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Abstract. We discuss how the shift operator and the Hamiltonian enter the
hierarchy of Baxter Q-operators in the example of gl(n) homogeneous spin-
chains. Building on the construction that was recently carried out by the authors
and their collaborators, we find that a reduced set of -operators can be used
to obtain local charges. The mechanism relies on projection properties of the
corresponding R-operators on a highest/lowest weight state of the quantum
space. It is intimately related to the ordering of the oscillators in the auxiliary
space. Furthermore, we introduce a diagrammatic language that makes these
properties manifest and the results transparent. Our approach circumvents the
paradigm of constructing the transfer matrix with equal representations in
quantum and auxiliary space and underlines the strength of the (-operator
construction.
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1. Introduction

In 1971 R J Baxter introduced the (-operator along with the celebrated Baxter
equation/T'Q relation [1] in order to calculate exactly the partition function of the
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eight-vertex model. The method of functional relations and commuting transfer matrices
originated in this work. It plays a fundamental role in the theory of integrable quantum
systems.

One of the most important developments in the field since then is the framework of
the quantum inverse scattering method (QISM), see e.g. [2]. This approach builds on the
existence of Lax operators which are solutions to the Yang-Baxter equation and can be
seen as the generating objects of the model. It employs the idea of an auxiliary space to
construct transfer matrices which define one parameter families of commuting operators,
labeled by the spectral parameter z. Here the transfer matrix built out of Lax matrices
with the same representation in quantum and auxiliary space is especially important. The
Hamiltonian, along with all other local charges of the spin-chain, arises as a logarithmic
derivative around the shift point of this particular transfer matrix [3]. As the local charges
belong to the family of commuting operators their spectrum can be obtained from the
algebraic Bethe ansatz [4].

The link between Q-operators and the Hamiltonian as well as higher local charges is
rather indirect. From the point of view of the algebraic Bethe ansatz the link is established
by applying the Hamiltonian to Bethe vectors. Following this procedure one obtains the
eigenvalues of the Hamiltonian in terms of Bethe roots [3]. By identifying the Baxter
@-functions with the polynomial which vanishes at the Bethe roots one may write the
eigenvalues of the local integrals of motion for the Heisenberg chain as [5]

k
[P Ch ) (1.1)

0zk Q(’Z - 6) z=0
The first two charges Iy and I; correspond to the momentum and the nearest-neighbor
Hamiltonian, respectively. The label 0 is the sl(2) weight of the local vacuum in the
algebraic Bethe ansatz. As mentioned in [5], where integrable spin-chains emerged in
the context of high energy QCD [6], the relation between the integrals of motion and
the @Q-functions can be extended to the operatorial level. From the viewpoint of the
analytic Bethe ansatz, expressing the relevant T-function in terms of @-functions, see
e.g. [7], in principle allows derivation of higher rank analogues of the expression (1.1)
using functional relations and analyticity properties®. Here, we neither make an ansatz
for the wave function nor use functional relations to obtain local charges. The goal of this

article is to provide a more direct connection between (Q-operators and local charges.

In a series of papers [7]-[10] Q-operators were constructed for gl(n) homogeneous
spin-chains from fundamental principles. The construction follows the quantum inverse
scattering method employing degenerate solutions of the Yang—Baxter equation as
generating objects. While the quantum space of these Lax operators is determined
by the model, the auxiliary space is infinite dimensional. It is realized by a set of
oscillator algebras as pioneered in [11]. All functional relations involving Q-operators and
transfer matrices of the type mentioned above follow from remarkable fusion/factorization
properties of the degenerate Lax operators. The hierarchy of Q)-operators is most easy to
construct. It is best illustrated using Hasse diagrams [12]. In [7] the nearest-neighbor
Hamiltonian was obtained solving the Yang-Baxter equation for the R-matrix with equal

5 To the best of our knowledge this procedure has never been carried out beyond the class of representations
known as Kirillov—Reshetikhin modules [14]. Even for this class of representations, and importantly their infinite
dimensional analogues considered in this paper, it is hard to find the general case in the literature.
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representation in quantum and auxiliary space, see also [13], while the dispersion relation
was derived for some finite dimensional representations from the functional relations of
the Q-operators and generalized transfer matrices. Since R-operators for (Q-operators are
conceptually simple solutions to the Yang—Baxter equation, it is desirable to obtain the
nearest-neighbor Hamiltonian and also higher local charges from @Q-operators avoiding
this detour.

In this article we show how local charges can be extracted directly from the Q-
operators built in [7]. No reference to the transfer matrix mentioned above is required.
This avoids the notoriously complicated construction of the transfer matrix with equal
representation in quantum and auxiliary space. In section 2 we give a brief review of
the recent construction of Q-operators for gl(n) homogeneous spin-chains and establish
some notation. In section 3 we introduce an opposite product on the auxiliary space and
obtain alternative presentations of the degenerate solutions used for the construction of
Q-operators, hereafter referred to as R-operators. Section 4 is dedicated to the extremely
important projection properties of the degenerate Lax operators. Their alternative
presentation obtained in section 3 is essential in order to fully exploit these properties.
After developing these techniques we introduce a convenient diagrammatic language for
R-operators which extends to (Q-operators in section 5. It further concerns the derivation
of the shift operator and the Hamiltonian from Q-operators. Equation (5.22) is one of the
main results of this paper. It defines the Hamiltonian density in terms of the novel R-
operators for Q-operators introduced in [7]. Section 6 offers a summary of our results and
suggestions for further studies. Furthermore, we provide several appendices where specific
examples are studied. They also contain definitions and properties of the operatorial
shifted weights frequently used in this paper.

