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1. Introduction

The study of noncritical string theories has recently seen a renaissance, initiated by the

appearance of [1 – 3]. One of the reasons for the renewed interest in these string theoretical

toy models is the observation that the dualities between noncritical string theories and

matrix models can be seen as examples for open-closed dualities in string theory. In

particular it was proposed in [1, 2] that the free fermionic field theory conjectured to be

dual to the c = 1 string theory is nothing but the open string theory on a “gas” of unstable

D0 branes. This was recently further substantiated in [4]. Another example in which the

mechanism of open-closed dualities is exhibited in a particularly explicit way is the duality

between the Kontsevich matrix model and pure topological gravity [5].

Another source of recent interest in these toy models was the realization that non-

perturbatively stable definitions of the relevant theories exist [4, 7], after all [8]. These

developments open the possibility to study certain time-dependent phenomena such as

D-brane decay in an exactly soluble framework. One may therefore hope to improve our

understanding of certain foundational aspects of string theory for which time-dependent

phenomena represent a challenge. One may in particular hope to learn how to describe the

final state of a decaying D-brane, and to what extend one may describe the process with

the help of the usual perturbative approach to string theory.

Our initial aim was therefore to use the duality between noncritical string theories and

matrix models in order to find an exact description for the decay of unstable D0-branes

in the two-dimensional string theory. It then becomes possible to learn about scope and

limitations of the perturbative approach to the same problem.

A particularly interesting feature of the exact description for the D-brane decay in

two-dimensional string theory that we are about to present is the fact that it exhibits an

example of open-closed duality in a very explicit way: Insertion of decaying D0-branes can

be traded for a shift of the closed string background. It is furthermore possible to show

that this shift of the background is perturbatively generated by summing over the disc

insertions which represent the emission of closed strings from the decaying brane. This

fits well into the picture proposed in [1, 2]: If the c = 1 background is generated by the

insertion of a gas unstable D0 branes, it should be possible to trade addition of further

probe D-branes for a shift of the closed string background.

On the way we will need to clarify certain infrared issues. It will be shown that the

insertion of D-branes creates “solitonic” superselection sectors. D-branes are solitons after

all. Excitations in these sectors can not be represented by normalizable vectors in the

sector which describes pure closed string excitations. Nevertheless there is a clear sense

in which these sectors are equivalent to the sector with zero D-branes: These sectors can

not be distinguished by measuring any local observable like the expectation values of the
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tachyon field. They are distinguished by the values of global observables, though. This

limits the extend to which a narrow-minded version of open-closed duality is true: The

trade of D-branes for a shift of the closed string background is not perfect, it works to

the extend to which we may regard the different sectors as physically equivalent. For

some questions it may nevertheless be important to keep in mind that the insertion of

D0-branes does not generate a normalizable deformation of the background, similar to the

phenomenon emphasized in [9].

Previous work on similar questions is contained in [10, 12, 11]. The present paper will

describe a new approach to this problem which allows us to go somewhat further and to

clarify a number of aspects which have not yet been discussed in the literature. In order

to simplify the presentation we have chosen to focus of the case of the bosonic c = 1 string

theory. However, a good part of our formalism carries over with only small changes to the

case of type 0B ĉ = 1 string theory.

2. The c = 1 string as free fermionic field theory

We are going to revisit some aspects of the conjectured duality between the c = 1 string

theory and free fermionic field theory, see [13] for a review. One of our main aims is to

introduce a formalism which will be particularly well-suited for our later discussions of D-

branes within the free fermionic field theory. This will also allow us to present a simplified

representation for the S-matrix of bosonic excitations [14, 15] within the free fermionic field

theory.

The presentation will be brief, the necessary technical details are contained in the

appendix A.

2.1 c = 1 string

The c = 1 string theory is a two-dimensional string background with coordinates (X0, φ) ∈
R

2, where X0 represents time. This background is characterized by the following expecta-

tion values for the target-space metric Gµν , the dilaton Φ and the tachyon field T :

Gµν = ηµν , Φ = φ, T = µe2φ . (2.1)

The worldsheet-description of this theory is characterized by the world-sheet action

S =

∫
d2x

(
− 1

4π
∂+X0∂−X0 +

1

π
∂+φ∂−φ − µ(2φ + ln πµ)e2φ

)
+ (ghosts) . (2.2)

The string theory has one propagating space-time field, the tachyon T . The vertex

operators which create the modes of this field with definite space-time energy ω will be

denoted as Tι(ω), where ι = − creates the asymptotic in-states, whereas ι = + corresponds

to the asymptotic out-states,

T±(ω) = e−iωX0 e2(1∓iω)φ. (2.3)
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Standard CFT methods will allow us to define arbitrary string scattering amplitudes in an

asymptotic expansion in powers of the string coupling constant gs,

〈
Tout(ω1) . . . Tout(ωn)Tin(ω

′
1) . . . Tin(ω

′
m)

〉
c=1

≡

≡
∞∑

h=0

g2h−2
s

〈
Tout(ω1) . . . Tout(ωn)Tin(ω

′
1) . . . Tin(ω

′
m)

〉(h)

c=1
.

(2.4)

The amplitudes 〈· · · 〉(h)
c=1 associated to Riemann surfaces with genus h are defined in the

usual way by integrating CFT-correlation functions over the moduli space of Riemann

surfaces.

2.2 Free fermionic field theory

Let us consider the quantum field theory of free fermions in the inverted harmonic oscillator

potential. The one-particle hamiltonian will be

h = − d2

dλ2
− 1

4
λ2. (2.5)

There exists a complete set of real eigenfunctions

{
Fp(ω|λ) ; ω ∈ R , p ∈ {+,−}

}

such that the labels (ω, p) of Fp(ω|.) correspond to the eigenvalues of h and the parity

operator P respectively.

For each pair (ω, p) of eigenvalues for the hamiltonian h and parity P, we introduce a

pair of fermionic creation- and annihilation operators (c†p(ω), cp(ω)) and require that they

satisfy the canonical anticommutation relations

{
cp1

(ω) , c†p2
(ω′)

}
= δp1p2

δ(ω − ω′). (2.6)

We shall also use the vector notation

c(ω) =

(
c+(ω)

c−(ω)

)
, F(ω|λ) =

(
F+(ω|λ)

F−(ω|λ)

)
, A ·B ≡ A+B+ + A−B−.

The fermionic Fock-vacuum |µ〉〉 is defined by the conditions

c (ω) |µ〉〉 = 0 for ω > −µ,

c†(ω) |µ〉〉 = 0 for ω < −µ.
(2.7)

The Hilbert space H of the theory is then defined as the completion of the dense subspace

spanned by vectors of the form

c[fn] · · · c[f1] c†[gm] · · · c†[g1] |µ 〉〉 ,

where

c[f ] =

∫

R

dω f(ω) · c(ω), c
†[g] =

∫

R

dω g(ω) · c†(ω),

– 4 –
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with f(ω), g(ω) smooth and rapidly decaying at ±∞. The resulting Hilbert space decom-

poses into sectors with a definite fermion number:

H =
⊕

n∈Z

Hn . (2.8)

The Hn are eigenspaces of the fermion number operator

N ≡
∫ ∞

−µ

dω c†(ω) · c (ω) +

∫ −µ

−∞
dω c (ω) · c†(ω) . (2.9)

The second-quantized fermionic field operators are then defined as

Ψ(λ, t) =

∫
dω e+iωt F(ω|λ) · c (ω) ,

Ψ†(λ, t) =

∫
dω e−iωt c†(ω) ·F(ω|λ) .

(2.10)

The dynamics of the theory is generated by the hamiltonian

H =

∫
dλ Ψ†

(
− ∂2

∂λ2
− 1

4
λ2

)
Ψ . (2.11)

As usual in fermionic field theories one may construct observables as bilinear expres-

sions in the fermionic fields. One may e.g. consider the collective field

∂λχ(λ, t) = Ψ†(λ, t)Ψ(λ, t) − 〈〈µ|Ψ†(λ, t)Ψ(λ, t)|µ〉〉 . (2.12)

The dynamics generated by the hamiltonian H becomes rather complicated in terms of

the field χ. Consideration of observables like (2.12) will therefore only be useful in certain

limiting cases.

2.3 In- and Out-fields

A crucial feature of the inverted harmonic oscillator potential is that the asymptotic be-

havior of the wave-function ψ(λ, t) for late/early times can be represented in a very simple

way:

ψ(λ, t) ˜t→±∞
(2π)−

1
2 e

i
4
λ2

e∓
t
2 χ±(u±), (2.13)

where u± ≡ λe∓t. A proof of this claim is given in appendix A.3.This means that asymp-

totically for t → ±∞ the time evolution becomes represented by scale transformations. In

terms of the coordinate x = ln |λ| one finds free relativistic motion.

The asymptotic wave-functions χ±(u±) can be calculated from the wave function

ψ(λ) ≡ ψ(λ, 0) by means of the integral transformations

χ±(u±) ≡ (M±ψ)(u±) ≡
∫

R

dλ K±(u±|λ)ψ(λ), (2.14)

with kernels K±(u±|λ) given by the explicit formulae

K+(u+|λ) = e−i π
4 e

i
2
u2
+−iλu++ i

4
λ2

, K−(u−|λ) = K∗
+(u−|λ). (2.15)
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These observations lead to a natural definition of the in- and out-fields. Let us consider

the asymptotics for t → ±∞ of the fermionic operators

Ψ†[ψ | t ) ≡
∫

dλ ψ(λ)Ψ†(λ, t) =

∫
dλ ψ(λ, t)Ψ†(λ). (2.16)

It is then natural to define the in- and out fields Ψ†
±(u) by the asymptotic relation

Ψ†[ψ | t ) ∼
t→±∞

Ψ†
±[χ | t ) ≡

∫
du

2π
χ±(ue∓t)Ψ†

±(u), (2.17)

where χ± is defined in (2.13). It is shown in the appendix A.3 that Ψ†[ψ | t ) indeed has

asymptotics of the required form (2.17), with Ψ†
±(u±) being related to Ψ†(λ) by the integral

transformations

Ψ†
±(u±) =

∫

R

dλ K∗
±(u±|λ)Ψ†(λ) . (2.18)

The transformation between in- and the out-field becomes particularly simple,

Ψ+(u+) =
1√
2π

∫

R

du− e−iu+u− Ψ−(u−) . (2.19)

It is useful to translate this into the energy representation. The observation that the

transformation (2.14) maps the single-particle hamiltonian h into the generator for scale

transformations of the coordinates u± makes it easy to find the expansion into energy

eigenfunctions:

