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We present a nonlinear realization of the 5-graded Lie algebra associated to a
Kantor triple system. Any simple Lie algebra can be realized in this way, starting
from an arbitrary 5-grading. In particular, we get a unified realization of the excep-
tional Lie algebras f4 ,e6 ,e7 ,e8, in which they are respectively related to the division
algebras R ,C ,H ,O. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168690�

. INTRODUCTION

The product in an associative but noncommutative algebra can be decomposed into one
ymmetric part, leading to a Jordan algebra, and one antisymmetric part, leading to a Lie algebra.

deeper relationship between these two important kinds of algebras is suggested by the Kantor-
oecher-Tits construction,1–3 which associates a Lie algebra to any Jordan algebra, and it becomes
ore evident when generalizing Jordan algebras to Jordan triple systems �JTS�. These can further

e generalized to Kantor triple systems �KTS�.
The Lie algebra associated to a Jordan algebra or a JTS is 3-graded, written g−1+g0+g1 as a

irect sum of subspaces, while the Lie algebra associated to a KTS is 5-graded, written g−2

g−1+g0+g1+g2. We will discuss graded Lie algebras more in the following section. In Sec. III
e will describe how triple systems may be obtained from graded Lie algebras and conversely

onstruct the graded Lie algebras associated to these triple systems. Under certain conditions, we
et back the original algebra, together with a nonlinear realization.

In Sec. III A we will consider Jordan triple systems and the associated 3-graded Lie algebras.
n this case, the realization of the Lie algebra is said to be conformal. The operators act on g−1 and
re each either constant, linear or quadratic, according to the 3-grading. In the case of so�2,d� we
et the well-known realization of the conformal algebra in d dimensions, where the elements in
he algebra are regarded as generators of translations �constant�, Lorentz transformations together
ith dilatations �linear� and special conformal transformations �quadratic�.

The main result of this paper, to be presented in Sec. III B, is a corresponding realization of
he 5-graded Lie algebra associated to a Kantor triple system. This Lie algebra has earlier been
efined as a special case of a Kantor algebra,4 using a functor that associates a Lie algebra to any
eneralized Jordan triple system.5 It has also been defined in a simpler but rather abstract way, as
direct sum of vector spaces together with the appropriate commutation relations.6

In our construction, the Lie algebra associated to a KTS consists of nonlinear operators acting
n an extension of the KTS. The bracket arises naturally when we regard the operators as vector
elds, which we will explain in Sec. II B. To our knowledge, such a construction has not appeared
efore. However, the concomitant realization of any simple 5-graded Lie algebra on its subspace

−2+g−1 has been obtained in Ref. 7, using a general formula for the Lie algebra of a homoge-
eous space.

�
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The corresponding realization of the Lie algebra associated to a Freudenthal triple system
FTS� was given in Ref. 8, called quasiconformal, and led us to the present work. The difference
s that our realization is based on an arbitrary 5-grading, while in Ref. 8 the subspaces g±2 must be
ne dimensional. The connection between these two realizations will be clarified in Sec. III C. As
n example of interesting cases where the subspaces g±2 are not one dimensional, we will in Sec.
V show how the exceptional Lie algebras f4 ,e6 ,e7 ,e8 can be given 5-gradings related to the
ivision algebras R ,C ,H ,O, respectively. This construction, given in Ref. 6, together with our
ain result, leads to a unified realization of these exceptional Lie algebras.

I. GRADED LIE ALGEBRAS

We start with some definitions concerning graded Lie algebras in general, after which we will
onsider the cases of semisimple and simple algebras.

A Lie algebra g is graded if it is the direct sum of subspaces gk�g for all integers k, such that

�gi,g j� � gi+j

or all integers i , j. It is �2�+1�-graded for some integer ��1 if g±��0 and

�k� � � Þ gk = 0.

If gk=0 for all k�0, then g will not be regarded as a graded Lie algebra.� The grade k of an
lement x�gk may be measured by a characteristic element Z�g, satisfying

x � gk Þ �Z,x� = kx

or all integers k. A graded involution � on g is an automorphism of g such that ����x��=x for all
�g and ��gk�=g−k for all integers k. If we instead of the last condition have ��gk�= �−1�kg−k, then
will be called a graded pseudoinvolution.

