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The iterated Crank-Nicolson is a predictor-corrector tgm commonly used in numerical relativity for
the solution of both hyperbolic and parabolic partial diffetial equations. We here extend the recent work on
the stability of this scheme for hyperbolic equations byestigating the properties when the average between
the predicted and corrected values is made with unequahtge@gnd when the scheme is applied to a parabolic
equation. We also propose a variant of the scheme in whictotscients in the averages are swapped between
two corrections leading to systematically larger amplifamafactors and to a smaller numerical dispersion.

PACS numbers: 02.60.Cb, 02.60.Lj 02.70.Bf, 04.25.Dm,

I. INTRODUCTION resentation of the time derivative in efjl (1)
r - . ou u’?“ —um
In a recent papel [1], the stability of the iterated Crank- =21 I LOA, 2)

Nicolson (ICN) method was investigated for the solution of ot |, At

hyperbolic partial differential equations. We here extémel : .

work in ref. [1] in three different ways. Firstly, we invegtite the generic solution of[1) can be expressed as

the stability properties of the ICN method when the average ntl _  n n

between the predicted and corrected values is made with un- T =+ AL () ®

equal weights as recently used in refs.l[2, 3]. Secondly, weyhere, as usual” = u(j Az, nAt) with j andn integers,

apply the above analysis to a prototypical parabolic piaftia  andL is the finite-difference form of the differential operator

ferential equation, whose solution is also becoming imadrt (. The spatial index varies according to the order at which

within numerical relativity simulations [3]. Finally, werg- the operator is represented, with= j + 1 for a second-

pose a variant of the scheme, valid for both hyperbolic antrder accurate, first-order spatial derivativé. [ eq.[3)], or

parabolic equations, in which the coefficients in the avesag with & = j, j + 1 for a second-order accurate, second-order

are swapped between two corrections, leading to largeriamplspatial derivativedf. eq.[IB)].

fication factors and smaller numerical dispersion. The ICN scheme discussed i [1] is then the modification of
The paper is organized as follows: in Sectibis II Il wethe implicit Crank-Nicolson schemE [5] as obtained by trun-

recall the definition of the ICN as a predictor-correctornoet cating, at some point, the following infinite sequence of pre

and as @-method, respectively. In Sectiong IV dall V, on the dictions and corrections

other hand, we discuss the stability properties of#H€N in

the case of hyperbolic and parabolic equations, respégtive Waptt = uf + At L (up) (4a)
The analysis of the truncation error, numerical dissipesind Wont1/2 _ L () nt1 | om ab
dispersion is presented in Sectigd VI, while the conclusion Uy =9 wytuy ), (4b)
are collected in Sectidn VIl. n
@t =y ar L (Waptt?) | (4c)
n 1 ~n n
ll. ICNASA PREDICTOR-CORRECTOR METHOD @ +1/2 = 3 ((Q)U.j“ + uj) : (4d)
B)sn+l _ . n (2) -n+1/2
Restricting our discussion to one spatial dimension, here- uj" =uj + AL ( Uk ) ’ (4€)
after we will consider a first-order in time partial diffettex
equation of the type
Qu(z,t) _ Llu(z,t) (1) Where (M)ﬂj+1/2 is the M-th average and)a’*!,
ot o (M1 g7+ the M-th predicted and corrected solutions, re-

where/ is a generic quasi-linear partial differential operatorspectively.
which we assume to contain either first-order or secondrorde
spatial partial derivatives. Most equations in numeriegés

tivity can be recast in this form and more complex operators 1. ICNASA 6-METHOD
follow from these two cases (se¢ [4] and references therein)
After introducing a discretizatiod\z in space and\¢ in In the ICN method thel/-th average is made weighting

time, and truncating at the first order the finite-differeree-  equally the newly predicted solutié#f)a”+* and the solution
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at the “old” timelevel”u™. This, however, can be seen as thewhere§ = v[At/(2Ax)]sin kAz [12]. We recall that in a

special case of a more generic averaging of the type von Neumann stability analysis the eigenmodes of the finite-
difference equations are expressedias= &nelkiAT where
(M)gn+1/2 = g Mgntl 4 (1 — g)u™ (5) ks a real spatial wavenumber afid= &(k) is a complex

number. Stability then requires thigl = /&¢* < 1 and

where0 < 0 < 1 is a constant coefficient. Predictor-correctorin eq. [ID) this leads to an alternating pattern in the number

schemes using this type of averaging are part of a large clag jterations. More specifically, zero and one iteratiorsdi

of algorithms named-methodg€], and we refer to the ICN 5, nconditionally unstable scheme, while two and three it-

generalized in this way as to thé-fCN" method. erations a stable one provided th# < 1; four and five
A different and novel generalization of teICN can be jierations lead again to an unstable scheme and so on. Fur-

obtained byswappingthe averages between two subsequenthermore, because the scheme is second-order accurate from

corrector steps, so that in tfié-th corrector step the first iteration on, Teukolsky’s suggestion when usirgy th
ICN method for hyperbolic equations was that two iterations