Ψ†
±(u±) =

∫

R

dω√
2π

|u±|±iω− 1
2
(
Θ(−u±)d†L

± (ω) + Θ(u±)d†R
± (ω)

)
(2.20)

where Θ(u) is the usual step function. The operators d†L
± (ω) and d†R

± (ω) create fermions

which are asymptotically located either on the right or left of the potential V = −1
4λ2,

respectively. It will be convenient to regard d†L
± (ω) and d†R

± (ω) as the two components of

a vector d†
±(ω). The relation between the oscillators d†

±(ω) and c†(ω) takes the form

d†
±(ω) = M†

±(ω) · c†(ω), d†
+(ω) = R†(ω) · d†

−(ω) , (2.21)

where the matrices M± represent the unitary operators M± defined in (2.14) in the energy

representation, and

R(ω) ≡ (M+(ω))2 =

(
ρ(ω) θ(ω)

θ(ω) ρ(ω)

)
, (2.22)

with matrix elements ρ(ω), θ(ω) having the following explicit expressions:

ρ(ω) =
1√
2π

e−
π
2
ωΓ

(
1
2 − iω

)
, θ(ω) = −ieπωρ(ω). (2.23)

Note that R is the matrix which represents the reflection of a single fermion in the potential

V = −1
4λ2. The definition of in- and out-fields leads straightforwardly to the definition of

the unitary S-operator, which may be represented as

S = exp

(
−

∫

R

dω d†
−(ω) · log R(ω) · d−(ω)

)
. (2.24)
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Remark: the formalism presented above is clearly closely related to the light cone

formalism of [16]. What seems to be new is our proof (appendix A) of the equivalence

between this formalism and the conventional definition of in- and out fields in terms of

time-asymptotics. This explains the observation in [16] that the Fourier transformation

(2.19) correctly describes the scattering of free fermions in the inverted harmonic oscillator

potential.

2.4 Scattering of the bosonic excitations

However, we are also interested in the bosonic fields S±(x) which are defined by bosonizing

the in- and out fields Ψ†
± as

u±∂±Ss
±(u±) =

∫

R

dω√
2π

|u±|±iω
(
Θ(−u±)aL

±(ω) + Θ(u±)aR
±(ω)

)
,

as
±(ω) =

∫

R

dω′ ds
±
†(ω′) ds

±(ω + ω′) , s ∈ {+,−} =̂ {R,L}
(2.25)

where ∂± ≡ ∂
∂u±

. The operators as
±(ω) satisfy the following commutation relations,

[ as
±(ω) , as′

±(ω′) ] = ω δs,s′ δ(ω + ω′). (2.26)

With the help of the oscillators as
ι (ω), ι ∈ {+,−} we may construct the states

asn
ι [fn] · · · as1

ι [f1] a
tn
ι [gn] · · · at1

ι [g1] |µ 〉〉 , as
ι[h] ≡

∫
dω h(ω)as

ι (ω) (2.27)

which generate subspaces H±
0,0 of H. It is important to note, however, that the vectors

(2.27) do not even exhaust the subspace H0 ⊂ H of fermion number zero. The operator

K± ≡
∫ ∞

−µ

dω
(
dR
±
†(ω)dR

±(ω) − dL
±
†(ω)dL

±(ω)
)
+

+

∫ −µ

−∞
dω

(
dR
±(ω)dR

±
†(ω) − dL

±(ω)dL
±
†(ω)

)
.

(2.28)

measures the difference between the numbers of fermions which asymptotically end up to

the right and left sides of the potential respectively. This means in particular that H0

decomposes into “k-sectors” [17] H0,k as follows:

H0 =
⊕

k∈Z

H±
0,k . (2.29)

In order to generate all of H0 from |µ 〉〉 we also need to consider operators like

B±(ω) =

∫

R

dω′
(
KLR(ω|ω′) dL

±
†(ω′) dR

±(ω + ω′)+

+KRL(ω|ω′) dR
±
†(ω′) dL

±(ω + ω′)
)
.

(2.30)

The S-operator does not map the sector Hin
0,k to Hout

0,k . In order to see this, let us notice

that inserting (2.21) into (2.25) yields a relation of the form

as
out(ω) = [ as

out(ω) ]
0,in + [ as

out(ω) ]⊥
0,in (2.31)

– 7 –
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where [as
out(ω)]

0,in preserves the sectors Hin
0,k, whereas [ as

out(ω) ]⊥
0,in is of the form (2.30).

The term [as
out(ω)]

0,in is dominant for |ω| ¿ µ, in which case either pure reflection or pure

transmission dominate the fermionic scattering of particle-hole pairs.

The perturbative (in µ−1) part of the bosonic S-matrix is encoded in

R(m7→n)(ω1, . . . , ωn|ω′
1, . . . , ω

′
m) =

= 〈〈µ | as1
out(ω1) . . . asn

out(ωn) a
s′1
in (−ω′

1) . . . a
s′m
in (−ω′

m) |µ 〉〉 , (2.32)

where we have abbreviated ω ≡ (ω, s). These matrix elements are unambiguously defined

by (2.33), (2.26) together with as
out(ω)|µ 〉〉 = 0 for ω > 0. A diagrammatic formalism for

the explicit evaluation of the S-matrix elements has been developed in [15]. It will be useful

for us to observe that the diagonal1 part of the scattering of the bosonic excitations can

alternatively be encoded in the following operator relations:

[ as
out(ω) ]

0,in =

=
∑

s′=L,R

∞∑

n=1

∞∫

−∞

dω1

ω1

∞∫

ω1

dω2

ω2
· · ·

∞∫

ωn−1

dωn

ωn
×

× Rss′

(n)(ω |ω1, . . . , ωn ) as′

in(ω1) · · · as′

in(ωn) .

(2.33)

The proof of formula (2.33) together with the explicit expressions for the coefficient func-

tions Rss′

(n) are given in appendix A.4. The amplitude Rm7→1 that one can read off directly

from (2.33) is very similar to the corresponding result of [20] for type 0A two-dimensional

string theory.

It is also shown in appendix A.4 that the leading asymptotics of this relation for

µ → ∞, ω ¿ µ is given by

[ as
out(ω) ]

0,in =

∞∑

n=1

µ−iω+1−n

∞∫

−∞

dω1

∞∫

ω1

dω2 · · ·
∞∫

ωn−1

dωn×

× Γ(1 + iω)

Γ(2 − n + iω)
δ(ω − ∑n

r=1 ωr) as
in(ω1) · · · as

in(ωn) .

(2.34)

This is a trivial generalization of the formula derived in [18, 19].

2.5 Duality conjecture

From now on let us restrict attention to the excitations supported on the right of the

maximum of the inverted harmonic oscillator potential. Ignoring the other side will be a

good approximation as long as all energies are well below the top of the potential. The

conjectured duality between c = 1 string theory and free fermionic field theory can be

formulated most simply in terms of rescaled bosonic oscillators

b±(ω) ≡ e±iδ(ω)aR
±(ω), (2.35)

1w.r.t. the decomposition into k-sectors (2.29)
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provided the phase δ is chosen as

eiδ(ω) ≡ Γ(+iω)

Γ(−iω)
. (2.36)

One manifestation of the conjectured duality between the c = 1 string theory and the free

fermionic field theory may then be formulated as the validity of

〈〈µ |bout(ω1) . . . bout(ωn) bin(−ω′
1) . . . bin(−ω′

m) |µ 〉〉 ³gs (2.37)

³gs

〈
Tout(ω1) . . . Tout(ωn)Tin(ω

′
1) . . . Tin(ω

′
m)

〉
c=1

,

where ³gs means equality of asymptotic expansions in gs = µ−1. Note that the matrix

elements on the left of (2.37) by themselves do not define a unitary S-matrix, but the

deviation from unitarity is nonperturbative (∝ e
− 1

gs ), as follows from (2.23).

3. D0-branes versus fermions - leading order

Given the duality between the c = 1 noncritical string theory and the free fermionic

field theory it is natural to ask how to interpret the fermionic fields within the c = 1

noncritical string theory. A proposal for how to answer this question emerged from [1, 2]:

The excitations created by the fermionic fields can be interpreted as the unstable D0-branes

of the c = 1 noncritical string theory. In the following section we will review the existing

evidence for this identification.

3.1 D0-branes in type 0B c = 1 string theory

The c = 1 noncritical string theory contains unstable D0-branes [21]. These D0-branes are

localized in the strong coupling region φ = ∞. In order to describe their decay one may

consider the boundary interaction

Sint = κ

∫

∂Σ
dτ cosh X0 . (3.1)

A construction for the corresponding boundary states was first proposed in [22]. These

boundary states have to be tensored with the boundary states for Liouville theory which

describe the D0-branes [21]. In this way one arrives at the following result for the leading

order closed string emission amplitudes:

〈Tout(ω) |Bκ 〉HH = eiδ(ω)e−iω log sinπκµ−i ω
2 , (3.2)

The notation |Bκ 〉HH reminds of the fact [23] that the definition of the boundary state

associated to the boundary interaction (3.1) depends on a choice of integration contour,

|Bκ 〉HH being the boundary state associated to the so-called Hartle-Hawking contour [23].

– 9 –
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3.2 Evidence for the correspondence between D0-branes and fermions

The authors of [2] propose that the state |λ0 〉〉 which describes a fermion with a well-

defined initial localization at λ0 may - at least to leading order in the semiclassical limit -

be represented in the following bosonized form:

|λ0 〉〉 = : exp (iSout(λ0)) : |µ 〉〉 . (3.3)

We will later discuss the applicability of the approximation

|λ0 〉〉 ' Ψ†
out(λ0) |µ 〉〉 (3.4)

underlying the proposal (3.3). Adopting (3.3) as a working hypothesis for the moment,

one seems to find straightforwardly that

〈〈µ |bout(ω) |λ0 〉〉 = eiδ(ω)e−iω log λ0 . (3.5)

This matches the result of the worldsheet-computation provided that the initial location

λ0 of the fermion is related to the parameter κ of the unstable ZZ-brane via

λ0 =
√

µ sin πκ. (3.6)

The precise match of (3.5) with the worldsheet-computation for the closed string emission

from a decaying ZZ-brane represents evidence for the identification of the single fermion

state with the ZZ-brane.

