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Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity
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The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity
for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent
work on the stability of this scheme for hyperbolic equations by investigating the properties when the
average between the predicted and corrected values is made with unequal weights and when the scheme is
applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the
averages are swapped between two corrections leading to systematically larger amplification factors and
to a smaller numerical dispersion.
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I. INTRODUCTION

In a recent paper [1], the stability of the iterated Crank-
Nicolson (ICN) method was investigated for the solution of
hyperbolic partial differential equations. We here extend
the work in Ref. [1] in three different ways. First, we
investigate the stability properties of the ICN method
when the average between the predicted and corrected
values is made with unequal weights as recently used in
Refs. [2,3]. Second, we apply the above analysis to a
prototypical parabolic partial differential equation, whose
solution is also becoming important within numerical rela-
tivity simulations [3]. Finally, we propose a variant of the
scheme, valid for both hyperbolic and parabolic equations,
in which the coefficients in the averages are swapped
between two corrections, leading to larger amplification
factors and smaller numerical dispersion.

The paper is organized as follows: in Secs. II and III we
recall the definition of the ICN as a predictor-corrector
method and as a �-method, respectively. In Secs. IV and V,
on the other hand, we discuss the stability properties of the
�-ICN in the case of hyperbolic and parabolic equations,
respectively. The analysis of the truncation error, numeri-
cal dissipation, and dispersion is presented in Sec. VI,
while the conclusions are collected in Sec. VII.

II. ICN AS A PREDICTOR-CORRECTOR METHOD

Restricting our discussion to one spatial dimension,
hereafter we will consider a first-order in time partial
differential equation of the type

@u�x; t�
@t

� L�u�x; t��; (1)

where L is a generic quasilinear partial differential opera-
tor which we assume to contain either first-order or second-
order spatial partial derivatives. Most equations in numeri-
cal relativity can be recast in this form and more complex
06=73(4)=044001(7)$23.00 044001
operators follow from these two cases (see [4] and refer-
ences therein).

After introducing a discretization �x in space and �t in
time, and truncating at the first order the finite-difference
representation of the time derivative in Eq. (1),

@u
@t

��������n;j
�
un�1
j � unj

�t
�O��t�; (2)

the generic solution of (1) can be expressed as

un�1
j � unj ��tL�unk�; (3)

where, as usual, unj � u�j�x; n�t� with j and n integers,
and L is the finite-difference form of the differential op-
erator L. The spatial index k varies according to the order
at which the operator is represented, with k � j� 1 for
a second-order accurate, first-order spatial derivative
[cf. Eq. (9)], or with k � j; j� 1 for a second-order accu-
rate, second-order spatial derivative [cf. Eq. (18)].

The ICN scheme discussed in [1] is then the modifica-
tion of the implicit Crank-Nicolson scheme [5] as obtained
by truncating, at some point, the following infinite se-
quence of predictions and corrections:

�1�~un�1
j � unj ��tL�unk�; (4a)

�1� �un�1=2
j � 1

2�
�1�~un�1

j � unj �; (4b)

�2�~un�1
j � unj ��tL��1� �un�1=2

k �; (4c)

�2� �un�1=2
j � 1

2�
�2�~un�1

j � unj �; (4d)

�3�~un�1
j � unj ��tL��2� �un�1=2

k �; (4e)

..

.

where �M� �un�1=2
j is the Mth average and �M�~un�1

j , �M�1�~un�1
j

the Mth predicted and corrected solutions, respectively.
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III. ICN AS A �-METHOD

In the ICN method the Mth average is made weighting
equally the newly predicted solution �M�~un�1

j and the solu-
tion at the ‘‘old’’ time level un. This, however, can be seen
as the special case of a more generic averaging of the type

�M� �un�1=2
j � ��M�~un�1 � �1� ��un; (5)

where 0< �< 1 is a constant coefficient. Predictor-
corrector schemes using this type of averaging are part of
a large class of algorithms named �-methods [6], and we
refer to the ICN generalized in this way as to the ‘‘�-ICN’’
method.

A different and novel generalization of the �-ICN can be
obtained by swapping the averages between two subse-
quent corrector steps, so that in the Mth corrector step

�M� �un�1=2
j � �1� ���M�~un�1 � �un; (6)

while in the �M� 1�th corrector step

�M�1� �un�1=2
j � ��M�1�~un�1 � �1� ��un: (7)

Note that, as long as the number of iterations is even, the
sequence in which the averages are computed is irrelevant.
Indeed, the weights � and 1� � in Eqs. (6) and (7) could
be inverted and all of the relations discussed hereafter for
the swapped weighted averages would continue to hold
after the transformation �! 1� �.