2. Review

In a series of papers [8, 9, 7] new solutions to the Yang—Baxter equation were derived.
They allow construction of Baxter Q-operators for gl(n) invariant spin-chains. These so
called R-operators are of remarkably compact form and can be written as®

Ri(z) = ™78 Ry (z) - e 2% (2.1)
with

Ror(z) = pi(2) ][ T (z - @ — 0+ 1) . (2.2)

These equations require some explanation. The letter I denotes a subset of the set
{1,...,n} of cardinality |I|. The undotted indices take values from the set I and the
dotted ones from its conjugate I,

a,bcel, a,byeel, AB,CelUI (2.3)
The R-operators are composed out of |I| - |I| families of oscillators

[a?, &3] = 6507 (2.4)

b 7
6 For reasons that will become clear in section 3 we explicitly denote the product by .
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and gl(n) generators J3 with
5. Jb] = 05Jp — 0pJ5. (2.5)

The choice of the set I naturally identifies a subalgebra gl(/) of gl(n), i.e. the subalgebra
spanned by J{, see (2.3). The precise definition of the operators !% entering (2.2) can be
found in appendix A, they are operatorial shifted weights of the subalgebra gi(1). The
operators R are elements of a suitable extension of the product space U(gl(n))@H"D | in
the following denoted by 24;. The normalization p; is not determined by the Yang—Baxter
relation and is discussed in the following sections.

The R-operators above satisfy the Yang-Baxter equation

L(Zl) L](ZQ) . R[(ZQ — 21) == R[(ZQ — Zl) . L](ZQ) E(Zl> (26)
Here L; denotes the operator R; with fundamental representation in the gl(n) part
5a He =a
Li(z) = (Z b M ag) for T={1,...,|1|}, (2.7)
a9
with” Hy = —aja? — $650;, where summation over the dotted indices is understood. The

operator L denotes the well-known Lax matrix

200 + Jy Jg
= . . 2.
£e) ( T s Jg> (28)

Baxter @Q-operators are constructed as regularized traces over the oscillator space of
monodromies built from the operators R;. Following [7], they are given by

Q;(2) = ¥ Tryun {Di Ri(2) @ - - @ Ry(2)} with ¢ = Z $a- (2.9)

ael

Here the quantum space consists of L sites and will be denoted by V=V, ® ---® V. In
the following each V; corresponds to the same representation A of gl(n). The regulator in
(2.9) is defined as

D; = exp{—i > b hab}, (2.10)
ab

where we introduced the twist parameters ¢ ; = ¢, — ¢;, the number operator h ; =
égab‘l + 3 and the normalized trace

Try{e PPx}
Tryfeioh}

The operators Q; generate a large family of commuting operators. These operators are
functionally dependent, they satisfy certain quadratic equations known as QQ-relations.
These functional relations can be regarded as ‘off-shell’ Bethe equations. The hierarchy of
the 2" Q-operators can be graphically exposed in the Hasse diagram [12].

Trpfe 9Py} = (2.11)

" Here we only consider the minimal case discussed in [7].

doi:10.1088/1742-5468/2013/02/P02019 )
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3. Alternative presentation of R-operators: reordering oscillators

The solution (2.1) to the Yang—Baxter equation (2.6) is presented as a normal ordered
expression in the oscillators {a¢, a¢}. For reasons that will become clear in the next section
we are also interested in its expression which is anti-normal ordered in the oscillators of
the auxiliary space. The anti-normal ordered form of the R-operators can be obtained
either from the Yang—Baxter equation or directly by reordering the oscillators in (2.1). As
we will see, the approach from the Yang-Baxter equation will be very powerful to obtain
the desired expressions. However, it is not possible to fix the relative normalization by
this method.

3.1. The Yang—Baxter approach

To derive the expression for the anti-normal ordered R-operators directly from the
Yang-Baxter equation it turns out to be convenient to introduce an opposite product
on A;. Let O € A; be written as

O => a(k)®b(k), (3.1)

with a(k) € U(gl(n)) and b(k) € HUD. Given two elements of 2; the product used in (2.6)
is defined as

O1- 0y = ay(k) as(l) ® by(k) ba(1). (3.2)
k)l
We now define the opposite product o as
0100, = ay(k) a(l) @ ba(l) by (k). (3.3)
k)l

One can easily check that this product is associative. The Yang—Baxter equation (2.6) can
then be written as

L(z1) Ri(ze — 2z1) o Ly(29) = Ly(22) o Ry(2z2 — 21) L(21). (3.4)

We would like to stress that this is exactly the same equation as (2.6) only rewritten in
terms of the opposite product. Now, in analogy to [7] we substitute the ansatz

Ri(z) =% o Ror(2) o e % & (3.5)

into (3.4) and as before obtain four sets of defining relations for Rg ;. As there is some
redundancy in these equations we only present one of them,

Ro.1(2) <(z + g) Ji — J,ij) = JE Ros(2). (3.6)
Comparing this equation to [7] it is easy to recognize that Rg(z) satisfies the same
defining relation as Ra}— (z 4+ n/2). We conclude that

] o .

