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1 Introduction

In recent years we have witnessed tremendous progresses in understanding scattering ampli-

tudes in gauge and gravity theories.1 Generally, Britto-Cachazo-Feng-Witten (BCFW) [2,

3] recursion relations can be used to obtain tree-level amplitudes, while loop amplitudes

can be determined by generalized-unitarity method [4, 5]. In particular, amplitudes in

N = 4 super-Yang-Mills (SYM), which is probably our best studied example, possess even

more beautiful structures and simplicities, and powerful tools such as the Grassmannian

formulation [6] have been developed recently to unravel them. Moreover, the theory is

believed to be integrable in the planar limit,2 which has made it possible to determine

all-loop scattering amplitudes in its planar sector.3

Via the celebrated Kawai-Lewellen-Tye (KLT) relations [10], tree-level amplitudes in

gravity can be constructed by recycling the corresponding gauge theory amplitudes. More

1For recent reviews see [1].
2For recent reviews see [7].
3See e.g. [8, 9].
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recently, Bern, Carrasco and Johannsson (BCJ) proposed a surprising duality between

the color and kinematics of color-dressed amplitudes in gauge theories [11], which can be

“squared” to give gravity amplitudes [12].4 They also conjectured that similar construction

holds for gravity amplitudes at loop level [22], which has played a key role in the recent

heroic calculations of multi-loop amplitudes in N = 8 supergravity (SUGRA) [23–26].

Despite these remarkable progresses, by far most formulations, which use gauge theory

amplitudes, are rather complicated because the number of terms involved grows as fac-

torial, and they often obscured some nice properties of gravity amplitudes (e.g. in these

formulations SUGRA amplitudes are definitely not “simpler” than the SYM ones [27]).

With this in mind, in the present note we intend to further explore the structure and

simplicity of gravity amplitudes, without any reference to gauge theory.

For the purpose of revealing the structure, it is already enough to look at the simplest

example: the maximally-helicity-violated (MHV) gravity amplitudes, and a few interesting

steps have been taken in this direction. At tree level, although “old-fashioned” expressions

for MHV gravity amplitudes have been known since [28], there are two recent formula-

tions for which have no resemblance to gauge theory amplitudes: the formula by Nguyen,

Spradlin, Volovich and Wen (NSVW) [29], and that by Hodges [30]. The former, origi-

nally derived from the link representation, writes the amplitude as a sum over labeled tree

graphs, while the latter expresses it as a single determinant.5,6 One-loop amplitudes of

N = 8, 6, 4 SUGRA have also been extensively studied, and a nice approach is to construct

them using soft and collinear factorizations [33–35]. In particular, the rational part of

one-loop MHV amplitudes in N = 4 SUGRA, which can not be determined from unitarity

method, has been computed and expressed as “one-loop” labeled graphs similar to the

NSVW formula for tree amplitudes [35], based on an identity of half-soft functions, which

we will give a simple proof.

In this note, we consider a possibly universal theme underlying these formulations,

namely gravity amplitudes can be naturally written in two equivalent representations:

graphs and determinants. In section 2 we recall the matrix-tree theorem, which relates

determinants constructed from a labeled graph to its spanning trees/forests. The theorem

immediately yields a graph-theoretical interpretation of Hodges’ formula, which includes

but also generalizes the NSVW formula, as shown in section 3. The interesting connection

between graphs, determinants and gravity amplitudes goes beyond the example. In sec-

tion 4, we find that the half-soft and soft-lifting functions, which play an important role in

constructing gravity amplitudes, can be defined naturally in terms of graphs/determinants,

and some identities can be nicely proved using these formulations. As another example,

in section 5, we apply the theorem to the one-loop rational part of N = 4 SUGRA MHV

amplitudes, and rewrite the diagrammatic formula of [35] into a determinant form.

4Although these relations can be derived in string theory [13–15], they can also be proved within field

theories [12, 16–20]. Similar relations have been discovered in three-dimensional theories where string

interpretations are unknown [21].
5We would like to thank B.J. Spence about the observation of relations between these two formula.
6While the note is being written, two related, but different formula inspired by twsitor-string have been

proposed to give all NkMHV tree amplitudes [31, 32], both used Hodges’ determinant as a prototype.
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Figure 1. There are 3 labeled spanning trees of the complete graph with 3 vertices, K3 (top). An

example of labeled forests with 10 vertices, which has 4 trees; if one chooses e.g. vertices 1,5,7,10

to be the roots, it becomes a rooted forest (bottom).

2 Graphs and determinants

Let us recall a few definitions in graph theory. A (simple) graph G = (V,E) comprises a

set V of vertices, and a set E of edges, where each edge e is a pair7 of two different vertices

v, w, e = vw (we say v and w are adjacent, v ∼ w), and there are no more than one edge

between two vertices. A tree is a connected graph without cycles, and a forest is a disjoint

union of trees.

Furthermore, a tree is called rooted if one vertex is designated as a root, and a rooted

forest is a forest of rooted trees. A spanning tree of a connected graph G is a tree with all

the vertices and a subset of the edges of G, and similarly for spanning forests. See figure 1

for examples.

2.1 Spanning trees

There is an interesting theorem connecting the determinant of certain matrices associated

with a graph, and its spanning trees.8

For a connected, simple graph G with vertices V = {v1, . . . vn}, one can assign a weight

ψij to each edge e = vivj , and define a n× n weighted Laplacian matrix W (G),

[W (G)]ij =





∑
vk∼vi

ψik if i = j

−ψij if i ∼ j

0 otherwise

(2.1)

Note that the sum of elements in a row or a column vanishes, so the matrix is degenerate.