Although the properties of the �-ICN do not seem to
have been discussed before, the scheme has already found
application in numerical relativity calculations, where it
has been used with a coefficient � � 0:6 in the solution of
the relativistic hydrodynamics equations for ideal [2] and
viscous fluids [3]. In these works it was found that the use
of a weighting coefficient different from 1=2 yielded ‘‘an
improved stability.’’ In Sec. VI we will show that such a
choice has effectively only increased the numerical dissi-
pation of the scheme.
1Note that we define � to have the opposite sign of the
corresponding quantity defined in Ref. [1].
IV. HYPERBOLIC EQUATIONS

To discuss the properties of the �-ICN we consider as a
model hyperbolic equation the one-dimensional advection
equation

@u
@t
� v

@u
@x
� 0; (8)

where v is a constant coefficient. A second-order accurate
finite-difference representation of the right-hand side of
Eq. (8) is then easy to derive and has the form

L �unj�1� �
unj�1 � u

n
j�1

2�x
�O��x2�: (9)
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A. Constant arithmetic averages

Using a von Neumann stability analysis, Teukolsky has
shown that for a hyperbolic equation the ICN scheme with
M iterations has an amplification factor [1]

�M�� � 1� 2
XM
n�1

��i��n; (10)

where � � v��t=�2�x�	 sink�x.1 We recall that in a von
Neumann stability analysis the eigenmodes of the finite-
difference equations are expressed as unj � �neikj�x, where
k is a real spatial wave number and � � ��k� is a complex
number. Stability then requires that j�j �

��������
��


p
� 1 and in

Eq. (10) this leads to an alternating pattern in the number of
iterations. More specifically, zero and one iterations yield
an unconditionally unstable scheme, while two and three
iterations a stable one provided that �2 � 1; four and five
iterations lead again to an unstable scheme and so on.
Furthermore, because the scheme is second-order accurate
from the first iteration on, Teukolsky’s suggestion when
using the ICN method for hyperbolic equations was that
two iterations should be used and no more [1]. This is the
number of iterations we will consider hereafter.

B. Constant weighted averages

Performing the same stability analysis for a �-ICN is
only slightly more complicated and truncating at two iter-
ations the amplification factor is found to be

� � 1� 2i�� 4�2�� 8i�3�2; (11)

where � is a shorthand for �2��. The stability condition in
this case translates into requiring that

16�4�4 � 4�2�2 � 2�� 1 � 0; (12)

or, equivalently, that for � > 3=8

��������������������������
1
2�

��������������
2�� 3

4

qr

2�

� � �

��������������������������
1
2�

��������������
2�� 3

4

qr

2�
; (13)

which reduces to �2 � 1 when � � 1=2. Because the
condition (13) must hold for every wave number k, we
consider hereafter � � v�t=�2�x� and show in the left
panel of Fig. 1 the region of stability in the (�; �) plane.
The thick solid lines mark the limit at which j�j � 1, while
the dotted contours indicate the different values of the
amplification factor in the stable region.

A number of comments are worth making. First,
although the condition (13) allows for weighting coeffi-
cients � < 1=2, the �-ICN is stable only if � � 1=2. This is
a known property of the weighted Crank-Nicolson scheme
[6] and inherited by the �-ICN. In essence, when � � 1=2
-2



FIG. 1. Left panel: Stability region in the (�;�) plane for the two iterations �-ICN for the advection equation (8). Thick solid lines
mark the limit at which j�j � 1, while the dotted contours indicate the values of the amplification factor in the stable region. The
shaded area for � < 1=2 refers to solutions that are linearly unstable [8]. Right panel: Same as in the left panel but when the averages
between two corrections are swapped. Note that the amplification factor in this case is less sensitive on � and always larger than the
corresponding amplification factor in the left panel.

2Of course, when the order of the swapped averages is inverted
from the one shown in Eqs. (6) and (7) the stability region will
change into 0 � � � 1=2.
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spurious solutions appear in the method [7] and these
solutions are linearly unstable if � < 1=2, while they are
stable for � > 1=2 [8] (an alternative and simpler explana-
tion is also presented in Sec. VI). For this reason we have
shaded the area with � < 1=2 in the left panel of Fig. 1 to
exclude it from the stability region. Second, the use of a
weighting coefficient � > 1=2 will still lead to a stable
scheme provided that the time step (i.e., �) is suitably
decreased. Finally, as the contour lines in the left panel
of Fig. 1 clearly show, the amplification factor can be very
sensitive on �.

