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Reciprocity and repeated games have been at the center of
attention when studying the evolution of human cooperation.
Direct reciprocity is considered to be a powerful mechanism for the
evolution of cooperation, and it is generally assumed that it can
lead to high levels of cooperation. Here we explore an open-
ended, infinite strategy space, where every strategy that can be
encoded by a finite state automaton is a possible mutant. Sur-
prisingly, we find that direct reciprocity alone does not lead to
high levels of cooperation. Instead we observe perpetual oscil-
lations between cooperation and defection, with defection being
substantially more frequent than cooperation. The reason for this
is that “indirect invasions” remove equilibrium strategies: every
strategy has neutral mutants, which in turn can be invaded by
other strategies. However, reciprocity is not the only way to pro-
mote cooperation. Another mechanism for the evolution of co-
operation, which has received as much attention, is assortment
because of population structure. Here we develop a theory that
allows us to study the synergistic interaction between direct rec-
iprocity and assortment. This framework is particularly well suited
for understanding human interactions, which are typically re-
peated and occur in relatively fluid but not unstructured popula-
tions. We show that if repeated games are combined with only a
small amount of assortment, then natural selection favors the be-
havior typically observed among humans: high levels of coopera-
tion implemented using conditional strategies.

repeated prisoner’s dilemma | game theory

The problem of cooperation in its simplest and most chal-
lenging form is captured by the Prisoners’ Dilemma. Two

people can choose between cooperation and defection. If both
cooperate, they get more than if both defect, but if one defects
and the other cooperates, the defector gets the highest payoff
and the cooperator gets the lowest. In the one-shot Prisoners’
Dilemma, it is in each person’s interest to defect, even though
both would be better off had they cooperated. This game illus-
trates the tension between private and common interest.
However, people often cooperate in social dilemmas. Ex-

plaining this apparent paradox has been a major focus of re-
search across fields for decades. Two important explanations for
the evolution of cooperation that have emerged are reciprocity
(1–19) and population structure (20–32). If individuals find
themselves in a repeated Prisoner’s Dilemma—rather than
a one-shot version—then there are Nash equilibria where both
players cooperate under the threat of retaliation in future
rounds (1–19). The existence of such equilibria is a cornerstone
result in economics (1–3), and the evolution of cooperation in
repeated games is of shared interest for biology (4–10),
economics (11–14), psychology (15), and sociology (16), with
applications that range from antitrust laws (17) to sticklebacks
(18), although it has been argued that firm empirical support in
nonhuman animal societies is rare (19).
Population structure is equally important. If individuals are

more likely to interact with others playing the same strategy, then
cooperation can evolve even in one-shot Prisoner’s Dilemmas,
because then cooperators not only give, but also receive more
cooperation than defectors (20–32). There are a host of different
population structures and update rules that can cause the necessary

assortment (28, 31). Whether thought of in terms of kin selection
(20, 25, 26), group selection (24, 27, 32), both (29), or neither (30,
31), population structure can allow for the evolution of cooperative
behavior that would not evolve in a well-mixed population. As-
sortment can, but does not have to be genetic, as for example in
coevolutionary models based on cultural group selection (32).
In this article, we consider the interaction of these two mech-

anisms: direct reciprocity and population structure. We begin by
re-examining the ability of direct reciprocity to promote co-
operation in unstructured populations. Previous studies tend to
consider strategies that only condition on the previous period (8–
10) or use static equilibrium concepts that focus on infinitely many
repetitions (11, 12). Although useful for analytical tractability,
both of these approaches could potentially bias the results. Thus,
we explore evolutionary dynamics that allow for an open-ended,
infinite strategy space, and look at games where subsequent rep-
etitions occur with a fixed probability δ.
To do so, we perform computer simulations where strategies are

