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Abstract
In this paper and the companion paper (Sahlmann and Thiemann 2006 Towards
the QFT on curved spacetime limit of QGR: II. A concrete implementation
Class. Quantum Grav. 23 909), we address the question of how one might obtain
the semiclassical limit of ordinary matter quantum fields (QFT) propagating on
curved spacetimes (CST) from full-fledged quantum general relativity (QGR),
starting from first principles. We stress that we do not claim to have a
satisfactory answer to this question, rather our intention is to ignite a discussion
by displaying the problems that have to be solved when carrying out such a
programme. In the first paper of this series of two, we propose a general scheme
of logical steps that one has to take in order to arrive at such a limit. We discuss
the technical and conceptual problems that arise in doing so and how they can
be solved in principle. As to be expected, completely new issues arise due to the
fact that QGR is a background-independent theory. For instance, fundamentally
the notion of a photon involves not only the Maxwell quantum field but also
the metric operator—in a sense, there is no photon vacuum state but a ‘photon
vacuum operator’! Such problems have, to the best of our knowledge, not been
discussed in the literature before, we are facing squarely one aspect of the deep
conceptual difference between a background-dependent and a background-free
theory. While in this first paper we focus on conceptual and abstract aspects,
for instance the definition of (fundamental) n-particle states (e.g. photons),
in the second paper we perform detailed calculations including, among other
things, coherent state expectation values and propagation on random lattices.
These calculations serve as an illustration of how far one can get with present
mathematical techniques. Although they result in detailed predictions for the
size of first quantum corrections such as the γ -ray burst effect, these predictions
should not be taken too seriously because (a) the calculations are carried out at
the kinematical level only and (b) while we can classify the amount of freedom
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in our constructions, the analysis of the physical significance of possible choices
has just begun.

PACS numbers: 04.60.−m, 04.60.Pp

1. Introduction

Canonical, non-perturbative quantum general relativity (QGR) has by now reached the status
of a serious candidate for a quantum theory of the gravitational field: first of all, the formulation
of the theory is mathematically rigorous. Although there are no further inputs other than the
fundamental principles of four-dimensional Lorentzian general relativity and quantum theory,
the theory predicts that there is a built-in fundamental discreteness at Planck-scale distances
and therefore an UV cut-off precisely due to its diffeomorphism invariance (background
independence). Next, while most of the results have so far been obtained using the canonical
operator language, also a path integral formulation (‘spin foams’) is currently constructed.
Furthermore, as a first physical application, a rigorous, microscopical derivation of the
Bekenstein–Hawking entropy–area law has been established. The reader interested in all
the technical details of QGR and its present status is referred to the exhaustive review paper
[2] and references therein, and to [3] for a less technical overview. For a comparison with
other approaches to quantum gravity see [4–6].

A topic that has recently attracted much attention is to explore the regime of QGR where
the quantized gravitational field behaves ‘almost classical’, i.e. approximately like a given
classical solution to the field equations. Only if such a regime exists, can one really claim that
QGR is a viable candidate theory for quantum gravity. Consequently, efforts have been made
to identify so-called semiclassical states in the Hilbert space of QGR, states that reproduce
a given classical geometry in terms of their expectation values and in which the quantum
mechanical fluctuations are small [7–11]. Also, it has been investigated how gravitons emerge
as carriers of the gravitational interaction in the semiclassical regime of the theory [12–14].
The recent investigations of Varadarajan and others [15–18] on the relation between the Fock
representations used in conventional quantum field theories and that in QGR further illuminate
the relation between QGR and a perturbative treatment based on gravitons.

In this and the companion paper [1], we would also like to contribute to the understanding
of the semiclassical limit of QGR: we will investigate how the theory of quantum matter fields
propagating in a fixed classical background geometry (QFT on CST) arises as an approximation
to the full theory of QGR coupled to (quantum) matter fields. We will show in section 4 of the
present work, how, upon choosing a semiclassical state, an effective QFT for the matter fields
can be obtained from a more fundamental theory of QGR coupled to matter. This effective
theory turns out to be very similar to standard QFT on CST, but still carries an imprint of the
discreteness of the geometry in QGR as well as of the quantum fluctuations in the gravitational
field.

Validating the semiclassical limit of matter coupled to QGR is not the only motivation
for the present work. Since QGR is a background-independent theory, the consistent coupling
of matter fields requires a quantum field theoretical description of these fields that differs
considerably from that used in ordinary QFT. Therefore, another aim of the present work is to
gain some insights into what these differences are and how matter QFT can be formulated in
a setting where also the gravitational field is quantized. As a main result of the present paper,
we show how a theory of matter coupled to quantum geometry can be formulated within the
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framework of QGR. Within this theory, we identify states that can roughly be compared to the
n-particle states occurring in ordinary QFT. Their structure is however fundamentally different
compared to that of the ordinary Fock states: their definition also involves operators of the
gravitational sector of the theory!

Similar considerations may be applied to understand the emergence of gravitons in the
semiclassical limit of QGR. The situation there is however a bit more complicated since it
requires the separation of the gravitational field into a background and a graviton part. We
refer the reader to [19] where a detailed consideration will be given.

Finally, due to a better understanding of the phenomenology of quantum gravity and the
experiments that could lead to its detection (see [20] for a recent review), it is an intriguing
question whether it might already be possible to make predictions for observable quantum
gravity effects based on QGR. In order to do so, one has to consider a coupling of the
gravitational field to matter—one cannot measure the gravitational field directly but only
through its action on other fields. Indeed, ground-breaking work on the phenomenology of
QGR has been done [21–24]. In these works, corrections to the standard dispersion relations
for matter fields due to QGR have been obtained. Since we are dealing with a theory for matter
coupled to QGR in the present work, it is an important question whether the results of [21–24]
can be confirmed in the present setting. We will discuss the general aspects of this question
in section 5. In the companion paper [1], we will carry out a more detailed calculation, based
on the results of the present work and the semiclassical states constructed in [9–11].

The main difficulty in carrying out the programme outlined up to now lies in the fact that
the full dynamics of quantum gravity coupled to quantum matter is highly complicated. This
would already be the case for ordinary interacting fields but is amplified in the present case
due to the complicated interaction terms (the gravitational field enters in a non-polynomial
way) and the difficulties in the interpretation of the resulting solutions. In the setting of QGR,
the dynamics is implemented in the spirit of Dirac, by turning the Hamilton constraint of the
classical theory into an operator and restricting attention to (generalized) states in its kernel.
A mathematically well-defined candidate Hamiltonian constraint operator has been proposed
in [25–29] (see also [30, 31] for another proposal based on Vassiliev invariants). This operator
turns out to be very complicated and a systematic analysis of its kernel seems presently out
of reach. Therefore, in our considerations, we cannot start from a fully quantized dynamical
theory of gravity coupled to matter. Instead, we have to treat the dynamics in some rather
crude approximation and therefore our considerations will be kinematical to a large extent.
To be more precise, we will not treat the matter parts in the Hamiltonian as constraints, but
as Hamiltonians generating the dynamics of the matter fields in the ordinary QFT sense.
With the part in the Hamiltonian describing the self-interaction of the gravitational field, we
will deal by using semiclassical states, which, as we will explain, annihilate this part of the
Hamiltonian constraint at least approximately. Proceeding in this way certainly only amounts
to establishing an approximation to the full theory: the self-interaction of gravity and the back-
reaction of the matter fields on the geometry are only partly reflected by using semiclassical
states that approximate a classical solution to the field equations of the gravity–matter system.

What we gain is a relatively easy to interpret, fully quantized theory of gravity and matter
fields. This way, we have ‘a foot in the door’ to the fascinating topic of interaction between
quantum matter and quantum gravity and can start to discuss the conceptual issues arising,
as well as take some steps towards the prediction of observable effects resulting from this
interplay.

Let us finish this introduction with a brief description of the structure of the rest of the
paper. In the next section, we will discuss the main steps taken in this work in more detail
before we turn to their technical implementation in the subsequent sections.
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In section 3, we give a very brief introduction to the formalism of QGR, mainly to fix
our notation. In more detail, we display the matter Hamiltonian operators of electromagnetic,
scalar and Dirac matter when coupled to general relativity.

Section 4 contains the main results of this paper, namely a proposal for how to arrive at
the notion of Fock states or n-particle states on fluctuating quantum spacetimes, if one is to
start from a fundamental quantum theory of gravity of matter.

In section 5, we discuss various methods to obtain dispersion relations for the matter fields
from the full theory described in 3.

We conclude this work with a discussion of its results and possible directions for future
research in section 6.

In the appendix, we treat the toy model of two coupled harmonic oscillators to give an
example of how the results are affected when one uses kinematical coherent states instead of
coherent states in the dynamical Hilbert space of the theory.

As already said, in the present paper we focus on describing the general scheme, detailed
calculations will appear in the companion paper [1].

2. A general scheme

In this section, we want to discuss the issues related to the QFT on CST limit of QGR and
describe the steps taken in the present work in more detail.

The first step that we will take is the kinematical quantization of the matter and the
gravitational field on a Hilbert space Hkin. We will be guided by the fundamental principles
of QGR which have to be obeyed: the quantum theory should be formulated in a background-
free and diffeomorphism-covariant fashion. If the matter field is a gauge field with compact
gauge group, we can quantize it with exactly the same methods that are used in QGR for
the gravitational field. This way, we obtain a neat unified description of gravity and the
other gauge fields. Also for fermions or scalar fields, a representation should be used that is
background independent. This rules out the usual Fock representation. New representations
for fermionic, Higgs and scalar fields in keeping with the principles of QGR were proposed
in [25] and we will use them for our purpose.

The quantization of the Hamiltonian of the coupled system is a rather nontrivial task, due to
its complicated non-polynomial dependence on the basic variables of the theory. Nevertheless,
a scheme for the quantization for densities of weight one has been proposed in [28, 27] which
leads to well-defined candidate operators. The resulting operators are quite complicated but
perfectly well defined and lead to reasonable results in a symmetry reduced context [32, 33].
Another very encouraging aspect of the scheme is that it works precisely due to the density one
character of the classical quantities, which is dictated by background independence, and not
only despite it. In [1] and the present paper, we will proceed along the lines given in [28, 27]
and obtain Hamiltonian constraint operators for electromagnetic, scalar and fermionic fields
coupled to gravity.

As a next step, we have to deal with the constraints of the theory: a Gauß constraint for
gravity and for every matter gauge field, the spatial diffeomorphism constraint of gravity and,
finally and most importantly, the Hamilton constraint of the coupled gravity–matter system.

The implementation of the diffeomorphism constraint has been accomplished in [34].
Still, there is a difficulty related to the spatial diffeomorphism constraint for pure gravity: no
spatially diffeomorphism-invariant quantum observables (apart from the total volume of the
spacelike hypersurface �, in the case it is finite) have been constructed so far. This is due
to the fact that such observables are given by integrals over � of scalar densities of weight
one built from the spatial curvature tensor and its spatial covariant derivatives which are
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highly non-polynomial functions. This problem gets alleviated when matter is coupled to the
gravitational field. For instance, the matter can serve to define submanifolds or regions of � in
a diffeomorphism-covariant way. Diffeomorphism-invariant observables can then be obtained
by integrating the gravitational fields over these submanifolds or regions [35, 36]. Indeed, we
will see that this also applies to the Hamiltonian for gravity-coupled matter: the corresponding
operator constructed in the next section will be diffeomorphism invariant. This is important for
the following reason: since the diffeomorphisms of � are implemented unitarily on Hkin, the
expectation value and fluctuations of a diffeomorphism-invariant operator do not differ from
its expectation value and fluctuations in the state that results from projecting the original one to
the diffeomorphism-invariant Hilbert space (via group averaging) [34] provided the operator
satisfies certain technical conditions (it has to leave cylindrical subspaces of the Hilbert space
separately invariant). Therefore, as long as we work with diffeomorphism-invariant operators
onHkin, we do not have to bother too much about implementing the diffeomorphism constraint.
Similar remarks concern the Gauß constraints, so we will also not be concerned with their
implementation in what follows.

We now turn to the implementation of the Hamilton constraint. Even for pure gravity,
this is a very difficult topic. Though solutions have been found [29, 26], they are notoriously
hard to interpret due to the lack of Dirac observables invariant under the motions generated by
the Hamiltonian constraint (even in the presence of matter) and a thorough understanding of
the ‘problem of time’. The problem of finding solutions to the Hamilton constraint for gravity
coupled to matter has not been treated before although the method of [29] can in principle be
applied as well1.

Since one of our goals is to explore the semiclassical limit of QGR coupled to matter, the
task presented to us is even harder: not only do we have to find some solutions to the Hamilton
constraint, but we are interested in specific solutions in which the gravitational field is in a
state close to some given classical geometry.

As already explained in the introduction, in the light of these difficulties, we propose to
proceed along slightly different lines. To give an idea what we are aiming at, imagine we
ought to compute corrections to the interaction of some quantum system (an atom, say) with
an electromagnetic field, which are due to the quantum nature of the electromagnetic field.
Ultimately, this is a problem in quantum electrodynamics and therefore certainly not solvable
in full generality. What can be done? For the free Maxwell field, there is a family of states
describing configurations of the quantum field close to classical ones, the coherent states:
expectation values for field operators yield the classical values and the quantum mechanical
uncertainties are minimal in a specific sense. Such states could be used to model the classical
electromagnetic field. Certainly, these coherent states are not viable states for the full quantum
electrodynamics treatment in any sense. They do not know anything about the dynamics of the
full theory. The key point now is that though being in some sense ‘kinematical’, the coherent
states for the Maxwell field are nevertheless a very good starting point to compute approximate
quantum corrections as testified by the computations in the framework of quantum optics [37].
Certainly, this analogy is not complete in that QED is equipped with a true Hamiltonian (rather

1 Note that since presently the correctness of the classical limit of the operators corresponding to the quantization
of the geometry and matter Hamiltonian constraints proposed in [28, 27] is not yet confirmed, in order to verify this
proposal it is well motivated to work with kinematical semiclassical states. This is because one cannot study the
semiclassical limit of an operator on its kernel. Also, since the spatially diffeomorphism-invariant states are not left
invariant by the Hamiltonian constraint, we cannot even work at the spatially diffeomorphism-invariant level. In this
paper, we are, however, not so much interested in testing the Hamiltonian constraint but rather we suppose that some
correct version of it exists and ask how physical predictions can be extracted without solving the complicated theory
exactly.
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than just a Hamiltonian constraint) but it shows nevertheless that sometimes kinematical states
lead to rather good approximations.

In the present work, we will proceed in the same spirit: we will not seek states which
are solutions to the constraint and approximately correspond to some classical geometry, but
rather start by considering kinematical semiclassical states.

Consequently, we treat the Hamiltonians of the matter fields not as pieces of the
Hamiltonian constraint but rather as observables. In particular, there will be no lapse function,
these Hamiltonian operators are simply different operators (from the Hamiltonian constraint
operator). Although we will follow essentially the steps performed in [27], the fact that we are
dealing with different operators allows us to change the quantization procedure slightly, for
instance the Hamiltonian operators leave the cylindrical subspaces of Hkin separately invariant.

It is hard to judge the validity of this approach as compared to the desirable full-fledged
solution of the Hamilton constraint. To shed some light on this issue, in the appendix we
consider a simple quantum mechanical model system. For this system, we can show that the
expectation values of Dirac observables in coherent states on the kinematical level numerically
differ from the results of a treatment using dynamical coherent states, the differences are tiny,
however, as long as the energy of the system is macroscopic.

Another issue raised by the treatment outlined above is that much depends on the choice of
the state that is employed to play the role of the semiclassical state. We will defer a discussion
of this fascinating topic to the companion paper [1] and only make some brief remarks here.