3.2.1 The UV problem

So far we have been considering the state |λ0 〉〉 which corresponds to a definite D0 brane

parameter κ via (3.6). However, this state is clearly not normalizable. It was pointed

out in [2] that the resulting divergence of energy expecation values accounts for the corre-

sponding singular behavior in the expectation values of the energy emitted from a decaying

D-brane as discussed in [23]. The natural way to resolve this problem is to average over

the initial localization with a given wave-function ϕ(λ0),

|ϕ 〉〉 ≡
∫

dλ0 ϕ(λ0) |λ0 〉〉 (3.7)

Indeed, the norm of the resulting state will be bounded by the norm of the wave-function

ϕ, making it obvious that the ultraviolet problem is resolved.

3.2.2 The IR problem

On the other hand one must observe that the overlaps on the left hand sides of (3.5) are

identically zero since fermion number is conserved in the free fermionic field theory. To be

more explicit, let us note that Ψ†
out(λ0) |µ 〉〉 ∈ H1, whereas aout(ω)|µ 〉〉 ∈ H0. This implies

that the overlaps in (3.5) are indeed identically zero. There is no contradiction with (3.3)

since the bosonization formula (3.3) has serious infrared problems2.

The aim of the next section is to discuss how to resolve this puzzle and how to reconcile

the essence of the proposal of [2] with the fermion number conservation in the free fermionic

field theory. More precisely, we will propose answers to the following two questions:

2In Mandelstam’s work one was dealing with a massive theory!
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. What are reasonable nonvanishing analogs of the amplitudes (3.5)?

. What is the proper string-theoretic interpretation of these amplitudes? Can they be

interpreted in terms of ZZ-brane decay?

4. Fermions vs. solitons

We are now going to explain how to resolve the IR problem that was pointed out at the

end of previous section.

4.1 Solitonic sectors

To begin with, let us interpret the sectors Hn from the bosonic perspective. To simplify

the notation let us temporarily restrict attention to the in-fields Ψ(x) ≡ e
x
2 Ψ−(ex) and

S(x) ≡ S−(ex).

An important point to observe is the fact that the different sectors can only be dis-

tinguished with the help of global observables. States |ϕ〉〉
1

in H1 can be created from |µ〉〉
via

|ϕ〉〉
1

= Ψ†[ϕ] |µ〉〉, Ψ†[ϕ] ≡
∫

R

dxϕ(x)Ψ†(x) . (4.1)

We shall analyze the physical content of the states |ϕ〉〉
1

from the bosonic perspective - the

observables used to measure properties of the states |ϕ〉〉
1

will, as usual, be constructed out

of the bosonic oscillators a(ω). It is not terribly difficult to show that

〈 ∂xS(x) 〉ϕ ≡
1
〈〈ϕ | ∂xS(x) |ϕ 〉〉

1
> 0 ∀x ∈ R. (4.2)

This means that the states |ϕ〉〉1 are solitonic in the classical sense: They describe kinks

of the bosonic field S. The states |ϕ〉〉1 differ in their global properties from any state

|ϕ〉〉0 ∈ H0. The latter satisfy

lim
Λ→∞

∫ +Λ

−Λ
dx

0
〈〈ϕ | ∂xS(x) |ϕ 〉〉

0
= 0. (4.3)

This should be compared to the expectation value taken in the state |ϕ1〉〉,

lim
Λ→∞

∫ +Λ

−Λ
dx

1
〈〈ϕ | ∂xS(x) |ϕ 〉〉

1
= 1. (4.4)

The difference between the asymptotic values of S measures the number of solitons ≡
fermions.

Nevertheless, as long as one uses only local observables to measure properties of the

states |ϕ〉〉n, n = 0, 1 one will not be able to determine which sector Hn a given state |ϕ〉〉
belongs to. It is impossible to measure the soliton charge by using local observables like

∂S[f ] ≡
∫

R
dx f(x)∂xS(x) for f(x) nonzero only in a compact subset of R. This point can

be understood quite clearly by looking back at (4.2). Imagine we are measuring

〈 ∂S[f ] 〉ϕ ≡
1
〈〈ϕ | ∂S[f ] |ϕ 〉〉

1

– 11 –



J
H
E
P
0
1
(
2
0
0
6
)
1
2
2

for f > 0 having support in small intervals. If |ϕ〉〉 ∈ H
1

we will find a positive result

for whatever interval we have chosen. After having performed such measurements for a

large number of different intervals one may feel inclined to say that the probability that

the state under consideration is solitonic is rather high. Nevertheless one can never be sure

that one will always find a positive result if one was able to continue the measurements ad

infinitum.

One may therefore regard the sectors H0 and H1 as physically equivalent as long

as only measurements of local observables are concerned. However, mathematically the

sectors are not equivalent at all. This is illustrated most clearly by the fact that the

sector H1, as opposed to H0, does not contain a normalizable ground state (state of energy

−µ), as proven in appendix B. This implies that the sectors H1 and H0 are not unitarily

equivalent as representations of the algebra generated by the ∂S[f ]. The mathematical non-

equivalence between the sectors becomes physically relevant as soon as a physical meaning

is assigned to global observables like the difference between the asymptotic values of the

scalar field.

4.1.1 Approximate vacua

The discussion of the previous subsection may be reformulated in terms of energies as the

the statement that we are unable to distinguish states in H0 and H1 as long as our detectors

are insensitive to states below a certain minimal energy ωmin.

If however, as is usually the case, one is interested in measuring local observables only,

it is perfectly sufficient to have states within H1 which resemble the ground state |µ 〉〉 ∈ H0

to any given accuracy. A simple example for such states are the vectors

| y 〉〉
1
≡ (2y)

1
2 e−µy Ψ†(−iy) |µ 〉〉

≡ (2y)
1
2

∫ ∞

−µ

dω e−(ω+µ)y d†(ω) |µ 〉〉,
y > 0, (4.5)

for large positive values of y. It is easy to show that

(i)
1
〈〈 y |H | y 〉〉

1
= (2y)−1,

(ii)
1
〈〈 y | ∂xS(x) | y 〉〉

1
=

2y

x2 + y2

(4.6)

For given sensitivity of our detectors we only need to make y large enough to get states

which resemble the bosonic vacuum |µ 〉〉 as much as we want. We will call such states

approximate vacua. Equation (4.6), (ii) offers an intuitive picture of these states: The

profile of the expectation value of ∂xS(x) becomes arbitrarily flat.

One may then consider states like a(−ω)| y 〉〉
1
. By generalizing the previous discussion

slightly one may convince oneself that such a state resembles a single boson state. Overlaps

like

1
〈〈 y | a(ω) |ϕ 〉〉

1

will be nonvanishing and can be interpreted as the amplitude for transition of a single

fermion state into a state which resembles a state with a single boson created from the
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vacuum. For large y one finds

1
〈〈 y | a(ω)Ψ†(x) |µ 〉〉

1
'y (2y)−

1
2 e−i(ω−µ)t, (4.7)

where the notation 'y means equality up to an error controlled by y−1.

4.1.2 Partial bosonization

As a convenient formal device to deal with the infrared problem of the usual bosonization

formula we propose to replace it by the following “partial bosonization” formula

Ψ†(x) = eiT<(x|y) Ψ†(y) eiT>(x|y), (4.8)

where

T>(x|y) ≡
∫ ∞

0

dω

ω
(eiωx − eωy)a(ω) , (4.9)

and similarly for T<(x|y). The states

Ψ†(x)|µ 〉〉 ∝ eiT<(x|y)| y 〉〉
1

are then naturally interpreted as coherent states of bosons created from an approximate

vacuum within H1.

It is quite clear that y plays the role of an IR cutoff in formula (4.8). It may be

puzzling that one can not remove the cut-off y from transition amplitudes such as (4.7).

The small prefactor (2y)−
1
2 on the right hand side of (4.7) implies that the probability for

finding only a single boson in the state Ψ†(x) |µ 〉〉 would vanish if we would try to remove

the IR cutoff y. This is physically perfectly appropriate: The state | y 〉〉 represents the

unobservable ”cloud” of radiation with energy too small to be detected. An increase of y

means our detector was replaced by a better one which can detect quanta of lower energy.

The probability to observe only one closed string will be lowered.

4.2 String-theoretical interpretation

Let us now apply the discussion in the previous subsections to the case of the 2d string

theory. It is natural to consider the following transition amplitude as the proper represen-

tative of the amplitude for emission of a single tachyon from a decaying ZZ brane within

the fermionic field theory:

〈〈 y |bout(ω) |λ0 〉〉 = eiδ(ω)e−iω log λ0 〈〈 y |λ0 〉〉, (4.10)

where

〈〈 y |λ0 〉〉 =
√

2y
eiµ log λ0

y + i log λ0

'y (2y)−
1
2 eiµ log λ0 . (4.11)

When trying to interpret this result as the amplitude for emission of a closed string from a

decaying D-brane one may be bothered by the additional factor 〈〈 y |λ0 〉〉 in (4.10). How-

ever, we shall imagine performing a gedankenexperiment in which the radiation from a

decaying ZZ-brane is measured with the help of a tachyon detector installed in the weak
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coupling region φ → −∞ of our two-dimensional space time. More generally one may con-

sider amplitudes like 〈〈 y | O |λ0 〉〉 for an arbitrary local bosonic observable O. Any such

amplitude will be proportional to 〈〈 y |λ0 〉〉, leading us to the conclusion that this overall

factor is not physically relevant for the gedankenexperiment we are considering.

To exhibit the content of the formulae above from the perspective of 2d string theory

let us assume that our tachyon detector measures the expectation value of the tachyon field

as a function of the time t,

〈 ∂tTout(t) 〉χ ≡
1
〈〈χout| ∂tTout(t) |χout〉〉1. (4.12)

The expectation value is evaluated in a state |χout〉〉1, which is defined as

|χout〉〉1 =

∫

R

dxχout(x)Ψ†
out(x) |µ 〉〉. (4.13)

Let us assume for simplicity that the wave-function χout has gaussian decay away from a

narrow interval. The expectation value 〈 ∂tTout(t) 〉χ can be calculated from the expectation

value of ∂tS
R
out(t) and by taking into account the so-called leg-pole transformation,

〈 ∂tTout(t) 〉λ0
=

∞∫

−∞

dx K(t − x) 〈〈χout|∂xSR
out(x)|χout〉〉, (4.14)

where K(x) is defined by

K(x) =

∫

R

dω eiωx eiδ(ω) = −z

2
J1(z), z ≡ 2e−

y

2 .

The expectation value on the right hand side of (4.14) is sharply peaked. Following the

discussion in [24] one may then conclude that the resulting profile for 〈∂tTout(t)〉χ will

first exhibit an exponential growth, reach a maximum, and then decay to zero faster than

exponentially.