Ro,i(z) = p1(z) kl;[l D(z+|1)/2 - 0L +1)

doi:10.1088/1742-5468/2013/02/P02019 6
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The ratio of p; and p; entering (2.2) and (3.7) can be determined by requiring that (2.1)
and (3.5) are the same operators. This is investigated in section 3.2.
3.2. The direct approach
The R-operators (2.1) and (3.5) can be written as

- (_1>m S0 S0 a an . b
Ri(e) = 3 T ralalal al I T Ros() A 39
_ o (_]‘)m b1 bm —[J,l —dn al Qan D 51 bm
Ri(z) = Z gl R L ol it Rop(2) Syt Iy (3.9)

Here we expanded the exponentials using the definition of the products in (3.2) and (3.3),
respectively. To obtain the relation between R ; and Ry ; we have to reorder the oscillators
in one of the two expressions. We find that for each pair a%, a¢ that is reordered in (3.8)
Ro.s is ‘conjugated’ by the corresponding gl({c, ¢}) generators as

Ros— Y k— V¥ Ros(2) (JOF. (3.10)
k=0

This relation is obtained using (D.1) and does not rely on the precise form of Rq ;. After
subsequent conjugation of Ry with all |I| - |I| gl({c,¢}) subalgebra generators of gl(n)
one obtains an expression for Ry s,

Rort)= 3 I

{kcc} 0 CGI CEI

_JC e Ros(z) ] o Jékee (3.11)
celcel

This fixes the ratio of the prefactors p and p appearing in (2.2) and (3.7). Naively, (3.11)
appears rather different from (3.7). However, they must coincide since they satisfy the
same defining relations. This is explicitly demonstrated for the case of gl(2) in section C.1.
See also section 4 for a clarifying discussion on the normalization.

4. Projection properties of R-operators

The construction of local charges in the conventional QISM relies on the fundamental
R-matrix R for which the auxiliary space is the same as the quantum space at each
site. It requires the existence of a special point z, where the R-matrix reduces to the
permutation operator

R(z,) =P, (4.1)

see e.g. [2]. This property is often referred to as the regularity condition. The construction
of local charges presented here bypasses the use of the fundamental R-matrix and is based
on remarkable properties of the R-operators in (2.1) for special values of the spectral
parameter. For the example of the fundamental representation in the quantum space we
find that the operator L; given in (2.7) degenerates at two special points. Using both

doi:10.1088/1742-5468/2013/02/P02019 7
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products introduced in section 2 we find that

L, <+|é|) _ (3:) (e 0f), L (_g) - (’;‘:) o (—az at). (4.2)

Interestingly, properties similar to (4.2) appear quite naturally in the derivation of the
Baxter equation, see e.g. [15]. This in turn is strictly connected to Baxter’s original
idea [1]. The degeneration can be understood from the spectral parameter dependent
part of the R-operators, compare to (2.1) and (3.5). For the fundamental representation,
it originates from a reduction of the rank of Ry and R ; at the special points 2 = +/|1|/2
and Z = —|I|/2, respectively. Of distinguished importance are L;-operators with |I| = 1.
In this case the rank of the oscillator independent part reduces to 1.

Relations of the type (4.2) hold for any highest/lowest weight representation of
gl(n). Their precise form can be obtained via a careful analysis of the spectrum
of the shifted weight operators !ZK entering R;. However, the analysis is technically
involved. Details can be found in appendix A. In the following we restrict ourselves
to representations corresponding to rectangular Young diagrams and their infinite
dimensional generalization.

A rectangular Young diagram is labeled by two parameters (s,a) with s,a € N
according to

|

For representations of this type, also known as Kirillov-Reshetikhin modules [14], there
exist two values of the spectral parameter such that Ro; and Ro; respectively are
projectors on a highest weight state® for |I| = n —a. The number of highest /lowest weight
states for such representations is (Z) and exactly coincides with the number of operators

s (4.3)

R with |/| = n—a. Each Ry and 7~207 1 of cardinality n — a projects on a different highest
weight state depending on the elements in /. With an appropriate normalization discussed
in section 4.2 we find for |I| = n — a that

Ro.1(2) = |hws)(hws| and Ro.1(2) = |hws) (hws|. (4.4)

As a direct consequence of (4.4) we obtain that the R-operator at the special points 2
and Z can be written as

Ri(2) = % - [hws) (hws| - e and R1(2) = 27 o |hws) (hws| 0 e 2% (4.5)

As we will see, these properties carry over to non-compact representations with highest
weight that fulfil a generalized rectangularity condition, see section 4.1 and appendix A.
However, not all R-operators of a certain cardinality |I| share the projection property, see
the discussion in section C.3. It will become clear in section 5 that as a consequence of
(4.5) the Q-operators at the special points Z and Z are related by the shift operator, see
(5.13).

8 The notion of highest weight state depends on the choice of the raising generators. For rectangular
representations al(n — a)! such choices correspond to the same highest weight state.

doi:10.1088/1742-5468/2013/02/P02019 8
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4.1. Reduction

It emerged in the discussion of the fundamental representation that at special values of the
spectral parameter the operators Ry ; and R ; become projectors on a certain subspace.
In the following we show when and how this happens. The analysis is clearly connected
to the pattern of the decomposition of the gl(n) representation at a site

A — ®omg (AL AL (4.6)

under the restriction gl(n) | gl(I) @ gl(I). We are specifically interested in representations
A and a set I such that €I are bounded from above and EI are bounded from below”. The
bound is saturated for all k by the subspace (AL, Aio) of A annihilated by the action of
generators J2,

J|AL =0, (4.7)

a07 >

where the indices take values according to (2.3). The subspace (Af Al ,) is nothing but

ap?
the gl(I) @ gl(I) irreducible representation generated by the action of Jg and Ji* on the
gl(n) highest weight state'® |A). Moreover, the eigenvalues of any fixed @,f are integer
spaced. The fact that the operators R ; and 7@07 1 become projectors on this subspace for
special values of the spectral parameter is an immediate consequence of the properties of
the operators ¢f together with the pole structure of the gamma function.