All candidate semiclassical states proposed so far are graph-based states, i.e. cylindrical
functions in Hkin. Consequently, this is assumed to be the case in the present work. The
picture might however change substantially if ideas such as the averaging over infinitely many
graph-based states advocated in [8] could be employed. For some more discussion on this
point, we refer to [1, 38].

Having adopted the above viewpoint on the Hamilton constraint, we can construct
approximate n-particle Fock states propagating on fluctuating quantum spacetimes as follows:
denote by M the gravitational phase space of initial data on the hypersurface � of the
differentiable manifold M = R × �. Let m ∈ M be initial data for some background
spacetime. An ordinary n-particle state is an excitation of a vacuum state �Fock

matter(m) in a usual
Fock spaceHFock

matter(m) which is of a completely different type than the background-independent
Hilbert space Hkin

matter. The construction of that vacuum state (and the entire Fock space) makes
heavy use of the background metric in question, here indicated by the explicit dependence of
the state on the point m in the gravitational phase space. This dependence slips in because the
state �Fock

matter(m) is usually chosen as the ground state of some Hamiltonian operator Ĥ matter(m)

on the background spacetime in question. We now see what will heuristically happen when
we start switching on the gravitational fluctuations as well: the dependence of �Fock

matter(m) on
m has to become operator valued! In other words, the vacuum state function m �→ �matter(m)

becomes a vacuum operator �̂ := �matter(m̂), that is, a function of the matter degrees of
freedom with values in L

(
Hkin

grav

) ⊗ Hkin
matter, where Hkin

matter is now necessarily a background-
independent matter Hilbert space (which we have chosen to be that currently in use in QGR)
and L

(
Hkin

grav

)
denotes the space of linear operators on a background-independent geometry

Hilbert space. We see that the whole concept of an n-particle state becomes a very different
one in the background-independent context! Of course, we do not want a vacuum operator
but a vacuum state on the full Hilbert space Hkin so that one will apply the vacuum operator
to a state ψgrav(m) ∈ Hkin

grav, that is, �(m) = �̂ψm.
We conclude that a fundamental n-particle state of some matter type corresponding

to an ordinary n-particle state of the same matter type propagating on some background
spacetime described by the point m in the gravitational phase space will be a complicated
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linear combination of states of the form ψgrav(m) ⊗ ψmatter ∈ Hkin
grav ⊗ Hkin

matter. How should
this state be obtained from first principles? We propose the following strategy: consider the
full gravity-coupled Hamiltonian operator Ĥ and construct an annihilation operator from it,
which is now an operator on the full Hilbert space Hkin and whose partial classical limit at the
point m of the gravitational phase space with respect to the gravitational degrees of freedom
mirrors the usual Fock space annihilation operator on the background spacetime described
by m.

This is what one should do. Now recall that the construction of Fock space annihilation
operators on a given background involves, for instance, the construction of fractional powers
of the Laplacian operator on that background metric which is an operator in the one-particle
(or first quantized matter) Hilbert space. Thus, our fundamental annihilation operator will
involve a quantization of these Laplacian operators which therefore become an operator on
the tensor product of the one-particle Hilbert space and the gravitational Hilbert space Hkin

grav.
While we are able to actually construct these operators in the present paper, as one can imagine,
the formulae that we obtain are too complicated in order to do practical computations with
present mathematical technology because fractional powers of the Laplacian are defined via
its spectral resolution which is difficult to find.

As an approximation to this exact computation, we therefore propose to first compute the
expectation value of the Laplacian operator in a gravitational coherent state and then take its
fractional powers. Now, precisely because we are using coherent states, this approximation
will coincide with the exact calculation to zeroth order in h̄ while for higher orders we presently
do not know how significantly results are changed. The details of these statements will be
presented in section 4.

The last step in the programme is then to obtain, in principle testable, predictions
from the theory obtained so far. For instance, we are interested in states of the form
ψgrav(m)⊗ψmatter ∈ Hkin

grav ⊗Hkin
matter and wish then to construct an effective matter Hamiltonian

operator as a quadratic form through the formula

〈
ψmatter, Ĥ

eff
matter(m)ψ ′

matter

〉
Hkin

matter
:= 〈ψgrav(m) ⊗ ψmatter, Ĥψgrav(m) ⊗ ψ ′

matter〉Hkin
grav⊗Hkin

matter
.

The operator Ĥ eff
matter(m) already contains information about the quantum fluctuations of

geometry. The quantum fluctuations of matter are certainly much larger than those of geometry
in the energy range of interest to us, however, as we are interested in Poincaré invariance
violating effects, which are excluded by definition in ordinary QFT on Minkowski space, in
order to study those we can neglect the quantum effects of matter as a first approximation
(that is, we are dealing with free field theories except for the coupling to the gravitational
field). Therefore, we take the classical limit of Ĥ eff

matter(m) and study the wave-like solutions
of the matter dynamics it generates. One can also take the point of view that this procedure
corresponds to the first quantization of matter on a fluctuating spacetime. Second quantization
will then be studied later on when we discuss n-particle states.

Adopting this viewpoint, as soon as a semiclassical state for the gravity sector is chosen,
translation and rotation symmetry is heavily broken on short scales due to the discreteness of
the underlying graph. The theory describes fields propagating on random lattices, bearing a
remarkable similarity to models considered in lattice gauge theory [39–41]. Due to the lack
of symmetry on short scales, notions such as plane waves and hence dispersion relations can
at best be defined in some large scale or low energy limit. We will show that the problem of
treating these limits is by no means trivial and requires careful physical considerations. It is
closely related to the condensed matter physics problem of computing macroscopic parameters
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of an amorphous (i.e. locally anisotropic and inhomogeneous) solid from the parameters of its
microscopic structure.

To get a feeling for the problem, we will sketch a one-dimensional model system for
which we are able to find exact solutions. We will then turn to general fields on random
lattices and describe a procedure to obtain dispersion relations valid in the long wavelength
regime.

This concludes our explanatory exposition. We will now proceed to the details.

3. Review of quantum kinematics of QGR

In QGR, the manifold underlying spacetime is taken to be diffeomorphic with M = R × �,
where � represents a 3D manifold of arbitrary topology. We will now summarize the essential
aspects of the kinematical framework of [25] for matter fields coupled to quantum gravity. We
also introduce the Hamiltonians that we will be deriving dispersion relations for.

3.1. Gravity and gauge theory sector

The canonical pair consists of a G connection Ai
a(x) for a compact gauge group G and a

Lie(G)-valued densitized vector field Ea
i (x) on �. Here we can treat all four interactions

on equal footing. For the gravitational sector we have G = SU(2) and the relation of the
canonical pair to the classical ADM variables qab,Kab is

det(q)qab = ιEa
i Ebi, Ai

a = �i
a − ι√

det(q)
KabE

bi,

where � is the spin connection corresponding to the triad E and ι is the Barbero–Immirzi
parameter which can in principle take any non-zero value in C [42, 43]. We will choose
ι = 1 in what follows. As for units, we choose [A] = m−1. As a consequence, E will be
dimensionless for gravity and has dimension cm−2 for Yang–Mills theories.

In the following, we will have frequent opportunity to use the notion of graphs embedded
in �.

Definition 3.1. By an edge e in � we shall mean an equivalence class of analytic maps
[0, 1] −→ �, where two such maps are equivalent if they differ by an orientation preserving
reparametrization. A graph in � is defined to be a set of edges such that two distinct ones
intersect at most in their endpoints.

There is some notation in connection to graphs that we will use frequently. The endpoints of
an edge e will be called vertices and denoted by b(e) (the beginning point of e), f (e) (the final
point of e). The set of edges of a graph γ will be denoted by E(γ ) and the set of vertices of
its edges by V (γ ).

Given a graph γ , we will denote the edges of γ having v as vertex by E(γ, v) or E(v) if
it is clear which graph we are referring to. Given a graph γ , a vertex v ∈ V (γ ) and an edge
e ∈ E(v), we define

σ(v, e) =


+1, if b(e) = v,

−1, if f (e) = v,

0, if e is not adjacent to v.

Thus, eσ(v,e) is always outgoing with respect to v.
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Being a 1-form, A can be integrated naturally (that is, without recourse to background
structure) along piecewise analytic curves e in � to form holonomies

he[A] = P exp

[
i
∫

e

A

]
∈ G.

It is convenient to consider a class of functionals of the connection A a bit more generally.

Definition 3.2. A functional f [A] of the connection is called cylindrical with respect to a
piecewise analytical graph γ if there is a function

f : G|E(γ )| −→ C,

such that

f [A] = f
(
he1 [A], he2 [A], . . .

)
, e1, e2, . . . ∈ E(γ ). (3.1)

The density weight of E on the other hand is such that, using an additional real internal
vector field f i , it can be naturally integrated over surfaces S to form a quantity

ES,f =
∫

S

f i(∗E)i

analogous to the electric flux through S.
In the connection representation of diffeomorphism-invariant gauge field theory,

quantization of the Poisson algebra generated by the classical functions Cyl and the vector
space of electric fluxes E is achieved on the Ashtekar–Lewandowski Hilbert space

H0 = L2(A, dµ0).

It is based on the compact Hausdorff space A of generalized connections which is a suitable
enlargement of the space of smooth connections A and the uniform measure µ0.

The classical Yang–Mills Hamiltonian (coupled to gravity) reads

HYM = 1

2QYM

∫
�

d3x
qab√
det(q)

[
Ea

I Eb
J + Ba

I Bb
J

]
δIJ . (3.2)

Here QYM is the Yang–Mills coupling constant, Ea
I is the Yang–Mills electric field and

Ba
I = εabcF I

bc is the magnetic field associated with the Yang–Mills curvature F I
ab.

We now quantize this operator along the lines of [27], actually only for Maxwell theory
since in this paper we are interested only in free theories when taking the metric as a background
field. Here we take advantage of the fact that Ĥ YM is an operator of its own although, of course,
the integrand of (3.2) is a piece of the classical Hamiltonian constraint of geometry and matter.
Accordingly, we may exploit the quantization ambiguity concerning the loop attachment in
[27] as follows: we define the operator Ĥ YM consistently on the combined spin-network basis
of matter and geometry introduced in [25] and use the following notion.

Definition 3.3. Let a graph γ , a vertex v ∈ V (γ ) and two different edges e, e′ ∈ E(γ ) incident
at v be given. By a minimal loop based at v we mean a loop β(γ, v, e, e′) in γ which

• starts at v along e and ends at v along e′,
• does not self-overlap,
• the number of edges used by β except e, e′ cannot be reduced without breaking the loop

into pieces.
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Note that given γ, v, e, e′, a minimal loop does not need to be unique! Denote by
S(γ, v, e, e′) the set of minimal loops corresponding to the data indicated and by L(γ, v, e, e′)
their number. Note also that the notion of a minimal loop does not make any reference to a
background metric, it is an object that belongs to the field of algebraic graph theory [44–46].

Here we see the first difference as compared to the loop choice in [27]: a minimal loop
is always contained in the graph that we are dealing with. The second difference that we
will introduce in contrast to [27] is that there we used functions of holonomies of the type
Hβ −H−1

β in order to express the Yang–Mills magnetic field in terms of holonomies. However,
as correctly pointed out in [47], the regularization ambiguity allows more general functions,
the only criterion is that the final operator is gauge invariant and that the function should
vanish at trivial holonomy. Our preliminary proposal for the Maxwell Hamiltonian operator,
projected to spin-network states over graphs γ , is then

ĤM,γ = −αmP

2�3
P

∑
v∈V (γ )

∑
v∈e∩e′

[
3

N(γ, v)

]2

Q̂j
e

(
v,

1

2

)
Q̂

j

e′

(
v,

1

2

)

×
−YeYe′ +

1

P(γ, v, e)P (γ, v, e′)α2

×
 ∑

v∈e1∩e2;e1,e2⊥e

1

L(γ, v, e1, e2)

∑
β∈S(v,γ,e1,e2)

ln(Hβ)

i


×
 ∑

v∈e′
1∩e′

2;e′
1,e

′
2⊥e′

1

L(γ, v, e′
1, e

′
2)

∑
β∈S(v,γ,e′

1,e
′
2)

ln(Hβ)

i

 , (3.3)

where for a vertex v, a real positive number r and an edge e starting at it, we have defined the
basic operator

Q̂j
e (v, r) := 1

4r
tr
(
τjhe

[
h−1

e , (V̂v)
r
])

, (3.4)

with V̂v the volume operator [48, 49] over an arbitrarily small open region containing v. We
are using a basis of su(2) with tr(τj τk) = −2δjk . Here α = h̄QM is the Feinstruktur constant
and mP, �P are the Planck mass and length, respectively. We have adapted the coefficients of
[27] to the case of G = U(1) and we have distinguished the Maxwell holonomy H from the
gravitational holonomy h. Ye is the right invariant vector field on U(1) with respect to the
degree of freedom He. The notation e ⊥ e′ means that e �= e′, e ∩ e′ = v �= ∅ and that
the tangents of e, e′ at v are linearly independent. The number P(γ, v, e) is the number of
pairs of edges e1, e2 with v ∈ e1 ∩ e2; e1, e2 ⊥ e and N(γ, v) denotes the valence of the
vertex v. For each vertex v, the edges incident at v are supposed to be outgoing from v,
otherwise replace e by eσ(v,e) everywhere in (3.3). The branch of the logarithm involved in
(3.3) is defined by ln(1) = 0. The logarithm is convenient in order to define photon states
later on but any other choice will do as well, just giving rise to more quantum corrections.

The manifestly gauge-invariant and spatially diffeomorphism-invariant Hamiltonian (3.3)
is preliminary because we may want to order it differently later on. Note that it does not have
the correct classical limit on an arbitrary graph, the graph has to be sufficiently fine in order
to reach it! We will show that it defines a positive-definite, essentially self-adjoint operator
on Hkin.

Lemma 3.1. For any positive real r, the operator iQ̂j
e (v, r) onH0 defined by (3.4) is essentially

self-adjoint with core given by the core of V̂v .
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Proof. Since (he)AB is a bounded operator, it suffices to show that iQ̂j
e (v, r) is symmetric

with dense domain the core of V̂v .
Using that [(he)AB]† = (

h−1
e

)
BA

and (τJ )AB = −(τJ )BA, we find

4r
[
iQ̂j

e (v, r)
]† = i(τj )AB

[((
h−1

e

)
CA

)†
, V r

v

]
((he)BC)† = −i(τj )BA

[
((he)AC), V r

v

]((
h−1

e

)
CB

)
= −i Tr

(
τj

[
((he)), V̂

r
v

]
he

) = −i Tr
(
τJ heV̂

r
v h−1

e

)
= i Tr

(
τjhe

[
h−1

e , V r
v

]) = 4r
[
iQ̂j

e (v, r)
]

because Tr(τj )V̂v = 0. �

3.2. Scalar and Higgs fields

We will consider only Lie(G)-valued Higgs fields φi with canonically conjugate momentum
πi . In particular, a neutral scalar field φ is Lie(U(1)) valued and transforms in the trivial
adjoint representation. We will take φi to be dimensionless, then πi ∝ π̇ i has dimension
cm−1.

The background-independent Hilbert space of [25] is based on the quantities

U(x) := eφi(x)τi and πR,f =
∫

R

d3x f iπi, (3.5)

where U(x) is referred to as point holonomy, τj is a basis of Lie(G) and the second quantity
is diffeomorphism covariant since πi is a scalar density. One can then quantize the Poisson
algebra generated by these objects on a Hilbert space L2(U, dµU), where U is a distributional
extension of the space U of smooth point holonomies and dµU is an associated uniform
measure. This Hilbert space is very similar in spirit to that for gauge theories displayed in
(3.1). A dense subspace of functions in this Hilbert space consists of the cylindrical functions.
Here a function is cylindrical over a graph γ , if it depends only on the point holonomies
U(v), v ∈ V (γ ). That the point holonomies are restricted to the vertices of a graph is dictated
by gauge invariance (for neutral scalar fields there is clearly no such argument but given a
function depending on a finite number of point holonomies we can always trivially extend it
to depend trivially on gravitational holonomies over a graph with the arguments of the point
holonomies as vertices).