C. Swapped weighted averages

The calculation of the stability of the �-ICN when the
weighted averages are swapped as in Eqs. (6) and (7) is
somewhat more involved; after some lengthy but straight-
forward algebra we find the amplification factor to be

� � 1� 2i�� 4�2�� 8i�3��1� ��; (14)

which differs from (11) only in that the �2 coefficient of the
O��3� term is replaced by ��1� ��. The stability require-
ment j�j � 1 is now expressed as

16�4�2�1� ��2 � 4�2��2� 3�� � 2�� 1 � 0: (15)

Solving the condition (15) with respect to � amounts then
to requiring that
044001
� �

������������������������������������������������������������
2� 3��

������������������������������������
4�� 11�2 � 8�3
pp

2�1� ��
������
2�
p ; (16a)

� �

������������������������������������������������������������
2� 3��

������������������������������������
4�� 11�2 � 8�3
pp

2�1� ��
������
2�
p ; (16b)

which is again equivalent to �2 � 1 when � � 1=2. The
corresponding region of stability is shown in the right panel
of Fig. 1 and should be compared with the left panel of the
same Figure. Note that the average swapping has now
considerably increased the amplification factor, which is
always larger than the corresponding one for the �-ICN in
the relevant region of stability (i.e., for 1=2 � � � 12).
V. PARABOLIC EQUATIONS

We next extend the stability analysis of the �-ICN to the
parabolic partial differential equation and use as a model
equation the one-dimensional diffusion equation

@u
@t
�D

@2u

@x2 � 0; (17)

where D is a constant coefficient which must be positive
for the equation to be well posed.
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Parabolic equations are commonly solved using implicit
methods such as the Crank-Nicolson, which is uncondi-
tionally stable and thus removes the constraints on the time
step [i.e., �t 
 O��x2�] imposed by explicit schemes [9].
In multidimensional calculations, however, or when the set
of equations is of mixed hyperbolic-parabolic type, im-
plicit schemes can be cumbersome to implement since the
resulting system of algebraic equations does no longer
have simple and tridiagonal matrices of coefficients. In
this case, the most convenient choice may be to use an
explicit method such as the ICN.

Also in this case, the first step in our analysis is the
derivation of a finite-difference representation of the right-
hand-side of Eq. (17) which, at second order, has the form

L �unj;j�1� �
unj�1 � 2unj � u

n
j�1

�x2 �O��x2�: (18)
A. Constant arithmetic averages

Next, we consider first the case with constant arithmetic
averages (i.e., � � 1=2) and the expression for the ampli-
fication factor after M-iterations is then purely real and
given by

�M�� � 1� 2
XM
n�1

����n; (19)

where � � �2D�t=�x2�sin2�k�x=2�. Requiring now for

stability that
�����
�2

p
� 1 and bearing in mind that

�1 �
XM
n�0

����n�1 � 0; for � � 1; (20)

we find that the scheme is stable for any number of
iterations provided that � � 1. Furthermore, because the
scheme is second-order accurate from the first iteration on,
our suggestion when using the ICN method for parabolic
equations is that one iteration should be used and no more.
In this case, in particular, the ICN method coincides with a
FTCS scheme [9].

Note that the stability condition � � 1 introduces again
a constraint on the time step that must be �t � �x2=�2D�
and thus O��x2�. As a result and at least in this respect, the
ICN method does not seem to offer any advantage over
other explicit methods for the solution of a parabolic
equation.3

B. Constant weighted averages

We next consider the stability of the �-ICN method but
focus our attention on a two-iterations scheme since this is
3Note that also the Dufort-Frankel method [10], usually de-
scribed as unconditionally stable, does not escape the time step
constraint �t 
 O��x2� when a consistent second-order accu-
rate solution is needed [11].

044001
the number of iterations needed in the solution of the
parabolic part in a mixed hyperbolic-parabolic equation
when, for instance, operator-splitting techniques are
adopted [9]. In this case, the amplification factor is again
purely real and given by

� � 1� 2�� 4�2�� 8�3�2; (21)

so that stability is achieved if

0 � ��1� 2��� 4�2�2� � 1: (22)

Since � > 0 by definition, the left inequality is always
satisfied, while the right one is true provided that, for � <
4=3,

��
����������������������
��4� 3��

p
4�2

� � �
��

����������������������
��4� 3��

p
4�2 : (23)

The stability region described by the condition (23) is
shown in the left panel of Fig. 2 for sink�x � 1 and
illustrates that the scheme is stable for any value 0 � � �
1, and also that slightly larger time steps can be taken when
� ’ 0:2.
C. Swapped weighted averages

After some lengthy algebra, the calculation of the am-
plification factor for the �-ICN method with swapped
weighted averages yields