The class of representations considered at the end of the previous section (here referred
to as generalized rectangular representations) have a number of remarkable features, see
appendix A. In particular, there is at least one set I such that the subspace on which R ;
and 7@07 1 project is one-dimensional. This fact is equivalent to the existence of a state such
that

TUAGAG) =0, JRIAGAG) = N GRIAGAG), AL AG) = Ar67IAG, Ag) (4.8)

for a properly chosen set I and some A7, A7, see appendix A for details. For convenience
the state defined in (4.8) will be denoted as |hws).

4.2. On the normalization of R-operators

Besides the ratio of p; and p; which is fixed by (3.11) an overall normalization of the
R-operators has not yet been chosen. In our previous analysis we determined the one-
dimensional subspace that saturates the bound of EI and EI The action of the shifted
weights on this subspace is given in appendix A. As already mentloned, for our purposes
it is convenient to choose a normalization such that (4.5) holds, i.e.

LT |I)2 =+ 1)
Ro1(2) = r1(2) A T(z—= /24 k= X) (4.9)
Ro(2) = Rr(z) T T/2 4 k= ) |
A TGN =

9 For any finite dimensional representation this is true for any set I.
10 The raising generators that enter the gl(n) highest weight condition for |A) are chosen to include JZ.

doi:10.1088/1742-5468/2013/02/P02019 9
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compare to (2.2) and (3.7). Above, k; and &; are periodic functions of /£ and (L of
period one, respectively. Furthermore, they coincide on the highest weight x;(2)|hws) =
Ri(z)|hws) = |hws) and in analogy to p; and p; are dependent by (3.11), see also
section C.1 for the example of gl(2). As discussed in section 3.1, from the study of the
Yang—Baxter equation it seems to be rather natural to fix the overall normalization such

that
- I I
Ro.; (z — %) = Ros (z + |—2|> : (4.10)

Interestingly, this relation implies the crossing equation

(R[— <z—§>) =R;" <z+%) (4.11)

an

al an*

with (ag!---ag" al;l o -al;n However, an explicit study of these

relations is left to the future.

5. Diagrammatics and local charges

As is customary, we denote R-matrices by two crossing lines. In the construction
of generalized transfer matrices each vertical line corresponds to the quantum space
associated to a spin-chain site. Likewise, horizontal lines represent the auxiliary space.
In the following R-operators generating (J-operators are depicted as

Ri(z) =
(5.1)
compare to (2.9). We will now develop a pictorial language for the R-operators, which
incorporates all the aforementioned properties, see sections 3 and 4. One of its main
advantages is that the opposite product (3.3), which might look unfamiliar in the

equations, is translated to a rather natural composition rule. It is a key ingredient to
reveal the emergence of local charges from @Q-operators.

5.1. Two multiplication rules

As discussed in section 3, it is natural to introduce two different multiplication rules.
Diagrammatically the product - can then be understood as

or-0r @“@ |

(5.2)

doi:10.1088/1742-5468/2013/02/P02019 10
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Here the oscillator (red) and U(gl(n)) (blue) components of O; are both multiplied from
the left to Oy. On the other hand, the product o is denoted by

D100, = @ '@ .
' (5.3)

Here the U(gl(n)) part of O, is also multiplied from the left to O,, but the oscillator part
is multiplied to the right. In summary, once the operators O; are written as (3.1) the order
of the factors (from left to right) in (5.2) and (5.3) is obtained by following the lines from
bottom to top.

5.2. R-operators

We will now develop a diagrammatic expression for Ry for both (2.1) and (3.5). To be
pedagogical we proceed slowly. It is clear that R; can be regarded as a composite object
of four parts, namely

QAIE fé?j . e _ fépj i
(5.4)

’RO,IZ @ 5 7%0,1: @ .
(5.5)
Rio and 7%1,0 act trivially in the auxiliary space, this is depicted by the straight line in
(5.5). The label I is suppressed in the pictures. Let us now construct the two expressions

of Ry given in (2.1) and (3.5). Using the ingredients above and the multiplication rules
(5.2) and (5.3) one finds

R;= ‘ R R;= ' .
N o M @

When reading the diagrams from bottom to top it becomes clear that the expression
on the left-hand side is normal ordered, while the expression on the right-hand side is
anti-normal ordered in the oscillator space.

5.3. Projection properties

In section 4 we argued that at the special points Z and Z some R-operators of certain
cardinality |I| decompose into an outer product, see (4.5). This fact is a consequence of
the degeneration (to rank 1) of Ry and Ry for generalized rectangular representations.

doi:10.1088/1742-5468 /2013/02/P02019 11
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In the diagrammatics introduced, the building blocks of (4.5) are denoted by

eéﬁfzmws) _ f@j’ (hwsle™ Al = féj
(5.7)

As the above expressions are ‘vector’ and ‘covector’ in the quantum space, a quantum space
operator acts on them by left and right multiplication, respectively. This is indicated by
one missing ingoing/outgoing vertical line. Using the notions of the two defined products
we see that according to (4.5) at the special points (5.6) simplifies to

Ri(2) = f@ﬁj Ri(2) = W
(5.8)

5.4. Baxter (Q-operators

Baxter @Q-operators can be built from the monodromy of the R-operators as reviewed
in section 2. Here, we will concentrate on the Q-operators constructed out of the R-
operators that satisfy condition (4.5), see section 4 for more details. Hereafter, the index
I of the chosen Q-operator will be omitted. The diagrammatics for these R-operators was
developed above. From (5.8) it is clear that the corresponding Q-operators at the special
points are given by

w- Y 55000000

(5.9)
w-2 56000000

(5.10)

Here D denotes the regulator in (2.10). For convenience we recall that in (5.9) and (5.10)
there is one ingoing and one outgomg vertical line for each spin-chain s1te. As indicated
in the picture, the auxiliary space is closed by the trace, see (2.9).