In this paper, we are only interested in neutral Klein–Gordon fields without interaction
potential. The unitary operator Û (x) acts by multiplication while the momentum operator is
densely defined by

π̂Rfγ = ih̄QKG

∑
v∈V (γ )∩R

Yvfγ ,

where Yv denotes the right invariant vector field on U(1) with respect to the degree of
freedom U(v) and QKG is the Klein–Gordon coupling constant which is such that h̄QKG has
dimension cm2.

The classical Klein–Gordon Hamiltonian coupled to geometry is given by

HKG = 1

2QKG

∫
�

d3x

[
π2

√
det(q)

+
√

det(q)[qabφ,aφ,b + K2φ2]

]
, (3.6)

where K−1 is the Compton wavelength of the Klein–Gordon field. To quantize (3.6) we
again copy the procedure of [27] and define it on combined matter–geometry spin-network
states with the following modifications: (1) no new Higgs vertices on edges of the graph are
introduced and (2) we replace the function [U(x) − 1]/i that substitutes φ(x) by something
else in accordance with what we have said for gauge fields already. We then propose the
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preliminary version of the Klein–Gordon Hamiltonian operator, projected to spin-network
states over graphs γ , by

Ĥ KG,γ = −h̄QKG

2�11
P

mP

∑
v∈V (γ )

Y 2
v

×
 1

T (γ, v)

∑
v∈e1∩e2∩e3;e1⊥e2⊥e3

1

3!
εijkε

IJKQ̂i
eI

(
v,

1

2

)
Q̂j

eJ

(
v,

1

2

)
Q̂k

eK

(
v,

1

2

)†

×
 1

T (γ, v)

∑
v∈e′

1∩e′
2∩e′

3;e′
1⊥e′

2⊥e′
3

1

3!
εlmnε

KLMQ̂l
eL

(
v,

1

2

)
Q̂m

eM

(
v,

1

2

)
Q̂n

eN

(
v,

1

2

)
+

1

2h̄QKG�7
P

mP

∑
v∈V (γ )

 1

2T (γ, v)

∑
v∈e1∩e2∩e3;e1⊥e2⊥e3

× εIJKεjkl

[ln(U(f (eI )) − ln(U(b(eI ))]

i
Q̂k

eJ

(
v,

3

4

)
Q̂l

eK

(
v,

3

4

)†

×
 1

2T (γ, v)

∑
v∈e′

1∩e′
2∩e′

3;e′
1⊥e′

2⊥e′
3

εLMNεjmn

[ln(U(f (eL)) − ln(U(b(eL))]

i

× Q̂m
eM

(
v,

3

4

)
Q̂n

eN

(
v,

3

4

) +
(K�P)

2

2�Ph̄QKG
mP

∑
v∈V (γ )

[
ln(U(v)

i

]† [ ln(U(v)

i

]
V̂v,

(3.7)

where T (γ, v) is the number of triples of edges incident at v with linearly independent
tangents there and b(e) and f (e), respectively, denote the starting point and the end point of an
edge. The operator (3.7) is again manifestly gauge and diffeomorphism invariant. Note that
h̄QKG

/
�2

P is dimensionless while V̂v has dimension cm3 so that all terms have mass dimension.
We already have ordered terms in (3.7) in a manifestly positive way and the branch of the
logarithm used corresponds to the fundamental domain of C again, i.e. ln(z/|z|) ∈ (−π, π ].

3.3. Fermion fields

Since the canonical, non-perturbative quantization of the Einstein–Dirac theory in four
spacetime dimensions using real-valued connections is maybe less familiar to the reader,
we review the essential aspects from [25] in slightly more detail. The classical Hamiltonian
reads (we neglect coupling to the Maxwell field in this paper since we want to isolate effects
of quantum gravity on the propagation of free fields, see [25, 27] for the coupling to non-
gravitational forces)

H = h̄

∫
�

d3x

{
Ea

j

2
[DaJj + i(ψ̄T σjDaψ − η̄T σjDaη − c.c.) − Kj

a (ψ̄T ψ − η̄T η)]

+ iK0

√
det(q)(ψ̄T η − η̄T ψ)

}
, (3.8)

where K0 is the rest frame wave number, σj are the Pauli matrices, Jj := ψ̄T σjψ + η̄T σjη is
the fermion current, ψ = (ψA) and η = (ηA′), respectively, denote the left- and right-handed
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components of the Dirac spinor � = (ψ, η)T , ψ̄ denotes the involution on Graßmann variables
and the complex conjugation c.c. is meant in this sense. The spinors ψ, η transform as scalars
under diffeomorphisms and as left- and right-handed spinors under SL(2, C). In particular,
Daψ = ∂aψ + 1

2A
j
aτjψ,Daη = ∂aη + 1

2A
j
aτjη, where τj = −iσj . Our convention for the

Minkowski space Dirac matrices is γ 0 = −iσ2 ⊗ 12, γ
j = σ1 ⊗ σj appropriate for signature

(−, +, +, +). The dimension of our spinor fields is cm−3/2 so that (3.8) has indeed dimension
of energy. Note the explicit appearance of the field K

j
a = A

j
a − �

j
a .

A peculiarity of spinor fields is that they are their own canonical conjugates. Consider
the half-densities

ξ := 4
√

det(q)ψ, ρ := 4
√

det(q)η, (3.9)

then the canonical anti-brackets are given by

{ξA(x), ρ̄B(y)}+ = δABδ(x, y)

ih̄
, {ρA(x), ρ̄B(y)}+ = δABδ(x, y)

ih̄
, (3.10)

while all other anti-brackets vanish. That (3.9) mixes gravitational and spinor degrees of
freedom is absolutely crucial: without this peculiar mixture it would not be A

j
a that is

canonically conjugate to Ea
j

/
κ but rather A

j
a + i�2

Pe
j
a(ψ̄

T ψ + η̄T η) which is now complex
valued and this would destroy the Ashtekar–Lewandowski Hilbert space H0 since connections
would become complex valued.

Clearly, we obtain the Einstein–Weyl Hamiltonian by setting either ξ or ρ to zero.
Likewise, we can treat the case of several fermion species by adding appropriate similar terms
to (3.8). In what follows we just stick with (3.8), the reader may introduce the appropriate
changes for the case by hand himself.

In order to quantize (3.8), we want to write (3.8) into a more suggestive form. To that
end, note that the Gauss constraint in the presence of fermions reads

1

κ
Da

Ea
j√

det(q)
+

h̄

2
Jj = 0, (3.11)

where κ is the gravitational constant and where Da acts on tensorial indices by the Christoffel
connection associated with qab and on SU(2) indices by the connection A

j
a . Thus, we can

solve the Gauss constraint for the fermion current so that after an integration by parts we have
the identity

h̄

∫
�

d3x
Ea

j

2
[DaJj ] = 1

κ

∫
�

d3x

(
DaE

a
j

)2

√
det(q)

(3.12)

modulo the Gauss constraint which now depends only on the gravitational degrees of freedom.
Clearly, in flat space (3.12) vanishes.

Next, it is easy to see that

+iEa
j (ψ̄T σjDaψ − η̄T σjDaη − c.c.) = i

Ea
j√

det(q)
(ξ̄ T σjDaξ − ρ̄T σjDaρ − c.c.), (3.13)

where Daξ := ∂aξ + A
j
aτj ξ

/
2 ignores the density weight of ξ (and similarly for ρ) since the

appropriate correction term is cancelled through a similar term in the c.c. piece.
Formulae (3.12) and (3.13) imply that (3.8) can be rewritten in terms of ξ, ρ as

H = 1

κ

∫
�

d3x

(
DaE

a
j

)2

√
det(q)

+ h̄

∫
�

d3x

{
Ea

j

2
√

det(q)
[+i(ξ̄ T σjDaξ − ρ̄T σjDaρ − c.c.)

−Kj
a (ξ̄ T ξ − ρ̄T ρ)] + iK0(ξ̄

T ρ − ρ̄T ξ)

}
. (3.14)
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Now recall from [25] that for reasons of diffeomorphism covariance it turned out to be
crucial to work instead of with the half-densities ξ, ρ with the scalars

θA(x) :=
∫

�

d3y
√

δ(x, y)ξA(y), θ ′
A(x) :=

∫
�

d3y
√

δ(x, y)ρA(y), (3.15)

which still transforms covariantly under gauge transformations θ(x) → g(x)θ(x) since the
distribution

√
δ(x, y) has support at x = y. If we require the fields θ to be ordinary Graßmann

fields, then formula (3.15) implies that the spinor half-densities ξ, ρ are distributional
Graßmann fields. This distributional character is due to the factor [4]

√
det(q) which in quantum

theory becomes an operator-valued distribution proportional to
√

δ(x, y) (recall that there is
no such thing as a classical fermion field). The inversion of (3.15) is given by

ξA(x) :=
∑
y∈�

√
δ(x, y)θA(y), ρA(x) :=

∑
y∈�

√
δ(x, y)θ ′

A(y), (3.16)

due to the identity
√

δ(x, y)δ(x, z) = δ(x, y)δy,z where δx,y denotes the Kronecker symbol
(equal to 1 when x = y and 0 otherwise).

Let fε(x, y) = fε(y, x) = fε(x − y) be a one-parameter family of smooth, nowhere
negative functions of rapid decrease such that also

√
fε(x, y) is smooth and such that

limε→0 fε(x, y) = δ(x, y). An example would be fε(x, y) = ∏
a

[
e−(xa−ya)2/(2ε)

/√
2πε

]
.

Then

(∂aθ)(x) := lim
ε→0

∫
�

d3y
(
∂xa

√
fε(x, y)

)
ξ(y)

= − lim
ε→0

∫
�

d3y
(
∂ya

√
fε(x, y)

)
ξ(y)

= lim
ε→0

∫
�

d3y
√

fε(x, y)(∂aξ)(y)

=
∫

�

d3y
√

δ(x, y)(∂aξ)(y), (3.17)

where in the integration by parts no boundary term was picked up since fε is of rapid decrease.
It follows that

(Daθ)(x) =
∫

�

d3y
√

δ(x, y)(Daξ)(y) ⇒ (Daξ)(x) =
∑

y

√
δ(x, y)(Daθ)(y) (3.18)

for classical (smooth) A
j
a .

The fermion Hilbert space now is constructed by means of Berezin integral techniques
where our basic degrees of freedom are θA(x), θ ′

A(x) and their involutions. We start with only
one Graßmann degree of freedom and denote by S superspace with anticommuting Graßmann
coordinates θ, θ̄ , that is, θ2 = θ̄2 = 0, θ θ̄ = −θ̄ θ .

A ‘holomorphic’ function depends only on θ and not on θ̄ and is of the general form

f (θ) = a + bθ (3.19)

with arbitrary complex-valued coefficients a, b, while a generic function on S is of the general
form

F(θ̄, θ) = a + bθ + cθ̄ + dθ̄θ (3.20)

with arbitrary complex-valued coefficients a, b, c, d. The integral of F over S with respect to
the ‘measure’ dθ̄ dθ is given by∫

S
dθ̄ dθF (θ̄, θ) = d. (3.21)
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A quantization of the canonical anti-brackets

{θ, θ}+ = {θ̄ , θ̄}+ = 0, {θ̄ , θ}+ = {θ, θ̄}+ = 1

ih̄
(3.22)

and of the reality conditions

θ = θ̄ , θ̄ = θ (3.23)

can be given on the space L2(S, dµF ) of ‘square-integrable’ holomorphic functions with
respect to the ‘probability measure’

dµF := eθ̄ θdθ̄ dθ = [1 + θ̄ θ ] dθ̄ dθ (3.24)

which is positive definite:

〈f, f ′〉 :=
∫
S

dµF (θ̄, θ)f (θ)f ′(θ) = āa′ + b̄b′ for f (θ) = a + bθ, f ′(θ) = a′ + b′θ.

(3.25)

We just need to define the operators θ̂ , ˆ̄θ by

(θ̂f )(θ) := θf (θ) = aθ, ( ˆ̄θf )(θ) := d

dθ
f (θ) = b (3.26)

(derivative from left) and verify immediately that the canonical anticommutation relations

[θ̂ , θ̂ ]+ = 2θ̂2 = [ ˆ̄θ, ˆ̄θ ]+ = 2 ˆ̄θ2 = 0, [ ˆ̄θ, θ̂ ]+ = [θ̂ , ˆ̄θ ]+ = ˆ̄θ θ̂ + θ̂ ˆ̄θ = 1 (3.27)

as well as the adjointness relations

θ̂ † = ˆ̄θ, ̂̄θ † = θ̂ (3.28)

hold with respect to the measure dµF .
This covers the quantum mechanical case. Let us now come to the case at hand. Recall

that we had the following anti-brackets for our spinor degrees of freedom:

{ξA(x), ξB(y)}+ = {ξ̄A(x), ξ̄B(y)}+ = 0,

{ξA(x), ξ̄B(y)}+ = {ξ̄B(y), ξA(x)}+ = δABδ(x, y)

ih̄
,

(3.29)

and similarly for ρ. Inserting the transformation (3.15) we see that (3.29) is equivalent with

{θA(x), θB(y)}+ = {θ̄A(x), θ̄B(y)}+ = 0,

{θA(x), θ̄B(y)}+ = {θ̄B(y), θA(x)}+ = δABδx,y

ih̄
,

(3.30)

so the δ distribution is simply replaced by the Kronecker symbol. This suggests to define the
fermion Hilbert space as the continuous infinite tensor product [50]

H⊗
D := ⊗x∈�,A=±1/2L2(S, dµF ), (3.31)

where θ̂A(x), ˆ̄θA(x) ≡ θ̂A(x)† are densely defined on C0 vectors by

θ̂A(x)⊗f := [⊗x �=y,Bfy,B ] ⊗ [fx,−A ⊗ (θ̂fx,A)],

θ̂A(x)† ⊗f := [⊗x �=y,Bfy,B ] ⊗ [fx,−A ⊗ (θ̂ †fx,A)].
(3.32)

This Hilbert space is unnecessarily large for the following reason: due to gauge invariance the
spinor fields are confined to the vertices of an at most countably infinite graph. In particular,
if we are dealing with finite graphs only, then the subspace HD of the Hilbert space (3.31),
defined as the inductive limit of the cylindrical spaces

Hγ,D := ⊗v∈V (γ ),A=±1/2L2(S, dµF ) (3.33)
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via the isometric monomorphisms Ûγ γ ′ for γ ⊂ γ ′, densely by

Ûγ γ ′ : Hγ,D �→ Hγ ′,D;⊗γ

f := ⊗v∈V (γ ),Afv,A �→ [⊗v∈V (γ ),Afv,A][⊗x∈V (γ ′)−V (γ ),B1], (3.34)

is completely sufficient for our purposes in this paper (as long as σ is compact, otherwise we
can use the techniques from [50]). Equation (3.34) displays HD as the strong equivalence
class Hilbert subspace of H⊗

D formed by the C0 vector 1 := ⊗x,A1.
We now turn to the quantization of (3.14). Actually, we will not consider the terms which

are proportional to K
j
a ,
(
DaE

a
j

)2
because they vanish in flat space (with which we are mainly

concerned in this paper). Of course, quantum corrections will give non-vanishing corrections
but since we are doing only exploratory calculations in this paper, let us just not discuss
those terms. Then the methods of [25] lead to the following quantum operator restricted to
matter–geometry spin-network functions over a graph γ

ĤD,γ = − mP

2�3
P

∑
v,v′∈V (γ )

[
θ̂B(v′)θ̂ †

A(v) − θ̂ ′
B(v′)θ̂ ′†

A(v)
]

 1

T (γ, v)
εijkε

IJK
∑

v∈e1∩e2∩e3;e1⊥e2⊥e3

× Q̂i
eI

(
v,

1

2

)
Q̂j

eJ

(
v,

1

2

) [
τ k
(
heK

δv′,f (eK) − δv′,b(eK )

)]
AB


−
 1

T (γ, v′)
εijkε

IJK
∑

v′∈e1∩e2∩e3;e1⊥e2⊥e3

[(
h−1

eK
δv,f (eK) − δv,b(eK )

)
τ k
]
AB

× Q̂i
eI

(
v′,

1

2

)
Q̂j

eJ

(
v′,

1

2

)
− ih̄K0

×
∑

v,v′∈V (γ )

δABδv,v′
[
θ̂ ′
B(v′)θ̂ †

A(v) − θ̂B(v′)θ̂ ′†
A(v)

]
. (3.35)

It is not difficult to see that this operator is self-adjoint. Again, as compared to [27], we
have chosen a different ordering and there are no new fermion vertices created on cylindrical
functions over γ .