. Semisimple algebras

Let the graded Lie algebra g be semisimple, complex, and finite dimensional. Then g has a
nique characteristic element Z that belongs to a Cartan subalgebra of g contained in g0. With
espect to this Cartan subalgebra, the subspaces gk with k�0 are spanned by step operators E�

orresponding to roots � such that

E� � gk Û E−� � g−k,

hile g0 is spanned by the Cartan elements Hi and the remaining step operators. It follows that g

s �2�+1�-graded for some integer ��1 and the Chevalley involution

E±� � − E��, Hi � − Hi

s a graded involution on g. Not all real forms of g inherit the grading, since these are spanned by
omplex linear combinations of the step operators and the Cartan elements. In particular, the
ompact form of g cannot be graded.

If we expand a root � in the basis of simple roots � j as �=� j� j, then any set of simple roots

i1
,�i2

, . . . ,�in
generates a grading of g where gk is spanned by all step operators E� such that

i1 +�i2 + ¯ +�in =k and, if k=0, the Cartan elements. Any 3-grading or 5-grading of a simple Lie
lgebra can be obtained in this way �possibly after an automorphism�. If g is simple and 3-graded
r 5-graded, we also have �gi ,g j�=gi+j for i , j= ±1 and �up to an automorphism� there is a unique
-grading with one dimensional subspaces g±2, except for g=a1. On the other hand, e8 , f4 ,g2

annot be 3-graded. A table of all simple 3-graded and 5-graded Lie algebras can be found in

ef. 9.
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. Algebras of operators

We will now describe how any vector space U or pair of vector spaces V ,W gives rise to an
nfinite dimensional graded Lie algebra T�U� or T�V ,W� consisting of operators acting on U or

� W.
With an operator f on a vector space U we mean a map U→U. It is of order p�1 if there is

symmetric p-linear map F :Up→U such that

f�u� = F�u, . . . ,u�

or all u�U, and of order 0 if there is a vector v�U such that f�u�=v for all u�U. We define the
omposition of f and another operator g on U by

�f � g��u� = pF�g�u�,u, . . . ,u�

r f �g=0 if f is of order 0.
For any integer k�−1, let Tk�U� be the vector space consisting of all operators on U of order

+1. Furthermore, set Tk�U�=0 for all integers k�−2 and let T�U� be the direct sum of all these
ector spaces. Now T�U�, together with the bracket

�f ,g� = f � g − g � f ,

s a graded Lie algebra, isomorphic to the algebra of all vector fields f i�i on U such that f
T�U�. The isomorphism is given by f �−f i�i.

Similarly, for any pair of vector spaces V ,W, we can define a graded Lie algebra T�V ,W� of
perators on V � W, isomorphic to the algebra of all vector fields f i�i on V � W such that f
T�V ,W�. As a graded Lie algebra, T�V ,W� is the direct sum of subspaces Tk�V ,W� for all

ntegers k, where Tk�V ,W�=0 for k�−3.
With a realization of a Lie algebra g on U or V � W we mean a homomorphism from g to

�U� or T�V ,W�. If all elements are mapped on linear operators, it reduces to a linear represen-
ation. In the following section, we will see that any simple 3-graded or 5-graded Lie algebra g can
e described as a subalgebra of T�g−1� or T�g−1 ,g−2� and this description will thus give us a
ealization of the algebra.

II. TRIPLE SYSTEMS

In this section, we will clarify the connection between graded Lie algebras and triple systems.
ordan triple systems and Kantor triple systems correspond to general 3-graded and 5-graded
lgebras, respectively, while Freudenthal triple systems correspond to 5-graded algebras with one
imensional subspaces g±2.

A triple system �or ternary algebra� is a vector space U together with a linear map

U 	 U 	 U → U, �x,y,z� � �xyz�

alled triple product. For any two elements u ,v in a triple system U, we define the linear operator
u ,v� on U by

�u,v��z� = �uzv� − �vzu� .

et g be a graded Lie algebra with a graded involution �. Then the vector space g−1 together with
he triple product

�xyz� = ��x,��y��,z�

s a triple system, which will be called the triple system derived from g. We have the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� �3.1�
rom the fact that � is an involution and from the Jacobi identity, which also gives us
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�u,v��z� = ��u,v�,��z��

or all u ,v ,z�g−1.