and

5.5. Shift mechanism

The homogeneous spin-chain has the property of being translationally invariant; the shift
operator defined as

UX,U'=X,1, UX, U= £(6) X1 f74() (5.11)

commutes with the Hamiltonian and all generalized transfer matrices. The operator f;(¢)
arises from the twisted boundary conditions and is explicitly given below.
The shift operator can be written as (see e.g. [16, 2])

U = fi(¢) P12P23---Pr iy, (5.12)
doi:10.1088 /1742-5468 /2013 /02 /P02019 12
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where P; ;1 acts as a permutation on sites ¢ and 7 + 1 in the quantum space. The main
result of this subsection is to show the relation

Q(2) =UQ(2). (5.13)

The label I has been omitted following the logic as in sections 5.3 and 5.4. This equation
is immediately proven once it is rewritten in the diagrammatic language developed

previously,
@
OO OO0

(5.14)

The only non-trivial step in the proof is to move the last term @ in the left-hand side of
(5.14) through the regulator @ . This is carried out using the relation

A direct computation shows that

F(@) =exp Qi el JE—Ar)+1D_ da(JE— A1) ¢ (5.16)

cel cel

This proves relation (5.13) for the large class of generalized rectangular representations.
Using (5.13) and the form of the Q-operator eigenvalues'' in terms of Bethe roots {2},

M

Q(z) = &1 H(z — %)- (5.17)

=1

The eigenvalues of the shift operators are written as

U({)) = o [[ 222 (5.18)

i 1Z—Zl

1 Criteria concerning the diagonalizability of Q-operators can be obtained following the arguments in [19]. One
finds sufficient conditions on R-operators such that the corresponding transfer matrix is a normal operator. This
analysis requires a case-by-case study as it is a property connected to the choice of quantum space. One can show
that the Q-operators considered in this section are diagonalizable.

doi:10.1088/1742-5468/2013/02/P02019 13
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The identification of the special points Z and Z is particularly important as it reveals how
higher local charges may be extracted from Q-operators. In the next subsection this is
elucidated for the case of the nearest-neighbor Hamiltonian.

5.6. The nearest-neighbor Hamiltonian and its action

We identified two special points Z and 2 at which the Q-operators are related by the shift
operator, see (5.13). This enables us to give a direct operatorial derivation of (1.1). The
main result of this section is that

OM10

H . - 5.19
Qe Qi) 19
is a nearest-neighbor Hamiltonian, i.e.
L
H=) M. (5.20)
i=1

It is of prime importance as it yields the total energy of the spin-chain and determines
the time-evolution of the system. An important step in the derivation of the Hamiltonian
(5.20) is to rewrite (5.19) as

HQ(2) =Q'(3) -UQ(3). (5.21)

Here we used (5.13). The derivation of (5.19) is a direct consequence of the truly
remarkable identity

9?00@@0

The significance of this equation is twofold. Firstly, it contains the non-trivial statement
that the right-hand side of (5.22) can be written as the left-hand side for ‘some’ H that,
as encoded in the picture, acts non-trivially only in the quantum space. This is proven
in section B.1 using the so called Sutherland equation, originally introduced to provide a
criterion for a local Hamiltonian to commute with a given transfer matrix [17], and the
special properties of the R-operator. Secondly, (5.22) defines H uniquely in terms of the
R-operators for Q-operators. The fact that this way of defining H can be particularly
convenient for practical purposes is supported by the non-trivial example of s[(2) spin —%
in section C.2.

Using (5.22), (5.21) can be shown quickly. The derivative of the Q-operators follows
immediately from the definition in (2.9) for any set [

(5.22)

L
Qi(2) =i Qu(z) + " > Tryun { DiRi(2) ® - @ RY(2) @ @Ry(2) p.  (5.23)
——

k=1 kth side
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Taking a closer look at (5.21), one finds that the right-hand side can be rearranged as a
sum of local contributions corresponding to the Hamiltonian density H. This is carried
out by pairing terms according to (5.22). Furthermore, from (5.21) it follows that

Hire = fi(@)HfH(9). (5.24)

Thus, we have shown (5.21). It is worth mentioning that an analogous and equivalent
relation to (5.22) holds for the action of H from the right, see also (B.4). On the level of
eigenvalues, upon using (5.17), (5.19) gives the famous energy formula

E<{zi}>=§( S ) (5.25)

i1 Z — Z Z — Z;

This coincides with (1.1) for £ = 1. We would like to stress again that the auxiliary and
quantum spaces of the R-operators are of different nature. The mechanism by which
the Hamiltonian density can be extracted from the R-operators is encoded in (5.22). The
explicit expression for H for generalized rectangular representations in the quantum space
is provided in section B.2. If we further restrict ourselves to certain representations one
obtains rather convenient expressions for the Hamiltonian density. This is carried out for

the fundamental representation and the s[(2) spin —% case.

6. Concluding remarks

In this paper we studied how the local charges directly enter the hierarchy of ()-operators.
Our studies provide a transparent derivation of the operatorial version of the eigenvalue
formula for the first two local charges in (1.1) by employing the recent construction of
Q-operators [7]. The method states clearly which Q-operators'? in the hierarchy can be
used to extract local charges, given a rectangular representation and their non-compact
generalizations in the quantum space A. It further implies the validity of the dispersion
relation for these representations.