However, we could pick a vertex vi and consider the minor corresponding to the element

W [G]ii, where we use the lower index to denote the i-th row having been deleted and upper

index i to denote the i-th column having been deleted.

7The graph is called directed if the pairs are ordered, and undirected if they are unordered. In the

following we consider undirected graphs.
8See e.g. [36].
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Matrix-tree theorem I. The determinant of the submatrix obtained by deleting the

i-th row and i-th column is independent of i, and it is given by,

|W (G)|ii =
∑

T∈T (G)


 ∏

e=(vivj)∈E(T )

ψij


, (2.2)

where the sum is over all spanning trees T ∈ T (G) and the product is over all edges of e ∈ T .

For a labeled complete graph Kn, where any two vertices are connected by exactly one

edge, spanning trees are all possible trees with n vertices, and it is straightforward to use

the theorem to enumerate them. Setting ψij = 1, thus [W (G)]ii = n−1, and we recover

Cayley’s formula which gives the number of all trees with n vertices, |T (Kn)| = nn−2. We

will see in the next section that, with a suitable choice of ψij , the theorem reduces Hodges’

formula to the tree-diagram formula in [29].

2.2 Forests

The above theorem can be generalized to the case of rooted forests, which turns out to be

the general diagrammatic expansion of Hodges’ formula. Given any simple graph G with

n vertices, we consider the spanning forests of G and define the same weighted Laplacian

matrix W [G]. Now if we pick a subset of vertices I, there is a a theorem relating the

corresponding minor and forests with roots in I.

Matrix-tree theorem II. Let us denote the set of rooted forests with r trees, which

have roots with labels I = {i1, . . . , ir}, by FI(G), then the determinant of the submatrix

after deleting the rows and columns with indices i ∈ I is given by,

|W (G)|i1...iri1...ir
=

∑

F∈FI(G)


 ∏

e=vivj∈E(F )

ψij


 . (2.3)

We illustrate the proof of both theorems by induction for complete graph Kn, and

the proof for other graphs follows similarly. For Kn (the case for K2 is trivial), let us

focus on the case r = 1 (Theorem I), and without loss of generality we choose I = {n},

F{n}(Kn) = T (Kn). In this case, T (Kn) can be obtained by consider all possible ways of

connecting vertex vn to vertices in spanning forests of Kn−1.

The simplest case is when n is connected to one vertex p1, where the set of span-

ning forests of Kn−1 with one root p1 is exactly F{p1}(Kn−1) = T (Kn−1), then we have a

contribution for the r.h.s. ,

n−1∑

p1=1

ψnp1

∑

F∈T (Kn−1)


 ∏

e=vivj∈E(F )

ψij


 =

n−1∑

p1=1

ψnp1 |W (Kn−1|
p1
p1 , (2.4)

where we have used the induction assumption for n − 1 vertices (with r = 1). Generally

when n is connected to r vertices, p1, p2, . . . , pr, in order to obtain a tree of n vertices, we

– 4 –
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need to consider the forests of Kn−1 with r trees, which have exactly roots p1, p2, . . . , pr,

and the r.h.s. reads,

∑

F∈FI(G)


 ∏

e=vivj∈F

ψij


 =

n−1∑

r=1

∑

p1<...<pr

r∏

k=1

ψnpk |W (Kn−1)|
p1...pr
p1...pr . (2.5)

On the other hand, if we consider the submatrix after deleting n-th row and column,

W (Kn)
n
n, the determinant can be expanded in ψni, which only appear in the diagonal. The

zeroth order is |W (Kn−1)| = 0, and the r-th order is the same as above,

|W (Kn)|
n
n =

n−1∑

r=1

∑

p1<...<pr

r∏

k=1

ψnpk |W (Kn−1)|
p1...pr
p1...pr . (2.6)

Therefore we have proved the r = 1 case for n vertices. Essentially the same proof

holds for r = 2, . . . , n, by connecting each of the r roots to forests with n−1 vertices, and

that completes our inductive proof. We remark that 2.6 was also used by Hodges to prove

his formula using modified BCFW recursion relations given in [37], and we have seen that

each term now has a nice graph-theoretical/combinatoric interpretation.

3 The tree-level gravity MHV amplitude

Our first application of the theorem is to understand relations between two formula of

tree-level gravity MHV amplitude: the Hodges’ determinant formula [30] and the NSVW

tree-diagram formula [29].

3.1 Hodges’ determinant formula

We will present two matrix forms: the original form by Hodges, and a more symmetric form

related to it by simple transformations. Hodges’ original form is manifestly independent of

the choice of auxiliary spinors x, y, while the new one is manifestly related to the graphic

representation.

Using ak ≡ 〈k|x〉 〈k|y〉 where x, y are two auxiliary spinors, the element of the matrix

defined by Hodges, Φ, is given by9

φji = −
[i|j]

〈i|j〉
for i 6= j, φii =

∑

j 6=i

φji
aj
ai
, (3.1)

where lower (upper) indices are for rows (columns). In the matrix form, (3.1) reads,

Φ =




∑
j 6=1 φ

j
1
aj
a1

−φ21 . . . −φn−1
1 −φn1

−φ12
∑

j 6=2 φ
j
2
aj
a2
. . . −φn−1

2 −φn2
...

...
. . .

...
...