implemented using finite state automata (see Fig. 1 for examples),
and compliment these simulations with analytical results, which
are completely general and apply to all possible deterministic
strategies. Our simulations contain a mutation procedure that
guarantees that every finite state automaton can be reached from
every other finite state automaton through a sequence of muta-
tions. Thus, every strategy that can be encoded by a finite state
automaton is a possible mutant. The mutants that emerge at
a given time depend on the current state of the population: close-
bymutants, requiring only one or twomutations, aremore likely to
arise than far away mutants, requiring many mutations.
Our computer program can, in principle, explore the whole

space of deterministic strategies encoded by finite state automata.
Fig. 1 shows that the population regularly transitions in and out of
cooperation and gives a sample of the equilibrium strategies, with
different degrees of cooperation, that surface temporarily. The
variety of equilibria shows that evolution does explore a host of
different possibilities for equilibrium behavior, and that it is as
creative in constructing equilibria as it is in undermining them.
Based on previous analyses of repeated games, one might ex-

pect evolution to lead to high levels of cooperation for relatively
small b/c ratios in our simulations, provided the continuation
probability δ is reasonably large. However, this is not what we find.
To understand why, we have to consider indirect invasions (33).
In a well-mixed population, the strategy Tit-for-Tat (TFT) can

easily resist a direct invasion of ALLD (always choosing to defect,
regardless) because ALLD performs badly in a population of TFT
players, provided that the continuation probability δ is large
enough. The strategyALLC (unconditional cooperation), however,
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can serve as a springboard for ALLD and thereby disrupt co-
operation. ALLC is a neutral mutant of TFT: when meeting
themselves and each other, both strategies always cooperate, and
hence they earn identical payoffs. Thus, ALLC can become more
abundant in a population of TFT players through neutral drift.
When this process occurs, ALLD can then invade by exploiting
ALLC. Unconditional cooperation is therefore cooperation’s
worst enemy (10).

Indirect invasions do not only destroy cooperation; they can
also establish cooperation (for examples see the SI Appendix). If
the population size is not too small, those indirect invasions in
and out of cooperation come to dominate the dynamics in the
population (34).
We can show that no strategy is ever robust against indirect

invasions; there are always indirect paths out of equilibrium (34).
Our simulations also suggest that in a well-mixed population,

Fig. 1. Examples of equilibrium strategies observed during a simulation run. The top part of the figure depicts the average payoff during a part of a sim-
ulation run with continuation probability 0.85. The payoffs in the stage game are 2 for both players if they both cooperate, 1 for both if they both defect, and
3 for the defector and 0 for the cooperator if one defects and the other cooperates. These payoffs imply a benefit-to-cost ratio of b/c = 2. Because the game
lengths are stochastic, there is variation in average payoff, even when the population makeup is constant. The different payoff plateaus indicate the
population visiting different equilibria with different levels of cooperation and hence different expected average payoffs. Examples of equilibrium strategies,
indicated by letters A through P, are also shown in the following way. The circles are the states and their colors indicate what this strategy plays when in that
state; a blue circle means that the strategy will cooperate and a red one means that it will defect. The arrows reflect to which state this strategy goes,
depending on the action played by its opponent; the blue arrows indicate where it goes if its opponent cooperates, the red ones where it goes if its opponent
defects. The strategies all start in the leftmost state. The small colored dots indicate what the first few moves are if the strategy plays against itself, and in
a mixture (case D) also what the two strategies play when they meet each other. The strategies vary widely in the ways in which they are reciprocal, the extent
to which they are forgiving, the presence or absence of handshakes they use before they start cooperating, and the level of cooperation. The strategies
shown here are discussed in greater detail in the SI Appendix.