We found that the Q-operators constructed in [7] provide an intuitive way to extract
local charges. The mechanism relies on special features of the novel R-operators used
as generating objects for the Q-operators. Each R-operator admits two alternative
presentations corresponding to a normal or anti-normal ordered form in the auxiliary
oscillator part. Some properties of the R-operators that are manifest in one presentation
are hidden in the other and vice versa. Following this paradigm, we identified two special
points at which the R-operators degenerate under the two products defined in section 3.1.
This fact can be traced back to the reduction of the oscillator independent part R r
and 7@07 ; to rank 1, respectively. They become projectors on a highest weight state. The
diagrammatics developed incorporates this reduction. On the level of Q-operators this
leads to the shift operator which relates the Q-operator at these two points, see (5.13).
Furthermore, it yields to the identification of the Hamiltonian density for the nearest-
neighbor Hamiltonian. Here, we would like to stress that in this method, the quantum and
auxiliary spaces are in general of different nature. An explicit formula of the Hamiltonian
density and its action in terms of the quantum space generators at the corresponding two

12 The zeros of the eigenvalues of these distinguished Q-operators are usually referred to as momentum carrying
Bethe roots.
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Ha | (Hi.Hy) | Ro@ | Ro.123)(2) |
® ° (1,0) 1 Z+3
(1. %) z z+4
G-B | 1 c+be-3)
—° ore * (0.0) z G+ E-3)
(0,0) -2 G+3)E-3)
. . -3 -2 | @+Pe-3
5-P| 2 [crhe-da-)
-L,0) [ 2:z-2) | G+3)E=-3)E-3)

Figure 1. The polynomial structure of the R-operators using the normalization
in [7].

sites was obtained. In section C.2 we show that this formulation is particularly convenient
for the non-compact s[(2) spin-chain of representation s = —1/2. Interestingly, spin-chains
of this type emerge in the study of certain four dimensional gauge theories, see e.g. [18].

The generalization to non-rectangular representations remains open. It is known
that the nearest-neighbor Hamiltonian is non-Hermitian and the transfer matrices are
non-normal operators for these representations [19]. In the example of the adjoint
representation of gl(3) it is easy to show that the oscillator independent part of the
R-operator does not reduce to rank 1 at any point of the spectral parameter z. We
have collected their polynomial structure in figure 1. It would be interesting to study
this problem more carefully to define local charges using the developed method as a
guiding principle. This might also shed some light on representations without highest- or
lowest weight states. Besides the gl(n) homogeneous spin-chains there exists a large zoo of
quantum integrable models. Clearly, it would be very interesting to study the presented
mechanism in these models. In particular, it is certainly interesting to apply the method
to the case of gl(n|m).

The Rp-operators at special values of the spectral parameter discussed in section 4
share striking similarities with so called extremal-projectors, see [20]. This connection
deserves further investigation. Besides, there is more territory to be explored in this
direction. In particular, it would be interesting to recover the R-operators used in this
paper from the formula of Khoroshkin and Tolstoy for the universal R-matrix for the
Yangian double [21], see also [22, 23] for recent applications in the case of quantum affine
algebras. This exercise, conceptually interesting on its own, would allow one to ‘dress’ the
R-operators used in this paper with their preferred normalization factors. The relation
between such factors and crossing symmetry has been briefly discussed in section 4.2.
Remarkably, it appears that proper normalizations are necessary in order to exploit the
symmetry between the two presentations of R-operators used in this work.

The program of developing a systematic approach to the theory of quantum integrable
models based on the Q-operator method has received increasing attention in recent years,
see e.g. [22, 24] and references therein. Despite constant progress a number of questions
remain open. We believe that the properties of the R-operators emphasized in this
work play an important role in this program. Furthermore, the calculation of correlation
functions in quantum integrable models remains an outstanding problem. It is believed
that the @Q-operator method plays a prominent role in this investigation [25]. Also, it is
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worth mentioning potential applications of such integrability techniques in the study of
structure constants of AN/ = 4 super Yang-Mills theory (SYM) along the lines presented
in [26] and references therein.

Recently, an intriguing connection has been observed between tree level scattering
amplitudes in A/ =4 SYM and certain contributions to the psu(2,2[4) integrable
Hamiltonian corresponding to the dilatation operator of the theory [27]. It would be
interesting to bring together the new point of view on integrable Hamiltonians (5.22)
presented in this paper with this remarkable connection. This might shed some light on
the role the degenerate representations of the Yangian algebra, crucial in the Q)-operator
construction, play in the surprisingly rich structure [28] behind scattering amplitudes of
N =4 SYM.
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Appendix A. Shifted weights

The quantities éf are important building blocks for the R-operators used in this paper.
Spelling out their characteristics is an essential step in the study of the properties of
Q-operators. The labels of /X correspond to a subset K of {1,2,...,n} and an index

k=1,2,...,|K|. For gi(n) there are n - 2"~ such ¢X. The set K identifies a natural
embedding of gl(K) in gl(n). The Casimirs of gl(K) defined as

C = Jarjez . ge  withoa; € K (A.1)

are symmetric polynomials of /X via the following formula!®:

1 o
=311 (1 + w) (65" (A.2)
keK jk kY

In general, not all ékK do commute among themselves. For a chosen path in the Hasse
diagram, i.e. a sequence of sets P =0 C {a} C {a,b} C ... C{1,2,...,n} ordered by
inclusion, all the n(n 4+ 1)/2 corresponding éﬁ( commute among themselves. In particular,
for a given irreducible representation of gl(n) there exists a basis such that all ékK
corresponding to the chosen path P act diagonally'*. This basis coincides with the famous
Gelfand-Tsetlin basis (see e.g. [30] for a nice review and collection of references). The

13We refer to the previous paper [7].
14 An interesting class of infinite dimensional representations of gl(n) for which the /& act as multiplication
operators was introduced in [29] in connection with the method of separation of variables.
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algebra gl(n) admits a large zoo of representations. In the following we consider some
specific examples in more detail. In the previous paper [7] we defined the generalized
rectangularity condition as J4J§ = aJf + Bda. In this case, using (A.1) and (A.2) for
the full set K = {1,...,n}, one can show that