−φ1n−1 −φ2n−1 . . .
∑

j 6=n−1 φ
j
n−1

aj
an−1

−φnn−1

−φ1n −φ2n . . . −φn−1
n

∑
j 6=n φ

j
n−1

aj
an




. (3.2)

9It is worth to emphasize that the sign here is different from the one given by Hodges. We find it more

convenient since it is consistent with the matrix-tree thereom.
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Although in the definition of diagonal elements auxiliary spinors, x, y, have been intro-

duced, momentum conservation implies that the matrix is independent of the choice. In

addition, one can check with momentum conservation that

Φ · (〈1|α〉 〈1|β〉 , 〈2|α〉 〈2|β〉 , . . . , 〈n|α〉 〈n|β〉) = 0 (3.3)

for arbitrary spinors α, β. Since any spinor can be expanded using a basis of two spinors,

the space of the above null vectors has dimension three.

Since Φ has rank n−3, only minors with dimension d ≤ n−3 do not vanish. Let us

use (Φ)rstijk to denote the matrix obtained by removing rows i, j, k and columns r, s, t from

Φ and |Φ|rstijk for its determinant (we require i < j < k, r < s < t to avoid ambiguities),the

MHV tree amplitude of gravity is given by [30]

Mn = (−)i+j+k+r+s+tcijkcrst|Φ|
rst
ijk , (3.4)

where we have suppressed the momentum-conservation delta-functions etc., and

cijk = cijk =
1

〈i|j〉 〈j|k〉 〈k|i〉
. (3.5)

It has been proved in [30] that (3.4) is totally symmetric under permutation of n

particles. This is related to the fact that Φ has rank n−3, so different (n−3) × (n−3)

minor has following relation

(−)i+j+k+r+s+tcijkcrst|Φ|
rst
ijk = (−)ĩ+j̃+k̃+r̃+s̃+t̃cĩj̃k̃cr̃s̃t̃|Φ|

r̃s̃t̃
ĩj̃k̃

. (3.6)

3.2 NSVW formula

Having reviewed Hodges’ formula, we want to demonstrate its relation to NSVW formula.

To do so, matrix form (3.2) is not so convenient and we need to define following new matrix

form

Ψ = A · Φ ·A , (3.7)

where matrix A has only diagonal elements and it given by A = diag(a1, a2, . . . , an). Writ-

ing up into matrix form we have

Ψ =




∑
j 6=1 φ

j
1aja1 −φ21a1a2 . . . −φn−1

1 a1an−1 −φn1a1an
−φ12a1a2

∑
j 6=2 φ

j
2aja2 . . . −φn−1

2 a2an−1 −φn2a2an
...

...
. . .

...
...

−φ1n−1a1an−1 −φ2n−1an−1a2 . . .
∑

j 6=n−1 φ
j
n−1ajan−1 −φnn−1an−1an

−φ1na1an −φ2na2an . . . −φn−1
n an−1an

∑
j 6=n φ

j
n−1ajan




(3.8)

Matrix Ψ has a nice property: the sum of each row (or each column) is zero. This is the

character of Laplacian matrix used in the matrix-tree theorem.

Using the relation (3.7), it is easy to see that

|Ψ|rstijk = |A|ijkijk|Φ|
rst
ijk|A|

rst
rst =

(
aiajakarasat
(
∏n

i=1 ai)
2

)−1

|Φ|rstijk , (3.9)

– 6 –
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Figure 2. Diagrammatic expansions of Hodges’ determinant formula for gravity MHV tree am-

plitudes. A special choice (reference points 1, 2) gives the NSVW formula as the sum of weighted

spanning tree (left). The most general diagrammatic expansion of the formula is the sum of weighted

forests with 3 trees, which contain {i, r}, {j, s}, {k, t} (or S3 permutations) respectively (right).

thus the gravity MHV amplitude can be written as

Mn = (−)i+j+k+r+s+tcijkcrst
aiajakarasat
(
∏n

i=1 ai)
2

|Ψ|rstijk . (3.10)

Now we can see relation to NSVW formula clearly. We can take s = j = x = n−1,

t = k = y = n, then the last two rows and two columns of Ψ vanish, and matrix Ψ is

reduced to a (n−2)× (n−2) matrix effectively. Thus (3.10) becomes

Mn =
(−)i+r

〈n− 1|n〉2
∏n−2

i=1 a
2
i

|Ψ̂|ri , (3.11)

where we used the Ψ̂ to denote the reduced (n−2)×(n−2) matrix. For this reduced matrix

we have (−)i+r|Ψ|ri = (−)ĩ+r̃|Ψ|r̃
ĩ
, thus

Mn =
1

〈n− 1|n〉2
∏n−2

i=1 a
2
i

|Ψ̂|rr . (3.12)

The expansion of (3.12) is exactly the NSVW tree-diagram formula by the matrix-tree

theorem. See the left part of figure 2.

3.3 The general diagrammatic expansion of Hodges’ formula

Now it is clear that by the matrix tree theorem I, NSVW tree-diagram expression is just

a special case of Hodges’ determinant formula after we make the choice s = j = x = n−1,

t = k = y = n. Here we would like to show the most general diagrammatic expansion of

Hodges’ formula, using the theorem II and a bit generalizations.

For determinant |Ψ|rstijk with i = r, j = s, k = t, the diagrams are all rooted forest with

three disconnected trees, whose roots are at i, j, k. The weight of each edge is nothing but
[r|s]
〈r|s〉(〈r|x〉 〈r|y〉)(〈s|x〉 〈s|y〉).

For the case |Φ̃|rjkijk with r 6= i, we will need forests with three trees: the first tree must

have nodes r, i, the second, node j, and the third, node k. The sign of all terms are same.