9930 | www.pnas.org/cgi/doi/10.1073/pnas.1206694109 van Veelen et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206694109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206694109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1206694109


paths out of cooperation are more likely than paths into co-
operation. Even for relatively high continuation probabilities,
evolution consistently leads only to moderate levels of co-
operation when averaged over time (unless the benefit-to-cost
ratio of cooperation is very high) (see also SI Appendix, Fig. S5).
How, then, can we achieve high levels of cooperation? We find

that adding a small amount of population structure increases the
average level of cooperation substantially if games are repeated.
The interaction between repetition and population structure is of
primary importance, especially for humans, who tend to play
games with many repetitions and who live in fluid, but not totally
unstructured populations (35–40).
To explore the effect of introducing population structure, we no

longer have individuals meet entirely at random. Instead, a player
with strategy S is matched with an opponent that also uses strategy
S with probability α + (1 – α)xS, where xS is the frequency of
strategy S in the population, and α is a parameter that can vary
continuously between 0 and 1. With this matching process, the
assortment parameter α is the probability for a rare mutant to
meet a player that has the same strategy (21, 29, 41, 42).
If δ = 0, we are back in the one-shot version of the game. If

α = 0, we study evolution in the unstructured (well-mixed) pop-
ulation. Thus, the settings where only one of the two mechanisms
is present are included as special cases in our framework.
Fig. 2 shows how assortment and repetition together affect

the average level of cooperation in our simulations. If there is no
repetition, δ = 0, we find a sharp threshold for the evolution of
cooperation. If there is some repetition, δ > 0, we find a more
gradual rise in the average level of cooperation as assortment α
increases. In the lower right region of Fig. 2, where repetition is
high and assortment is low (but nonzero), we find behavior
similar to what is observed in humans: the average level of co-
operation is high, and the strategies are based on conditional
cooperation (14, 43–46). In contrast, when assortment is high
and repetition is low we observe the evolution of ALLC, which is
rare among humans.
To gain a deeper understanding of these simulation results, we

now turn to analytical calculations. For the stage game of the
repeated game we consider the following payoff matrix.

Our analytical results are derived without restricting the
strategy space and by considering both direct and indirect
invasions (see the SI Appendix for calculation details). The
analytical results are therefore even more general than the
simulation results. The simulations allow for all strategies that
can be represented by finite automata (a large, countably infinite
set of strategies where the mutation procedure specifies which
mutations are more or less likely to occur). The analytical treat-
ment, on the other hand, considers and allows for all possible
strategies. Thus, the analytical results are completely general
and independent of any assumptions about specific mutation
procedures.
We find that the parameter space, which is given by the unit

square spanned by α and δ, can be divided into five main regions
(Fig. 2B).We refer to the lower left corner, containing δ=0, α=0,
as region 1, and number the remaining regions 2–5, proceeding
counter clockwise around the pivot (δ, α) = (0, c/b). To discuss
these regions we introduce the cooperativity of a strategy, defined
as the average frequency of cooperation a strategy achieves when
playing against another individual using the same strategy. Coop-
erativity is a number between 0 and 1: fully defecting strategies,

such as ALLD, have cooperativity 0, and fully cooperative strate-
gies, such as ALLC or TFT (without noise), have cooperativity 1.
In Fig. 3, we show representative simulation outcomes for pa-
rameter values in the center of each region.
In regions 1 and 2, where both α and δ are less than c/b, all

equilibrium strategies have cooperativity 0. In region 1, ALLD can
directly invade every nonequilibrium strategy. In region 2 ALLD
no longer directly invades all nonequilibrium strategies, but for
every strategy with cooperativity larger than 0, there is at least one
strategy that can directly invade. The fact that these direct invaders
exist, however, does not prevent the population from spending