On the basis of these observations it seems natural to propose the following physical

interpretation in terms of 2d string theory. The closed string observer in the weak coupling

region will conclude that he/she has observed the radiation from the decay of a ZZ-brane.

After some time, there will be no detectable radiation any more. Most of the energy of

the ZZ-brane went into radiation, the missing bit not being detectable. Although fermion

number conservation implies that there is a low energy “remnant” hidden behind the

Liouville wall, there will always be a time after which the existence of a ZZ-brane becomes

unobservable. In this sense the remnant is unphysical, not being distinguishable from the

true vacuum by any local measurement.

There is yet another point of view that one may adopt. Given that the D-branes are

sources for closed strings one may interpret the presence of D-branes as a deformation of

the original c = 1 closed string background. The fact that the fermion number distinguishes

superselection sectors then translates into the statement that backgrounds containing D-

branes are not small deformations of the original c = 1-background but rather distinguished

from it by boundary conditions related to the asymptotic values of certain fields. It seems
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interesting to note that - in contrast to previous appearances of topological charges in

string theory - here we find that the topological charges are given by asymptotic boundary

conditions in time rather than space.

5. Manifestation of open-closed duality

5.1 General features of the worldsheet description

We now want to propose a hopefully suggestive formal line of arguments leading to a

proposal which was made in many discussions (see e.g. the discussion in [5] and references

therein) of possible world-sheet explanations for open-closed dualities: The insertion of

discs into string-worldsheets is equivalent to the insertion of a particular on-shell closed

string vertex operator. Summing over disc insertions amounts to exponentiating the vertex

operator, which describes a shift of the closed string background. In particular we shall

try to identify some issues connected to this line of thought on which we shall gain some

insight by the subsequent comparison with the results from the free fermionic field theory.

What sort of amplitudes are we looking for? We want to analyze the particle production

by the time-dependent background that is furnished by the “decaying” D0-brane(s). So

very schematically we are interested in
〈
Tout(ω1) · · · Tout(ωn)

〉
D0,κ

. (5.1)

The notation 〈· · · 〉D0,κ
is supposed to indicate that the expectation value is not taken in

the usual c = 1 closed string background, but rather in the modified background obtained

by the insertion of a D0-brane with parameter κ. The standard world-sheet definition of

amplitudes like (5.1) takes the following schematic form:
〈
Tout(ω1) · · ·Tout(ωn)

〉
D0,κ

³gs

³gs

∞∑

h=0

∞∑

d=1

g2h−2+d
s

〈
Tout(ω1) · · · Tout(ωn)

〉(h,d)

c=1.

(5.2)

The notation ³gs means equality of asymptotic expansions in powers of gs. The terms

〈Tout(ω1) · · ·Tout(ωn)〉h,d in the expansion (5.2) are associated to Riemann surfaces Σh,n,d

with genus h, n punctures and d discs. In general one might try to represent these terms

as integrals over the moduli space Mh,n,d of Riemann surfaces Σh,n,d,

〈
Tout(ω1) · · · Tout(ωn)

〉h,d

c=1
=

=

∫

Mh,n,d

Ωh,n,d

〈
vout(ω1) ⊗ · · · ⊗ vout(ωn)

〉CFT

Σh,n,d(M),
(5.3)

where we have put the ghost contributions into the definition of the top form Ωh,n,d and

〈· · · 〉CFT

Σh,n,d(M) is a correlation function in the conformal field theory

CFT = (Super− Liouville) ⊗ (X0−CFT).

The correlation functions 〈· · · 〉CFT

Σh,n,d(M) are viewed as machines which for each point M ∈
Mh,n,d transform vectors v ∈ H⊗n

CFT into numbers.
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We do not expect unusual problems in the construction of arbitrary correlation func-

tions 〈· · · 〉CFT

Σh,n,d(M) as long as d = 0. The potentially troublesome X0-CFT is free in the

bulk, which allows us to define the contribution from the X0-CFT by means of analytic

continuation w.r.t. the energies ωk, k = 1, . . . , n. In order to construct the amplitudes

with disc insertions a standard approach would be to start from correlation functions

〈· · · 〉CFT

Σh,n+d,0(M), from which one may try to construct 〈· · · 〉CFT

Σh,n,d(M) by sewing punctured

discs to d of the n + d punctures. In the case d = 1 this would lead to a representation of

the following type

〈
vout(ω1)⊗ · · · ⊗ vout(ωn)

〉CFT

Σh,n,1(M)
= (5.4)

=
〈
vout(ω1) ⊗ · · · ⊗ vout(ωn) ⊗ (e−τ(L0+L̄0−2)|Bκ〉)

〉CFT

Σh,n+1,0(M),

where |Bκ〉 is the boundary state associated to the boundary interaction (3.1). The gluing

parameter τ ∈ R+ represents the deformations of Σh,n,1 which change the radius of the

disc. In the general case d ≥ 0 one will have d such gluing parameters τ1, . . . , τd, and an

obvious generalization of formula (5.4).

In formula (5.4) we observe an unusual source of trouble: The spectrum of L0 + L̄0

is unbounded from below since the X0-CFT contains eigenstates with arbitrarily negative

eigenvalues. It is therefore not clear to me how to make sense out of the right hand side of

(5.4) in the present context.

If, however, a good definition for the right hand side of (5.4) is ultimately found, we

could proceed with the integration over moduli space as follows: By using coordinates for

the moduli space Mh,n,d such as those used in [25] one may realize that

Mh,n,d ' Mh,n+d,0 × R
d
+, (5.5)

where we may think of Mh,n+d,0 as parametrizing the complex structures on the surface

that is obtained from Σh,n,d by gluing punctured discs into the d boundaries of Σh,n,d.

The moduli corresponding to the factor R
d
+ in (5.5) can be identified with the radii of the

discs, and therfore with the parameters τ1, . . . , τd that were introduced after (5.4). This

means that we can factor off the integration over R
d
+ in (5.3) and represent it explicitly by

integrating over τ1, . . . , τd. As a symbolic notation for the result of this procedure we shall

propose

〈
vout(ω1) ⊗ · · · ⊗ vout(ωn)⊗

( 1

L0 + L̄0 − 2
|Bκ〉

)⊗d
〉CFT

Σh,n+d,0(M).

(5.6)

The physical interpretation of the insertions of (L0 + L̄0 − 2)−1|Bκ〉 should be clear: They

represent the propagation of closed strings from the brane into the region where interactions

with other closed strings take place. This leads us to formulate a physically motivated

requirement on possible definitions of (5.4),(5.6): They should be such that only on-shell

physical states contribute in (5.6). We are thereby lead to the expectation that (5.3) can
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be replaced by an expression of the following form

〈
Tout(ω1) · · ·Tout(ωn)

〉
h,d

=

=

∫

Mh,n+d,0

Ωh,n+d,0

〈
vout(ω1) ⊗ · · · ⊗ vout(ωn) ⊗

(
win(κ)

)⊗d
〉CFT

Σh,n+d,0(M)

=

∫
dω′

1 · · · dω′
d

d∏

r=1

〈Tin(ω
′
r) |Bκ 〉 (5.7)

×
〈
Tout(ω1) · · · Tout(ωn)Tin(ω

′
1) · · · Tin(ω

′
m)

〉(h,0)

c=1.

where we have assumed (with some hindsight) that the state win(κ) may be represented in

the form

win(κ) =

∫
dω 〈Tin(ω) |Bκ 〉 vin(ω) . (5.8)

Equation (5.7) is the sought-for representation of disc insertions in terms of certain closed

string operators.

We believe that the following point deserves some emphasis: Despite the fact that we

do not know the precise definition for the right hand side of (5.4), we are rather confident

that the representation (5.7) for perturbative closed string emission amplitudes in terms of

a sum over disc insertions should be valid.

We will soon see that these expectations are nicely supported by results from the

fermionic field theory. This will allow us to demonstrate that the above ideas about the

world-sheet mechanism behind open-closed duality are realized in the present context in a

rather concrete and well-defined manner.

5.2 Fermionic definition of amplitudes

Our aim is to calculate the amplitudes for emission of closed strings from a decaying ZZ-

brane. Identifying the ZZ-branes with the fermions in the free fermionic field theory leads

one to consider overlaps of the form

〈〈 y |bout(ω1) . . . bout(ωn) |ϕ 〉〉 (5.9)

where |ϕ 〉〉 represents a single fermion created from the vacuum |µ 〉〉,

|ϕ 〉〉 =

∫
dλ ϕ(λ) |λ 〉〉

1
, |λ 〉〉

1
≡ Ψ†(λ) |µ 〉〉. (5.10)

To be fully specific let us agree that the pseudo-vacuum | y 〉〉 in (5.9) is defined as in (4.5)

by using d†R
− (ω) instead of d†

+(ω).3

3It may seem unnatural that we define | y 〉〉 in terms of the in-fermionic creation operators d†R
− (ω) rather

than d†R
+ (ω). The difference is in many respects inessential, though. Thanks to the fact that the energy

distribution in (4.5) is peaked around ω = −µ we may approximate the reflection matrix R(ω) in (2.21) by

R(−µ). This means that replacing d†R
− (ω) by d†R

+ (ω) results in an overall factor that depends on µ only,

and will therefore be irrelevant for most questions. However, this factor will have to be taken into account

when calculating the asymptotic expansions in µ
−1. This will be done in the following subsections 5.3 and

5.4, where our present choice will turn out to be the most convenient one.
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We are trying to establish a relation of the form

〈〈 y |bout(ω1) . . . bout(ωn) |ϕ 〉〉 ³gs

〈
Tout(ω1) · · ·Tout(ωn)

〉
D0,κ

. (5.11)

This clearly requires choosing a particular wave-function ϕ ≡ ϕκ. We know that |ϕ 〉〉 has

the following equivalent descriptions:

|ϕ 〉〉 =

∫

R

du+ χout(u+)Ψ†
out(u+) |µ 〉〉

=

∫

R

dλ ψ(λ)Ψ†(λ) |µ 〉〉

=

∫

R

du− χin(u−)Ψ†
in(u−) |µ 〉〉.