Remark. We have defined the operators ĤM, Ĥ KG, ĤD in the combined spin-network basis
of matter and geometry defined in [25]. Such a spin-network function Ts(A,AM, φ, θ, θ ′)
carries a label s = (γ, �j, �n, �m, �B, �B ′, �I ) consisting of a graph γ , a colouring of its
edges e with Einstein non-zero spins je ∈ �j and non-zero Maxwell charges ne ∈ �n as
well as a colouring of its vertices v by non-zero scalar charges mv ∈ �m, non-zero left-
handed fermion helicities Bv ∈ �B, non-zero right-handed fermion helicities B ′

v ∈ �B ′ and
intertwiners Iv ∈ �I which make the state gauge invariant under the action of the gauge
group SU(2) × U(1). This defines densely a continuum operator by ĤTs := Ĥ γ (s)Ts on
the Hilbert space H = HE ⊗ HM ⊗ HKG ⊗ HD (E stands for the Einstein sector), where
Ĥ = ĤM + Ĥ KG + ĤD . However, the operators Ĥ γ are not the cylindrical projections of Ĥ

since they are not cylindrically consistent, i.e. Ĥ γ Cylγ ′ �= Ĥ γ ′Cylγ ′ for γ ′ ⊂ γ . Rather, in
order to evaluate the operator on cylindrical functions, one has to decompose them in terms of
spin-network functions. Nevertheless, one can construct from the family (Ĥ γ ) a cylindrically
consistent family (Ĥ γ ) as follows.

Note that each Ĥγ has the following structure:

Ĥ γ =
∑

v∈V (γ )

Ĥ γ,v, (3.36)
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where Ĥ v is a local operator, that is, it depends only on the finite subset Ev(γ ) ⊂ E(γ ) of
edges of γ incident at v. For e ∈ E(γ ) denote by P̂ e the projection operator on the closed
linear span of cylindrical functions in Cylγ which depend through non-zero spin on the edge
e. For subsets E ⊂ E′ ⊂ E(γ ) let

P̂ γ,E,E′ :=
[∏

e∈E

P̂ γ,e

][ ∏
e′∈E′−E

(1 − P̂ γ,e′)

]
. (3.37)

Consider now the operator

Ĥ γ
v :=

∑
E⊂Ev(γ )

P̂ γ,E,Ev(γ )Ĥ γ−[Ev(γ )−E],vP̂ γ,E,Ev(γ ), (3.38)

where the sum is over the power set of Ev(γ ) (set of all subsets) and with it the, still self-adjoint,
cylindrically consistent family of operators

Ĥ γ =
∑

v∈V (γ )

Ĥ γ
v . (3.39)

Note that Ĥ γ−[Ev(γ )−E],v ≡ 0 whenever |E| < 3.
It is important to note that both families (Ĥ γ ) and (Ĥ γ ) give rise to the same continuum

operator as long as there are no gravitational holonomy operators outside of commutators
involved (as is the case for the bosonic pieces). It is just sometimes more convenient to have
a consistent operator family if one does not want to decompose a cylindrical function into
spin-network functions. In fact, our semiclassical states over γ are not spin-network states
over γ but they are cylindrical functions, i.e. linear combinations of spin-network states where
also all smaller graphs γ ′ ⊂ γ appear.

The careful reader will rightfully ask whether the expectation values of the operators
defined in terms of (3.36) and (3.39), respectively, agree on semiclassical states over γ (they
do exactly if no gravitational holonomy operator is involved). This is important since the
operator P̂ γ,E,Ev(γ ) did not come out of the derivation in [27] (for operators involving the
gravitational holonomy) and thus could spoil the classical limit. Fortunately, the answer to
the question is affirmative for two reasons.

(1) The expectation value of P̂ γ,e turns out to be of the form 1−e−c/tβ , where c, β are positive
numbers of order unity for non-degenerate metrics and t is a tiny number related to h̄.
Then the expectation value of 1 − P̂ γ,e is of order O(t∞).

(2) We will use only graphs for semiclassical calculations such that the valence of the vertices
is bounded from above. Thus, the sum (3.38) involves only a small number of terms
and

(
1 − e−c/tβ

)|Ev(γ )| = 1 + O(t∞). Thus, the expectation value of Ĥ γ with respect
to cylindrical functions over γ agrees with that of Ĥ γ to any finite order in t and for
semiclassical calculations we can practically treat the family (Ĥ γ ) as if it was cylindrically
consistently defined. We will assume that to be the case in what follows.

4. Matter n-particle states on graphs

The aim of this section is to sketch how one would in principle construct exact n-particle
states propagating on fluctuating quantum geometries as well as approximations of those by
using quantum geometry expectation values in gravitational coherent states. The computation
of those expectation values is sketched in the next section, more details can be found in our
companion paper [1]. Since in these two papers we are only interested in qualitative features,
we do not want to spend too much technical effort and therefore make our life simple by
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replacing SU(2) by U(1)3, see [10, 11] for how non-Abelian gauge groups blow up the
computational effort by an order of magnitude. We leave the exact computation for future
investigations after the conceptual issues discussed in this work have been settled2.

4.1. Specialization to cubic random graphs

A second simplification that we will make is to consider for the remainder of this and the
companion paper only graphs of cubic topology. Graphs of different topology can be treated in
principle by the same methods that we develop below but for analytical computations graphs
of different topology present an extremely hard book-keeping problem which is presumably
only controllable on a computer. But apart from these more practical considerations we can
also give some physical motivation.

(A) As is well known, there exists an infinite number of discretizations of a classical continuum
action or Hamiltonian with the correct continuum limit and some of them reflect the
continuum properties of the action or Hamiltonian better than others. In that respect, it
is relevant to mention the existence of so-called perfect actions [51] which arise as fixed
points of the renormalization group flow for Euclidean field theories. These are perfect
in the sense that although one works at the discretized level, the expectation values are,
for instance, Euclidean invariant! These techniques have been applied also to differential
operators and there exist, for instance, Euclidean-invariant Laplace operators on arbitrarily
coarse cubic lattices [52, 53] despite the fact that a cubic lattice seems to introduce an
unwanted direction dependence! The quantization of our Hamiltonian operators could
exploit that freedom in order to improve semiclassical properties, the choice that we have
made is merely a first natural guess.

(B) Secondly, the graph does not need to be ‘regular’ but rather could be an oriented random
cubic graph adapted to the 3-metric qab to be approximated. In fact, we will discuss
this possibility in detail in our companion paper when we discuss (light) propagation on
random cubic graphs. Such a graph could be obtained by a suitable random process.
Let us sketch a procedure for two-dimensional Euclidean space: we start with a sequence
of randomly chosen vectors �v1, �v2, . . . subject to the condition that the angle between
vectors adjacent in the sequence lies in the range [−π/2, π/2]. Then a first sequence of
vertices of the graph could be obtained as 0, �v1, �v1 + �v2, . . . and a first sequence of edges
by connecting the vertices by straight lines. Now choose another sequence of vectors
subject to the same condition on the angles, as well as an additional vector �p. Again we
obtain a set of vertices �p, �p + �v1, �p + �v1 + �v2, . . . and corresponding edges. These are
to be discarded if an edge intersects one of the edges obtained before. Otherwise, the
vertices and edges are added to the graph. This can be iterated until a convenient number
of vertices has been obtained. Then the rest of the edges necessary to turn the graph
into a cubic one can be obtained by connecting the vertices ‘vertically’ by straight lines.
This description is certainly sketchy, but it could easily be made precise by supplying the
details of the random distributions for the choice of the points, directions, etc. Similarly,
it can be generalized to three dimensions and curvilinear edges.

Although it would be extremely cumbersome to obtain analytical results about the resulting
random graphs, procedures like that sketched above can be implemented on a computer in a
straightforward way and any desired information can then be obtained numerically. An artistic

2 Actually, SU(2) is replaced by U(1)3 in the GNewton → 0 limit if one rescales the gravitational connection A by
A/GNewton (Iönü–Wigner contraction), but GNewton → 0 also implies �P → 0 and this is precisely the regime we are
interested in. However, ultimately we must do the SU(2) computation.
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Figure 1. Part of a (two-dimensional) random graph of cubic topology.

impression of a small part of a random graph of cubic topology is given in figure 1. Note that
it does not favour a direction on a large scale, though it is certainly not rotationally symmetric
in a strict sense.

A random cubic graph is certainly still diffeomorphic to a regular cubic graph in R3 with
its natural Cartesian orientation. Its vertices v can be thought of as points in Z3, its edges can
be labelled as eI (v), I = 1, 2, 3, with b(eI (v)) = v, f (eI (v)) = v + I where v + I denotes
the next neighbour vertex of v along the I-direction. Given a 3-metric qab to be approximated,
let ε be the average length of eI (v) with respect to it. Note that the angles and shapes of the
edges are completely random! Depending on the random process that has generated the cubic
graph, within each close to flat coordinate patch there will also be an isotropy scale δ = Nε

at which the graph looks homogeneous and isotropic. The meaning of the scales ε, δ with
respect to physical processes such as light propagation which introduces a length scale of its
own, namely the wavelength λ, is subject to a discussion in our companion paper where we
will see how these scales fit together with the quantum gravity scale �P and what their relative
sizes should be. For the purposes of this section, we just need that the graph γ in question has
cubic topology.

We can now specialize our formulae for the family of matter Hamiltonians (Ĥ γ ) to cubic
graphs γ . Given v ∈ V (γ ) let e+

I (v) := eI (v), e−
I (v) := (eI (v − I ))−1 so that b

(
e±
I (v)

) = v.
Then it is easy to check that the local volume operator V̂v becomes

V̂v = �3
P

√√√√√
∣∣∣∣∣∣εjkl

Y
e+

1 (v)

j − Y
e−

1 (v)

j

2

[Y
e+

2 (v)

k − Y
e−

2 (v)

k

2

][
Y

e+
3 (v)

l − Y
e−

3 (v)

l

2

]∣∣∣∣∣∣, (4.1)

where Y e
j denotes the right invariant vector field on SU(2) with respect to the degree of

freedom he. Note that we used the coefficient 1/(8 × 3!) that was derived in [48, 49]. As we
will see, with respect to coherent states of the type constructed in [10, 11], only cubic graphs
will assign correct expectation values to the volume operator if the coefficient 1/(8 × 3!) is
used!

For a graph of cubic topology, we have P(γ, v, e) = 4, T (γ, v) = 8 since each vertex is
six-valent. Also, there are 12 minimal loops based at v along the edges e

σ1
I (v), e

σ2
J (v), I �= J ,

each of which is unique, that is L(γ, v, e, e′) = 1, due to our simple lattice topology. Given
v, I, σ , there are four minimal loops βI

σ ;σ1,σ2
(v) along the edges e

σ1
J (v), e

σ2
K (v) with εI,J,K = 1

whose orientation we choose to be such that the tangents of eσ
I (v), e

σ1
J (v), e

σ2
K (v) at v in this

order form a 3 × 3 matrix of positive determinant. With the notation hσ
I (v) := heσ

I (v), σ = ±1



886 H Sahlmann and T Thiemann

and Q̂
j

Iσ (v, r) := Q̂
j

eσ
I (v)(v, r), our matter Hamiltonian constraint operators (3.3), (3.7) and

(3.35) become, respectively

Maxwell field

ĤM,γ = −αmP

2�3
P

∑
v∈V (γ )

∑
I,J,σ,σ ′

Q̂
j

Iσ

(
v,

1

2

)
Q̂

j

Jσ ′

(
v,

1

2

)

×
−1

4
YIσ (v)YJσ ′(v) +

1

64α2

[∑
σ1,σ2

ln
(
HβI

σ ;σ1,σ2
(v)

)
i

]∑
σ ′

1,σ
′
2

ln
(
HβJ

σ ′ ;σ ′
1σ ′

2
(v)

)
i

 ,

(4.2)

where YIσ (v) = Yeσ
I (v).

Remark. A remark is in order concerning the logarithms that appear in (4.2). Recall that in the
previous section we defined for a loop β the number ln(Hβ) by the main branch of the logarithm,
specifically ln(Hβ)/i ∈ [−π, π). Now for a minimal loop β and sufficiently fine γ , it is indeed
true, for a classical connection, that ln(Hβ) = ln

(
He1

)
+ · · · + ln

(
HeN

)
if β = e1 ◦ · · · ◦ eN

where all appearing logarithms are with respect to the same branch. Note that the right-hand
side is gauge invariant only for small gauge transformations. In the case of a cubic graph,
we will show below that this relation can be written, e.g., ln

(
HβI

1;1,1(v)

) = εIJK∂+
J ln

(
HeK(v)

)
where

(
∂+
I f
)
(v) = f (v + I ) − f (v). Using the transversal projector P ⊥ of (4.16), we can

further write this as ln
(
HβI

1;1,1(v)

) = εIJKP ⊥ · ∂+
J P ⊥ · ln

(
HeK(v)

)
. Finally, again for sufficiently

fine γ , we may write this as ln
(
HβI

1;1,1(v)

) = εIJK∂+
J

[
(P ⊥ · ln

(
HeK(v)

)
(mod 2π)

]
. The quantity

in the square brackets is now manifestly gauge invariant even after extending to distributional
connections. It is this definition that we will be using for ln

(
HβI

1;1,1(v)

)
in what follows, it

simply corresponds to a different choice for the quantization ambiguity (for cubic graphs).

When we compute commutators of such logarithms with electric flux operators on
sufficiently fine graphs, we must regularize the commutator by first restricting to classical
connections (so that the value of the logarithm lies in (−π, π)) and then extending the result
to A. This being understood, we get [YIσ (v), ln(Hβ)] = H−1

β [YIσ (v),Hβ ] without picking
up discontinuities. Similar remarks hold for the scalar field.

Klein–Gordon field

Ĥ KG,γ = −h̄QKG

2�11
P

mP

∑
v∈V (γ )

Y 2
v

×
[

1

8

∑
σ1,σ2,σ3

σ1σ2σ3

3!
εijkε

IJKQ̂i
I,σ1

(
v,

1

2

)
Q̂

j

J,σ2

(
v,

1

2

)
Q̂k

K,σ3

(
v,

1

2

)]†

×
1

8

∑
σ ′

1,σ
′
2,σ

′
3

σ ′
1σ

′
2σ

′
3

3!
εlmnε

LMNQ̂l
L,σ ′

1

(
v,

1

2

)
Q̂m

M,σ ′
2

(
v,

1

2

)
Q̂n

N,σ ′
3

(
v,

1

2

)
+

1

2h̄QKG�7
P

mP

∑
v∈V (γ )

[
εIJK

16
εjkl

∑
σ1,σ2,σ3

[
σ1∂σ1,I ln(U)

]
(v)

i
Q̂k

Jσ2

(
v,

3

4

)
Q̂l

Kσ3

(
v,

3

4

)]
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×
εLMN

16
εjmn

∑
σ ′

1,σ
′
2,σ

′
3

[
σ ′

1∂σ ′
1,I

ln(U)
]
(v)

i
Q̂m

Mσ ′
2

(
v,

3

4

)
Q̂n

Nσ ′
3

(
v,

3

4

)
+

(K�P)
2

2�Ph̄QKG
mP

∑
v∈V (γ )

[
ln(U(v)

i

]† [ ln(U(v)

i

]
V̂v, (4.3)

where for a function F : V (γ ) �→ C we have defined the edge derivative [∂eF ](v) :=
F(f (e)) − F(v) if v = b(e). Specialized to the cubic graph we write (∂σ,IF )(v) :=(
∂eσ

I (v)F
)
(v) and

(
∂σ
I F

)
(v) := σ(∂σ,IF )(v) is the forward (backward) edge derivative at

v if σ = 1 (σ = −1).