Fig. 2. Simulation results and theoretical prediction with repetition as well
as assortment. (A) Every pixel represents a run of 500,000 generations,
where every individual in every generation plays a repeated game once. The
population size is 200 and the benefit-to-cost ratio is b/c = 2. The continu-
ation probability δ (horizontal axis) indicates the probability with which
a subsequent repetition of the stage game between the two players occurs.
Therefore, a high continuation probability means that in expectation the
game is repeated a large number of times and a continuation probability of
0 implies that the game is played exactly once. On the vertical axis we have
a parameter α for the assortment introduced by population structure, which
equals the probability with which a rare mutant meets another individual
playing the same strategy, and that can also be interpreted as relatedness
(21, 29, 41, 42). This parameter being 0 would reflect random matching. If it
is 1, then every individual always interacts with another individual playing
the same strategy. Both parameters—continuation probability δ and as-
sortment α—are varied in steps of 0.01, which makes 10,100 runs in total. (B
and C) A theoretical analysis with an unrestricted strategy space explains
what we find in the simulations. This analysis divides the parameter space
into five regions, as described in the main text (see the SI Appendix for
a detailed analysis and a further subdivision). The border between regions 3
and 4 is an especially important phase transition, because above that line,
fully defecting strategies no longer are equilibria. In the lower-right corner,
where continuation probability is close to 1, adding only a little bit of
population structure moves us across that border.

Cooperate Defect

Cooperate b – c – c
Defect b 0
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some time in cooperative states. In our simulations, direct inva-
sions out of cooperation are relatively rare, possibly because direct
invaders are hard to find by mutation. Instead, cooperative states
are more often left by indirect invasions.
In region 3 there exist equilibrium strategies for levels of coop-

erativity ranging from 0 to 1. In the simulations, we observe the
population going from equilibrium to equilibrium via indirect
invasions. The population spends time in states ranging from fully
cooperative to completely uncooperative. As α and δ increase,

indirect invasions that increase cooperation become more likely
and indirect invasions that decrease cooperation become less likely;
therefore the average level of cooperativity increases.
In region 4 there still exist equilibrium strategies for different

levels of cooperativity, but fully defecting strategies are no longer
equilibria. All equilibria are at least somewhat cooperative. Indirect
invasions by fully defecting strategies are possible, and they do
occur, but they result in relatively short-lived excursions into fully
defecting disequilibrium states, which can be directly invaded by

Region 1: = 0.2, = 0.2

DllA%52

2%

2%

1%

1%

Region 2: = 0.31, = 0.31

DllA%37

1%

1%

1%

1%

Region 3: = 0.55, = 0.2

DllA%87

mirG%1

1%

1%

1%

Region 4: = 0.8, = 0.5

9%

5%

mirG%5

CllA%4

TFT%3

Region 5: = 0.35, = 0.8

CllA%73

mirG%2

2%

TFT%1

1%

A

B

C

D

E

Fig. 3. Runs and top five strategies from the five regions. Each panel (A–E) shows simulation results using a (δ, α) pair taken from the center of the cor-
responding region of Fig. 2. In each panel, the average payoff over time is shown, as well the five most frequently observed strategies. If any of the strategies
have an established name, it is also given. The simulation runs confirm the dynamic behavior the theoretical analysis suggests. In region 1 (A) we only see fully
defecting equilibria; all strategies in the top five—and actually almost all strategies observed—always defect when playing against themselves. In region 2 (B)
we observe that indirect invasions get the population away from full defection sometimes, but direct or indirect invasions bring it back to full defection
relatively quickly. In region 3 (C) we observe different equilibria, ranging from fully defecting to fully cooperative. In region 4 (D) we observe high levels of
cooperation, and although cooperative equilibria are regularly invaded indirectly, cooperation is always re-established swiftly. Furthermore, most of the
cooperative strategies we observe are conditional. In region 5 (E) we observe full cooperation, and strategies that always cooperate against themselves. By far
the most common strategy is ALLC, which cooperates unconditionally. Note that the top five also contain disequilibrium strategies. Strategies 2, 3 and 4 in the
top five of region 2 are neutral mutants to the most frequent strategy there (ALLD), and ALLC, which came in fourth in region 4, is a neutral mutant to all fully
cooperative equilibrium strategies.
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strategies with positive cooperativity. As a result, cooperativity is
high across much of region 4. In particular, reciprocal cooperative
strategies, which condition their cooperation on past play, are
common, for example TFT and Grim.
Finally, in region 5 all equilibrium strategies have maximum