(M)zn+1/2 _ (1 _ gy (M) ~n+1 n
v =1 =0) "+ ou” (6) should be usednd no morddl]. This is the number of itera-
while in the(M + 1)-th corrector step tions we will consider hereafter.
(]\J-Q—l),ﬁn-ﬁ-l/? — 9(M+1)an+1 + (1 _ e)un ) (7)

) ] ) B. Constant Weighted Averages
Note that as long as the number of iterations is even, the se-

guence in which the averages are computed is irrelevant. In- Performing the same stability analysis fof4CN is only

gﬁgdéﬁhffvtvﬁég?ﬁaigilsﬁilcnuggesazﬁ)eg;ff;u:grbﬁ'emgvr;ed %,ightly more complicated and truncating at two iteratitins
ppe i At i

X X amplification factor is found to be

weighted averages would continue to hold after the transfor
mationd — 1 — 6.

Although the properties of thé-ICN do not seem to have
been discussed before, the scheme has already found ap
cation in numerical relativity calculations, where it haseh
used with a coefficien = 0.6 in the solution of the rela-
tivistic hydrodynamics equations for ideal [2] and viscflus
ids |3]. Inthese works it was found that the use of a weighting
coefficient different from 1/2 yielded “an improved statyili
In SectM] we will show that such a choice has effectively
only increased the numerical dissipation of the scheme.

£=1-2i8 —43%0 + 8i3*0? | (11)

R»hereg is a shorthand fof?)¢. The stability condition in this
case translates into requiring that

166%0* —45%0* —20+1 <0, (12)
or, equivalently, that fof > 3/8

et i

IV. HYPERBOLIC EQUATIONS 20 20 ’

(13)

which reduces t@? < 1 whenf = 1/2. Because the con-
dition (I3) must hold for every wavenumbkr we consider
hereafter3 = vAt/(2Ax) and show in the left panel of Fifgl 1
ou ou the region of stability in thed, 5) plane. The thick solid lines
% e, =0 (8)  mark the limit at which|¢| = 1, while the dotted contours
indicate the different values of the amplification factothe
where v is a constant coefficient. A second-order accu-stable region.

To discuss the properties of thAdCN we consider as model
hyperbolic equation the one-dimensional advection eqnati

rate finite-difference representation of the right-haiutd ©f A number of comments are worth making. Firstly, although
eq. [) is then easy to derive and has the form the condition[[IB) allows for weighting coefficierits< 1/2,
Ut thed-ICN is stable only if¢ > 1/2. This is a known property
L(uly,) = % + O(Az?) . (9)  of the weighted Crank-Nicolson scheme [6] and inherited by

the -ICN. In essence, whef # 1/2 spurious solutions ap-
pear in the method|[7] and these solutions are linearly biesta
if & < 1/2, while they are stable faf > 1/2 [8] (An alter-
native and simpler explanation is also presented in §elt. VI
. - . For this reason we have shaded the area With 1/2 in the
Using a von Neumann _stab|I|ty. analysis, Teukolsky h.a%eft panel of Fig[l to exclude it from the stability regiores
shown that for a hyperbolic equation the ICN scheme withy g1y the use of a weighting coefficiet- 1,/2 will still lead
M iterations has an amplification factar [1] to a stable scheme provided that the timestep, (3) is suit-
M ably decreased. Finally, as the contour lines in the lefepan
(Mg —14+2 Z (=ip)" (10)  of Fig. clearly show, the amplification factor can be very
sensitive ord.

A. Constant Arithmetic Averages

n=1



FIG. 1: Left panel: stability region in the €, 3) plane for the two-iterationg-ICN for the advection equatiofil(8). Thick solid lines mark
the limit at which|¢| = 1, while the dotted contours indicate the values of the anaglifon factor in the stable region. The shaded area for
6 < 1/2 refers to solutions that are linearly unstable Right panel:same as in the left panel but when the averages between tveztions

are swapped. Note that the amplification factor in this ca$esss sensitive ofiand always larger than the corresponding amplificatiorofact

in the left panel.