(5.12)

Let us furthermore recall that given any one of the wave-functions (χout, φ, χin), we can

calculate the two others via the integral transformations (2.14). These relations describe

the dispersion that a wave-packet suffers in the time-evolution between any finite time

and and the asymptotics t → ±∞. It seems natural to suspect that the correct choice

of ϕκ must correspond to point-like initial localization, with parameter κ being related to

the initial position. Still we have two options to consider: Point-like initial localization at

finite time or point-like initial localization for time t → −∞. These two possibilities are

of course inequivalent as the effects of dispersion will be substantial in general. We are

going to show that only point-like initial localization for time t → −∞ has the chance to

yield amplitudes that can be identified with the world-sheet description. Let us therefore

consider the choice

χin(u−) ≡ δ(u− − u0

−) (5.13)

which corresponds to choosing

|ϕ 〉〉 ≡ |u0

− 〉〉 , |u0

− 〉〉 ≡ Ψ†
in(u

0

−) |µ 〉〉 . (5.14)

Our next aim will be to show that this choice indeed leads to a relation of the desired form

(5.11).

5.3 Closed string picture

One possible way to expand the amplitude in powers of gs = µ−1 proceeds by using the

expansion (2.33) in order to express the bosonic operators bout(ω) in terms of the bin(ω).

This leads to an expression of the following form:

〈〈 y |bout(ω1) · · · bout(ωn) |u0

− 〉〉 ³gs (5.15)

³gs

∞∑

m=1

1

m!

∫

R+

dω′
1 . . .

∫

R+

dω′
m R(m7→n)(ω1, . . . , ωn|ω′

1, . . . , ω
′
m)

× 〈〈 y |bin(ω
′
1) · · · bin(ω

′
m) |u0

− 〉〉

We are only claiming equality of asymptotic expansions in gs = µ−1 since we have been

ignoring the non-perturbative correction associated to the second term in the decomposition

(2.31). In the case that we have µ → ∞, ω
µ
¿ 1, where ω ≡ ∑n

r=1 ωr, we may approximate
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R(m7→n) by its asymptotic expansion in powers of gs = µ−1. It is important to note that up

to terms of order y−1, the S-matrix elements R(m7→n) in the one-fermion sector are equal to

the their counterparts in the zero fermion sector. The asymptotic expansion of the latter

was identified with the correlation functions of the c = 1 string theory in (2.37). This

allows us to write

R(m7→n)(ω1, . . . , ωn|ω′
1, . . . , ω

′
m) ³gs

³gs

∞∑

h=0

g2h−2+n+m
s

〈
Tout(ω1) . . . Tout(ωn)Tin(ω

′
1) . . . Tin(ω

′
m)

〉(h,0)

c=1,

(5.16)

Let us also note the following simple relation

〈〈 y |bin(ω
′
1) . . . bin(ω

′
m) |u0

− 〉〉 = 〈〈 y |u0

− 〉〉
d∏

r=1

〈Tin(ω
′
r) |Bκ 〉. (5.17)

We thereby arrive at an expansion of the following form

〈〈 y |u0

− 〉〉−1〈〈 y |bout(ω1) · · · bout(ωn) |u0

− 〉〉 ³gs

³gs

∞∑

d=1

1

d!

∞∑

h=0

g2h−2+n+d
s

∫

R+

dω′
1 . . .

∫

R+

dω′
d

d∏

r=1

〈Tin(ω
′
r) |Bκ 〉

×
〈
Tout(ω1) . . . Tout(ωn)Tin(ω

′
1) . . . Tin(ω

′
d)

〉(h,0)

c=1.

This is just what we are expecting on the basis of the discussion in subsection 5.1, cf. in

particular with equation (5.7).

Remarks

1. The leading asymptotics µ → ∞, ω
µ
¿ 1 of the one-point function is in found to be

〈〈 y |bout(ω) |F 〉〉 'y (2y)−
1
2 eiδ(ω) e−i(ω−µ) log u0

− µ−iω (5.18)

Up to inessential factors (cf. our discussion in subsection 4.2) we find a result that matches

the world-sheet computation provided that we identify the parameters as

sin πκ =
√

µ u0

−. (5.19)

It should be noted that the initial localization u0

− has nothing to do with the turning

point of the corresponding classical motion. The latter may be estimated from the average

value of the energy when we form wave-packets rather than considering point-like localized

“states”. This point will be further elaborated upon at the end of the following subsection.

2. One may/should worry about the convergence of the various summations/integrations in

(5.18). Let us first note that the integrations do not pose any problem. The UV convergence

is ensured by the delta-function in the integrand together with 〈〈y|bin(ω) ∼ eyω〈〈y| for

ω < 0. The absence of IR problems can be inferred from formula (A.19), noting that Qss′

(n)

vanishes for ωr → 0. The summation over h will not be convergent but only asymptotic,
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but it is interesting to note that the sum over the number of discs d is probably convergent

even after exchanging the summations over h and d. We have checked this claim explicitly

in the case n = 1 using the tree approximation (2.34) to the closed string S-matrix.

3. There is another way of writing the expansion (5.15) which appears to be instructive.

Introducing the notation

Bin(κ) ≡
∫

R+

dω 〈Tin(ω) |Bκ 〉 Tin(ω)

allows us to write (5.15) in the following form:

〈〈 y |u0

− 〉〉−1〈〈 y |bout(ω1) · · · bout(ωn) |u0

− 〉〉 ³gs (5.20)

³gs

∞∑

d=1

gd
s

d!

〈
Tout(ω1) · · · Tout(ωn) (Bin(κ))d

〉
c=1

³gs

〈
Tout(ω1) · · ·Tout(ωn) exp

[
Bin(κ)

] 〉
c=1.

It seems natural to call the representation (5.20) the closed string representation. This

representation suggests the following interpretation in terms of 2d string theory. The

initial state of the D-brane is represented as a coherent state of incoming closed strings4.

The resulting out-state is obtained by applying the closed string S-matrix to the closed

string oscillators which generate the initial state.

5.4 Open string picture

There is an alternative way to calculate the amplitude (5.9). Let us first note the simple

relation
〈〈 y |bout(ω1) . . . bout(ωn) |F 〉〉 =

=

∫ ∞

0
du+ χout(u+)

n∏

r=1

eiδ(ωr) e−iωr log u+ 〈〈 y |u+ 〉〉.
(5.21)

When calculating the matrix element 〈〈 y |u+ 〉〉 one should not forget that we had adopted

the convention to create the state | y 〉〉 with the help of the fermionic in-field, cf. the

footnote in subsection 5.2. It follows that

〈〈 y |u+ 〉〉 'y (2y)−
1
2 eiµ log u+ ρ∗(−µ)u

− 1
2

+ , (5.22)

where ρ(ω) is the diagonal element of the single particle reflection matrix defined in (2.23).

We thereby arrive at the expression

〈〈 y |bout(ω1) . . . bout(ωn) |F 〉〉 'y (2y)−
1
2 ρ∗(−µ) χ̃R

out(ω − µ)
n∏

r=1

eiδ(ωr) (5.23)

where ω =
∑n

r=1 ωr, and χ̃R
out(ω) is the Fourier-transformation of χR

out(u+),

χ̃R
out(ω) =

∫ ∞

0
du u−iω− 1

2 χR
out(u).

4on top of an unobservable D0-remnant, if you wish.
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It remains to calculate χ̃out for the choice of χ̃in which corresponds to the state |u0

− 〉〉, cf.

(5.13), namely (
χL

in(ω)

χR
in(ω)

)
= e−iω log u0

−

(
0

1

)
.

The relation (2.21) simplifies to χR
out(ω) = ρ(ω)χR

in(ω). We finally arrive at the simple result

〈〈 y | bout(ω1) . . . bout(ωn) |F 〉〉 'y

'y (2y)−
1
2

n∏

r=1

eiδ(ωr) ρ∗(−µ)ρ(ω − µ)e−i(ω−µ) log u0

− .
(5.24)

Remarks

1. Viewing the fermionic field theory as a representation for the open string theory on a

gas of D0-branes [1, 2] motivates us to call the resulting representation the “open string

picture”. Quantum corrections to the D-brane dynamics are calculated in the dual open

string theory before we analyze the final state in terms of closed string observables.

In the gedankenexperiment proposed in subsection 4.2 we are of course not tracking

the evolution of the D-brane state at finite times, we only observe outgoing radiation at

late times. It is therefore completely arbitrary5 if we prefer to interpret the state at finite

times as a D-brane or as a coherent state of closed strings. We may in particular imagine

that the D-brane is ”created” by an incoming coherent state of closed strings, and that

it subsequently decays back into an outgoing coherent state of closed string radiation, as

suggested by the ”full-brane” picture.

2. It is possible to calculate the expansion in powers of gs by noting that

ρ(ω − µ) =
e−

π
2
(ω−µ)

2 cosh π(ω − µ)
eiξ(ω−µ) ³

µ→∞
eiξ(ω−µ), ξ(x) ≡ argΓ

(
1
2 − ix

)
, (5.25)

for µ → ∞ and ω
µ
¿ 1, and using

eiξ(ω−µ) ³ ei(µ ln µ−µ) µ−iω exp

(
i

∞∑

n=1

(−1)nB2n

2n(2n − 1)
(1 − 2−(2n−1))(ω − µ)−(2n−1)

)
.

Note that we reproduce our previous result (5.18) for the leading asymptotics µ → ∞,
ω
µ
¿ 1 of the one-point function.

The individual terms in the resulting expansion are naturally interpreted as pertur-

bative contributions to the amplitude for emission of closed strings in the time-dependent

background that is furnished by the decaying ZZ-brane, corresponding to the following

reorganization of the perturbative expansion (5.2):

〈
Tout(ω1) · · · Tout(ωn)

〉
D0,κ

=

∞∑

r=0

gr−2
s

∞∑

h,d=0
2h+d=r

〈
Tout(ω1) · · · Tout(ωn)

〉(d,g)

c=1
. (5.26)

5to the extend that we can identify the different solitonic superselection sectors as physically equivalent
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One should bear in mind that the perturbative expansion in powers of gs will give a useful

approximation only if µ → ∞, and if only low energy tachyons with ω
µ
¿ 1 are “measured”.

3. It may seem puzzling that in (5.19) we are identifying the D-brane parameter with the

initial localization for time t → −∞, whereas in [2, 7] it is associated with the turning

point of the classical motion in the inverted harmonic oscillator potential. By forming

wave-packets it is of course possible to get states which are in the classical limit µ → ∞
well-localized in the sense that the uncertainties 1

µ
(δu±)2 and 1

µ
(δλ)2 are small. For those

wave-packets one recovers (4.10) as the leading approximation to the tachyon emission

amplitude.