. Jordan triple systems

Let g be a 3-graded Lie algebra with a graded involution. Since �u ,v�=0 for any u ,v�g−1 we
ave

�u,v��z� = 0 �3.2�

n the triple system derived from g, which means that the triple product �uzv� is symmetric in u
nd v.

We define a Jordan triple system �JTS�10 as a triple system where the identities �3.1� and �3.2�
old. Thus the triple system derived from a 3-graded Lie algebra with a graded involution is a JTS.
onversely, any Jordan triple system J gives rise to a 3-graded subalgebra of T�J�, spanned by the
perators

ua�x� = a ,

sab�x� = �abx� ,

ũa�x� = − 1
2 �xax� ,

here a ,b ,x�J. This is the Lie algebra L�J� associated to the Jordan triple system J. From �3.1�
nd �3.2� we get the commutation relations

�sab,scd� = s�abc�d − sc�bad�, �sab,uc� = u�abc�,

�sab, ũc� = − ũ�bac�, �ua, ũb� = sab,

nd �ũa , ũb�=0. �We also have �ua ,ub�=0 already from the definition of T�J�.� It follows that if J
s derived from a simple 3-graded Lie algebra g with a graded involution �, then g is isomorphic
o L�J� with the isomorphism

+ 1

0

− 1
� ��a� � ũa

�a,��b�� � �ua, ũb�
a � ua

� �3.3�

here a ,b�g−1. This is the conformal realization of g on g−1.

. Kantor triple systems

If g is a 5-graded Lie algebra with a graded involution, then the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� �3.4�

till holds in the triple system derived from g but instead of �u ,v�=0 we now have the identity

��u,v��x�,y� = ��yxu�,v� − ��yxv�,u� . �3.5�

e define a Kantor triple system �KTS�,11 or a JTS of second order5 as a triple system such that
3.4� and �3.5� hold. Thus the triple system derived from a 5-graded Lie algebra with a graded
nvolution is a KTS, and so is any JTS.

Let K be a KTS and let L be the vector space spanned by all linear operators �u ,v� on K,

here u ,v�K. If K is derived from a simple 5-graded Lie algebra g with a graded involution �,
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hen we can identify not only K with g−1, but also L with g−2 by �u ,v�= �u ,v�. In analogy with the
onstruction of L�J� in the preceding section we can now construct a 5-graded subalgebra of
�K ,L� spanned by the operators

Kab�z + Z� = 2�a,b� ,

Ua�z + Z� = a + �a,z� ,

Sab�z + Z� = �abz� − �a,Z�b�� ,

Ũa�z + Z� = − 1
2 �zaz� − 1

2Z�a� + 1
6 ��zaz�,z� − 1

2 �Z�a�,z� ,

K̃ab�z + Z� = − 1
6 �z�a,b��z�z� − 1

2Z��a,b��z�� + 1
12��z�a,b��z�z�,z� + 1

2 �Z�a�,Z�b�� , �3.6�

here a ,b ,z�K and Z�L. This is the Lie algebra L�K� associated to the Kantor triple system K.
e get the commutation relations

�Sab,Scd� = S�abc�d − Sc�bad�, �Sab,Uc� = U�abc�,

�Sab,Kcd� = K�c,d��b�a, �Ua,Ub� = Kab,

�Sab,Ũc� = − Ũ�bac�, �Sab,K̃cd� = − K̃�c,d��a�b,

�Ua,Ũb� = Sab, �Ua,K̃cd� = − Ũ�c,d��a�,

�Kab,Ũc� = U�a,b��c�, �Kab,K̃cd� = S�a,b��c�d − S�a,b��d�c,

�Ũa,Ũb� = K̃ab, �K̃ab,K̃cd� = �K̃ab,Ũc� = 0.

t follows that if K is derived from a simple 5-graded Lie algebra g with a graded involution �,
hen g is isomorphic to L�K� with the isomorphism