Dirac field

ĤD,γ = − mP

2�3
P

∑
v,v′∈V (γ )

[
θ̂B(v′)θ̂ †

A(v) − θ̂ ′
B(v′)θ̂ ′†

A(v)
]

×
{

1

8
εijkε

IJK
∑

σ1,σ2,σ3

Q̂i
Iσ1

(
v,

1

2

)
Q̂

j

Jσ2

(
v,

1

2

) [
τ k
(
h

σ3
K (v)δv′,f (e

σ3
K (v)) − δv′,v

)]
AB

}

−
1

8
εijkε

IJK
∑

σ ′
1,σ

′
2,σ

′
3

[([
h

σ ′
3

K (v′)
]−1

δ
v,f (e

σ ′
3

K (v′))
− δv,v′

)
τ k
]
AB

Q̂i
Iσ ′

1

(
v′,

1

2

)
Q̂

j

Jσ ′
2

(
v′,

1

2

)
− ih̄K0

∑
v,v′∈V (γ )

δABδv,v′
[
θ̂ ′
B(v′)θ̂ †

A(v) − θ̂B(v′)θ̂ ′†
A(v)

]
. (4.4)

The operator (4.4) is not manifestly positive definite on a non-flat background. Fortunately,
in contrast to the bosonic Hamiltonians, positivity is not required in order to arrive at suitable
annihilation operators since it is already normally ordered (subject to the usual particle–
antiparticle reinterpretation upon passage to second quantization). In order to obtain positivity
of this Hamiltonian, we have to invoke a positive and negative energy decomposition of the
one-particle Hilbert space as done in QFT on CST. This step will not be performed here as it
goes beyond the exploratory purposes of this paper.

4.2. One-particle Hilbert spaces on a graph

The operators in (4.2)–(4.4) define operators on the Hilbert space Hkin = HE
kin ⊗HM

kin ⊗HKG
kin ⊗

HD
kin with spin-network projections of the form

Ĥ γ =
∑

v,l;v′,l′
M̂l(v)

†
l (v)Ĝ(v,l);(v′,l′)M̂l′(v

′), (4.5)

where v, v′ ∈ V (γ ) and l, l′ are elements of a discrete label set L of labels like the labels
j, I, σ,A,µ where µ = 1, 2 and θ1 = θ, θ2 = θ ′. M̂l(v) is a linear matter operator for each
pair (v, l) while Ĝ(v,l),(v′,l′) is a geometry operator for each pair of pairs (v, l), (v′, l′). Our
aim is to reorder Ĥ γ in such a way that it acquires the usual form in terms of creation and
annihilation operators. The fermion Hamiltonian is already in this desired form, because[

θ̂ α
A(v), θ̂

β

B (v′)
]

+ = δαβδABδvv′

already satisfies the canonical anticommutation relations but the bosonic terms do not. In
order to do this, we need to introduce the one-particle Hilbert spaces H1

γ on the graphs γ .
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These are defined as spaces of complex-valued functions F : V (γ ) ×L → C; (v, l) �→ Fl(v)

which are square summable, that is, their norm with respect to the inner product

〈F,F ′〉H1
γ

:=
∑
v,l

Fl(v)F ′
l (v) (4.6)

converges. Thus, H1
γ = �2(V (γ ) ⊗ L) is equipped with a counting measure. Next to this,

we also introduce the Hilbert subspaces HE
γ ,HM

γ ,HKG
γ ,HD

γ of square-integrable cylindrical
functions over γ of the respective field type. Having done this, we can consider the gravitational
operator Ĝ(v,l),(v′,l′) ∈ L

(
HE

γ

)
(L(·) denotes the space of linear operators over (·)) as an operator

Ĝ ∈ L
(
HE

γ ⊗ H1
γ

)
densely defined by[

ĜT E
s ⊗ F

]
(A, (v, l)) :=

∑
(v′,l′)

[
Ĝ(v,l),(v′,l′)T

E
s

]
(A)Fl′(v

′), (4.7)

where T E
s is a gravitational spin-network state over γ and A ∈ AE is a gravitational generalized

connection. That the right-hand side of (4.7) is indeed again an L2 function will be shown
below.

Likewise, we may consider the operators M̂l(v) ∈ L
(
Hmatter

γ

)
as operators M̂ : Hmatter

γ →
Hmatter

γ × H1
γ densely defined by[

M̂T matter
s

]
(A, (v, l)) := [

M̂l(v)T E
s

]
(A), (4.8)

where T matter
s is a matter spin-network state.

But even better than that, for the bosonic pieces of (4.6) we will be able to show that the
operator Ĝ is positive definite! By inspection then, the whole (bosonic piece of the) operator
Ĥ γ is a positive operator. Moreover, we will be able to take square roots of this operator,
defined in terms of its spectral resolution on the Hilbert space HE

γ ⊗ H1
γ . These square roots

are precisely those that one would take on the Hilbert space H1
γ if the gravitational field was

a background field in order to arrive at the annihilation and creation operator decomposition.
Let us now proceed to the details.

4.2.1. Maxwell Hamiltonian. The electromagnetic Gauß constraint operator applied to
cylindrical functions over γ reads [2]

Ĝauß(�)γ =
∑

v∈V (γ )

�(v)

 ∑
e∈E(γ );b(e)=v

Ye −
∑

e∈E(γ );f (e)=v

Ye

 . (4.9)

Since we are working with gauge-invariant functions, the Gauss constraint is identically
satisfied. Using the notation Y I (v) := YeI (v), we obtain the operator identity∑

I

[YI,+(v) + YI,−(v)] =
∑

I

[Y I (v) − Y I (v − I )] ≡ (
∂−
I Y I

)
(v) = 0, (4.10)

where naturally the backward edge derivative has popped out (we used Ye−1 = −Ye) and
Einstein’s summation convention is implicit.

Next, consider the loops βI
σ1;σ2,σ3

. It is easy to check that with εIJK = 1 for fixed I we have

ln
(
HβI

σ1;σ2 ,σ3
(v)

) = σ1
[

ln
(
HeJ (v′)

)
+ ln

(
HeK(v′+J )

)− ln
(
HeJ (v′+K)

)
− ln(HeK(v′)

]
v′=v+ σ2−1

2 J+ σ3−1
2 K

. (4.11)

Using the notation ÂI (v) := [
P ⊥ · ln

(
HeI (v)

)/
i
]

mod (2π) with P ⊥ defined in (4.16), we can
rewrite (4.11) as (subject to the remark after (4.2))

ln
(
HβI

σ1;σ2,σ3
(v)

) = iσ1ε
IMN

(
∂+
MÂN

)
v′=v+ σ2−1

2 J+ σ3−1
2 K

, (4.12)
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where naturally the forward edge derivative has appeared. Equation (4.12) is obviously gauge
invariant under ÂI �→ ÂI + ∂+

I F .
It is important to note that forward and backward derivatives commute with each other,[

∂σ
I , ∂σ ′

J

] = 0 for any I, J, σ, σ ′. We can now introduce the one-particle Hilbert space H1
M,γ

with inner product

〈F,F ′〉H1
M,γ

=
∑
v,I

FI (v)F ′
I (v) (4.13)

and one easily checks that
(
∂σ
I

)† = −∂−σ
I is the adjoint of the lattice derivative on H1

γ,M .
It is convenient to introduce the lattice Laplacian

(�f )(v) :=
∑

I

(
∂−
I ∂+

I f
)
(v) =

∑
I

[f (v + bI ) + f (v − bI ) − 2f (v)], (4.14)

which is easily seen to be negative definite on Hγ,1

〈F,�F 〉Hγ,1 = −
∑

v∈V (γ )

∑
I,J

∣∣(∂−
J AI

)
(v)

∣∣2 (4.15)

and invertible sinceH1
M,γ does not contain zero modes by definition (they are not normalizable).

With its help we may define the lattice transversal projector

(P⊥ · F)I (v) = FI (v) −
[
∂+
I

1

�
∂−
J F J

]
(v) =:

∑
v′,v

P ⊥
(v,I ),(v′,J )F

J (v′). (4.16)

We then obtain the operator identities

Y I (v) = (P⊥ · Y )I (v) and εIJK
(
∂+
J ÂK

)
(v) = εIJK

(
∂+
J [P⊥Â]K

)
(v). (4.17)

It is important to realize that the lattice metric δIJ is not a background structure, but is
actually diffeomorphism invariant, it is the same for all cubic lattices and only depends on
the topology of the lattice (which in our case is cubic). Therefore, the index position of the
index I is actually irrelevant, in particular, P⊥ = P ⊥. Cubic graphs are distinguished by the
fact the same projector P⊥ in H1

M,γ maps to the space of solutions to the Gauss constraint
∂−
I F I = 0 and to the gauge-invariant piece of FI under FI �→ FI + ∂+

I f . Note that indeed
P 2

⊥ = P⊥ = P
†
⊥, δIJ P ⊥

IJ (v, v′) = 2δv,v′ is a symmetric projector on Hγ,1 on the two physical
degrees of freedom per lattice point as desired. It is remarkable that all the structure that comes
with ∂±

I can be constructed without any reference to the gravitational degrees of freedom! Of
course, this is due to the fact that the exterior derivative of a 1-form and the divergence of a
vector density are metric independent.

Let us write the Hamiltonian ĤM,γ in our new notation. In order to simplify our life for the
exploratory purposes of this paper, we will replace the sum over the four loops corresponding
to the choices σ1, σ2 divided by 4 in (4.2) by one loop corresponding to σ1 = σ2 = 1.
Likewise, we replace the sum over the choices σ divided by 2 by the term corresponding to
σ = 1. This just corresponds to the exploitation of the quantization ambiguity from which all
the Hamiltonians constructed so far suffer anyway. Then (4.2) can be written in the compact
form

ĤM,γ = −αmP

�3
P

∑
v∈V (γ )

Q̂
j

I

(
v,

1

2

)
Q̂

j

I

(
v,

1

2

)
{[−P⊥ · Y ]I (v)[P⊥ · Y ]I (v)

+
[
εIKL∂+

K(P⊥ · Â)L
]
(v)

[
εJMN∂+

M(P⊥ · Â)N
]
(v)}, (4.18)

where Q̂
j

I (v, r) = Q̂
j

I,+(v, r). Let

Q̂IJ (v, r) := [
Q̂

j

I (v, r)
]†

Q̂
j

J (v, r) = −Q̂
j

I (v, r)Q̂
j

J (v, r). (4.19)
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Note that while the operators Q̂
j

I (v, r), Q̂
j

J (v, r) do not commute, in (4.18) only the symmetric
piece of Q̂IJ

(
v, 1

2

)
survives in (4.18). We now define Ĝ

M;1
(v,I ),(v′,J ), Ĝ

M;2
(v,I ),(v′,J ) as operators on

HE
γ ⊗ H1

M,γ by

[ĜM,1ψ ⊗ F ](A, (v, I )) :=
∑
v′,K

P ⊥
(v,I ),(v′,J )

(
Q̂JK

(
v′,

1

2

)
ψ

)
(A)(P⊥ · F)K(v′),

[ĜM;2ψ ⊗ F ](A, (v, I )) := −
∑
v′,K

P ⊥
(v,I ),(v′,J )ε

JKL∂−
v′K

×
(

Q̂LM

(
v′,

1

2

)
ψ

)
(A)εMNP

(
∂+
N(P⊥ · F)P

)
(v′).

We can then write the Maxwell Hamiltonian in the even more compact form

ĤM
γ = αmP

2�3
P

[〈Y †, ĜM;1Y 〉H1
M,γ

+ 〈Â†, ĜM;2Â〉H1
M,γ

]
, (4.20)

where the adjoint in (4.20) is with respect to HM
γ . The following results are crucial.

Theorem 4.1.
(i) The operators ĜM;1, ĜM;2 are positive semidefinite and definite on the subspace
HE

γ ⊗ H1⊥
M,γ , where H1⊥

M,γ = P⊥ · H1
M,γ .

(ii) The operator ĤM
γ is positive definite on HE

γ ⊗HM
γ and thus ĤM is positive definite on H.

Proof. (i) Let � = ∑
µ zµψE

µ ⊗ Fµ ∈ HE
γ ⊗ H1

M,γ be given. Then

〈�, ĜM;1�〉HE
γ ⊗H1

M,γ
=
∑
µ,ν

z̄µzν

〈
ψE

µ ⊗ Fµ, ĜM;1ψE ⊗ Fν

〉
HE

γ ⊗H1
M,γ

=
∑
µ,ν

z̄µzν

∑
v,I,J

(P · Fν)J (v)
〈
ψE

µ , Q̂IJ (v)ψE
ν

〉
HE

γ

(P · Fν)
J (v)

=
∑

v

∑
j

∥∥∥∥∥∑
µ

zµ

∑
I

(P · Fµ)I (v)

[
Q̂

j

I

(
v,

1

2

)
ψE

µ

]∥∥∥∥∥
2

HE
γ

, (4.21)

where we used that P = P⊥ commutes with edge derivatives. By the same manipulations, we
arrive at

〈�, ĜM;2�〉HE
γ ⊗H1

M,γ
=
∑

v

∑
j

∥∥∥∥∥∑
µ

zµ

∑
I

(P · ∂+ × Fµ)I (v)

[
Q̂

j

I

(
v,

1

2

)
ψE

µ

]∥∥∥∥∥
2

HE
γ

,

(4.22)

where (∂σ × F)I = εIJK∂σ
J FK . The definiteness statement is clear by inspection.

(ii) Let now �EM = ∑
µ zµψE

µ ⊗ ψM
µ ∈ HE

γ ⊗ HM,γ be given. Then

〈�EM, ĤM,γ �EM〉HE
γ ⊗HM,γ

=
∑
µ,ν

z̄µzν

〈
ψE

µ ⊗ ψM
ν , ĤM

γ ψE ⊗ ψM
ν

〉
HE

γ ⊗HM,γ

=
∑
µ,ν

z̄µzν

∑
v,I,J

〈
ψE

µ , Q̂IJ (v)ψE
ν

〉
HE

γ

[〈
(P · Y )I (v)ψM

µ , (P · Y )I (v)ψM
ν

〉
HM,γ

+
〈
(P · ∂+ × Â)I (v)ψM

µ , (P · ∂+ × Y )J (v)ψM
µ

〉
HM,γ

]
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=
∑

v

∑
j

∥∥∥∥∥∑
µ

zµ

[
Q̂

j

I

(
v,

1

2

)
ψE

µ

]
⊗ [

(P · Y )I (v)ψM
µ

]∥∥∥∥∥
2

HE
γ ⊗HM,γ

+
∑

v

∑
j

∥∥∥∥∥∑
µ

zµ

[
Q̂

j

I

(
v,

1

2

)
ψE

µ

]
⊗ [

(P · ∂+ × Â)I (v)ψM
µ

]∥∥∥∥∥
2

HE
γ ⊗HM,γ

.