For the case |Φ̃|rskijk where only one pair of indices coincide, all contributions will be

divided into two kinds of graphes with opposite sign. The first kind contains forests where

(i, r) are at the first tree, (j, s) at the second, and k at the third, and with r and s inter-

changed for the second kind.

– 7 –
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For the case |Φ̃|rstijk where none of the indices coincide, all contributions will be divided

into six kinds of graphes. If we use σ ∈ S3 to denote the permutation of indices (r, s, t).

Then each kind of graphes are given by forests with three trees, where (i, σ(r)) at the first,

(j, σ(s)) at the second, and (k, σ(t) at the third, with a sign sign(σ). This is shown in the

right part of figure 2.

4 The half-soft function and soft-lifting function

Our second application of the graph-determinant connection is for the half-soft function and

soft-lifting function, which are building blocks for gravity amplitudes. For each function,

we will give two equivalent definitions, using which some identities of half-soft function can

be proved in fairly straightforward way.

4.1 The half-soft function

The half-soft function was first defined in [38], which is used to give tree level MHV gravity

amplitude. Recently, it is understood that although looks different, half-soft function is

equivalent to the MHV tree formula present in [29]. Thus we can immediately give two

definitions of the half-soft function . The first is a diagrammatic expression,

h(x, {1, 2, . . . ,m}, y) =
1∏m

j=1 a
2
j

∑

trees

∏

edges (rs)

[r|s]

〈r|s〉
aras, ai = 〈i|x〉 〈i|y〉 , (4.1)

where the summation is over all spanning trees constructed by nodes {1, 2, . . . ,m} and x, y

are auxiliary reference spinors. It is worth to mention that in this definition, momentum

conservation is not required, i.e.,
∑m

i=1 ki 6= 0 in general. The second one is to use minors

of the following matrix

Ψj
i = −

[i|j]

〈i|j〉
aiaj = −φjiaiaj (i 6= j), Ψi

i =
m∑

j=1,j 6=i

Ψj
i , (4.2)

and h is written as

h(x, {1, 2, . . . ,m}, y) =
1∏m

j=1 a
2
j

|Ψ|rr =
1∏m

j=1 a
2
j

||Ψ||, (4.3)

where we have used the notation ||Ψ|| ≡ |Ψ|rr to emphasize the independence of r.

These two definitions (4.1) and (4.3) can be used to understand properties of half-soft

function. The first one is the soft limit behavior,

h(x,M, y)|km→0 → −Sm(x,M, y)h(x,M − {m}, y) , (4.4)

where the half-soft factor is defined as

Sm(x,M, y) =
−1

am

∑

j∈M−{m}

[j|m]

〈j|m〉
aj . (4.5)

– 8 –
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To see it, noticing that in (4.3) we can take minor by deleting any row and column, so

to make things simpler, we take the minor by deleting the m-th row and m-th column.

In the remaining submatrix, only diagonal element has dependence on particle m through

combination
(

[j|m]
〈j|m〉ajam

)
for each j 6= m. Because the overall factor 1∏

a2j
, to have singular

behavior under the soft limit, in the expansion of determinant we only need to focus on

terms with at most one factor [j|m]
〈j|m〉ajam.

For terms without such factor, the sum is nothing, but the determinant of the matrix

after crossing all terms [j|m]
〈j|m〉ajam in diagonal elements. It is easy to see that its determinant

vanishes since the sum of each row or each column is zero.

For terms with one such factor, the sum is given by the determinant of the matrix,

after deleting the m-th and j-th rows and columns from Ψ, and then crossing all terms
[t|m]
〈t|m〉atam in diagonal elements with t 6= j,m,

[j|m]

〈j|m〉
ajam

1∏m
j=1 a

2
j

|Ψ([∗|m] → 0)|mj
mj =

[j|m]

〈j|m〉

aj
am

1
∏m−1

j=1 a2j
|Ψ([∗|m] → 0)|mj

mj

=
[j|m]

〈j|m〉

aj
am

h(x,M − {m}, y) (4.6)

where at the second line we have used the definition (4.3) for m − 1 elements M − {m}.

Summing over j we have shown the soft limit behavior (4.5).

The second property we will discuss is the recursion relation

∑

A⊂C,B=C−A

h(q, A, r)h(q,B, r) 〈q|KAKB|q〉 〈r|KAKB|r〉 = −K2
Ch(q, C, r) (4.7)

where the summation is over all inequivalent splitting of the set C into two non-empty

subsets A,B, i.e., (A,B) = (B,A). Formula (4.7) has been proved in [38] and here we will

give another proof.

The third property is following identity discussed in [35],

∑

M

h(a,M + {c}, b)h(b,N + {d}, a) =
∑

M

h(c,M + {a}, d)h(d,N + {b}, c) (4.8)

where the summation over M is over all subsets of {1, 2, . . . , n} − {a, b, c, d} and N =

{1, 2, . . . , n} − {a, b, c, d} − M . This identity has not been proved in literature and we

will present a proof in this note. It is also important to notice that unlike formula (4.7),

which is true without momentum conservation condition, identity (4.8) holds only when∑n
i=1 ki = 0.

4.1.1 The proof of recursion relation

We now prove the recursion relation (4.7) for half-soft function h inductively. Using (4.3)

and A
⋃
B = C, we can get rid of overall factor and using the matrix form to write it as

∑

A⊂C,B=C−A

||ΨA|| ||ΨB|| 〈q|KAKB|q〉 〈r|KAKB|r〉 = −K2
C ||ΨC || , (4.9)
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where we have used ΨA to denote the matrix constructed using elements in subset A

according to the theorem, i.e., the formula (4.2) and similarly for ΨB,ΨC .