cooperativity, and ALLC can directly invade every strategy that
is not fully cooperative. It is disadvantageous to defect regardless
of the other’s behavior. Therefore, not only is cooperativity high,
but specifically unconditional cooperation (ALLC) is the most
common cooperative strategy by a wide margin.
The five regions are separated by four curves, which are cal-

culated in the SI Appendix. One remarkable finding is the fol-
lowing. If assortment is sufficiently high, α > c/b, then introducing

repetition (choosing δ > 0) can be bad for cooperation. The in-
tuition behind this finding is that reciprocity not only protects
cooperative strategies from direct invasions by defecting ones,
but also shields somewhat cooperative strategies from direct
invasion by more cooperative strategies. (Details are in the
SI Appendix, along with an explanation how repetition can fa-
cilitate indirect invasions into ALLC for large enough δ. See also
ref. 47 and references therein for games other than the Prisoner’s
Dilemma in which repetition can be bad, even without pop-
ulation structure). If we move horizontally through the param-
eter space, starting in region 5 and increasing the continuation
probability, average cooperativity in the simulations therefore
first decreases (Fig. 2). Later, cooperativity goes back up again.
The reason for this result is that equilibrium strategies can start
with “handshakes,” which require one or more mutual defections
before they begin to cooperate with themselves (see strategies B,
E, F, I, J, K, and O in Fig. 1). The loss of cooperativity for any
given handshake decreases if the expected length of the repeated
game increases, because the handshake then becomes a relatively
small fraction of total play. That effect is only partly offset by the
fact that an increase in continuation probability also allows for
equilibria with longer handshakes.
In our simulations, individuals do not make mistakes; they

both perceive the other’s action and execute their own strategy
with perfect accuracy. Mistakes, however, are very relevant for
repeated games (11, 44, 45, 48–50). Therefore, we also ran sim-
ulations with errors for a selection of parameter combinations
to check the robustness of our results. In those runs, every time
a player chooses an action, C or D, there is some chance that the
opposite move occurs. Fig. 4 compares error-free simulations
with those that have a 1% and 5% error rate. We find that our
conclusions are robust with respect to errors: it is the interaction
between repetition and structure that yields high cooperation.
Another classic extension is to include complexity costs (12, 48).
In addition, here one can reasonably expect that the simulation
results will be very similar as long as complexity costs are suf-
ficiently small.
In summary, we have shown that repetition alone is not

enough to support high levels of cooperation, but that repetition
together with a small amount of population structure can lead to
the evolution of cooperation. In particular, in the parameter
region where repetition is common and assortment is small but
nonzero, we find a high prevalence of conditionally cooperative
strategies. These findings are noteworthy because human inter-
actions are typically repeated and occur in the context of pop-
ulation structure. Moreover, experimental studies show that
humans are highly cooperative in repeated games and use con-
ditional strategies (14, 43–46). Thus, our results seem to paint an
accurate picture of cooperation among humans. Summarizing,
one can say that one possible recipe for human cooperation may
have been “a strong dose of repetition and a pinch of population
structure.”

ACKNOWLEDGMENTS. We thank Tore Ellingsen, Drew Fudenberg, Corina
Tarnita, and Jörgen Weibull for comments. This study was supported by the
Netherlands Science Foundation, the National Institutes of Health, and the
Research Priority Area Behavioral Economics at the University of Amsterdam;
D.G.R. is supported by a grant from the John Templeton Foundation.

1. Friedman J (1971) A noncooperative equilibrium for supergames. Rev Econ Stud 38:

1–12.
2. Fudenberg D, Maskin E (1986) The folk theorem in repeated games with discounting

or with incomplete information. Econometrica 54:533–554.
3. Abreu D (1988) On the theory of infinitely repeated games with discounting. Econ-

ometrica 56:383–396.
4. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396.
5. Selten R, Hammerstein P (1984) Gaps in Harley’s argument on evolutionarily stable

learning rules and in the logic of “tit for tat.” Behav Brain Sci 7:115–116.