� � 1� 2�� 4�2�� 8�3��1� ��; (24)

and stability is then given by

�1 � 1� 2�� 4�2�� 8�3��1� �� � 1: (25)

Note that neither of the two inequalities is always true and
in order to obtain analytical expressions for the stable
region we solve the condition (25) with respect to � and
obtain

� �
2�� 1�

�����������������������������
4�2 � 4�� 5

p
4�

; (26a)

� �
��2�� 1� �

��������������������������������������������������
��4�3 � 4�2 � 5�� 4�

p
4�2 ; (26b)

� �
��2�� 1� �

��������������������������������������������������
��4�3 � 4�2 � 5�� 4�

p
4�2 : (26c)

The resulting stable region for sink�x � 1 is plotted in the
right panel of Fig. 2 and seems to suggest that arbitrarily
large values of � could be considered when � * 0:6 It
should be noted, however, that the amplification factor is
also severely reduced as larger values of � are used and
indeed it is essentially zero in the limit �! 1.
-4



FIG. 2. Left panel: Stability region in the (�; �) plane for the two iterations �-ICN for the diffusion equation (17). Thick solid lines
mark the limit at which �2 � 1, while the dotted contours indicate the values of the amplification factor in the stable region. Right
panel: Same as in the left panel but with swapping the averages between two corrections.
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VI. TRUNCATION ERROR, DISSIPATION, AND
DISPERSION

Although not often appreciated, the �-ICN method is
only first-order accurate in time as an obvious consequence
of the first-order approximation in the time derivative
[cf. Eq. (2)]. However, this is not true if � � 1=2, in which
case the method becomes second order in both space and
time.

To appreciate this in the case of the advection equation
(6), we report the finite-difference expressions for the time
and spatial derivatives in Eq. (8), writing out explicitly the
coefficients of the O��t� and O��x2� terms

un�1
j � unj

�t
�
@u
@t

��������n;j
�

1

2

@2u

@t2

��������n;j
�t�O��t2�; (27)

unj�1 � u
n
j�1

2�x
�
@u
@x

��������n;j
�

1

6

@3u

@x3

��������n;j
�x2 �O��x4�:

(28)

The resulting local truncation error is then

eT �

�
1

2
� �

�
v
@2u
@x@t

��������n;j
�t�

v
6

@3u

@x3

��������n;j
�x2

� v3�2 @
3u

@x3

��������n;j
�t2 �

1

6

@3u

@t3

��������n;j
�t2 �O��t3;�x3�;

(29)

clearly indicating that the �-ICN is generally only first-
044001
order accurate in time, becoming second order if � � 1=2.
The truncation error is also useful to quantify the numerical
dissipation and dispersion inherent to the �-ICN method.
Using Eq. (8) to replace the time derivative with a spatial
one, in fact, Eq. (29) shows that the �-ICN introduces a
dissipative term proportional to @2u=@x2 and with coeffi-
cient

�adv � ���
1
2�v

2�t: (30)

In other words, the �-ICN is intrinsically dissipative, with a
dissipation coefficient that is generically O��t� and
O��t3;�x3� only when � � 1=2. Furthermore, it is now
apparent why � must be larger or equal to 1=2; any choice
different from this, in fact, would change the sign of �adv,
leading to an ill-posed equation with exponentially grow-
ing solutions [cf. Eq. (17)].

Expression (30) also clarifies the behavior found in
Refs. [2,3]. Since stability in a numerical scheme is either
gained or lost but cannot be ‘‘improved,’’ the use of a
weighting coefficient � > 1=2 (and of a suitable time
step) has simply the effect of increasing the numerical
dissipation of the scheme. Of course, this is often a desir-
able feature to suppress the growth of instabilities, as in the
case of the Lax-Friedrichs scheme, whose numerical dis-
sipation stabilizes the otherwise unconditionally unstable
FTCS scheme [9].

An alternative route to a second-order, moderately dis-
sipative scheme is to choose
-5



FIG. 3. Upper panel: Solution of the advection equation (8)
using the �-ICN method and shown after 10 crossing times.
Different curves refer to either the analytic solution or to the
numerical ones with different weighting coefficients. The small
inset, instead, shows the smaller diffusion and dispersion ob-
tained when the averages are swapped (see main text for details).
Lower panel: L2 norms of the solutions in the upper panel plotted
as a function of time.