+ 2

+ 1

0

− 1

− 2
�

���a�,��b�� � �Ũa,Ũb� = K̃ab

��a� � Ũa

�a,��b�� � �Ua,Ũb� = Sab

a � Ua

�a,b� � �Ua,Ub� = Kab

� �3.7�

here a ,b�g−1. Then this isomorphism will be a realization of g on its subspace g−2+g−1. The
ie algebra associated to a Kantor triple system can also be defined by the commutation relations
bove, and this is partly the definition given in Refs. 6 and 12, but it does not directly lead to a
ealization like �3.6�. On the other hand, with our construction, we have to derive the commutation
elations from the definition of the operators and the defining properties of a Kantor triple system.
his requires long calculations and we will only give a few of them here. The full expressions are

ritten out in Ref. 13. As an example, we have
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�Ua,Ũb��z + Z� = �a,− 1
2 �zbz� − 1

2Z�b��
+ 1

2 �abz� + 1
2 �zba� + 1

2 �a,z��b�

− 1
6 ��abz�,z� − 1

6 ��zba�,z� − 1
6 ��zbz�,a�

+ 1
2 ��a,z��b�,z� + 1

2 �Z�b�,a�

=�abz� + �Z�b�,a� + 3
6 ��a,z��b�,z�

− 1
6 ��zba�,z� − 1

6 ��abz�,z� + 2
6 ��zbz�,a�

=�abz� + �Z�b�,a� = Sab�z + Z� ,

here we have used

3��a,z��b�,z� = 2��a,z��b�,z� + ��a,z��b�,z�

=2���zba�,z� − 2��zbz�,a��

+ ��abz�,z� − ��zba�,z�

=��zba�,z� + ��abz�,z� − 2��zbz�,a� .

mong the other commutators, �Ua ,Ub� and �Sab ,Uc� are easy to calculate, while �Ũa , Ũb� and

Sab , Ũc� are much harder. It is convenient to first verify the identities

	��zbz�az� + 2�za�zbz��
ab = �z�b,a��z�z� , �3.8�

	��x,y��b�az�
ab = �x�a,b��y�z� − �y�a,b��x�z� , �3.9�

here we denote antisymmetrization by curly brackets, 	f�a ,b�
ab= f�a ,b�− f�b ,a� for any func-

ion f . We can also use �3.9� to rewrite the last term in K̃ab�z+Z� and show that the map �3.7� is

ell defined in the sense that K̃ab= K̃cd if �a ,b�= �c ,d�. It turns out that

2��u,v��a�,�x,y��b�� = ��x�a,b��y�u�,v� − ��y�a,b��x�u�,v�

+ ��y�a,b��x�v�,u� − ��x�a,b��y�v�,u� .

he remaining nonzero commutation relations follow from the Jacobi identity. Finally, we can
how that

��K̃ab,Ũc�,Kxy� = ��K̃ab,Ũc�,Uz� = 0

hich gives us

�K̃ab,Ũc� = �K̃ab,K̃cd� = 0.

. Freudenthal triple systems

Let g be a 5-graded Lie algebra and let T be an element in g2. Then g−1 together with the triple
roduct

�xyz� = ��x,�T,y��,z�

s a triple system satisfying

�x,y��z� = �yxz� − �xyz� . �3.10�
uppose now that the subspaces g±2 are one dimensional. If we extend the map
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g−1 → g1, x � �T,x�

o a graded pseudoinvolution � on g, then for any x ,y�g−1 there is a scalar � such that �x ,y�
�z�=�z. Thus we can identify the vector space spanned by all operators �x ,y� where x ,y�g−1

ith the field over which the Lie algebra is defined, writing

�x,y��z� = �x,y�z �3.11�

nd we can regard �x ,y� as an antisymmetric bilinear form on the triple system rather than an
perator. Since � is not an involution but a pseudoinvolution, we now have the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� + �x�vuy�z� �3.12�

ith a changed sign of the last term, in comparison to �3.4�. However, �3.5� still holds. We define
Freudenthal triple system �FTS� as a triple system with an antisymmetric bilinear form satisfying

3.5�, �3.10�, and �3.12�. To sum up, we have

�uv�xyz�� = ��uvx�yz� + �x�vuy�z� + �xy�uvz�� , �3.13�

�x,y�z = �xzy� − �yzx� = �yxz� − �xyz� , �3.14�

�u,v��x,y� = ��yxu�,v� − ��yxv�,u� . �3.15�

e note that �3.13� cannot be replaced by �3.4� or, in other words, that a KTS cannot satisfy �3.14�
nd �3.15� for some antisymmetric bilinear form �unless this is identically equal to zero, in which
ase the KTS reduces to a JTS�.