5.5 More general c = 1-backgrounds

More generally we may consider string scattering amplitudes of the form

〈〈
f+ |b+(ω1) · · · b+(ωn) b−(−ω′

1) · · · b−(−ω′
m) | f−

〉〉
, (5.27)

where

| f− 〉〉 = exp

(∫ 0

−∞
dω f−(ω)b−(ω)

)
|µ 〉〉

〈〈 f+ | = 〈〈µ | exp

(∫ ∞

0
dω f+(ω)b−(ω)

)
.

(5.28)

This may be interpreted as a string scattering amplitude in a time-dependent background

that is explicitly represented in terms of coherent states | f+ 〉〉, | f− 〉〉 of closed strings. Of

course it is sufficient to study

〈〈 f+ | f− 〉〉, (5.29)

from which (5.27) can be recovered by taking functional derivatives.

We now want to describe the scattering amplitudes in a background that contains a

decaying ZZ-brane on top of the closed string background described by | f+ 〉〉 and | f− 〉〉.
Our previous discussions suggest that

1
〈〈 f+ |Ψ†

−(u0

−) | f− 〉〉 (5.30)

represents the generating functional for the amplitudes in question. The state
1
〈〈 f+ | is

defined by replacing the vacuum 〈〈µ | in (5.28) by an approximate vacuum in the one

fermion sector. By using our partial bosonization formula (4.8) it becomes easy to show

that

1
〈〈 f+ |Ψ†

−(u0

−) | f− 〉〉 =

= exp

(
i

∫

R+

dω (u0

−)iωf−(−ω)

)

1

〈〈
f+ |S | f−+ eτ

〉〉
1

, (5.31)

where eτ is explicitly given as

eτ (ω) = i
(u0

−)iω − eωy

ω
.
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Equation (5.31) shows that the insertion of a decaying ZZ-brane generates a shift in the

closed string background that is linear in the variables f+. The open-closed duality ex-

pressed by equation (5.31) is not perfect, though. The infrared region near ω = 0 is

effectively removed by our cut-off y. We therefore do not generate a shift of the cosmologi-

cal constant µ, corresponding to the zero energy tachyon. The fact that we can not remove

the infrared cut-off y limits the extend to which strict open-closed duality is realized in our

context. On the other hand, our previous discussion of this issue shows that what we are

missing to strict open-closed duality is associated with low-energy quanta that we are not

able to observe anyway. In this sense one may well regard the failure of strict open-closed

duality as unphysical.

6. Comparison with the euclidean case

It seems worth pointing out a close analogy between the results of the previous subsection

and discussions of the integrable structure of two-dimensional string theory in [26],[16]

and [27] respectively. In the following we shall review those features of the formalisms

developed in [26, 16, 27] which we need to see the analogy with the results in the previous

section. Our discussion will not be self-contained, the reader not sufficiently familiar with

the results of [26, 16, 27] may need to consult these references while reading the following

section.

6.1 Euclidean generating function

We will now consider the case of euclidean target space for the two-dimensional string

theory which is obtained by X0 → −iX0 ≡ X. Compactification of euclidean time via

X ≡ X + 2πR will be introduced to describe finite temperature. One is then in particular

interested in deformations of the background induced by changing the world-sheet action

as

SWS → SWS +
∑

k 6=0

tk TE(pk), (6.1)

where pk = k/R and TE(p) is the on-shell vertex operator

TE(p) ∼
∫

d2z eipXe2(1−|p|)φ .

The central object to study is the deformed partition function

Z({tk};µ,R) =

〈
exp

(
−

∑

k 6=0

tk TE(pk)
)〉Eucl

c=1.

(6.2)

Turning to the free fermionic field theory, it is in fact straightforward to introduce a

natural euclidean counterpart to (5.29) as follows [15]: Let u± = et∓x and continue t = iθ.

Periodicity w.r.t. θ → θ + 2πR then leads to quantization of the euclidean energies as

ω = ik/R. The euclidean counterparts of in- and out bosonic fields,

∂u±S±(u±) =
∑

k∈Z

a
(±)
k u

− 1
R

(k+1)
± , ± = ± (6.3)
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will be single-valued. It is then natural to consider

Z({tk};µ,R) = 〈〈T+ |T− 〉〉, (6.4)

where |T−〉〉, 〈〈T+| are coherent states of bosonic excitations defined as

|T+ 〉〉 ≡ exp

(∑

k<0

tka
in
k

)
|µ 〉〉, 〈〈T− | ≡ 〈〈µ | exp

(∑

k>0

tka
out
k

)
. (6.5)

The generating function (6.4) can be evaluated by first expressing the bosonic oscillators

a
(±)
k in terms of fermions as

a
(±)
k =

∑

l∈Z+ 1
2

d
(±)
k d

†(±)
k−l,

ψ±(u±) =
∑

k∈Z+ 1
2

d
(±)
k u

− k
R
− 1

2R
± ,

ψ†
±(u±) =

∑

k∈Z+ 1
2

d
†(±)
k u

− k
R
− 1

2R
± ,

(6.6)

and then using the algebra
{
d

(±)
k ,d

†(±)
l

}
= δk+l as well as the following relation between

in- and out oscillators:

dout
k = ρ(pk) din

k . (6.7)

Equation (6.4) is therefore good enough to define Z as a formal series in the variables tk.

The conjectured duality between the euclidean versions of c = 1 string theory and free

fermionic field theory is coincidence of the objects defined in (6.4) and (6.2), respectively.

6.2 Deformations of the Fermi level curve

The starting point of the formalism developed in [16] is the reformulation of the free

fermionic field theory in terms of light-cone variables u± for the phase space of the single

particle problem,

u± ≡ 1

2
λ ± p. (6.8)

The classical single particle hamiltonian is then simply h = −u+u−, so that the vacuum

of the classical limit of free fermionic field theory, the filled Fermi sea, gets represented by

the equation

u+u− = µ. (6.9)

Complexifying u± one may regard (6.9) as the definition for a noncompact Riemann surface

which may be covered by two patches U± with coordinates u± respectively. Eqn. (6.9)

defines the transition between the patches U+ and U−.

In the quantized theory u± get represented by the operators

u± =
1

2
λ ∓ i∂λ.

One may introduce representations for the single particle Hilbert space in which either u+ or

u− are diagonal. The representation of eigenfunctions of the hamiltonian h = −u+u−−u−u+

becomes very simple,

ζs
±(ω|u±) =

1√
2π

Θ(su±)|u±|±iω− 1
2 . (6.10)
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Thanks to the fact that [u+, u−] = −i one may realize the unitary operator between these

two representations simply as Fourier transformation,

φ(u+) =
1√
2π

∫
du− e−iu+u−φ(u−). (6.11)

The relation between the formalism introduced in this paper and the light-cone for-

malism of [16] follows from the fact that the unitary transformation from wave-functions

ψ(λ) to their time asymptotics φ±(u±) diagonalizes the operators u±. This is proven in

appendix A.2.

It is not hard to set up a formalism for the second quantized theory in terms of

the variables u±. Key ingredients of this formalism will be the fermionic field operators

Ψ±(u±). It is useful to associate the two field operators with the corresponding patches U±.

It follows from (6.11) that the operators Ψ+(u+) and Ψ−(u−) are also related by Fourier

transformation,

Ψ+(u+) =
1√
2π

∫
du− eiu+u−Ψs

−(u−). (6.12)

In order to treat deformed backgrounds of the euclidean along the lines of [16] one may

start from the following key idea: The deformations can be described by a change of the

vacuum in which to calculate expectation values only. The deformation should therefore not

change any of the relations which characterize the operator algebra of the theory including

the relation between in- and out fields (6.12).

The deformation will induce, however, a deformation of the energy eigenfunctions

(6.10) which appear in the expansion of the Fermi-fields into creation- and annihilation

operator with a specific energy. The authors of [16] propose that the deformation of the

energy eigenfunctions will take the form6

ζθ
±(ω|u±) =

1√
4π

eiθ±(ω|u±)u
±iω− 1

2
± , (6.13)

with phases θ±(ω|u±) that are of the form

θ±(ω|u±) =
1

2
θ0(ω) +

∑

k≥1

t±k u
k
R
± −

∑

k≥1

1

k
v±k(ω)u

− k
R

± . (6.14)

A basic idea behind this proposal is that the “field” θ±(ω|u±) should essentially coin-

cide with the expectation value of the bosonic fields S±(u±) obtained by bosonizing the

fermionic fields Ψ±(u±). More precisely, the relation with the deformed partition function

Z = Z({tk};µ,R) is expected to be

θ±(ω|u±) =
1

Z

(
1

2

∂

∂µ
+

∑

k≥1

t±k u
k
R
± −

∑

k≥1

u
− k

R
±

1

k

∂

∂t±k

)
Z. (6.15)

In order for (6.12) to remain valid in the deformed theory one then needs that the deformed

energy eigenfunctions are related by

ζθ
+(ω|u+) =

1√
2π

∫
du− e−iu+u−ζθ

−(ω|u−) (6.16)

6For the ease of notation we restrict ourselves to u± > 0 in the following.
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This defines an intricate problem. Regarding the coefficients tk as given input data one

finds from (6.16) a non-trivial set of relations between the parameters tk and the coefficients

v±k(ω). One may expect that these relations can generically be solved to uniquely to define

v±k(ω) as a function of the tk. The deformed partition function Z is then defined via (6.15),

where the integrability of these equations follows from the observation that a solution to

this problem defines a particular solution of the Toda integrable hierarchy [16].

All this can be understood much more concretely in the classical limit µ → ∞. In this

case one may evaluate (6.16) via the saddle point method [16], leading to the conditions

u+u− =






u+∂+S+(u+) ≡µ +
∑

k≥1

k t+k u
k
R
+ +

∑

k≥1

v+k u
− k

R
+

u−∂−S−(u−) ≡µ +
∑

k≥1

k t−k u
k
R
− +

∑

k≥1

v−k u
− k

R
− .

(6.17)

The coefficients vk are now defined as functions of the tk by the mutual consistency of

the two equations in (6.17), see [16] for details. Having chosen the vk in such a way that

the equations (6.17) are consistent one may view either of these equations as the defining

equation for a Riemann surface that is obtained as a deformation of the surface (6.9).

It seems worth remarking that the corresponding classical free energy Fcl, defined by

vk = − ∂

∂tk
Fcl , (6.18)

defines a natural Kähler potential, whose associated symplectic form identifies the coef-

ficients vk as the dual momenta to the coordinates tk for the space of deformations of

the surface (6.9). This line of thought naturally leads to the proposal that the partition

function Z of the quantized theory can be interpreted as the wave-function of a particular

state in the quantization of the symplectic space with Kähler potential Fcl. The Fourier

transformation (6.12) may then be regarded as the natural quantum counterpart of the

transition between the patches U+ and U−. This point of view is strongly supported by

the observation from [16] that the Fourier transformation (6.12) reduces to (6.17) in the

classical limit.