4Note that for all values of � � 1=2 a smaller dispersion can
be obtained for smaller values of � and hence of �t; cf. Eqs. (32)
and (33).
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� �
1

2
�

�x2

v�t
; (31)

with �x2=�v�t� � 1=2, so that the leading error term in
(29) becomes again O��t2;�x2�. A prescription of the type
(31) may be the optimal one for the �-ICN method as it
provides a small amount of numerical dissipation and
reduces the truncation error.

The truncation error (29) also indicates that the �-ICN
introduces a dispersive term proportional to @3u=@x3 given
by

�adv �

�
1

6
� �2 �

1

24�2

�
v3�t2; (32)

and responsible, for instance, for different propagation
speeds of the Fourier modes in the initial data (i.e., phase
drifts).

Everything discussed so far for the �-ICN scheme con-
tinues to hold also when the averages are swapped, the only
difference being that the dispersive contribution is instead
given by

�adv �

�
1

6
� �� �2 �

1

24�2

�
v3�t2; (33)

and is therefore smaller for � > 1=2, making this variant to
the �-ICN preferable overall.

Similar calculations can be carried out also for the
parabolic equation (17) and the local truncation error in
this case is

eT �

�
��

1

2

�
D

@3u

@t@x2

��������n;j
�t�O��t2;�x2�; (34)

indicating that mathematically the �-ICN is again only
first-order accurate in time, with second-order accuracy
being recovered for � � 1=2. However, stability requires
that �t � O��x2� (cf. Sec. VA) and thus the truncation
error is effectively eT � O��x2� for all of the allowed
values 0 � � � 1.

Finally, using Eq. (17) to the replace the time derivative
in (34) shows that the �-ICN for a parabolic equation has
an additional dissipative term proportional to @4u=@x4 with
coefficient

�diff � ���
1
2�D

2�t; (35)

which is again zero only for � � 1=2.
As a purely representative example, we show in Fig. 3

the application of the �-ICN method for the solution of the
advection equation (8) with v � 1 and� � 0:6 (cf. Fig. 1).
The numerical domain has length 1:0 and was covered with
200 equally spaced gridpoints. The initial solution, given
by a Gaussian centered at x � 0:5 and with variance 0:1,
was evolved for 10 crossing times using periodic boundary
conditions. Different curves in the upper panel refer to
either the analytic solution at the final time (dotted line)
or to the numerical solutions as obtained with different
044001
weighting coefficients. Note that already with � � 1=2
(solid line) the numerical solution is slightly diffused but
suffers from considerable dispersion as apparent from the
considerable ‘‘delay’’ and the presence of negative values
to the left of the maximum. These dispersion errors can be
reduced if larger values of the weighting coefficients are
used as indicated by the short-dashed and long-dashed
lines referring to � � 0:6 and � � 0:8, respectively. This
improvement, however, also comes with a larger dissipa-
tion and truncation error (as mentioned in Sec. VI, the
system is just first order in time with � > 1=2).4 This is
particularly evident when considering the evolution of the
L2 norms of the solutions as reported in the lower panel of
Fig. 3. It is interesting to note that for � � 0:8 the L2 norm
of the solution has been reduced by about 25% after 10
crossing times, while this decrease is less than 1% when
� � 1=2.

Finally, the two small insets of Fig. 3 offer a comparison
in the solutions for � � 0:6 when the coefficients in the
averages are either held constant (short-dashed lines) or
swapped between two subsequent corrector steps (dot-
-6
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dashed lines). Although the difference is rather small for
the selected set of parameters, it is evident that the swap-
ping of the coefficients has the effect of decreasing both the
dispersion (the dot-dashed line in the upper inset has a
smaller delay) and the diffusion (at any given time the dot-
dashed line in the lower inset has a larger value).

VII. CONCLUSIONS

We have extended the recent work on the properties of
the ICN scheme for hyperbolic equations by investigating
the stability properties when it is treated as a �-method,
i.e., when the average between the predicted and corrected
values is made with unequal weights. In addition we have
studied the properties of the �-ICN method for a model
parabolic equation and proposed a variant of the scheme,
valid for both hyperbolic and parabolic equations, in which
the unequal coefficients in the averages are swapped be-
tween two subsequent corrector steps. This novel approach
044001
leads to amplification factors that are systematically larger
than those found in the �-ICN method and to a smaller
numerical dispersion.

Overall, our results indicate that, although generally
only first-order accurate in time, the �-ICN method is a
flexible approach to the time integration of partial differ-
ential equations, particularly when these are of mixed
hyperbolic-parabolic type. Because the use of unequal
coefficients in the average provides a small but nonzero
amount of numerical dissipation, this could prove useful in
numerical relativity calculations which may suffer from
the development of numerical instabilities and for which
lower-order evolution schemes are an acceptable compro-
mise between accuracy and stability.
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