Let F be a FTS and let L be the vector space spanned by all operators �u ,v� on F where

,v�F. If we change some of the signs in the definition of K̃ab in �3.6�, keep the definitions of all
he other operators and simplify the expressions by �3.10�–�3.12�, then we get

Kab�z + 
� = 2�a,b� ,

Ua�z + 
� = a + �a,z� ,

Sab�z + 
� = �abz� − 
�a,b� , �3.16�

Ũa�z + 
� = − 1
2 �zaz� − 1

2
a + 1
6 ��zzz�,a� − 1

2
�a,z� ,

K̃ab�z + 
� = 1
6 �a,b��zzz� + 1

2
�a,b�z − 1
12�a,b���zzz�,z� + 1

2
2�a,b� ,

here a ,b ,z�F and 
�L. These operators span a subalgebra of T�F ,L� with the commutation
elations

�Sab,Scd� = S�abc�d + Sc�bad�, �Sab,Uc� = U�abc�,

�Sab,Kcd� = �c,d�Kba, �Ua,Ub� = Kab,

�Sab,Ũc� = Ũ�bac�, �Sab,K̃cd� = �c,d�K̃ab,

˜ ˜ ˜
�Ua,Ub� = Sab, �Ua,Kcd� = �c,d�Ua,
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�Kab,Ũc� = �a,b�Uc, �Kab,K̃cd� = �a,b��Scd − Sdc�,

�Ũa,Ũb� = K̃ab, �K̃ab,K̃cd� = �K̃ab,Ũc� = 0.

t follows that if F is derived from a simple 5-graded Lie algebra g with one dimensional sub-
paces g±2 and a graded pseudoinvolution as described above, then the map �3.7� is again an
somorphism. This is the quasiconformal realization of g on g−2+g−1, given in Ref. 8 �where the
actor of −2 in �17� and the opposite sign of the bracket lead to different coefficients in �29��.

Freudenthal triple systems where the antisymmetric bilinear form is nondegenerate are in a
ne-to-one correspondence to simple, complex, and finite-dimensional Lie algebras.14 Since such
Lie algebra is also associated to a KTS, it follows that any nondegenerate FTS can be obtained

rom a KTS. Although Freudenthal triple systems are sufficient to obtain all simple finite-
imensional Lie algebras, the result in the following section shows that also Kantor triple systems
ay be useful.

V. EXCEPTIONAL LIE ALGEBRAS

We end this paper with some comments on the exceptional Lie algebras f4 ,e6 ,e7 ,e8. These are
ssociated to Kantor triple systems which in turn can be defined using the division algebras
,C ,H ,O. We will briefly describe this construction, given in Ref. 6 and extended in Ref. 12.

Let K be one of the division algebras R ,C ,H ,O, consisting of real and complex numbers,
uaternions and octonions,15 respectively. Then the tensor product algebra K � O is a KTS with the
riple product

�xyz� = x�y*z� + z�y*x� − y�x*z� ,

here the conjugation in K � O is given from the conjugations in K and O simply by

�a,b�* = �a*,b*� .

he complex Lie algebras L�K � O� associated to these triple systems are

L�R � O� = f4,

L�C � O� = e6,

L�H � O� = e7,

L�O � O� = e8.

hus we obtain 5-gradings of these algebras, but the subspaces g±2 are not one dimensional. If we
nclude also the split forms of C ,H ,O in a similar way and consider the real Lie algebras, we get
ll noncompact forms of f4 ,e6 ,e7 ,e8.12

The construction �3.6� of L�K� for any Kantor triple system K now leads to a unified realiza-
ion of the exceptional Lie algebras f4 ,e6 ,e7 ,e8. This would be an interesting subject of further
tudies.
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