0|N̂2|0〉 is

ρ2 =

∫

d3k

(2π)3
|vk|2 =

8ρ0
3
√
π

√

ρ0a3 Fρ

(

λ

gρ0

)

, (67)
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where Fρ satisfies Fρ(0) = 1 (see Fig. 1, dotted line). This is the number
density of non-condensed atoms (depletion). Note that ρ0a

3 is the so called
dilution factor which has to be much smaller than 1 for the Hamiltonian (16)
to hold.

Furthermore, when λ = 0, inverting the expression for total particle
density, ρ = ρ0 + ρ2, one obtains, up to the first order in

√

ρa3

ρ0 = ρ

[

1− 8

3
√
π

√

ρa3
]

, (68)

which is the density of condensed atoms in terms of the total density ρ and
the scattering length a [18]. In this case, µ = gρ0, such that the energy
density is

ǫ = h+ µρ =
gρ2

2

[

1 +
128

15
√
π

√

ρa3
]

. (69)

This is the well known Lee–Huang–Yang [18] formula for the ground state
energy in a condensate at zero temperature. In general, when the U(1)
breaking term is small, this term is expected to be the dominant contribution
to the ground state energy of the condensate.

0.4.4 What does the cosmological constant correspond to?

We shall now compare the energy density and the grand canonical energy
density found in the previous section with the effective cosmological constant
Λ of Eq. (55). CΛ of Eq. (54) is computed by using Eq. (67) and the following
expectation value

〈0|φ̂φ̂|0〉 =
∫

d3k

ρ0(2π)3
ukvk =

8√
π

√

ρ0a3 Fφφ

(

λ

gρ0

)

, (70)

where Fφφ(0) = 1 (see Fig. 1, dot-dashed line). We finally obtain

Λ = −20mgρ0 (gρ0 + 3λ)

3
√
π~2λ

√

ρ0a3 FΛ

(

λ

gρ0

)

, (71)

where FΛ = (2Fρ + 3Fφφ)/5 (see Fig. 1, solid line).
Let us now compare the value of Λ either with the ground-state grand

canonical energy density h [Eq. (61)], which was suggested in [8, 9] as the
correct vacuum energy corresponding to the cosmological constant, or to the
ground-state energy density ǫ of Eq. (69). Evidently, Λ does not correspond
to either of them: even when taking into account the correct behavior at
small scales, the vacuum energy computed with the phonon EFT does not
lead to the correct value of the cosmological constant appearing in Eq. (50).
Noticeably, since Λ is proportional to

√

ρ0a3, it can even be arbitrarily
smaller both than h and than ǫ, if the condensate is very dilute. Further-
more, Λ is proportional only to the subdominant second order correction of
h or ǫ, which is strictly related to the depletion [see Eq. (67)].
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Furthermore, several scales show up in the emergent system, in addition
to the näıve Planck scale computed by combining the emergent constants
GN, cs and ~:

LP =

√

~c5s
GN

∝
(

λ

gρ0

)−3/4

(ρ0a
3)−1/4a. (72)

For instance, the Lorentz-violation scale (i.e., the healing length of the con-
densate)

LLV = ξ ∝ (ρ0a
3)−1/2a (73)

differs from LP, suggesting that the breaking of the Lorentz symmetry might
be expected at a much longer scale than the Planck length (much smaller en-
ergy than the Planck energy), since the ratio LLV/LP ∝ (ρ0a

3)−1/4 increases
with the diluteness of the condensate.

To conclude, it is instructive to compare the energy density correspond-
ing to Λ

EΛ =
Λc4s
4πGN

(74)

to the näıve Planck energy density

EP =
c7s

~G2
N

. (75)

The former is much smaller than the value computed from zero-point-energy
calculations with a cut off at the Planck scale. Indeed, the ratio between
these two quantities

EΛ
EP

∝ ρ0a
3

(

λ

gρ0

)−5/2

(76)

is again controlled by the diluteness parameter ρ0a
3.

0.4.5 The spinor BEC case

From the previous analysis one can easily realize that LLV scales with ρ0a
3

exactly as the range of the gravitational force [see Eq. (51)], signaling that
this model is too simple to correctly grasp all the desired features. How-
ever, in more complicated systems [16], this pathology can be cured, in the
presence of suitable symmetries, leading to long range potentials.

In the case of a BEC system containing several different bosonic species,
the so called spinor BEC (see [19] in these proceedings for a discussion of
their relevance as analogue models and for references) it is possible to re-
peat the analysis that we have described here, with minimal variations in
the method. There are significant differences, however. In general, without
tuning or symmetries (internal symmetries among the various components,
essentially) the geometrical structure describing the propagation of phonons
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is not a Lorentzian metric, at low energy, but rather something like a Finsler
structure [20]. Additionally, the coupling between phonons and the conden-
sate wavefunctions becomes extremely nontrivial, with the analogue New-
tonian potential obeying some complicated equation that cannot be cast in
the form of a Poisson equation, even including a Yukawa mass term. See
[16] for the complete discussion.