For C = {1, 2}, we have only one term in the sum. Using ||ΨA|| = 1 when there is

only one element in the set A, the left handed side (l.h.s.) of (4.9) is given by 1 × 1 ×

〈q|1|2|q〉 〈r|1|2|r〉 = [1|2]2 a1a2, which is indeed the same as the right handed side (r.h.s.)

−s12
[1|2]
〈1|2〉a1a2 = [1|2]2 a1a2.

For general case with n elements in C, we do the deformation

|1〉 → |1〉 − z |q〉 , (4.10)

which is possible since there is no momentum conservation. Under the deformation both

sides of (4.9) will be rational function of z and we consider following contour integration

for f(z) to be either l.h.s. or r.h.s. ,

∮
dz

z

f(z)

〈1− zq|r〉2
. (4.11)

Unlike the familiar BCFW method, here we have inserted the factor 〈1− zq|r〉−2, which

ensures the function f(z)/ 〈1− zq|r〉2 has vanishing boundary contribution. Thus if we

can show at all finite poles residues of f(z)/ 〈1− zq|r〉2 are same, we prove the relation

fL(z = 0) = fR(z = 0).

Now we calculate residues of various poles. First we consider single pole coming from

factor 〈i|1− zq〉 = 0 for i = 2, . . . , n. It is easy to see that residue at the r.h.s. of (4.9) is

given by10

Ri = −(K2
C − zi 〈q|KC |1])|ΨC(zi)|

1i
1i (4.12)

with zi =
〈i|1〉
〈i|q〉 . To understand |ΨC(zi)|

1i
1i, let us notice that for j 6= i, two terms of its j-th

diagonal element can be simplified as

[j|1]

〈j|1− ziq〉
aj 〈1|q〉 〈1− ziq|r〉+

[j|i]

〈j|i〉
ajai =

[
j |̂i

]

〈j|i〉
ajai,

∣∣∣̂i
]
= |i] + |1]

〈1|q〉

〈i|q〉
. (4.13)

Thus we have

|ΨC(zi)|
1i
1i = |ΨC−{1}(̂i)|

i
i = ||ΨC−{1}(̂i)|| , (4.14)

where ΨC−{1} is the matrix constructed by n−1 particles according to the graph-theoretical

rule (see (4.2)) with the anti-holomorphic spinor of ki shifted. Using the shifted momentum

k̂i we can see

(K2
C − zi 〈q|KC |1]) =

〈i|(KC − k1)KC |q〉

〈i|q〉
= (K̂C−{1})

2 ,

so finally we have residue of the r.h.s.

Ri = −(K̂C−{1})
2 ||ΨC−{1}(̂i)|| . (4.15)

10In fact, there are also factor [i|1] ai 〈1|q〉 〈1− ziq|r〉 coming from the numerator of combination
[i|1]

〈i|1−zq〉
aia1(z) as well as factor zi 〈1− ziq|r〉

2 coming from denominator of (4.11). But since they are

the same for both sides of (4.9), we drop them for simplicity.
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For the l.h.s. , since we have taken the convention that 1 ∈ A, to have the pole at zi,

we must have i ∈ A and the residue is given by

Li =
∑

1,i∈A

|ΨA(zi)|
1i
1i ||ΨB|| 〈q|KAKB|q〉 (〈r|KAKB|r〉 − zi 〈r|q〉 [1|KB|r〉)

=
∑

1,i∈A

||ΨA−{1}(̂i)|| ||ΨB||
〈
q|(KA−{1,i}+k̂i)KB|q

〉〈
r|(KA−{1,i}+k̂i)KB|r

〉
, (4.16)

where relation ki+k1−|i〉
∣∣∣̂i
]
= |q〉 |1] zi as well as (4.13) have been used. Comparing (4.15)

and (4.16), and using the induction, we see immediately that residues of pole zi are same

for both sides of (4.9).

Having discussed poles coming from 〈i|1− zq〉, there is only one pole left, i.e., the one

coming from the inserted factor 〈r|1− zq〉−2. Naively the pole at zr = 〈1|r〉
〈q|r〉 is a double

pole, however, with the factor a1(z) = 〈q|1〉 〈r|1− zq〉 in combinations like [i|1]
〈i|1−zq〉a1(z)ai,

we must be careful in our discussion. Let us expand the determinant ||ΨC || = |ΨC(z))|
1
1, it

is easy to see that only following two kinds of terms can have nonzero residues at this pole:

• Terms without any z-dependence: their summation is the determinant of a matrix

obtained by removing all terms like [i|1]
〈i|1−zq〉a1(z)ai from the diagonal of (ΨC(z))

1
1,

which is just the matrix ΨC−{1}. The determinant vanishes since the sum of each

row or each column is zero.