(4.23)

The definiteness statement follows from the fact that we are working on the space of gauge-
invariant functions (solutions to the Gauss constraint). �

It follows from this theorem that the operators ĜM;1, ĜM;2 have an inverse on the subspace
HE

γ ⊗ H1⊥
M,γ . This fact is vital in order to arrive at the creation and annihilation operator

decomposition of the Einstein–Maxwell Hamiltonian. We state here without proof that the
positivity property of ĤM

γ holds on every graph so that it extends to the whole Hamiltonian

ĤM . The latter statement follows from the fact that by construction the consistently defined
Hamiltonian (3.40) preserves the space of gravitational spin-network functions over a graph
due to the projection operators on both sides in (3.39). (Actually this is already true for the
operator defined on spin-network functions because our operators do not change the graph on
which a state depends.) Therefore, if � = ψE

γ1
⊗ ψM

γ1
+ ψE

γ1
⊗ ψM

γ1
, we have

〈�, ĤM�〉Hkin = 〈
ψE

γ1
⊗ ψM

γ1
, ĤM

γ1
ψE

γ1
⊗ ψM

γ1

〉
+
〈
ψE

γ2
⊗ ψM

γ2
, ĤM

γ2
ψE

γ2
⊗ ψM

γ2

〉
(4.24)

due to orthonormality of the spin-network functions and both terms are separately positive.

4.2.2. Klein–Gordon Hamiltonian. Here the one-particle Hilbert space H1
KG,γ is equipped

with the inner product

〈F,F ′〉H1
KG,γ

=
∑

v∈V (γ )

F (v)F (v′). (4.25)

Let us also simplify the Klein–Gordon Hamiltonian (4.3) by replacing the average over the
eight right-oriented triples of edges by a single one corresponding to σ1 = σ2 = σ3 = 1

Ĥ KG,γ = −h̄QKG

2�11
P

mP

∑
v∈V (γ )

Y 2
v

[
1

3!
εijkε

IJKQ̂i
I

(
v,

1

2

)
Q̂

j

J

(
v,

1

2

)
Q̂k

K

(
v,

1

2

)]†
×
[

1

3!
εlmnε

LMNQ̂l
L

(
v,

1

2

)
Q̂m

M

(
v,

1

2

)
Q̂n

N

(
v,

1

2

)]

+
1

2h̄QKG�7
P

mP

∑
v∈V (γ )

[
εIJK

2
εjkl

[
∂+
I ln(U)

]
(v)

i
Q̂k

J

(
v,

3

4

)
Q̂l

K

(
v,

3

4

)]†

×
[

εLMN

2
εjmn

[
∂+
L ln(U)

]
(v)

i
Q̂m

M

(
v,

3

4

)
Q̂n

N

(
v,

3

4

)]

+
(K�P)

2

2�Ph̄QKG
mP

∑
v∈V (γ )

[
ln(U(v)

i

]† [ ln(U(v)

i

]
V̂v. (4.26)

One can read off from (4.26) the operators Ĝ
KG;1
v,v′ , Ĝ

KG;2
v,v′ on HE

γ giving rise to operators

ĜKG;1, ĜKG;2 on HE
γ ⊗ H1

KG,γ , which allows us to write (4.26) in the compact form

Ĥ KG
γ = 1

2

[〈Y †, ĜKG;1Y 〉H1
KG,γ

+ 〈φ̂†, ĜKG;1φ̂〉H1
KG,γ

]
, (4.27)
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where the dagger is with respect to HKG
γ and we used the notation φ̂(x) = ln(U(x))/i. Of

course, there is no projection operator involved in this case since in this paper we deal with
neutral scalar fields only.

A theorem analogous to theorem 4.1 can be proved in this case as well and will be left to
the ambitious reader.

4.2.3. Fermion Hamiltonian. Finally, let us also simplify (4.4) by replacing the average over
the eight triples of edges with that corresponding to σ1 = σ2 = σ3 = 1, that is

ĤD,γ = − mP

2�3
P

∑
v,v′∈V (γ )

[
θ̂B(v′)θ̂ †

A(v) − θ̂ ′
B(v′)θ̂ ′†

A(v)
]

×
{{

εijkε
IJKQ̂i

I

(
v,

1

2

)
Q̂

j

J

(
v,

1

2

)
[τ k(hK(v)δv′,v+K − δv′,v)]AB

}
−
{
εijkε

IJK[([hK(v′)]−1δv,v′+K − δv,v′)τ k]ABQ̂i
I

(
v′,

1

2

)
Q̂

j

J

(
v′,

1

2

)}}
− ih̄K0

∑
v,v′∈V (γ )

δABδv,v′
[
θ̂ ′
B(v′)θ̂ †

A(v) − θ̂B(v′)θ̂ ′†
A(v)

]
, (4.28)

where hI (v) = heI (v). One can read off from (4.28) the operator ĜD
(v,A,µ),(v′,B,ν) on HE

γ

giving rise to the operator ĜD on HE
γ ⊗ H1

D,γ . Here µ = 1, 2 where θ1
A(v) = θA(v) and

θ2
A(v) = θ ′

A(v) and H1
D;γ is equipped with the inner product

〈F,F ′〉H1
D,γ

=
∑

v∈V (γ )

∑
A,µ

F
µ

A (v)F
µ

A (v′). (4.29)

This allows us to write (4.28) in the compact form

ĤD
γ = 〈θ̂ †, ĜDθ̂〉H1

D,γ
, (4.30)

where the dagger is with respect to HD
γ . Of course, there is no projection operator involved in

this case since in this paper we deal with neutral spinor fields only.
A theorem analogous to theorem 4.1 has not been proved in this case and is fortunately

not necessary in order to arrive at creation and annihilation operators. See the remark at the
end of subsection 4.1.

4.3. Fundamental Fock states and normal ordering

We note that both bosonic Hamiltonians have the structure

Ĥ γ = 1

2

∑
v,v′,l,l′

p̂l(v)P̂ ((v, l), (v′, l′))p̂l′(v
′) + q̂l(v)Q̂((v, l), (v′, l′))q̂l′(v

′), (4.31)

where p̂l(v), q̂l(v) are operator-valued distributions on Hmatter,γ with canonical commutation
relations [p̂l(v), q̂l(v

′)] = ih̄δv,v′δll′ and P̂ ((v, l), (v′, l′)), Q̂((v, l), (v′, l′)) define positive-
definite operators on Hgeo,γ ⊗ H1

γ . In particular, they are symmetric there, that is,

P̂ ((v, l), (v′, l′))† = P̂ ((v′, l′), (v, l)) where the dagger is with respect to Hgeo,γ . It follows
that for a state ψ ∈ Hgeo,γ the expectation value

Pψ((v, l), (v′, l′)) := 〈ψ, P̂ ((v, l), (v′, l′))ψ〉Hgeo,γ
(4.32)

defines a positive-definite Hermitian matrix on H1
γ . Of course, we are being here rather

cavalier concerning domain questions and self-adjoint extensions (one possible choice is the
Friedrichs extension) but a more detailed analysis would go beyond the exploratory purposes
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of this paper. (If � is compact then γ is a finite graph and all operators are bounded, although
then we need to talk about boundary conditions.) With these cautionary remarks out of the
way, we then can state the following theorem.

Theorem 4.2.
(i) Suppose that the operators P̂ ((v, l), (v′, l′)), Q̂((v, l), (v′, l′)) form an Abelian subalgebra
of L(Hgeo,γ ) and that they are self-adjoint for each pair (v, l), (v′, l′). Then there exists a
unitary operator Û on Hgeo,γ ⊗ H1

γ such that

1

2

[〈p, P̂p〉H1
γ

+ 〈q, Q̂q〉H1
γ

] = 〈ẑ†, ω̂ẑ〉H1
γ
,

ẑl(v) = 1√
2

∑
v′,l′

[â((v, l), (v′, l′))ql′(v
′) − ib̂((v, l), (v′, l′))pl′(v

′)],

â = ÛD̂,
(4.33)

D̂ =
√√

P̂
−1
√√

P̂ Q̂
√

P̂
√

P̂
−1

,

b̂ = (â−1)T ,

ω̂ = (â−1)T Q̂â−1,

where the square roots and inverses are with respect to Hgeo,γ ⊗ H1
γ while transposition is

with respect to H1
γ . Moreover, if we set

ˆ̂cl(v) = 1√
2

∑
v′,l′

[â((v, l), (v′, l′))q̂l′(v
′) − ib̂((v, l), (v′, l′))p̂l′(v

′)], (4.34)

then ˆ̂cl(v), ˆ̂c
†
l (v) satisfy the canonical commutation relations where the adjoint is with respect

to Hgeo,γ ⊗ Hmatter,γ .
(ii) Suppose that we are given real-valued and symmetric operators P,Q on H1

γ . Then there
exists a real-valued unitary operator U on H1

γ such that

1
2

[〈p, Pp〉H1
γ

+ 〈q,Qq〉H1
γ

] = 〈z̄, ωz〉H1
γ
,

z = 1√
2
[aq − ibp],

a = UD,
(4.35)

D =
√

√
P

−1
√√

PQ
√

P
√

P
−1

,

b = (a−1)T ,

ω = (a−1)T Qa−1,

where the square roots, transposes and inverses are with respect to H1
γ . Moreover, if we set

ĉl(v) = 1√
2

∑
v′,l′

[a((v, l), (v′, l′))q̂l′(v
′) − ib((v, l), (v′, l′))p̂l′(v

′)], (4.36)

then ĉl(v), ĉ
†
l (v) satisfy the canonical commutation relations where the adjoint is with respect

to Hmatter,γ .

The proof is straightforward and is omitted. Note that unitarity means that (Û †)T = Û−1

where the dagger is with respect to Hgeo,γ while UT = U−1. The second assumption in (i) is
not immediately satisfied for the operators P̂ , Q̂ in (4.18) and (4.26) as they stand because in
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the form displayed they are only symmetric, (P̂ †)T = P̂ , and similarly for Q̂. However, since
with respect to the H1

γ degrees of freedom they act on matter operators of the form p̂ ⊗ p̂ and

since p̂ commute among each other, we may without loss of generality assume that P̂ T = P̂

so that P̂ = P̂ †. The first assumption in (i), however, is violated for the geometrical operators
P̂ , Q̂ of (4.18) and (4.36), they do not commute on general states. On generic states, however,
they do commute. This non-commutative geometry will lead to further quantum corrections

for what follows, meaning that the operators ˆ̂c, ˆ̂c
†

satisfy canonical commutation relations on
generic states only but not exactly. We will not discuss these effects in this paper and from
now on assume that P̂ ((v, l), (v′, l′)), Q̂((v, l), (v′, l′)) generate an Abelian operator algebra
on Hgeo,γ .

With these cautionary remarks out of the way, theorem 4.2 suggests to choose a different
ordering for the operator (4.31), namely the normal ordered form

Ĥ γ =
∑

(v,l),(v′,l′)

ˆ̂cl(v)†ω̂(v,l),(v′,l′) ˆ̂cl′(v
′). (4.37)

When comparing (4.37) with (4.31), one finds out that they differ by a purely gravitational
operator which is the quantization of the usual, IR divergent, normal ordering constant in flat
space. This can be avoided as follows: the clean way to arrive at the form (4.37) from first
principles is to write the classical expression

H = 1

2

∫
�

d3x

∫
�

d3y[P((x, l), (y, l′)pl(x)pl′(y) + Q((x, l), (y, l′)ql(x)ql′(y)] (4.38)

whose quantization gives rise to (4.31), first classically in the form

H =
∫

�

d3x

∫
�

d3ycl(x)ω((x, l), (y, l′))cl′(y) (4.39)

and then to quantize it. However, in order to do that we would need, for instance, the explicit
expression of the functions ω((x, l), (y, l′)) in terms of the elementary gravitational degrees
of freedom A

j
a, E

a
j which is unknown. Thus, our procedure to first quantize (4.31) and then

to normal order it should be considered as the ‘poor man’s way’ of quantizing (4.39) directly
which would not lead to a normal ordering operator.

We have judiciously chosen the double hat notation for the operator ˆ̂c in order to indicate
that it involves the anticipated mixture of gravitational and matter quantum operators.

We suggest that the operators ˆ̂cl(v) play the role of the fully geometry–matter coupled
system that is normally played by the matter annihilation operators on a given background
geometry.

In order to justify this, we should now construct coherent states of Hgeo,γ ⊗ Hmatter,γ

that are eigenstates of ˆ̂c and from them a vacuum state and n-particle states. (Note that such
states are automatically embedded in the full kinematical Hilbert space.) We will choose the
complexifier method [38] in order to do that.

The idea of a complexifier is to find an operator Ĉ, which in our case will depend on both
gravitational and matter degrees of freedom, such that

e−Ĉ/h̄q̂ eĈ/h̄ =
√

2â−1 ˆ̂c. (4.40)

(As before, we are working on Hγ = Hgeo,γ ⊗ Hmatter,γ for each γ separately.) Comparing
with (4.33), we find the unique solution

Ĉ = Ĉgeo +
1

2

∑
(v,l),(v′,l′)

p̂l(v)D̂−2((v, l), (v′, l′))p̂l′(v
′), (4.41)
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where Ĉgeo is a positive-definite operator constructed from the gravitational electrical degrees
of freedom only according to the guidelines of [38] so that [Ĉ − Ĉgeo, Ĉgeo] = 0.

The complexifier coherent state machinery can now be applied and we arrive at the
following coherent states: let m be points in the full phase space of gravitational and matter
degrees of freedom. Let C be the classical limit of (4.14) which we know in principle exactly
in terms of Q,P which were classically given in terms of the gravitational 3-metric and partial
derivative operators. Compute zg(m) = [e−iLχC AE](m) and zm(m) = [e−iLχC q](m), where
AE is the gravitational connection, q = AM or q = φ are the Maxwell connection and Klein–
Gordon scalar field, respectively, χC is the Hamiltonian vector field of C and L denotes the
Lie derivative. Both functions are functions of both matter and geometry degrees of freedom.
Let δh′;γ ⊗ δH ′;γ be the δ distribution with respect to the uniform measures of the L2 spaces
that define Hkin,γ and denote by h′,H ′ the set of gravitational and matter (point) holonomies
along the edges of γ . Then, for instance for Maxwell matter

ψm;γ := (e−Ĉ/h̄[δh′;γ ⊗ δH ′;γ ])h′→h(zE(m),H ′→H(zM(m)) (4.42)

define coherent states onHkin,γ as shown in [38]. Here h(zE(m)) denotes the set of gravitational
holonomies h(AE) along the edges of γ where the real connection A is replaced by the complex
connection zE(m) (analytical extension) and similarly for H(zM(m)). One of the nice features
of the coherent states (4.42) is the fact that they are eigenstates of the operators ˆ̂cl(v) with
eigenvalue cl(v)[m] as one can explicitly check (using the fact that â commutes with D̂).

As an example, consider the case of photons propagating on fluctuations around flat (i.e.
empty) space. Then we have m0

E := (
A

j
a, E

a
j

) = (
0, δa

j

)
and m0

M := (Aa,E
a) = (0, 0) so

that for an edge e ∈ E(γ ) we have He(zM(m0)) = 1. We have ql(v) ≡ qI (v) = ln
(
HeI (v)

)/
i

so that cl(v)[m0] = 0. Thus, the operators ĉl(v) annihilate the vacuum state �γ := ψm0;γ
over γ . Moreover, since [ˆ̂cl(v), ˆ̂cl′(v

′)] = h̄δv,v′δl,l′ we are able, in principle, to construct a
symmetric Fock space Fγ

(
H1

γ

)
where the n-particle states are defined by

|f1, . . . , fn〉 := ˆ̂c
†
(F1) . . . ˆ̂c

†
(Fn)�γ , where ˆ̂c

†
(F ) :=

∑
v,l

Fl(v) ˆ̂c
†
l (v). (4.43)

A precise map between (4.43) and the usual photon states on flat Minkowski space can be
given for the fundamental states (4.43) as well but we postpone this to the next section.