However, if one imposes a symmetry in the system, that is, if there is
an underlying symmetry under the permutation of the species, the situation
improves so much that indeed a realistic analogue can be obtained. Con-
sider a system with N components (whose nature will be neglected, for the
present reasoning), labelled by roman letters A,B = 1, ..., N . A Hamiltonian
obeying the requirement just mentioned would be of the form:

Ĥ =

∫

d3x
N
∑

A=1

Ψ̂A



− ~
2

2m
− µ− V (x) +

g

2
|Ψ̂A|2 +

g′

2

∑

B 6=A

|Ψ̂B|2


 Ψ̂A

(77)
where µ, λ, g are playing the same role of the corresponding quantities de-
fined in (16). In this case, due to the richer structure available, one can
recover a low energy notion of Lorentz invariance, and a distinguished long
range analogue Newtonian potential.

In particular, one can describe the deviations from homogeneity in each
component of the condensate by expanding the wave function as

[Ψ0]A =
√

[ρ0]A + αA(x) + iβA(x) , (78)

where α(x), β(x) are real functions. Within this ansatz it is then possible
to show (see again [16]) that a long range Newtonian potential of the form

ΦN (x) ∝
N
∑

A=1

βA(x). (79)

can exist and that this potential is indeed coupled to several (massive)
phonons in a universal way, hence manifesting the emergence of an ana-
logue of the equivalence principle.

Therefore, the fact that in the single BEC there seems to be a basic
flaw given by the short range potential should be seen as an artifact of
the simplicity of the model, and not a basic obstruction. The above men-
tioned generalized model can remove this unpleasant feature, allowing the
construction of a more realistic dynamical analogue.

Most importantly, the very same analysis that has been reported here
can be done for the multi-component case so to study the nature of the
vacuum contribution to the source term of the analogue Poisson equation.
Even without reporting a full calculation one can easily see that the bulk of
the result will be of the same nature: the cosmological term will be related
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to the depletion factor, and hence non necessarily Planckian (in the sense
discussed above).

0.5 Summary and Conclusions

Let us summarize the results. We have investigated the problem of calculat-
ing the cosmological constant through an analogy with condensed matter.
As a model we adopted the BEC with U(1)-symmetry breaking proposed
in [11], given that in this system it is possible to define the analogue of the
gravitational field satisfying a modified Poisson-like equation. The source
term appearing in this equation is made of two pieces: the first one is re-
lated to real phonons, corresponding to matter fields, in the analogy, and
that generates the gravitational field associated to the presence of clumps
of matter. The second one represents a vacuum contribution, that precisely
matches a cosmological constant in the Newtonian regime.

Of course this is just a toy model for gravity, which nevertheless provides
a clear description of the procedure that should be followed to correctly com-
pute the cosmological constant. We showed that the analogue cosmological
constant cannot be computed as the total zero-point energy of the condensed
matter system, even when taking into account the natural cut-off coming
from the knowledge of the correct microphysics, as suggested in [8, 9]. In
fact, the value of Λ is related only to a part of the zero-point energy, namely
a subleading term proportional to the quantum depletion of the condensate.4

Let us further elaborate on the significance of this result. The depletion
factor is intimately related to the fact that the Fock vacuum of the funda-
mental bosons and the Fock vacuum of the phonons are inequivalent, a fact
that is more profound that just an energy consideration. It is a statement
about the full quantum state corresponding to the condensed phase, which is
the regime in which we can speak about a semiclassical gravity analogue. It
is a quantity that encodes in a specific way the information that the system
is in a BEC phase, and not just a generic many body state.

This observation, taken alone, would be of little significance outside a
condensed matter community. However, it assumes a different relevance
if we move to the perspective of a quantum gravity model. There, part of
the properties of the long range/low energy/continuum/semiclassical regime
that will result in a gravitational theory will be due to the microphysics,
on one hand, and to the particular regime or considered state that will
encode the fact that the model is considered in the long range/low en-
ergy/continuum/semiclassical limit. The knowledge of the microscopic dy-
namics must then be supplemented by the specific information about the

4In a comment [21] to [12], an alternative point of view has been proposed. There it
has been argued that the difference between the zero-point energy and the actual value of
the cosmological constant is smaller, the closer is the analogue system to reproduce GR.
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considered state. In this perspective, a similar situation arises within loop
quantum gravity models [22, 23], suggesting a BCS energy gap as an origin
for the cosmological constant. When we say that the cosmological constant
has to be computed in terms of the microscopic theory, we also imply that
we have identified the state or the class of states that will correspond to a
semiclassical state, and that the effective dynamics will be the outcome of
the microscopic dynamics as well as of the state considered.