C. Swapped weighted aver ages

The calculation of the stability of thé-ICN when the

V. PARABOLIC EQUATIONS

We next extend the stability analysis of th¢CN to the a

weighted averages are swapped as in &§is. (6)(&nd (7) is somgarabolic partial differential equation and use as modeheq
what more involved; after some lengthy but straightforwardtion the one-dimensional diffusion equation

algebra we find the amplification factor to be
€ = 1-2if—48%0 +8iB°0(1 —0) , (14)

which differs from [I1) only in that thé? coefficient of the
O(3%) termis replaced bg(1 — 6). The stability requirement
€| < 1is now expressed as

163%0%(1 — 0)> —45%0(2 —30) =20 +1<0. (15)

Solving the condition[{1I5) with respect thamounts then to
requiring that

. V2 — 30— /40 — 1162 + 863

2(1 — 0)Vv20 ’ (162)
V2 — 30 + /40 — 1162 + 863
p< 2(1—6)v/260 ’ (16b)

which is again equivalent t6> < 1 whenf = 1/2. The

corresponding region of stability is shown in right panel of

2
ou _ pou =0, a7
ot Ox?
whereD is a constant coefficient which must be positive for
the equation to be well-posed.

Parabolic equations are commonly solved using implicit
methods such as the Crank-Nicolson, which is uncondition-
ally stable and thus removes the constraints on the timestep
li.e., At ~ O(Az?)] imposed by explicit schemes][9].

In multidimensional calculations, however, or when the set
of equations is of mixed hyperbolic-parabolic type, imjblic
schemes can be cumbersome to implement since the resulting
system of algebraic equations does no longer have simple and
tridiagonal matrices of coefficients. In this case, the ncost
veniente choice may be to use an explicit method such as the
ICN.

Also in this case, the first step in our analysis is the deriva-

Fig.[ and should be compared with left panel of the samdion of a finite-difference representation of the right-tieside
Figure. Note that the average-swapping has now considerabPf €d- [1T) which, at second-order, has the form

increased the amplification factor, which is always largant
the corresponding one for tl#elCN in the relevant region of
stability (.e.,for 1/2 < 6 <1 [13]).

u? ;= 2u +ul_
L(u};4,) = A A:vJ? i1 + O(Az?) . (18)




A. Constant Arithmetic Averages C. Swapped Weighted Averages

Next, we consider first the case with constant arithmetic av- After some lengthy algebra the calculation of the amplifi-
eragesi(e.,0 = 1/2) and the expression for the amplification cation factor for thef-ICN method with swapped weighted

factor afterM-iterations is then purely real and given by averages yields
E=1-2y+47%0 - 8y°0(1 - 0) , (24)
Mg =1+2 Z =", (19)  and stability is then given by
—1<1-294+4y20-8%0(1—0)<1. (25

wherey = (2DAt/Ax?)sin®(kAxz/2). Requiring now for

" . . Note that none of the two inequalities is always true and in
stability thaty/£2 < 1 and bearing in mind that N y

order to obtain analytical expressions for the stable regie
solve the conditior{35) with respectficand obtain

M
1<y (=" <0, fory<1, (20 o 2 =1+ VA —d£5 (262)
n=0 — 4,7 )
we find that the scheme is stable forynumber of iterations g<12r=1) - VY (43 =492 + 57— 4) (26b)
provided thaty < 1. Furthermore, because the scheme is - 4~2 ’
second-order accurate from the first iteration on, our ssigge Y2y —1) + /7 (4% — 472 + 57 — 4)

tion when using the ICN method for parabolic equations is 0 > 1 (26c¢)
that one iteration should be usadd no moreln this case, in i
particular, the ICN method coincides with a FTCS scheine [9]The resulting stable region fein KAz = 1 is plotted in the
Note that the stability condition < 1 introduces again a right panel of FiglP and seems to suggest that arbitranitela
constraint on the timestep that musthe < Az?/(2D) and  values ofy could be considered wheh 2 0.6 It should be
thusO(Az?). As aresult and at least in this respect, the ICNnoted, however, that the amplification factor is also seyere
method does not seem to offer any advantage over other exeduced as larger values pfare used and indeed it is essen-

plicit methods for the solution of a parabolic equatior [14] tially zero in the limit — 1.
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VI. TRUNCATION ERROR, DISSIPATION AND
B. Constant Weighted Averages DISPERSION