Note that due to commutativity of different matter types we can add the operators Ĉ in
(4.41) for different matter types in order to arrive at simultaneous coherent and Fock states for
all matter types!

4.4. Approximate Fock states and semiclassical states

It is clear that the programme sketched in section 4.3 cannot be carried out with present
mathematical technology because we are not really able to construct the operators â, b̂, ω̂

which require precise knowledge of the spectrum of these operators on Hgeo,γ ⊗ H1
γ . Thus,

in order to proceed we have to do something much more moderate. As a first approximation,
we consider states which do not mix matter and geometry degrees of freedom in the way
(4.42) did but rather will look for Fock states of the form ψmE ;γ ⊗ ψmatter;γ where ψmE ;γ is
a gravitational coherent state peaked at the point mE ∈ ME in the purely gravitational phase
space, for instance those constructed in [9–11]. These states are generated by the piece Ĉgeo of
the complexifier of (4.41) by applying its exponential to the δ distribution on the gravitational
Hilbert space alone. Let {Tn} be a complete orthonormal basis of states in Hmatter,γ . Using the
overcompleteness of the just mentioned coherent states, we can write the matrix elements of
Ĥ γ , given in the normal ordered form of (4.37) as (interchange of summation and integration
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must be justified by closer analysis)〈
ψmE ;γ ⊗ ψmatter, Ĥ γ ψmE ;γ ⊗ ψ ′

matter

〉
=

∑
(v,l),(v′,l′)

∫
Mγ

E

dνγ (mE)

∫
Mγ

E

dνγ (m′
E)
∑
n,n′

〈
ˆ̂cl(v)ψmE ;γ ⊗ ψmatter, ψmE ;γ ⊗ Tn

〉
× 〈

ψmE ;γ ⊗ Tn, ω̂(v,l),(v′,l′)ψm′
E ;γ ⊗ Tn′

〉 〈
ψm′

E ;γ ⊗ Tn′ , ˆ̂cl′(v
′)ψmE ;γ ⊗ ψ ′

matter

〉
.

(4.44)

Here νγ is the Hall measure [54] generalized to graphs in [55] and Mγ
g is M restricted to the

graph γ as defined in [56].
Let us introduce the real-valued operators on H1

γ defined by

amE ((v, l), (v′, l′) := 〈
ψmE

, â((v, l), (v′, l′))ψmE

〉
HE

γ

, (4.45)

and similarly for ω̂, b̂. Consider also the operators on Hmatter,γ defined by

ĉ
mE

l (v) := 1√
2

∑
v′,l′

[amE ((v, l), (v′, l′))q̂l′(v
′) − ibmE ((v, l), (v′, l′))p̂l′(v

′)]. (4.46)

The coherent states ψmE ;γ are sharply peaked in Mγ which implies that up to h̄-corrections〈
ψmE ;γ ⊗ ψmatter, ˆ̂cψm′

E ;γ ⊗ ψ ′
matter

〉 = δνγ
(mE,m′

E)〈ψmatter, ĉ
mE ψ ′

matter〉, (4.47)

and similarly for ω̂. We conclude that up to h̄-corrections〈
ψmE ;γ ⊗ ψmatter, Ĥ γ ψmE ;γ ⊗ ψ ′

matter

〉 = ∑
(v,l),(v′,l′)

〈
ĉ
mE

l (v)ψmatter, ω
mE

(v,l),(v′,l′)ĉ
mE

l′ (v′)ψ ′
matter

〉
.

(4.48)

Now, again using that ψmE ;γ have very strong semiclassical properties, it is possible to show
that, up to h̄-corrections, the operators amE , bmE , ωmE can be computed by first calculating the
expectation values of the operators P̂ , Q̂ on HE

γ ⊗ H1
γ , which we know explicitly, to arrive

at operators P mE ,QmE on H1
γ and then plugging those into formulae (4.35). Thus, we have

arrived at a ‘poor man’s version’ of an annihilation and creation operator decomposition of
Ĥ γ which approximates the exact version but which still takes the fluctuating nature of the
quantum geometry into account through the uncertainties encoded into the states ψmE ;γ .

It is now clear how we arrive at approximate Fock states. Instead of (4.41) we consider
the operator on Hmatter;γ defined by

ĈmE = 1

2

∑
(v,l),(v′,l′)

p̂l(v)(DmE )−2((v, l), (v′, l′))p̂l′(v
′). (4.49)

This complexifier now generates coherent states on Hmatter,γ in analogy to (4.42), e.g. for
Maxwell matter, by

ψ
mE

mM ;γ := (e−Ĉmg /h̄δH ′;γ )H ′→H(zmE (mM)), (4.50)

where mM is a point in the matter phase space, zmE

M (mM) = (e−iLχ
CmE q)(mM) and CmE (mM) is

the classical limit of ĈmE on the matter phase space. Choosing the points m0
E,m0

M appropriate

for vacuum will now produce a vacuum state �0
γ := ψ

m0
E

m0
M ;γ for the operators ĉm0

E which by

construction (theorem 4.2) satisfy canonical commutation relations exactly. Summarizing,
with

ψmE ;γ = (e−Ĉgeo/h̄δh′)h′ �→h(z′
E(mE)), z

′
E(mE) = e−iLχCgeo AE (4.51)
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we arrive at approximate n-particle states

|F1, . . . , Fn〉′ = ψmE,γ ⊗ ĉ†(F1) · · · ĉ†(Fn)�
0
γ , (4.52)

where ĉ†(F ) = ∑
v,l Fl(v)ĉ

†
l (v), and the associated Fock space.

Let us conclude this section with some remarks.

(1) For the lepton sector, things are much easier because the operators θ̂
µ

A(x),
(
θ̂

µ

A(x)
)†

already
satisfy canonical commutation relations and all momenta are ordered to the left in ĤD

γ .

A suitable vacuum state annihilated by all θ̂
µ

A(v) is given (up to normalization) by

�D
γ (θ) =

∏
v,A,µ

θ
µ

A(v). (4.53)

(2) In order to relate, say, the states (4.52) to the usual Fock states on Minkowski space with
Minkowski vacuum �F and smeared creation operators ĉF (f ) = ∫

d3xfL(x)
(
ĉL
F

)†
(x)

with different labels L, we need the particulars of the expectation values of the gravitational
operators. Basically, the discrete sum involved in the definition of ĉ(F ) is a Riemann
sum approximation to the integral involved in the definition of ĉF (f ) which becomes
exact in the limit that the lattice spacing ε vanishes where F

f

l (v) := εnXL
l (v)fL(v) for

some power of ε and some matrices XL
l which depend on the choice of the gravitational

coherent states. One can then establish a map between the usual Fock states and our
graph-dependent ones by

ĉ
†
F (f1) · · · ĉ†F (fn)�F �→ ĉ†(F f1) · · · ĉ†(F fn)�γ , (4.54)

which becomes an isometry in the limit ε → 0! In more detail, let us consider the simple
example of a regular cubic lattice in R3. Discarding fluctuation effects from the gravitational
field, we arrive at the dimension-free graph annihilation operators for Maxwell theory given
by

ĉI
γ (v) = 1√

2α

[
[4]
√−�γ ÂI − i [4]

√−�γ
−1ÊI

]
(v), (4.55)

where �γ = δIJ ∂−
I ∂+

J . On the other hand, for the usual Fock representation we get the
annihilators of dimension cm−3/2 given by

ĉa
F (x) = 1√

2α

[
[4]
√−�Âa − i [4]

√−�−1Êa
]
(x). (4.56)

Using dimension-free transversal fields F I (v), ∂−
I F I = 0 on the polymer side and transversal

fields f a(v), ∂af
I = 0 of dimension cm−3/2, we arrive at smeared, dimension-free creation

operators of the form

ĉ†γ (F ) =
∑

v

F I (v)ĉI
γ (v) and ĉ

†
F (f ) =

∫
d3xf a(x)ĉa

F (x). (4.57)

Using EI (v) ≈ ε2δI
aE

a
x , AI (v) ≈ εδa

I Aa(x),�γ (v) ≈ ε2�(v), we see that ĉI
γ (v) ≈

ε3/2δI
a ĉ

a
F (v) so that our desired map is given by

(F f )I (v) = δI
a (v)ε3/2f a(v), (4.58)

where the two factors of ε3/2 combine to the Riemann sum approximation ε3 of the Lebesgue
measure d3x.

Finally, we mention that the way approximate n-particle states were obtained above bears
some similarity to the treatments of gravitons in [12, 13]. In both cases, a semiclassical state
for the gravitational field is used to obtain a classical background geometry. In [12, 13],
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a weave state is used for this purpose; here we have employed the coherent state ψmE
. In

other respects, the treatments differ, however. To define the notion of gravitons, a split of the
gravitational field in a dynamical and a background part is necessary whereas nothing of this
sort is required for the treatment of matter fields.

5. Towards dispersion relations

Dispersion relations are the relations between the frequency ω and the wave vector �k of waves
of a field of some sort, travelling in vacuum or through some medium. In quantum mechanical
systems, the dispersion relation is the relation between the momentum and the energy of
particles. The form of the dispersion relations appearing in fundamental physics is dictated by
Lorenz invariance. Since this invariance is likely to be broken in quantum gravity, modification
of dispersion relations is conjectured to be an observable effect of quantum gravity. In this
section, we would like to explain why QGR indeed leads to modified dispersion relations and
how one might proceed in a calculation of these modifications.

There are at least two mechanisms by which modified dispersion relations arise in the
context of QGR, and it is important to keep them apart. Let us start to discuss the first one by
considering an analogous effect in another branch of physics:

A prime example coming to mind when thinking about modified dispersion relations is
the propagation of light in materials. The mechanism which causes these modification is
roughly as follows: the electromagnetic field of the in-falling wave acts on the charges in the
material, they are accelerated and in turn create electromagnetic fields. These fields interfere
with the in-falling ones, the net effect of this is a wave with modified phase and therefore a
phase velocity differing from that in vacuum. The precise relation between the force acting on
the charges and the fields induced by them depends on the properties of the material and also
on the frequency of the wave, and thus gives rise to a frequency-dependent phase velocity and,
hence, a nontrivial dispersion relation. Under some simplifying assumptions, this relation
looks as follows:

ω(|k|) = |k|
(

1 − κ

ω2
0 − ω2(|k|) + iρω(|k|)

)
,

where ω0, κ and ρ are properties of the material. As is to be expected, if the energy of the
in-falling wave is very low compared with the binding energies (∼ω0) of the charges, the
frequency dependence of the phase velocity will also be very small.

In QGR, modified dispersion relations can be expected from the interplay between matter
and quantum gravity by an analogous mechanism: the propagating matter wave causes changes
in the local geometry, which in turn affect the propagation of the wave. Again, if the energy
of the wave is very small, so will be the modification of the dispersion relation as compared
to the standard one.

In order to honestly account for this back-reaction mechanism, one would have to do a
first-principle calculation that involves solving the combined matter–geometry Hamiltonian
constraint. Technically, we are not yet in the position to do that. However, as a first
approximation we can take care of the reaction of the geometry to the matter fields by
using coherent states �mE

,�matter in the constructions of section 4 which are peaked at a
classical configuration which is a solution of the field equations of the combined gravity–
matter system. This should be seen in analogy to our remarks in section 2 where QED
corrections are computed with coherent states for free Maxwell theory instead of the full QED
Hamiltonian which neglects the back-reaction from the fermions.
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There is, however, a second source of modifications to the dispersion relations: the inherent
discreteness of geometry found in QGR. This effect has nothing to do with back-reaction of
the geometry on the matter and it is the contribution of this effect to the dispersion relations
that can be studied with more confidence. This is what we will discuss in the rest of this
section and in our companion paper [1].

Let us again start by briefly reviewing an analogous phenomenon from a different branch
of physics, the propagation of lattice vibrations (‘sound’) in crystals. As an example, consider
an extremely simple model, a one-dimensional chain of atoms. We assume that all atoms
have the same mass m and that each of them acts on its two neighbours with an attractive
force proportional to the mutual distance. If we denote by ε the interatomic distance in the
equilibrium situation, by q(z) the displacement of atom z from its equilibrium position εz and
set p(z) = q̇(z), the Hamiltonian for the system reads

H = 1

2

∑
z∈Z

1

m
p2(z) + K (q(z + 1) − q(z))2 . (5.1)

The corresponding equations of motion are simple, a complete set of solutions is given by

q(t, z) = exp i(εzk − ω(k)t), with ω2(k) = 2K

m
(1 − cos kε). (5.2)

As the solutions are straightforward analogues of plane waves in the continuum, ω2(k) is
readily interpreted as the dispersion relation for the system. We see that it contains the ‘linear’
term proportional to k2 expected for sound waves in the continuum, as well as higher order
corrections due to the discreteness of the lattice.

Let us reconsider (5.1): the fact that q(z) are displacements of atoms is not explicitly
visible. H could as well be the Hamiltonian of a field q with a certain form of potential,
propagating on a regular lattice. Having made that observation, we are already very close to
the model just described. Upon choosing a semiclassical state � for the gravitational field,
the bosonic Hamiltonians of section 4 are of the form

Ĥ�
γ = 1

2

∑
v,v′,l,l′

p̂l(v)P�((v, l), (v′, l′))p̂l′(v
′) + q̂l(v)Q�((v, l), (v′, l′))q̂l′(v

′), (5.3)

where the expectation values

P�((v, l), (v′, l′)) = 〈P̂ ((v, l), (v′, l′))〉�, Q�((v, l), (v′, l′)) = 〈Q̂((v, l), (v′, l′))〉�
contain an imprint of the fluctuations of the gravitational field. � can in principle be taken to
be a coherent state for the gravitational field peaked at an arbitrary point of the classical phase
space. However, since we are interested in dispersion relations, a notion that by definition
describes the propagation of fields in flat space, we will restrict considerations to the case of
GCS approximating flat Euclidean space (denoted by �flat in the following)3.

There are however two fundamental differences between (5.1) and (5.3), and we will
discuss them in succession. The first difference is that (5.3) is a Hamiltonian for a quantum
field whereas the former is purely classical. Note, however, that the Hamiltonians of section 4
are normal ordered. Thus, the expectation value of these Hamiltonians in a coherent state
peaked at a specific classical field configuration (defined in sections 4.3 and 4.4) will yield
precisely its classical value. Moreover, expectation values for the matter quantum fields will
exactly equal the corresponding classical values at all times. Therefore, in discussing the
dispersion relations, we will assume the matter quantum fields to be in a coherent state and

3 Also, when considering application to situations such as the γ -ray burst effect, the curvature radius is always huge
compared to the Planck length and therefore does not lead to any new quantum effects but just to classical redshifts
which can easily be accounted for.
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k

ω

allowed region

Figure 2. Fourier transform of EOM. The support of solutions has to lie in the shaded region.

can effectively work with the classical fields p, q. This will be a very good approximation
in processes such as light propagation due to decoherence of matter quantum effects in large
ensembles of photons and because higher loop corrections of QED are not Poincaré violating
(which is what we are interested in here).

The second and more important difference between (5.1) and (5.3) lies in the following: in
(5.1), the coefficients of the fields do not depend on the vertex. This is the reason why one can
explicitly calculate solutions to the equations of motion. In contrast to that, P((v, l), (·, l′))
will in general depend on v, even if the state �flat employed to compute the gravity expectation
values is a good semiclassical state. As a result, the field equations will be complicated and,
most important for us, not have ‘plane-wave’ solutions

q�k(t, v) = exp i(�k�x(v) − ωt) (5.4)

anymore. Hence, if we would Fourier decompose solutions of the field equations with respect
to (5.4), the support of the resulting functions will not be confined by a dispersion relation to
some line in the ω − |k| plane, anymore.