Going back to our model, this result suggests a twofold interpretation.
First, there is no a priori reason why the cosmological constant should be
computed as the zero-point energy of the system, even when this energy
is calculated correctly taking into account the corrections coming from the
microphysics of the system. The computation of this constant must pass
instead through the derivation of Einstein’s equations emerging from the
underlying microscopic system. Second, the value of Λ can be several orders
of magnitude smaller than the total vacuum energy density, depending on
the features of the fundamental structure from which the spacetime emerges.
The fine-tuning problem would therefore become much less worrying. How-
ever, no indication about the coincidence problem comes from the analysis
of this analogy.

Moreover, even in such a simple system, several different scales show up.
For instance, the Planck scale computed with the fundamental dimensionful
constants is very different from the scale at which Lorentz symmetry is
broken (i.e. when the dispersion relation is no longer linear), which in this
case coincides with the range of gravitational interaction. This is just a
coincidence due to the extreme simplicity of the model, and we have argued
that a spinor BEC might alleviate this problem. In general, these scales
are functions of the fundamental scattering length and of the diluteness of
the condensate. Most importantly, the energy density associated with the
cosmological constant can be much smaller than the value calculated with a
cut off at the Planck scale, being proportional to the diluteness parameter
of the condensate. Of course, this result must not be strictly translated
to the gravity side of the analogy. It shows nevertheless how the problem
of defining scales for possible Lorentz violations in relation to the so called
Planck units is very far from being trivial. Furthermore, a very wide range of
options is left open, depending on the fundamental structure the spacetime
is emerging out. In particular, since the value of the cosmological constant
appears to be strongly dependent on the granular structure of the spacetime,
the comparison with the observed value of this constant might represent an
important test for the validity of any theory of quantum gravity.

Actually, we can further broaden the scope of the discussion. Our result
strongly supports a picture where gravity is a collective phenomenon in a
pregeometric theory (for a review of different ideas and references, see [24]).
In fact, the cosmological constant puzzle is more easily addressed in those
scenarios. From an emergent gravity approach, the low energy effective
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action (and its renormalization group flow) for gravity and matter fields is
obviously computed within a framework that has nothing to do with QFT
in curved spacetime.

In these scenarios, if we interpreted the cosmological constant as a cou-
pling constant controlling some self-interaction of the gravitational field
(i.e. putting it on the LHS of Einstein equations), rather than as a vac-
uum energy (on the RHS), it would straightforwardly follow that the ex-
planation of its value (and of its properties under renormalization) would
naturally sit outside the domain of semiclassical gravity. From this point
of view, the cosmological constant works as a phenomenological parameter
controlling the constitutive relation that controls the self-interaction of the
gravitational field as it is induced from (and at the same time it summarizes)
the underlying dynamics. As such, its value cannot be computed within the
semiclassical gravity regime, but has to be computed on the basis of the
underlying microscopic dynamics.

In this respect, it is conceivable that the very notion of cosmological con-
stant as a form of energy intrinsic to the vacuum is ultimately misleading.
This is the point of view of many quantum gravity models. An interest-
ing case is represented by group field theories, a generalization to higher
dimensions of matrix models for two dimensional QG [25]. To date, little is
known about the macroscopic regime of them, conjectured to be some form
of gravitational theory, even though some preliminary steps have been re-
cently done [26]. In such a framework, it is transparent that the origin of the
gravitational coupling constants has nothing to do with ideas like “vacuum
energy” or statements like “energy gravitates”, because energy itself is an
emergent concept. Rather, the value of Λ is determined by the microphysics,
and, most importantly, by the procedure to approach the continuum semi-
classical limit. For instance, in [27] it is shown that the effective dynamics
will be controlled essentially by the critical behavior of the model, as ex-
pected, up to the point in which the gravitational coupling constants for an
effective field theory will be functions of the critical exponents associated
to the phase transition defining the continuum limit, i.e. to the state of the
system that defines the continuum limit. Clearly these are concepts totally
disconnected from notions like energy, fields, metric, etc. Most importantly,
these critical exponents cannot be computed with field theoretic arguments
in semiclassical gravity. The similarity to the case we are investigating here
is manifest.

Lacking a full fledged derivation of semiclassical continuum gravity from
a quantum gravity model, toy models are playing a crucial role. While a
detailed calculation cannot be avoided forever, analogue models can and will
represent key assets, as sources of inspiration and techniques to address basic
problems in quantum gravity. The simple model discussed here, involving
a BEC in which an effective analogue dynamics for a gravitational field can
be defined, shows how powerful this idea can be in elucidating the nature of
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certain puzzles, as well as concretely suggesting a possible way to approach
the solution in quantum gravity settings. In this respect, the reasoning
of this chapter sheds a totally different light on the cosmological constant
problem, turning it from a failure of EFT to a possible window on the process
with which spacetime arises as an effective description.
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