We next consider the stability of tieICN method but fo- Although not often appreciated, ti#elCN method is only
cus our attention on a two-iterations scheme since thisais thfirst-order accurate in time as an obvious consequence of the
number of iterations needed in the solution of the parabolidirst-order approximation in the time derivativef[ eq. [2)].
part in a mixed hyperbolic-parabolic equation when, for in-However, this is not true # = 1/2, in which case the method
stance, operator-splitting techniques are adopted [9thilm  becomes second-order in both space and time.
case, the amplification factor is again purely real and giwen ~ To appreciate this in the case of the advection equéfion (8),
we report the finite-difference expressions for the time and

€ = 1—2y+47%0 — 8v°6%, (21)  spatial derivatives in eql¥(8), writing out explicitly theeffi-
cients of theD(At) andO(Az?) terms
so that stability is achieved if ntl _ om 2
%Aiu]:% 1‘22 Arro(ar) . @)
0<v(1—20y+46%2) < 1. (22) t t 20t
u 1 Un_l ou 190%u
Sincey > 0 by definition, the left inequality is always satis- Hsz] =9z, 6o A +0(Az") .

fied, while the right one is true provided that, for< 4/3, (28)

The resulting local truncation error is then

7= (4 —=3y) v+ /(4 = 3y)

<< —— "= 23
42 - 4~2 @3) e = (L), OPu v Ou A:c2
T 2 9xdt|, 6 9a®
The stability region described by the conditidnd(23) is 9w 1 &u
shown in the left panel of Fidl 2 fatin kAz = 1 and illus- —v*0? 928 At? — s At?
J n,

trates that the scheme is stable for any vélue # < 1, and
also that slightly larger timesteps can be taken when0.2. +0 (A, Az?) | (29)



FIG. 2: Left panel: stability region in the, v) plane for the two-iterationg-ICN for the diffusion equatior{17). Thick solid lines mate
limit at which¢2 = 1, while the dotted contours indicate the values of the anspliibn factor in the stable regioRight panel:same as in the
left panel but with swapping the averages between two ctore

clearly indicating that thé-ICN is generally only first-order with Az?/(vAt) < 1/2, so that the leading error-term [{29)
accurate in time, becoming second-ordefi= 1/2. The becomes agai®(At?, Az?). A prescription of the typd{31)

truncation error is also useful to quantify the numericaldi may be theoptimalone for thef-ICN method as it provides a
sipation and dispersion inherent to th&¢CN method. Using small amount of numerical dissipati@md reduces the trun-

eq. [B) to replace the time derivative with a spatial one, incation error.

fact, eq. [2ZP) shows that th2ICN introduces a dissipative The truncation errof{29) also indicates that thECN in-

term proportional t@?u/dz% and with coefficient troduces a dispersive term proportionabttu/92° given by
1
€adv = (9 — —> v2AL . (30) 1 1
2 (= -0 _ SAL? 32
Xadv (6 2452 > v ) ( )

In other words, thed-ICN is intrinsically dissipative, with _ . . _
a dissipation coefficient that is genericalp(At) and and responsible, for instance, for different propagatjmeesis
O(At3, Az3) only whend = 1/2. Furthermore, it is now of the Fourier modes in the initial date(,, phase drifts).
apparent why must be larger or equal ty'2; any choice dif- Allwhat discussed so far for thHeICN scheme continues to
ferent from this, in fact, would change the sigregf,, leading ~ hold also when the averages are swapped, the only difference
to an ill-posed equation with exponentially growing sadas ~ being that the dispersive contribution is instead given by
[cf. eq. [ID)]. 3 . _ ) )
Expression [[30) also clarifies the behaviour found in Yady = <_ —0+0%—
refs. [2,[8]. Since stability in a numerical scheme is either 6 2432
gained or lost but cannot be “improved”, the use of a weight- . . . .
ing coefficientd > 1/2 (and of a suitable timestep) has sim- &ndefctfl:leref(f)re zrlnaller fcﬁr > 1/2, making this variant to
ply the effect of increasing the numerical dissipation of th eo-1LIN preterable overall. . :
scheme. Of course, this is often a desirable feature to ssppr Similar calculations can be carried out also for the parabol
the grthh of instab,ilities, as in the case of the Lax-Frigius equation[(Tl7) and the local truncation error in this case is
scheme, whose numerical dissipation stabilizes the oikerw 1 9
unconditionally unstable FTCS schere [9]. e = (9 — 5) D EIpe
An alternative route to a second-order, moderately dissipa *

tive scheme is to choose indicating that mathematically th&ICN is again only first-
1 Ax? order accurate in time, with second-order accuracy being
B + WAL (31)  recovered ford = 1/2. However, stability requires that

) BAL (33)