However, for a good semiclassical state, symmetry, which is absent due to the vertex
dependence of the coefficients, will be approximately restored on a large length scale. For
example, if the vertex-dependent coefficients would be averaged over large enough regions of
�, the average would be independent of the specific choice of the region. Therefore, for long
wavelength, plane waves (5.4) should at least be approximate solutions to the field equations.
The following scenario is conceivable: although there is no exact dispersion relation, the
support of the Fourier transform of a solution might be confined to some region in the ω − |k|
plane, or the Fourier transform has at least to be peaked there. This region should get more
and more narrow for longer wavelength, leading to an ordinary dispersion relation in the limit
(see figure 2). We have to note, however, that even if this is true, there is no guarantee that
a dispersion relation with corrections to the linear term makes sense as an approximate
description for long wavelength. We tried to visualize this in figure 3. So, to conclude, it
is very plausible that a nonlinear dispersion relation will turn out to be a good approximate
description of the physical contents of (5.3) for long wavelength in this sense. But issues such
as that depicted in figure 3 definitely merit further studies.

Let us now turn to the practical question of how a nonlinear dispersion relation can
actually be computed from (5.3). A simple model that displays some of the complications
due to the vertex dependence of the coefficients in (5.3), but can nevertheless be treated with
analytical methods, can be obtained from (5.1) in the following way: upon setting m = 1 and
K = l−2, the Hamiltonian (5.1) can be interpreted as that of a scalar field propagating on
a one-dimensional lattice with lattice spacing l. Now we partly remove the assumption of a
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ω ω

k k

(a) (b)

Figure 3. Can higher order corrections to the dispersion relation be given? (a) Yes, approximately.
(b) No, there is no meaningful notion of dispersion relation beyond linear order.

constant lattice spacing by replacing l by lz—the distance between the lattice point labelled
by z and that labelled by z + 1—but still assume periodicity on a large scale,

lz = lN+z for all z ∈ Z

for some N ∈ N. It turns out that the dispersion relation for this system has several branches
and the small k behaviour of the acoustic branch is given by

ω2
ac(k) = 〈〈l〉〉2

〈〈l2〉〉 |k|2 +

 1

L2

〈〈l〉〉6

〈〈l2〉〉3

∑
i<j

cij l
2
i l

2
j − L2

12

〈〈l〉〉2

〈〈l2〉〉

 |k|4 + O(|k|6). (5.5)

Here,

L =
N−1∑
n=0

ln, cij = (j − i)[N − (j − i)], 〈〈l〉〉 = 1

N

N−1∑
n=0

ln, etc.

As we have indicated by means of notation, it is instructive to view the li , i = 0, . . . , N − 1,
as independent random variables. The moments of the corresponding distribution determine
the dispersion relation (5.5). In each order in k, corrections are present as compared to the
case of constant lattice spacing. Note in particular that the phase velocity limk→0 ω(k)/k can
be smaller than 1.

It is remarkable how subtle the dependence of the dispersion relation on the distribution
of the lengths is already in this simple model. Although we do not have a proof, it is plausible
that qualitatively the above formula extends to higher dimensions, where analytical proofs
get much harder. For more information about the model as well as a proof of (5.5), we refer
the reader to [57] or [58] and for a beautiful numerical analysis of similar models in two
dimensions to [59].

The discussion of the one-dimensional model given above shows how complicated an
exact analysis of the equations of motion is already in simple cases. Since the models

H�flat = 1

2

∑
v,v′,l,l′

pl(v)P�flat((v, l), (v′, l′))pl′(v
′) + ql(v)Q�flat((v, l), (v′, l′))ql′(v

′) (5.6)

that one obtains from QGR are more complicated, it is useful to explore a less precise but
easier route towards dispersion relations. The idea which we would like to advocate is to
replace (5.6) by a simpler Hamiltonian which

• is a good approximation of (5.6) for slowly varying q and p and
• is simple enough such that the EOM can be solved exactly.
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This idea also underlies the works [21, 22] and, at a rather simple level, is the basis for the
recovery of continuum elasticity theory from the atomic description in solid-state physics (see
for example [60]).

We will now propose a replacement for (5.6) fulfilling the above requirements. In the
long wavelength regime, we can revert to the continuum picture, i.e. replace the lattice fields
ql(v), pl(v) by ql(�x(v)), pl(�x(v)), where now ql, pl : � → C.

We should however take care that information about the lattice is at least partially encoded
in the continuum theory. To this end, we Taylor expand the (now continuum) fields in the
Hamiltonian up to a certain order. For example, we would make the replacement

ql(�x(v))Q�((v, l), (v′, l′))ql′(�x(v′)) −−→ ql(�x(v))Q�((v, l), (v′, l′))

×
[
bi(v, v′)∂iql′(�x(v)) +

1

2!
bi(v, v′)bj (v, v′)∂i∂j ql′(�x(v)) + · · ·

]
,

where bi(v, v′) .= �x(v′) − �x(v). Even if we terminate the Taylor expansion after a few terms,
the resulting Hamiltonian will be an excellent approximation to the original one, provided
p and q change only very little from vertex to vertex, our standing assumption in the whole
procedure.

Now we will eliminate the spatial dependence of the coefficients, which was the main
difficulty in dealing with the original Hamiltonian (5.6), by replacing them by their averages
over all vertices of the graph. This can be justified as follows: if the fields p, q are varying
considerably only on length scales much larger than some macroscopic scale L, it is a very
good approximation to replace the vertex-dependent coefficients in the Hamiltonian by their
averages over the vertices in regions of dimension L3. On the other hand, as we have said
before, a good semiclassical �flat state will ensure that the system described by (5.6) has the
symmetries of flat space at least at large distances. One way to state this more precisely is that
the average of the coefficients appearing in (5.6) over vertices in regions with characteristic
dimension L3 or larger is independent of the region to a good approximation. Therefore, we
can indeed replace the vertex-dependent coefficients by their averages over all vertices.

Let us again give an example for a typical term in the Hamiltonian:∑
v′

Q((v, l), (v′, l′))ba1(v, v′) · · · ban(v, v′) =: Fa1...an (v, l, l′) −−→ 〈〈Fa1...an (·, l, l′)〉〉,

where we have introduced the graph average

〈〈Fa1...an (·, l, l′)〉〉 .= 1

N

∑
v

F a1...an (v, l, l′), (5.7)

N being the number of vertices of the graph �flat is based on. In the case we are dealing with
an infinite number of vertices, definition (5.7) has to be replaced by the limit of averages over
finite but larger and larger numbers of points.

Finally, we can replace the sum over vertices of (5.4) by an integral. We thus end up
with a Hamiltonian for a continuum field theory on � and the coefficients of the fields being
constant. Therefore, the equations of motion of the theory admit plane waves as solutions,
and their dispersion relation can be computed and discussed. This dispersion relation should
describe the physical content of (5.6) for low energies (large wavelength).

To justify our procedure, let us point out again that it uses both assumptions (large
wavelength homogeneity and isotropy of the state on large scales) that seem to be essential from
physical considerations to recover a dispersion relation from (5.6), entering in a transparent
way. Also, if we apply the procedure outlined above to the simple regular lattice system
(5.1), we recover, order by order, the nonlinear dispersion relation (5.2). Thus, at least in this
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example, the simplified continuum theory still captures the information about the lattice to
any desired order of accuracy.

In the companion paper [1], we will elaborate on the procedure described above and apply
it to derive approximate dispersion relations from the Hamiltonians constructed in this paper,
evaluated in the gauge theory coherent states of [9].

6. Summary and outlook

The goal of the present work was to begin investigations of the structure and semiclassical
limit of the theory obtained by coupling matter fields to QGR. A basic assumption that we
made was that the complicated dynamics of a full theory could be approximated by treating
the matter parts in the Hamilton constraint of the full theory as Hamiltonians generating the
matter dynamics and by the use of semiclassical states in the gravitational sector.

Using this assumption we obtained the following results.

(1) We have proposed quantum theories of scalar, electromagnetic and fermionic fields
coupled to QGR. The dynamics of these theories is generated by a Hamiltonian in the
same way as in ordinary QFT. Consequently, we were able to identify approximate
n-particle states which correspond to the usual Fock states for matter fields propagating
on classical geometries. In other respects, the theories are very different from ordinary
QFT, thus reflecting basic properties of QGR.

• The basic excitations of the gravitational field in QGR are concentrated on graphs.
The requirement of diffeomorphism invariance forces the matter degrees of freedom
to be confined to the same graph as the gravitational field. The matter fields
are therefore bound to become quantum fields propagating on a discrete structure.

• In ordinary QFT, the background metric enters the definition of the ground state and
the commutation relations of the fields. In QGR, on the other hand, the geometry
is a dynamical variable, represented by suitable operators. A QFT coupled to QGR
therefore has to contain these operators in its very definition. This is reflected in the
theories of section 4 by the fact that their annihilation and creation operators act on
both the one-particle Hilbert space of the matter fields and the Hilbert space of the
geometry.

We also showed how a ‘QFT on curved spacetime limit’ can be obtained from this theory,
using a semiclassical state of the gravitational field.

(2) We have discussed how modified dispersion relations for the matter fields arise in the
context of QGR and motivated a method for computing them from the (partial) expectation
values of the quantum matter Hamiltonians in a semiclassical state.

Certainly, the present work can only be regarded as a first step towards a better understanding
of the interaction of matter and quantum gravity. In future work, the assumptions that have
been used should be removed, or their validity confirmed.

On the other hand, application of the results of the present work can be envisioned. For
example, it will be very interesting to see whether the methods used in the present work can
also be applied to investigate how gravitons arise in the semiclassical regime of QGR. This will
be the topic of [19]. As another application, the companion paper [1] contains a calculation
of corrections to the standard dispersion relations for the scalar and the electromagnetic field
due to QGR.

To summarize, the interaction of quantum matter and quantum gravity is a fascinating
but, alas, very complicated topic, of which a good understanding still has to be gained. We
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hope that the present work illuminates the difficulties encountered in this endeavour and also
contains some first, albeit small, steps towards its completion.
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Appendix. Kinematical versus dynamical coherent states: a simple example

In systems with constraints linear in the basic variables, the expectation values of Dirac
observables in a coherent state in the kinematical Hilbert space equal those in a dynamical
coherent state, provided that both states are chosen to be peaked around the same point in
the constrained phase space. This does not hold true anymore for systems with nonlinear
constraints. One expects, however, that the discrepancies between the expectation values
on the kinematical and on the dynamical level will at least be small. In this appendix, we
demonstrate that this is true for a simple quantum mechanical model system with a nonlinear
constraint: a system of two coupled harmonic oscillators.

Let the Hamiltonian of the harmonic oscillator be given as

H = 1

2

(
p2

m
+ mω2q2

)
.

It is well known that it can be quantized in terms of annihilation and creation operators â, â†,
[̂a, â†] = 1 on the Fock space H over C. â is the quantization of the classical quantity

z =
√

mω

2h̄

(
q + i

p

mω

)
.

A basis of H is given by the eigenvectors of the number operator N̂ = â †̂a and will be denoted
by |n〉. The coherent states for the harmonic oscillator are defined as

|z〉 = exp

(
−|z2|

2t

) ∞∑
n=0

zn

√
tnn!

|n〉, z ∈ C.

A system of two harmonic oscillators can be quantized on the tensor product Hkin .= H ⊗ H;
the annihilation operators of the respective oscillators are given by

â1
.= â ⊗ 1, â2

.= 1 ⊗ â,

and similarly for the number operators N̂1, N̂2. Analogously, we have

|n1, n2〉 .= |n1〉 ⊗ |n2〉, |z1, z2〉 .= |z1〉 ⊗ |z2〉, n1, n2 ∈ N0, z1, z2 ∈ C,

and these vectors form dense subsets in Hkin.
Let us now impose the constraint C

.= N1 −N2 forcing the energies of the two oscillators
to be equal. The kinematical phase space can be labelled by (z1, z2) ∈ C2 and the physical
phase space by z ∈ C, where the embedding of the latter in the former is given by

|z| = |z1| = |z2|, z|z| = z1z2. (A.1)
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The quantization of the constraint is simply

Ĉ = N̂1 − N̂2; (A.2)

the physical subspace of Hkin is given by

Hphys = span {|n, n〉, n ∈ N0}.
On this subspace, a new annihilation operator can be defined by

â⊗
.= â1N̂

− 1
4

1 â2N̂
− 1

4
2

on span{|n, n〉, n ∈ N} and â⊗|0, 0〉 .= 0. It fulfils
[̂
a⊗, â

†
⊗
] = 1. Therefore, we can define

physical coherent states as

|z〉⊗ = exp

(
−|z2|

2

) ∞∑
n=0

zn

n!

(̂
a
†
⊗
)n|0, 0〉.

These are to be compared with the kinematical coherent states |z1, z2〉, bearing in mind the
identification (A.1).

Let us consider the expectation values of the Dirac observables â1â2 and N̂1 and more
complicated ones constructed from them. We start with N1: clearly

〈N̂1〉|z1,z2〉 = |z1|2 = |z|2.
On the other hand, one finds

〈N̂1〉|z〉⊗ = |z|2,
so in this case the expectation values agree exactly. Now we turn to â1â2: in the kinematical
coherent states

〈̂a1â2〉|z1,z2〉 = z1z2 = z|z|. (A.3)

The expectation value in the physical coherent states is

〈̂a1â2〉|z〉⊗ = z exp(−|z|2)
∞∑

n=0

√
n + 1

|z|2n

n!
. (A.4)

The sum in this formula cannot be determined in terms of elementary functions. We can,
however, study its behaviour for large |z|. To this end, let us define the function

Fα(b)
.=

∞∑
n=1

bn

n!

(n

b

)α

. (A.5)

Then we can write (A.4) as

〈̂a1â2〉|z〉⊗ = z|z| e−bF 3
2
(b),

where b = |z|2. To obtain an asymptotic formula for Fα(b) for large b, we approximate the
factorial in (A.5) by Stirling’s formula and the discrete sum by an integral. We find

Fα(b) ≈
√

b

2π

∫ ∞

0
xα− 1

2 exp(−bx(ln x − 1)) dx.

The asymptotic behaviour of this integral can be obtained by saddle-point methods (see for
example [61]). We obtain

Fα(b) = eb

[
1 +

1

b

(
1

2

(
α − 1

2

)2

− 1

8

)
+ O(b−2)

]
. (A.6)
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Therefore, the expectation value (A.4) is

〈̂a1â2〉|z〉⊗ = z|z|
(

1 +
3

8

1

|z|2 + O(|z|−4)

)
.

Comparing this with (A.3), we see that the expectation values in kinematical and physical
coherent states disagree by a term of order 1. This is a small correction if |z| is large.

Similar results can be obtained for more complicated functions of the Dirac observables.
Consider for example the operator â⊗. It can be written as â1â2N̂

−1/4
1 N̂

−1/4
2 . In this case, the

expectation value in the physical coherent states is trivial:

〈̂a⊗〉|z〉⊗ = z.

On the other hand, we find

〈̂a⊗〉|z1,z2〉 = z1√|z1|
z2√|z2|

e−b1 e−b2F 3
4
(b1)F 3

4
(b2),

where bi = |zi |2. Using (A.6) this can be simplified to

〈̂a⊗〉|z1,z2〉 = z

(
1 − 3

16

1

|z|2 + O(|z|−4)

)
.

Summarizing, we find that in the simple example of two harmonic oscillators coupled by the
constraint (A.2), expectation values of Dirac observables in both kinematical and physical
coherent states can be computed to any desired order of accuracy. For some observables, these
expectation values agree. For others, there are h̄-corrections. This indicates that kinematical
coherent states always give the same answer to zeroth order as the dynamical ones and that
the first corrections differ by a constant of proportionality of order unity so that at least
qualitatively we get a good idea of which corrections to expect in the exact theory.
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