6. Boyd R, Lorberbaum JP (1987) No pure strategy is stable in the repeated prisoner’s

dilemma game. Nature 327:58–59.
7. May R (1987) More evolution of cooperation. Nature 327:15–17.
8. Nowak MA, Sigmund K (1992) Tit for tat in heterogeneous populations. Nature 355:

250–253.
9. Nowak MA, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit-

for-tat in the Prisoner’s Dilemma game. Nature 364:56–58.
10. Imhof LA, Fudenberg D, Nowak MA (2005) Evolutionary cycles of cooperation and

defection. Proc Natl Acad Sci USA 102:10797–10800.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9

C
oo

pe
ra

tio
n

Continuation probability

Error rate = 0

α = 0
α = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9

C
oo

pe
ra

tio
n

Continuation probability

Error rate = 0.01

α = 0
α = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9

C
oo

pe
ra

tio
n

Continuation probability

Error rate = 0.05

α = 0
α = 0.2

A

B

C

Fig. 4. Simulation results with and without noise. (A–C) The simulations
shown in Figs. 1–3 have no errors; individuals observe the actions of their
opponent with perfect accuracy, and make no mistakes in executing their
own actions. That is of course a stylized setting, and it is more reasonable to
assume that in reality errors do occur (11, 44, 45, 48–50). For five values of δ
and two values of α we therefore repeat our simulations, but nowwith errors;
once with an execution error of 1% per move, and once with an execution
error of 5% per move. With errors, even ALLD against itself sometimes plays C,
so the benchmark of no cooperation becomes the error rate, rather than 0.
Errors decrease the evolution of cooperation somewhat, but the results do
not change qualitatively. If anything, the effect of the combination of rep-
etition and population structure is more pronounced; at an error rate of 5%
both mechanisms have only a very small effect by themselves, but together
make a big difference at sizable continuation probabilities.

van Veelen et al. PNAS | June 19, 2012 | vol. 109 | no. 25 | 9933

EV
O
LU

TI
O
N

SO
CI
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206694109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206694109/-/DCSupplemental/sapp.pdf


11. Fudenberg D, Maskin E (1990) Evolution and cooperation in noisy repeated games.
Am Econ Rev 80:274–279.

12. Binmore KG, Samuelson L (1992) Evolutionary stability in repeated games played by
finite automata. J Econ Theory 57:278–305.

13. Kim Y-G (1994) Evolutionarily stable strategies in the repeated prisoner’s dilemma.
Math Soc Sci 28:167–197.

14. Dal Bó P, Fréchette GR (2011) The evolution of cooperation in infinitely repeated
games: Experimental evidence. Am Econ Rev 101:411–429.

15. Liberman V, Samuels SM, Ross L (2004) The name of the game: predictive power of
reputations versus situational labels in determining prisoner’s dilemma game moves.
Pers Soc Psychol Bull 30:1175–1185.

16. Bendor J, Swistak P (1995) Types of evolutionary stability and the problem of co-
operation. Proc Natl Acad Sci USA 92:3596–3600.

17. Abreu D, Pearce D, Stacchetti E (1990) Optimal cartel equilibrium with imperfect
monitoring. J Econ Theory 39:251–269.

18. Milinski M (1990) No alternative to Tit for Tat in sticklebacks. Anim Behav 39:
989–991.

19. Clutton-Brock T (2009) Cooperation between non-kin in animal societies. Nature 462:
51–57.

20. HamiltonWD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16.
21. Eshel I, Cavalli-Sforza LL (1982) Assortment of encounters and evolution of co-

operativeness. Proc Natl Acad Sci USA 79:1331–1335.
22. NowakMA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829.
23. Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Popul

Biol 46:363–394.
24. Wilson DS, Dugatkin LA (1997) Group selection and assortative interactions. Am Nat

149:336–351.
25. Rousset F, Billiard S (2000) A theoretical basis for measures of kin selection in sub-

divided populations: Finite populations and localized dispersal. J Evol Biol 13:814–825.
26. Rousset F (2004) Genetic Structure and Selection in Subdivided Populations (Princeton