Oy —i+1) i>a, (A.3)

, {(/\I—H—l) i <a,
where a is an integer with 0 < a < n, compare to (4.3), and \;, A; are in general complex
numbers related to a and 8 via o = A\; + A\r + |I], B = —Ar(A; + |I|) . The label I is
introduced for consistency with section 4.1, where |I| = n — a. Moreover, (A.3) should
be understood up to permutation of ¢;. Generalized rectangular representations have a
number of remarkable features. Among others, the tensor product of such representations
is multiplicity free, the weight diagram is multiplicity free and the corresponding L-
operator (2.8) satisfies L£(2)L(a — z) = z(a — z) + (. If we further restrict ourselves to
generalized rectangular representations with highest weight we have

EIAG AG) = GG, AG) = (r — i+ 1)IAG, Ag), (A4)
CIIAG, AG) = (G + TDIAG, Ag) = (Ar — i + D)[AG, AG), (A.5)
where the state |AL, A}) was defined in (4.8). It is worth stressing that for generalized

rectangular representations, for any set K, the shifted weight operators &K ,gf contain
the same information. This is no longer the case for more general representations.

Appendix B. Hamiltonian density

B.1. The action of the Hamiltonian density

In this appendix we explain the origin of (5.22). The starting point is the equation

[(Hi2, Ria(2)Rr2(2)] = Ria(2)Ryo(2) — Ry (2)Ria(2). (B.1)

It is a special case of Sutherland’s equation [17, 16] and ensures the commutativity of H
with Q; and the complete hierarchy of commuting operators. This equation plays a crucial
role in the construction of higher charges using the boost operator approach [31]. See
also [32] where it was applied in a systematic study of integrable long-range spin-chains.
Equation (B.1) follows from the Yang—Baxter equation

R1,2(2’1 - 22)R1,1(21)R1,2(22) = RI,Q(Zz)RI,l(Zl)Rl,z(Zl - Z?)a (B-Z)

where R, denotes the fundamental R-matrix entering (4.1) with equal representation
A of gl(n) in 1 and 2. R;; and R;o are the R-operators defined via (2.6). Expanding
(B.2) around z; = 22 = 2z and using the regularity condition (4.1) together with H; s =
P ,R ,(0) one obtains (B.1). Equation (B.1) contains the free parameter z. To prove
(5.22) we will focus on the values Z and Z. Instead of writing formulas we rely on the
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developed diagrammatics. Without loss of generality we may write

odo gy dyd

Inserting these equations in (B.1) specified to the values Z and Z one obtains

MR AR A

respectively. Observe that the operators

{% tF > FeVa, %} :F o> Fevy,

and

(B.6)

have no kernel. According to (5.7), F is associated to the oscillator horizontal line while V)
and V' correspond to the quantum space at a site and its dual. Then, (B.5) immediately
implies

where ¢ is an arbitrary constant and can be reabsorbed into the definition of H in (B.3)
and (B.4). This concludes the proof of (5.22).

B.2. A plug-in formula for the Hamiltonian density

For practical purposes we give a plug-in formula for the Hamiltonian density in this

appendix. By multiplying (5.22) in the auxiliary space with @ from the right one finds
that

Hiiv1R1i(2) Rrir1(2) = Ri(2) Ry 41(2)
— P, e |hws)i R} ;1 (2) (hws|; o e~ a0z (B.8)
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Interestingly, Ry ;(2) Rri+1(Z) can be inverted under - to obtain H; ;41. As H; ;11 does not
depend on the auxiliary space, all oscillators can be removed in a consistent way. In this
way one can write

Hiiv1Ro(2)e 70 JaJ(+1) “ROHI( ) = ROz(é) —J@I D R,()Z—Q—l(é)

= Piin Z H |m £() 4 JE(i A 1)) et

{kcc} {mcc} 0 CGI CEI

X Ro(8) Ry (2) T (E@) (I + 1))mee. (B.9)

cel,cel

In analogy to (B.8) this yields the Hamiltonian density.

Appendix C. Examples

C.1. The gl(2) case: reordering and projection in full detail

In this section we exploit the properties mentioned in the previous sections for the example
of gl(2) with |I| = {¢}, I = {c} and ¢, ¢ = 1,2. In this case R ¢} and Rg () are given by

T(z+1/2— 0% - i [(z43/2—)\)
. s RO,{C} (’Z) = K{c}<z) I )

I'(z+1/2 =) T(z+43/2— 01

see (2.1) and (3.5), respectively. We will now determine the explicit relation between p and

p as discussed in section 3.2. For the gl(2) case R; contains only one pair of oscillators.
From this it follows that the conjugation in (3.11) has to be performed only once,

(C.1)

Roe3(2) = ke (2)

o

Roe(2) = 32 () Ra ey ()" (€2)

n=0

We can sum up this expression using the relation

WL(JE =0+ E)D(JE — by + k)

JO)T(JY) = (-1 . ‘ C.3
where ¢; = E;»{a’a} = E;-{l’g}. Applying the reflection formula for Gamma functions
T
'1—2r(z) = C4
(1-2)r() = = (C4)
one finds that
~ sinm(z+1/2 — 4))sinm(z + 1/2 — {5)
Ro e} (2) = =k (2) - e .
sinm(z+1/2 —67)sinm(z+1/2 — ;)
r 3/2 — A\
E43/2- ) (C.5)