• Terms with only one factor like [i|1]
〈i|1−zq〉a1(z)ai from just one diagonal element: the

sum is
n∑

i=2

[i|1]

〈i|1− zq〉
a1(z)ai|Ψ̃C |

1i
1i , (4.17)

where (Ψ̃C)
1i
1i is obtained from matrix ΨC by removing the first and i-th rows and

columns, and then removing all terms like [i|1]
〈i|1−zq〉a1ai from the diagonal, which is the

matrix ΨC−{1} constructed from elements {2, 3, . . . , n}. Using |Ψ̃C |
1i
1i = |ΨC−{1}|

i
i =

||ΨC−{1}|| we can write it as

||ΨC−{1}||
n∑

i=2

[i|1]

〈i|1− zq〉
a1ai . (4.18)

Having understood this, we can find residue at zr for r.h.s. as11

Rr = −(K2
C − zr 〈q|KC |1])||ΨC−{1}||

n∑

i=2

[i|1]

〈i|1〉 − zr 〈i|q〉
〈1|q〉 ai

=

(
K2

C−{1} −
〈q|1〉 〈r|KC |1]

〈q|r〉

)
||ΨC−{1}|| 〈r|q〉 〈q|KC |1]

= K2
C−{1}||ΨC−{1}|| 〈r|q〉 〈q|KC |1] + ||ΨC−{1}|| 〈q|1〉 〈r|KC |1] 〈q|KC |1] . (4.19)

11Again we have dropped some identical factors at both sides when we evaluate the residue.
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Now we do similar analysis for the l.h.s. where z-dependence coming from ||ΨA(z)|| as

well as 〈r|KA(z)|KB|r〉. There are two cases we need to consider separately. The first is

that A = {1}. In this case, the residue is given by

Lr,2 = ||ΨC−{1}|| 〈q|1〉 [1|KC |q〉 [1|KC |r〉 , (4.20)

which is exactly the second term at the r.h.s. of (4.19).

For the case where A has more than one element, using the same analysis as given for

the set C, the residue is given by

Lr,1 = −
∑

A−{1}

||ΨA−{1}|| ||ΨB|| 〈r|q〉 〈q|KA|1] 〈q|KAKB|q〉
〈
r|KA−{1}KB|r

〉

= −
∑

A−{1}

||ΨA−{1}|| ||ΨB|| 〈r|q〉 〈q|KA|1]
〈
q|KA−{1}KB|q

〉 〈
r|KA−{1}KB|r

〉

−
∑

A−{1}

||ΨA−{1}|| ||ΨB|| 〈r|q〉
〈
q|KA−{1}|1

]
〈q|1〉 [1|KB|q〉

〈
r|KA−{1}KB|r

〉
. (4.21)

To go further we need to consider following important point. Assuming we have split

remaining elements C − {1} into two groups Ã, B̃, for recursion relation of n−1 elements,

(Ã, B̃) = (B̃, Ã), i.e., there is only one term in the summation. However, for recursion

relation of n elements, (1
⋃
Ã, B̃) 6= (1

⋃
B̃, Ã), i.e., there are two terms in the summation.

Using this observation, we sum up these two terms. The first line of Lr,1 will give

−
∑

Ã

||Ψ
Ã
|| ||Ψ

B̃
|| 〈r|q〉

〈
q|K

Ã
+K

B̃
|1
] 〈
q|K

Ã
K

B̃
|q
〉 〈
r|K

Ã
K

B̃
|r
〉

= K2
C−{1}||ΨC−{1}|| 〈r|q〉 〈q|KC |1] , (4.22)

where at the second line we have used the induction for n−1 elements. It is the first term

at the r.h.s. of (4.19). The second line of Lr,1 will sum to zero because
〈
r|K

Ã
K

B̃
|r
〉
+〈

r|K
B̃
K

Ã
|r
〉
= 0. Having shown that all residues of finite poles are same at two sides by

induction, we have proved the recursion relation (4.9).

4.1.2 The proof of square relation

Now we give a proof of square identity (4.8), which is conjectured in [35] and numerically

checked up to twelve points. This relation is crucial to write the rational part of MHV

one-loop amplitude of N = 4 supergravity theory into diagrammatic expression.

The proof of (4.8) is, in fact, quite simple if we use the matrix form and the theorem.

Let us start with the n × n matrix Φ (3.2) of the Hodges’ form with arbitrary auxiliary

spinors x, y and calculate the minor obtained by removing, for example, the first four rows

and four columns

|Φ|12341234 =
1∏n

i=5(〈i|x〉 〈i|y〉)
2
|Ψ|12341234 (4.23)

where Ψ is the matrix given by (3.7). Momentum conservation makes the definition of

matrix Φ independent of the choice of auxiliary spinors x, y, so is the determinant |Φ|12341234

at the l.h.s. of (4.23).
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Now we can evaluate the l.h.s. of (4.23) by computing the r.h.s. by two different

approaches. We can take x = 1, y = 2, so the first two rows and first two columns of Ψ are

zero. The reduced n−2× n−2 matrix (Ψ)1212 is exactly the form given by the theorem, and

the minor |Ψ12
12|

34
34 is given by weighted forests with 3, 4 as roots. Given the set M attached

to root 3 and set N attached to root 4, all possible ways of M attaching to 3 are given by

the trees calculated by h(1, {M, 3}, 2) up to an overall factor, and similarly trees with N

attached to root 4 are calculated by h(1, {N, 4}, 2). Summing over all possible M,N gives∑
M h(1, {M, 3}, 2)h(1, {N, 4}, 2) in (4.8), as the forests represented by |Ψ12

12|
34
34.

Alternatively, we can take x = 3, y = 4 and get the matrix (Ψ)3434. Then us-

ing the theorem, |Ψ34
34|

12
12 calculates the forests with 1, 2 as roots, which is exactly∑

M h(3, {M, 1}, 4)h(3, {N, 2}, 4) in (4.8). Since both approaches calculate the same object,

as given by the l.h.s. of (4.23), we have proved the identity.