A very similar framework was shown in [27] to follow from a general formalism for

solving the topological B-model on certain classes of noncompact Calabi-Yau manifolds.

The case of the c = 1 string corresponds to the hypersurface

zw − H(p, λ) = 0, H(p, λ) = p2 − 1

4
λ2 − µ.

In this context one interprets the fermionic fields Ψ±(u±) as representatives for topological

D-branes that may be present in the relevant Calabi-Yau geometry. These branes are

parameterized by points of the surface H(p, λ) = 0, or alternatively by the corresponding

values of the coordinates u±.

6.3 Comparison

Although this has not been shown non-perturbatively yet, it seems very likely that the

formalisms outlined in the previous two subsections are ultimately all equivalent. One way
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to establish this is to observe that all these formalisms produce solutions of the equations of

the Toda hierarchy with initial conditions given by the partition function of the undeformed

two-dimensional string theory background.

In any of these formalisms an important role is played by the one-point functions of

the fermionic fields, which will be denoted as

〈
Ψ±(u±)

〉
{tk};µ,R.

(6.19)

By using standard bosonization formulae it is then straightforward to show that e.g.

〈
Ψ−(u−)

〉
{tk};µ,R

= exp

(
∑

k≥1

1

k
tk u

− k
R

−

)
Z

({
tk +

i

k
u

k
R
−Θ(−k)

}
; µ,R

)
. (6.20)

Following [27] one may read this as follows: Insertion of a topological B-brane at position

u− generates the shift

tk → +
i

k
u

k
R
− Θ(−k)

of the closed string background.

The analogy between (6.20) and (5.31) should be clear. But our discussion also shows

that the relation between (6.20) and (5.31) is more than just an analogy: Bear in mind that

the coordinates u± with which we describe the in- and out states are identical with the

light cone coordinates which play a central role in the euclidean formalisms. It follows that

the fermionic fields Ψ±(u±) of these formalisms are nothing but the euclidean counterparts

of the fermionic in- and out fields in the minkowskian formalism used in this paper. One

of our main results is to show that the insertion of fermionic in-fields describes decaying

ZZ-branes. This finally leads us to propose that the topological B-branes of [27] are the

euclidean counterparts of the rolling ZZ-branes.
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A. Free fermionic field theory revisited

A.1 Single particle quantum mechanics

As emphasized in [16], it is convenient to start by representing the single particle hamilto-

nian h in terms of the “light-cone variables” u± = 1
2λ ± i∂λ,

h = −u+u− − u−u+.

There exist representations for the Hilbert space K of the single particle problem in which ei-

ther u+ or u− are represented as multiplication operators. Observing that h is the generator

of dilatations of the coordinates u± it becomes easy to find a complete set of eigenfunctions

for h,

ζs
±(ω|u±) =

1√
2π

Θ(su±)|u±|±iω− 1
2 , s ∈ {+,−}, ω ∈ R. (A.1)

These representations are related to the usual Schrödinger representation by means of

integral transformations of the form

φ±(u±) =

∫

R

dλ M±(u±|λ)ψ(λ), (A.2)

with kernels M±(u±|λ) ≡ 〈u±|λ〉 given by the explicit formulae

M+(u+|λ) = e−i π
4 e

i
2
u2
+−iλu++ i

4
λ2

, M−(u−|λ) =
(
M+(u−|λ)

)∗
.

(A.3)

This claim is easily verified using the fact that the kernels M±(u±|λ) satisfy the differential

equations (
±i∂λ +

1

2
λ

)
M±(u±|λ) = u±M±(u±|λ).

When working in the Schrödinger representation one may construct a convenient set

of eigenfunctions for the single particle hamiltonian h by applying the inverse of the trans-

formation (A.2) to the eigenfunctions (A.1). In this way one may construct in particular

G(ω|λ) =
e−

π
2
ω−i π

4

Γ
(

1
2 − iω)

ei λ2

4

∞+iε∫

0

dσ σ−iω− 1
2 eiλσ+ i

2
σ2

. (A.4)

G(ω|λ) is an eigenfunction of h with eigenvalue ω which has particularly simple asymptotics

for λ → +∞, namely

G(ω|λ) ∼
λ→∞

ei λ2

4 λiω+ 1
2 . (A.5)

The functions G(ω|λ) are related to the standard parabolic cylinder functions U(a, x) [28]

via

G(ω|λ) = e−
π
4
ω−i π

8 U
(
− iω, λe−i π

4
)
. (A.6)

Three further solutions with simple asymptotic behavior can be obtained as G(ω| − λ),

G∗(ω|λ), G∗(ω| −λ), where the asterisk denotes complex conjugation. A normalized set of

real parity eigenfunctions is finally constructed as

Fp(ω|λ) ≡ 1√
2π

(
mp(ω)G(ω|λ) + m∗

p(ω)G∗(ω|λ)
)

, (A.7)
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where the coefficients mp(ω) are defined as

mp(ω) ≡ ei π
4

√
2

k(ω) − ip√
k2(ω) + 1

(
Γ(1

2 − iω)

Γ(1
2 + iω)

) 1
4

, (A.8)

with k(ω) =
√

1 + e−2πω − e−πω. The label p = ± is identified with the parity eigenvalue

of Fp(ω|λ). The functions Fp(ω|λ) have asymptotics

Fp(ω|λ) ∼
|λ|→∞

1√
2π|λ|)

(
e

i
4
λ2

eiω ln |λ| Ms
p(ω) + e−

i
4
λ2

eiω ln |λ| Ms
p(ω)

)
, (A.9)

where Ms
p(ω) = sΘ(−p)mp(ω) with Θ(−p) being the usual step function. It is known [14]

that the functions Fp(ω|λ) fulfil the following orthogonality and completeness relations :

∫

R

dλ Fp1
(ω1|λ)Fp2

(ω2|λ) = δp2p1
δ(ω1 − ω2),

∫

R

dω
(
F+(ω|λ1)F

+(ω|λ2) + F−(ω|λ1)F
−(ω|λ2)

)
= δ(λ1 − λ2).

(A.10)

A.2 Asymptotics of wave-packets

Claim: The asymptotics of a wave-packet ψ(λ, t) for t → ±∞ is of the form

ψ(λ, t) ˜t→±∞
(2π)−

1
2 e

i
4
λ2

e∓
t
2 φ±(u±), (A.11)

where u± ≡ λe∓t. The asymptotic wave-functions φ±(u±) can be calculated from the wave

function ψ(λ) ≡ ψ(λ, 0) by means of the integral transformations (A.2).

Proof: We may represent ψ(λ, t) as

ψ(λ, t) =

∫
dω e−iωt F(ω|λ) · ψ̃(ω), ψ̃(ω) ≡

∫

R

dλF(ω|λ)ψ(λ), (A.12)

Standard stationary phase arguments show that ψ(λ, t) will vanish rapidly at any fixed λ

when |t| → ∞. We should therefore regard the asymptotics where |λ| tends to ∞ as well.

In this case we may replace the wave-functions F(ω|λ) by their leading asymptotics for

|λ| → ∞ as given in equation (A.9).

Only the term containing the factor e−iω(t∓ln |λ|) will contribute in the limit t → ±∞.

This is enough to establish the first half of our claim, equation (A.11), with the two-

component vector φ±(u±) formed out of the functions φs
±(u±), s = ± given by

φ±(u±) =

∫

R

dω u±iω
± M±(ω) · ψ̃(ω) ,

M+(ω) ≡ M(ω),

M−(ω) ≡ M(ω),
(A.13)

where M(ω) is the matrix with matrix elements Ms
p(ω), or explicitly

M(ω) ≡ 1

2

(
1 1

1 −1

)(
m+(ω) 0

0 m−(ω)

)
. (A.14)
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It remains to calculate the asymptotic wave-functions φs
±(t) more explicitly. To this aim

let us consider M(ω) · F(ω|λ). By using (A.7), the expression that follows from (A.7) by

Fp(ω| − λ) = (−)Θ(−p)Fp(ω|λ) as well as |mp(ω)|2 = 1
2 one arrives at

M(ω) ·F(ω|λ) =
1

2
√

2π

(
m2

+(ω) − m2
−(ω)

)(G(ω| − λ)

G(ω| + λ)

)
.

The factor m2
+(ω) − m2

−(ω) equals 2(2π)−
1
2 e

πω
2 Γ

(
1
2 − iω

)
, leading us to

M(ω) ·F(ω|λ) =
1

2π
e−i π

4
+ i

4
λ2

∞+iε∫

0

dσ σ−iω− 1
2 e

i
2
σ2

(
e−iλσ

e+iλσ

)
.

This should then be inserted into (A.13). After exchanging the integrations one can easily

do the integration over ω, thereby producing a delta-function. This straightforwardly yields

our claim that φ± are given by the integral transformation (A.2). ¤

A.3 In- and Out-fields

Our next aim is to study the asymptotics for t → ±∞ of the fermionic operators

Ψ†[ψ | t ) ≡
∫

dλ ψ(λ)Ψ†(λ, t) . (A.15)

Introducing the operators d†
±(ω) by d†

±(ω) = M†
±(ω) · c†(ω) allows us to write

Ψ†[ψ | t ) =

∫

R

dω e−iωt c†(ω) · ψ̃(ω)

=

∫

R

dω e−iωt d†
±(ω) · φ̃±(ω),

(A.16)

where the definition of φ̃±(ω) can be read off from (A.13). Using (2.20) it is then straight-

forward to rewrite the result in the following form:

Ψ†[ψ | t ) =

∫
du

2π
φ±(ue∓t)Ψ†

±(u) . (A.17)

This clearly identifies the fermionic fields Ψ†
±(u) as the in- and out-fields.