T(z+43/2 — (i)’

using Cy = J¢ + J¢ =1+ {0y + {5 and that up to permutation of £; and /5 it holds that
01 = Ae, lo = Ao — 1, see (A.3). This is exactly what we expected from the analysis of the
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Yang-Baxter equation, compare (C.1). Furthermore, it fixes the relative normalization

. sinm(z+1/2—/0)sinw(z+1/2 -/
Rey(2) = = - ey {ci) ; ety ?} ey (2)- (C.6)
sinm(z+1/2 —6;7)sinm(z+1/2 — 0;7)

Let us now look for the projection point as discussed section 4. For Z = )\C-—% one obtains'®

Ro i1 (2) = |hws) (hws|. (C.7)

On the other hand, at Z = A\, — % we find

Roep(2) = [hws) (huws|. (C3)

The total trigonometric prefactor reduces to 1. Note that this is the case for arbitrary z
on any state if the spectrum of £{ and ¢{°} is integer spaced.

C.2. The Hamiltonian action for the non-compact spin s = —% chain

In this appendix we study how the Hamiltonian density for the non-compact spin —% spin-
chain emerges in the presented formalism. This spin-chain has received special interest
in the context of the AdSs/CFT, correspondence [33]. The R-operators for gl(2) were
discussed in section C.1 in great detail. Restricting to s[(2) one finds that one of the two
R-operators can be written as

F(Z + J())

Ri(2) = e+ Ry (z) e/~ ith Ro(2) = , C.9
L(2) 0 (2) with Ro.y(£) = 1 (©9)
compare section C.1. The usual s[(2) commutation relations are
[Jo, J+] = +J4, [y, J_] = —2Jo.
Furthermore, we define the action on the module via the common relations
Jilm) =(m+1)jm+ 1), J_|m) =m|m —1), Jolm) = (m + 1)|m). (C.10)
It follows that
= T(z —|— 1/24+m) ) =
> —z + 1/2 +m)
Ro(2) = Y (1) T(m) [m)(m], (C.12)
m=1

!5 Here we take r{c}(2)|hws) = |hws).
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with 2 = — . The relevant terms in (5.22) are then given by

a™ (Imy, ma)) (Ole®2a™ ,

my mz =0
(C.13)
- h(m1>|m1 my= 7 LI —f>) (Ole™za™,
my,mp=0 =1
(C.14)
(D= ) a’”l h(mz) Iy, ma) Z% - m2+f>]<0|ea’ A"
my,mp=0 =1
(C.15)
From this we find that
mi 1
'H|m1m2) = (h(ml) + h(mg)) |m1, m2> - Z z|m1 — é, mo + €>
(=1
mo 1

Note that the constant discussed in section B.1 is fixed to be ¢ = 0.

C.3. Projection properties of R-operators for su(2,2)

It is instructive to present the structure of /X in full detail for the interesting class of
representations usually referred to as oscillator representations. These representations
represent a subfamily of the generalized rectangular representations. The gl(n) generators
take the simple form

Jg =b"bg + 705, [bs, b"] = 03, (C.17)

where v commutes with all the generators. Using purely algebraic manipulations, one can
show that for any fixed set K C {1,...,n} the corresponding set of /X is given by

Y+ NS v—1y=2,...y=|K|+1},  NK=>" 1. (C.18)

ceK

Notice that for each set K only one éf is a non-trivial operator. The spectrum of @f thus
follows from the spectrum of N¥. The spectrum of N¥ in turn depends on the choice of
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Figure C.1. Hasse diagram for su(2,2) including the shifted weights of the
subalgebra ¢! — ~ according to (C.18).

the vacuum for the oscillator algebra. After renaming the oscillators according to

v = (@, %), ba = (aa, —ba), (C.19)
where a =1,...,pand @ =p+1,...,n, the vacuum is defined by

o |0) =0 = b*0). (C.20)

The representations obtained in this way are not irreducible, the operator NALwm} g
central and its eigenvalues label an infinite family of unitary irreducible representations
of su(p,n — p). The case of su(2,2) for N4 =0 is given in figure C.1. We conclude
that only the Q-operator corresponding to the set I = {3,4} fulfils the criteria given
in section 4.1. The algebra su(2,2) is the conformal algebra in four dimensions and the
representation chosen in the example corresponds to the so called massless scalar field.

C.4. The Hamiltonian for the fundamental representation

For the fundamental representation one has a = 1, see (4.3). Therefore the R-operators
of cardinality |/| =n — 1 carry the information about the Hamiltonian. In this case the
special points are located at Z = —i—% and Z = —%, compare (4.2). The derivative L} does
not depend on the spectral parameter z and does not contain oscillators. It follows that
equation (B.8) simplifies to

Hiiv1Lri(2) Lripa(2) = (1 = Py Ly (2)L7 . (C.21)
doi:10.1088/1742—5468/2013/02/P02019 23


http://dx.doi.org/10.1088/1742-5468/2013/02/P02019

From Baxter (Q-operators to local charges

Furthermore, L, can be written as

" =1L;(2) — Li(2). (C.22)
The well-known expression for the Hamiltonian density
Hiiv1 =P —1);i11 (C.23)
follows, noting that
(1—=P);1L:(2)L1i41(2) = 0. (C.24)

Interestingly, as a consequence of (5.8), identity (C.24) holds true for any generalized
rectangular representation.

Appendix D. The reordering formula
The reordering of the oscillators in the auxiliary space we are interested in is of the form
. B . = e 0 Boe?C, (D.1)

Using e"34ame® = (a + A)" we find that

» - (_1)71 n n — 1 npRm
B=3) ~——A"BC",  B=) —A"BC" (D.2)
n=0 n=0

Here we did not specify any commutation relations among A, B, C'.
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