4.2 The soft-lifting function

Having understood the half-soft function h both from the point of view of graphs and

determinants, we consider the soft-lifting function defined in [35]. With a little bit of

algebra, it is easy to see that up to a factor, the soft-lifting function S[P s;Qp]m1,m2 with

s elements in the set P and p elements in the set Q is, in fact, weighted forests of the set

P
⋃
Q with roots given by all elements in the set P (where m1,m2 are auxiliary spinor for

the factor 〈i|m1〉 〈i|m2〉 = ai). More precisely,

S[P s;Qp] =
1∏

t∈Q a
2
t

∑

forest(p1,...,ps)

∏

edges (rs)

[r|s]

〈r|s〉
aras

=
1∏

t∈Q a
2
t

|Ψ|p1...psp1...ps = |Φ|p1...psp1...ps (4.24)

where we have used the notation forest(p1, . . . , ps) for forest of set P
⋃
Q with p1, . . . ps

as roots. At the second line we have used both matrix forms Ψ,Φ to write down the

expression using the determinant.

Using the matrix form (4.24), it is easy to see the soft behavior of soft-lifting function as

S[P s;Qp] → −Sq+(m1, P
s
⋃
Qp − {q},m2)S[P

s;Qp − {q}] (4.25)

and there is no soft-singularity if q1 6∈ Qp. The reason is that under the soft limit, [r|s] / 〈r|s〉

is a smooth function, thus all singular behaviors come from the overall factor 1∏
t∈Q a2t

.

Using the same arguments for soft limit of half-soft function (4.4), we can show (4.25).

5 The rational part of one-loop MHV N = 4 supergravity amplitudes

Recently, the rational part of one-loop MHV N = 4 supergravity amplitudes has been

calculated and conjectured in [33–35] based on the identity (4.8) proved in this note. Using

the identity (4.8) they obtained an expression for MHV one-loop rational function,

RMHV
n =

(−)n 〈1|2〉4∏n
i=3(〈i|1〉 〈i|2〉)

2

∑

1-loop

∏

edge(ab)

[a|b]

〈a|b〉
〈b|1〉 〈b|2〉 〈a|1〉 〈a|2〉 (5.1)
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Figure 3. Diagrammatic formula for the rational part of one-loop MHV amplitudes. A general

connected, one-loop diagram (left) is a loop with r nodes, attached with forests, which have r trees

containing the r nodes as their roots. The 7-pt case (right): we pick two reference labels, and sum

over all possible assignments of the remaining n−2 ones to the vertices.

where the sum is over all distinct, connected, one-loop “link diagrams” with (n− 2)-nodes,

see figure 3. Along the loop, there can be r = 2, . . . , n − 2 nodes. For given r nodes

along the loop, there are (r−1)!
2 different ordering, which means the diagram is not directed

(clockwise ordering will be identified with anti-clockwise ordering). Also it is important to

notice that while for general r ≥ 3 the weight of graphes is one, when r = 2, the weight is 1
2 .

With the understanding of Hodges’ determinant using matrix-tree theorem, it is nat-

ural to ask if we can derive an determinant for this diagrammatic expansion (5.1). In this

section, we will propose one expression (partially) realize this idea.

5.1 A proposal for the matrix

Here we propose our matrices, whose determinant will contain the one-loop result presented

in (5.1),

Φ̂=




−
∑

j 6=1 φ
j
1
aj
a1

(1+qe12)φ
2
1 . . . (1+qe1(n−1))φ

n−1
1 (1+qe1n)φ

n
1

(1+qe21)φ
1
2 −

∑
j 6=2 φ

j
2
aj
a2

. . . (1+qe2(n−1))φ
n−1
2 (1+qe2n)φ

n
2

...
...

. . .
...

...

(1+qe(n−1)1)φ
1
n−1 (1+qe(n−1)2)φ

2
n−1 . . . −

∑
j 6=n−1 φ

j
n−1

aj
an−1

(1+qe(n−1)n)φ
n
n−1

(1+qen1)φ
1
n (1+qen2)φ

2
n . . . (1+qen(n−1))φ

n−1
n −

∑
j 6=n φ

j
n−1

aj
an




(5.2)

and a related, more symmetric matrix,

Ψ̂ = A · Φ̂ ·A (5.3)

Compared with (3.2) we have almost same form except addressing factor (1+ qeij) for

off-diagonal elements. The consequence of this factor is following:

• The matrix Φ̂ is still independent of the choice of auxiliary spinors x, y, but it is not

degenerate anymore, i.e., its rank is n.
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• The role of q is to count the number of vertices along loops. In other words,

coefficient of qm are related to diagrams with m vertices along loops (it could be one

or multiple loops).

• The role of eij is to give information about loops in the diagrams, so we need to

impose following algebraic rule:

eijejk = eik, eijekl = ekleij(i 6= j 6= k 6= l), eii = Nc (5.4)

Using above two matrices we can calculate following expression

Wn;P = |Φ̂|p1p2...prp1p2...pr =
1∏n

i=1,i 6∈P a
2
i

|Ψ̂|p1p2...prp1p2...pr (5.5)

where the set P tells us which rows and columns have been removed. Since matrix Φ̂ is

x, y-independent, any object given in (5.5) is also x, y-independent. Thus we can choose

x, y to simplify the calculation.

Now we give a prescription to read out one-loop rational contributions from Wn;{1,2}

assuming only 1, 2 have negative helicities and all others, positive helicities.

• (1) Taking the determinant, i.e., calculating Wn;{1,2}.

• (2) Applying (5.4) iteratively until we can not simplify further.

• (3) Taking all eij → 0. This will get rid of all unwanted terms.

• (4) Now we have a polynomial of the form
∑n−2

m=2

∑[(n−2)/2]
t=1 qmN t

cfm,t, where the

power t counts the number of loops in a given diagram, and the power m counts the

number of nodes located along the t loops.