A.4 Relation between bosonic in- and out-oscillators

We want to demonstrate the validity of the expansion

[ as
out(ω) ]

0,in =
∑

s′=L,R

∞∑

n=1

∞∫

−∞

dω1

ω1

∞∫

ω1

dω2

ω2
· · ·

∞∫

ωn−1

dωn

ωn
× (A.18)

× Rss′

(n)(ω |ω1, . . . , ωn ) as′

in(ω1) · · · as′

in(ωn) .
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This formula is a nonperturbative generalization of Polchinski’s result [18] for the classi-

cal limit µ−1 → 0. The coefficients Rss′

(n) are of the form Rss′

(n)(ω|ω1, . . . , ωn) = 2πδ(ω −
∑s

r=1 ωs)Q
ss′

(n)(ω1, . . . , ωn), where

Qss′

(n)(ω1, . . . , ωn ) =

∞∫

−∞

dτ

iτ
e−iµτKss′(ω|τ)

n∏

r=1

2i sin ωrτ
2 . (A.19)

The kernels Kss′(ω|t) are given by the following integrals:

Kss′(ω | t ) =

∞∫

−∞

dω′ eiω′t R̄ss′(ω′−ω
2 )Rss′(ω′+ω

2 ) =

{
J−iω(+2iet) if s = s′,

J−iω(−2iet) if s 6= s′ .
(A.20)

Proof of (A.18): We start from the expression

[ as
out(ω) ]

0,in = 2

∞∫

−∞

dω′
∑

s′=L,R

R̄ss′(ω′−ω
2 )Rss′(ω′+ω

2 ) d† s′

in (ω′−ω
2 )ds′

in(
ω′+ω

2 ). (A.21)

By inserting

d† s′

in (ω) =

∫
dx1

2π
eiωx1 Ψ̄† s′

in (x1), ds′

in(ω) =

∫
dx

2π
eiωx2 Ψ̄s′

in(x2) ,

where Ψ̄s
in(x) ≡ e

x
2 Ψs

in(e
x), exchanging the order of integrations and changing variables to

x1 = x + τ
2 , x2 = x + τ

2 , we arrive at the expression

[ as
out(ω) ]

0,in =

=

∫
dx

2π
e−iωx

∫
dτ

2π

∑

s′=L,R

Kss′(ω | τ )Ψ† s′

in (x + τ
2 )Ψs′

in(x − τ
2 ),

(A.22)

where the kernel Kss′(ω | τ ) is the one defined in (A.19). For the product of fermionic field

operators which appears in (A.22) we may use the bosonization formula

Ψ† s
in (x + τ

2 )Ψs
in(x − τ

2 ) =

=
1

iτ
e−iµτei(T s

<(x+ τ
2
)−T s

<(x− τ
2
))ei(T s

>(x+ τ
2
)−T s

>(x− τ
2
))

(A.23)

Note that this formula is free from the infrared problems of the corresponding bosoniza-

tion formula for a single fermionic field operator. It may be proven by using the partial

bosonization formulae from §4.1.2, noting that the cut-off y may be removed in expressions

that are bilinear in fermionic fields.

By using series expansions for the exponentials in (A.23) we then get

Ψ† s
in (x + τ

2 )Ψs
in(x − τ

2 ) =

=
e−iµτ

iτ

∞∑

k=0

k∑

l=0

(2i)k

l!(k − l)!

∞∫

−∞

dω1

ω1
· · · dωk

ωk
eiω̄x

k∏

r=1

sin ωrτ
2 ×

× as−
in (ω1) · · · as−

in (ωl)a
s+
in (ωl+1) · · · as+

in (ωk),

(A.24)
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where we have used the notation ω̄ =
∑k

r=1 ωr as well as as±
in (ω) ≡ Θ(±ω)as

in(ω). Passing

to integration over ordered sets of integration variables finally yields the formula

Ψ† s
in (x + τ

2 )Ψs
in(x − τ

2 ) =

=
e−iµτ

iτ

∞∑

k=0

(2i)k
∞∫

−∞

dω1

ω1

∞∫

ω1

dω2

ω2
· · ·

∞∫

ωn−1

dωn

ωn
eiω̄x

k∏

r=1

sin ωrτ
2 ×

× as
in(ω1) · · · as

in(ωk),

(A.25)

Inserting this into (A.22) and noting that the integration over x produces a delta-function

completes our derivation of formula (A.18).

Finally we would like to show how to calculate the leading asymptotics for µ → ∞,
ωr

µ
¿ 1 from the general formula (A.18). First, it is not hard to see that in this limit

the integral which represents Qss′

(n), cf. equation (A.19), is dominated by the contributions

from small τ . Approximating sin ωrτ
2 ' 1

2ωrτ and inserting the explicit expression for the

matrix elements Rss′ we arrive at

Qss′

(n)(ω1, . . . , ωn ) ' (A.26)

'
n∏

r=1

(iωr)

∫

R

dτ

iτ
e−iτµ τn

∫

R

dω′eσ π
2
ω′

eiω′τΓ
(

1
2 + i

2(ω′ − ω)
)
Γ
(

1
2 − i

2 (ω′ + ω)
)
,

where σ = − if s = s′, σ = + otherwise. The integral over τ can be represented in terms

of δ(µ − ω′), allowing us to do the integral over ω′ as well. This yields

Qss′

(n)(ω1, . . . , ωn ) '

' 1

i

n∏

r=1

iωr

(
i

∂

∂µ

)n−1

e−σ π
2
µ Γ

(
1
2 − i

2(µ + ω)
)
Γ
(

1
2 + i

2(µ − ω)
)
.

(A.27)

With the help of Stirling’s formula it is not hard to show that

e−σ π
2
µΓ

(
1
2 − i

2(µ + ω)
)
Γ
(

1
2 + i

2(µ − ω)
)

'
µ→∞

µ−iω

{
1 if s = s′

0 if s 6= s′.

By inserting this relation into (A.27) it becomes easy to verify (2.34).

B. Solitonic sectors - Non-existence of normalizable ground-states

Our aim is to prove that the sectors with nonzero fermion number do not have normalizable

ground states. The basic idea is very simple: We should be able to decompose any state

into energy eigenstates. A state |Ω〉〉n could only be a ground state in the sector with

fermion number n 6= 0 if it would get contributions from states with energy −µ only. Due

to the fact that the single particle spectrum is purely continuous, one may suspect that

the problem to construct normalizable states with energy −µ is similar to the problem to

construct point-like localized states in a theory with purely continuous spectrum. There
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do not exist normalizable states of this type. However, one may be confused by the fact

that we are certainly able to construct sequences of normalized vectors which have energy

expectation values that converge to the vacuum expecation value −µ. It may therefore be

worth demonstrating in some detail that no such sequence of vectors can be convergent.

For simplicity let us restrict attention to the case in which one has only a single set of

fermionic creation- and annihilation operators c(ω), c†(ω). As a preliminary remark let us

observe that the sector Hf with fermion number f may be represented as

Hf '
∫ ⊕

R+

dω Hf (ω), (B.1)

where Hf (ω) is generated by expressions of the form

−µ∫

−∞

dω1 . . . dωm

∞∫

−µ

dω′
1 . . . dω′

m+f δ
(
ω −

m+f∑

r=1

ω′
r +

m∑

s=1

ωs

)
× (B.2)

× F (ω1, . . . , ωm;ω′
1, . . . , ω

′
m+f )c(ω1) · · · c(ωm)c†(ω′

1) · · · c(ω′
m+f )|µ 〉〉.

In the representation (B.1) one represents vectors |Ψ 〉〉f ∈ Hf by vector-valued functions

Ψf (ω) ∈ Hf (ω). Upon choosing suitable normalizations one may assume that the scalar

product takes the form

〈〈Ψf |Φf 〉〉 =

∫ ∞

−µ

dω
(
Ψf (ω) , Φf (ω)

)
f
,

where (., .)f is the scalar product in Hf (ω).

We will consider sequences (Ψn)n∈N of vectors in Hf such that

(i) lim
n→∞

〈〈Ψn |H |Ψn 〉〉 = −µ. (B.3)

(ii) 〈〈Ψn |Ψn 〉〉 = 1. (B.4)

Our aim is to show that no such sequence converges, which means that there exists an

ε > 0 such that for any n ∈ N one can find m > n for which ‖Ψn − Ψm‖ > ε. Keeping

in mind that ‖Ψn − Ψm‖ = 2 − 2Re 〈〈Ψn|Ψm〉〉 it suffices to show that for any fixed n, the

sequence (|〈〈Ψn|Ψm〉〉|)m∈N does not converge to 1.

So let us pick any n ∈ N. Define δ > −µ by

∫ δ

−µ

dω ‖Ψn(ω)‖2
f =

1

2
. (B.5)

We claim that for all ε > 0 there exists M ∈ N such that for all m > M we have

∫ ∞

δ

dω ‖Ψm(ω)‖2
f < ε . (B.6)
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Indeed, if this was not the case we could find an ε > 0 such that for all M ∈ N there exists

m > M with
∫ ∞
δ

dω ‖Ψm‖2 > ε, which implies that also

〈〈Ψm |H |Ψm 〉〉 ≥ (−µ)

∫ δ

−µ

dω ‖Ψm(ω)‖2
f + δ

∫ ∞

δ

dω ‖Ψm(ω)‖2
f

≥ (−µ)

(
1 −

∫ ∞

δ

dω ‖Ψm(ω)‖2
f

)
+ δ

∫ ∞

δ

dω ‖Ψm(ω)‖2
f

≥ − µ + (δ + µ)

∫ ∞

δ

dω ‖Ψm(ω)‖2
f

> − µ + (δ + µ)ε.

Since δ +µ > 0 we would have a contradiction to the convergence of the energy expecation

values, condition (B.3).

So let us now present an estimate for |〈〈Ψn|Ψm〉〉| that holds for any m which satisfies

(B.6).

|〈〈Ψn|Ψm〉〉| ≤
∣∣∣∣∣

δ∫

−µ

dω
(
Ψn(ω),Ψm(ω)

)
f

∣∣∣∣∣ +

∣∣∣∣∣

∞∫

δ

dω
(
Ψn(ω),Ψm(ω)

)
f

∣∣∣∣∣

≤
( δ∫

−µ

dω ‖Ψn(ω)‖2
f

) 1
2
( δ∫

−µ

dω ‖Ψm(ω)‖2
f

) 1
2

+

+

( ∞∫

δ

dω ‖Ψn(ω)‖2
f

) 1
2
( ∞∫

δ

dω ‖Ψm(ω)‖2
f

) 1
2

<
1

2
+

1

4
ε . (B.7)

To go from the first to the second line we have used the Cauchy-Schwartz inequality, to

arrive at the last inequality we have used (B.5) and (B.6). This estimate will hold for any

m > M with M ∈ N being such that the validity of (B.6) is guaranteed for m > M . Since

ε is at our disposal we are sure that |〈〈Ψn|Ψm〉〉| will stay below 2/3 < 1, say. This clearly

shows that the sequence (|〈〈Ψn|Ψm〉〉|)m∈N can not converge to 1.
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