Univ Press, Princeton, NJ).
27. Traulsen A, Nowak MA (2006) Evolution of cooperation by multilevel selection. Proc

Natl Acad Sci USA 103:10952–10955.
28. Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of

altruism. Proc Biol Sci 276:13–19.
29. van Veelen M (2009) Group selection, kin selection, altruism and cooperation: When

inclusive fitness is right and when it can be wrong. J Theor Biol 259:589–600.
30. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured

populations. J Theor Biol 259:570–581.
31. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured pop-

ulations. Philos Trans R Soc Lond B Biol Sci 365:19–30.

32. Richerson P, Boyd R (2005) Not by Genes Alone. How Culture Transformed Human

Evolution (Univ of Chicago Press, Chicago).
33. vanVeelenM (2012) Robustness against indirect invasions.Games EconBehav74:382–393.
34. van Veelen M, García J (2010) In and out of equilibrium: Evolution of strategies in

repeated games with discounting, TI discussion paper 10-037/1. Available at http://

www.tinbergen.nl/ti-publications/discussion-papers.php?paper=1587.
35. Marlowe FW (2005) Hunter-gatherers and human evolution. Evol Anthropol 14:

54–67.
36. Palla G, Barabási A-L, Vicsek T (2007) Quantifying social group evolution. Nature 446:

664–667.
37. Boyd R, Richerson PJ (1988) The evolution of reciprocity in sizable groups. J Theor Biol

132:337–356.
38. Ohtsuki H, Nowak MA (2007) Direct reciprocity on graphs. J Theor Biol 247:

462–470.
39. Tarnita CE, Wage N, Nowak MA (2011) Multiple strategies in structured populations.

Proc Natl Acad Sci USA 108:2334–2337.
40. Rand DG, Arbesman S, Christakis NA (2011) Dynamic networks promote cooperation

in experiments with humans. Proc Natl Acad Sci USA 108:19193–19198.
41. Grafen A (1985) A geometric view of relatedness. Oxford Surveys in Evolutionary

Biology 2:28–90.
42. Bergstrom T (2003) The algebra of assortative encounters and the evolution of co-

operation. Int Game Theory Rev 5:211–228.
43. Wedekind C, Milinski M (1996) Human cooperation in the simultaneous and the al-

ternating Prisoner’s Dilemma: Pavlov versus generous Tit-for-Tat. Proc Natl Acad Sci

USA 93:2686–2689.
44. Aoyagi M, Frechette G (2009) Collusion as public monitoring becomes noisy: Experi-

mental evidence. J Econ Theory 144:1135–1165.
45. Fudenberg D, Rand DG, Dreber A (2012) Slow to anger and fast to forgive: Co-

operation in an uncertain world. Am Econ Rev 102:720–749.
46. Rand DG, Ohtsuki H, Nowak MA (2009) Direct reciprocity with costly punishment:

Generous tit-for-tat prevails. J Theor Biol 256:45–57.
47. Dasgupta P (2009) Trust and cooperation among economic agents. Philos Trans R Soc

Lond B Biol Sci 364:3301–3309.
48. Hirshleifer J, Martinez Coll JC (1988) What strategies can support the evolutionary

emergence of cooperation? J Confl. Res. 32:367–398.
49. Boyd R (1989) Mistakes allow evolutionary stability in the repeated prisoner’s di-

lemma game. J Theor Biol 136:47–56.
50. Wu J, Axelrod R (1995) Coping with noise in the iterated prisoner’s dilemma.

J Confl Res 39:183–189.

9934 | www.pnas.org/cgi/doi/10.1073/pnas.1206694109 van Veelen et al.

http://www.tinbergen.nl/ti-publications/discussion-papers.php?paper=1587
http://www.tinbergen.nl/ti-publications/discussion-papers.php?paper=1587
www.pnas.org/cgi/doi/10.1073/pnas.1206694109