At+ 0O (A, Az%) ,  (34)

n,j

9:
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presence of negative values to the left of the maximum. These
dispersion errors can be reduced if larger values of thehteig
ing coefficients are used as indicated by the short-dashéd an
long-dashed lines referring tb = 0.6 andd = 0.8, respec-
tively. This improvement, however, also comes with a larger
dissipation and truncation error (as mentioned in $edtthd,
system is just first-order in time with > 1/2) [15]. This is
particularly evident when considering the evolution of the
norms of the solutions as reported in the lower panel of[fig. 3
It is interesting to note that fa@t = 0.8 the Ly, norm of the so-
lution has been reduced of about 25% after 10 crossing times,
while this decrease is less than 1% wlies 1/2.

Finally, the two small insets in Fifl 3 offer a comparison in
the solutions fo# = 0.6 when the coefficients in the averages
are either held constant (short-dashed lines) or swapped be
tween two subsequent corrector steps (dot-dashed linds). A
though the difference is rather small for the selected spaof
rameters, it is evident that the swapping of the coefficibats
the effect of decreasing both the dispersion (the dot-dhshe
line in the upper inset has a smaller “delay”) and the diffasi
(at any given time the dot-dashed line in the lower inset has a

larger value).
FIG. 3: Upper panel: Solution of the advection equatiofl (8) us-
ing the#-1ICN method and shown after 10 crossing times. Different
curves refer to either the analytic solution or to the nuo@rones VIl
with different weighting coefficients. The small inset,tewsd, shows
the smaller diffusion and dispersion obtained when theames are
swapped (see main text for detailt)ower panel:L, norms of the
solutions in the upper panel plotted as a function of time.

CONCLUSIONS

We have extended the recent work on the properties of the
ICN scheme for hyperbolic equations by investigating the st
bility properties when itis treated a®amethodj.e.,when the
average between the predicted and corrected values is made
At = O (Az?) (cf. Sect[\A) and thus the truncation error with unequal weights. In addition we have studied the proper
is effectivelye, = O (Az?) for all of the allowed values ties of thed-ICN method for a model parabolic equation and
0<60<1. proposed a variant of the scheme, valid for both hyperbolic

Finally, using eq.[(T7) to the replace the time derivativeand parabolic equations, in which the unequal coefficiemts c
in (34) shows that thé-ICN for a parabolic equation has an efficients in the averages are swapped between two subgequen
additional dissipative term proportional &u/d2* with co-  corrector steps. This novel approach leads to amplification
efficient factors that are systematically larger than those foundhén t

0-1CN method and to a smaller numerical dispersion.
1 2
E€Qiff = (9—5)1) At ,
which is again zero only fof = 1/2.

Overall, our results indicate that although generally only
As a purely representative example we show in Hg. 3 th

first-order accurate in time, tleICN method is a flexible ap-
proach to the time-integration of partial differential etjons,

application of thed-ICN method for the solution of the ad-

vection equation[{8) withv = 1 and3 = 0.6 (cf. Fig. ).

articularly when these are of mixed hyperbolic-parabolic
The numerical domain has lengtt) and was covered with

ype. Because the use of unequal coefficients in the average
provides a small but nonzero amount of numerical dissipa-

200 equally spaced gridpoints. The initial solution, gil®n

a Gaussian centred at = 0.5 and with variance.1, was

tion, this could prove useful in numerical relativity cdlau
tions which may suffer from the development of numerical
evolved for10 crossing times using periodic boundary condi-
tions. Different curves in the upper panel refer to either th

instabilities and for which lower-order evolution scheraes
an acceptable compromise between accuracy and stability.
analytic solution at the final time (dotted line) or to the nu-
merical solutions as obtained with different weighting fiiee

cients. Note that already with= 1/2 (solid line) the numer-
ical solution is slightly diffused but suffers from considble Itis a pleasure to thank S. Teukolsky and I. Hawke for use-
dispersion as apparent from the considerable “delay” aad thful comments.
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Note that we defing? to have the opposite sign of the corre-
sponding quantity defined in ref![1]

Of course, when the order of the swapped averages istau/e
from the one shown in eqd](6[3(7) the stability region will
change intd) < 6 < 1/2.

Note that also the Dufort-Frankel methad|[10], usuadly-
scribed as unconditionally stable, does not escape thetipe
constraintAt ~ O(Az?) when a consistent second-order ac-
curate solution is needed [11].

Note that for all values of > 1/2 a smaller dispersion can be
obtained for smaller values ¢f and hence of\¢; cf. egs. [3R)

and [33)