• (5) For the one-loop result, the answer is the sum
∑n−2

m=2 fm,1 multiplying by

(−1)n 〈1|2〉4 /2. In other words, we just need the t = 1 case and set q = 1.

5.2 A few terms in the expansion

Having the above prescription, let us check a few terms in the expansion of determinant.

To compare with results given in [33–35], we will choose x = 1, y = 2 and expand the

determinant according to the power of q.

• Terms with q0. In this case, we set all q = 0 and the matrix reduces to old matrix

Ψ. Since its rank is n−3, the determinant vanishes.

• Terms with q1. In this case, we should take one term with q from, for example, the

off-diagonal element with i 6= j and then set all other q = 0. However, since we need

to set the eij → 0, the result is zero too.

• Terms with q2. It is easy to see that all terms will be following form

∑

(ij),(kl)

(−)i+j+k+l(qeijφ
j
iaiaj)(qeklφ

l
kakal)|Ψ|jlik (5.6)

– 15 –



J
H
E
P
1
0
(
2
0
1
2
)
1
2
1

where we sum over two pairs of indices with condition that i 6= j, k and l 6= k, j and

|Ψ|jlik is the minor after removing the i-th, k-th rows and columns. Depending on the

choice of pairs we have several cases. For the case with i 6= l and j 6= k, or the case

with i = l or j = k, no eij is left after using (5.4), so there is no such contributions.

The case i = l and j = k gives following result,
∑

(ij),i 6=j

Nc(φ
j
iaiaj)

2|Ψ|ijij , (5.7)

after applying our prescriptions. The graphic picture of minor |Ψ|ijij will be forest

with two roots i, j and then we connect i, j by two edges. They are exactly graphes

of one-loop rational terms with nodes i, j along the loop.

• Terms with q3. The result is
∑

(i1,j1),(i2,j2),(i3,j3)

(−)
∑3

t=1(it+jt)q3ei1j1ei2j2ei3j3ψ
j1
i1
ψj2
i2
ψj3
i3
|Ψ|j1j2j3i1i2i3

(5.8)

where i1 6= i2 6= i3 and j1 6= j2 6= j3 and it 6= jt, t = 1, 2, 3.

Again we have various cases, with 0,1,2 or 3 common indices between the sets

(i1, i2, i3) and (j1, j2, j3). As it is clear from our prescription, when we set eij → 0,

only the last case (when the two sets are related by permutations) survives, which

has eij left after applying (5.4). The contribution is,

2
∑

3≤i1<i2<i3≤n−2

q3Ncψ
i2
i1
ψi3
i2
ψi1
i3
|Ψ|i1i2i3i1i2i3

(5.9)

It is important to notice the factor 2 in (5.9). Same factor 2 will appear in all qm≥3

case. The pattern that, compared to q2 term, there is an additional factor of 2 for

qm≥3 terms, agrees exactly with that in [35].

• Terms with general qm≥3. General terms are given by
∑

I⊂{3,...,n}

|L(I)|Nc |Ψ|II (5.10)

where we sum over all distinct subsets of {3, . . . ,m}, and the matrix L is defined,

e.g. for m = 4,

L(i1, i2, i3, i4) ≡




0 qei1j2ψ
j2
i1
qei1j3ψ

j3
i1
qei1j4ψ

j4
i1

qei2j1ψ
j1
i2

0 qei2j3ψ
j3
i2
qei2j4ψ

j4
i2

qei3j1ψ
j1
i3
qei3j2ψ

j2
i3

0 qei3j4ψ
j4
i3

qei4j1ψ
j1
i4
qei4j2ψ

j2
i4
qei4j3ψ

j3
i4

0


 . (5.11)

The sub-index Nc means we keep only the term with power N1
c .

Given the set I, |L(I)|Nc describes how nodes are distributed along the loop while

|Ψ|II describes how forest are constructed with roots on the set I. Also, it is easy

to see why there are weights 1 and 1/2 for qa≥3 and q2 respectively. With three

or more nodes along the loop, we can distinguish the clockwise or anti-clockwise

ordering while with two nodes, there is only one ordering.
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6 Final remarks

Based on the matrix-tree theorem, in this note we explore the connection between graphs

and determinants which appear naturally in gravity amplitudes. For MHV tree amplitudes,

it is straightforward to identify Hodges’ determinant with NSVW’s tree diagrams, and we

have learnt about its most general graphic structures. Given that non-MHV amplitudes

can also be expressed in terms of determinant [31, 32], we expect similar diagrammatic

formulations for all tree amplitudes. For example, with two determinants used in [32], the

formula can be expanded into product of two spanning trees.

We have studied some universal functions for constructing gravity amplitudes in

graph/determinant formulations. These includes half-soft and soft-lifting functions, and

we prove non-trivial identities using the formulations. We have also proposed a matrix

to calculate the one-loop rational terms in N = 4 supergravity. The proposal is not the

most satisfying in the sense that some prescriptions like (5.4) are needed. The expansion

of the determinant has too many terms, which contains not only one-loop, but also

higher-loop structures. Given the interesting connection between MHV amplitudes at tree

and one-loop level (for rational part), it is natural to ask if these higher loop structures

are related to certain higher loop rational contributions.

We find both formulations useful for understanding gravity amplitudes, and deserve

further studies. With the one-loop rational part as an example, it would be fascinating

to explore similar structures for supergravity loop amplitudes in general. Eventually one

would like to understand the physical interpretation of these formulations, which might

be provided by a twistor-string/Grassmannian-like dual formulation of the S-matrix in

supergravity theories.
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