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Abstract
The present paper is the companion of Sahlmann and Thiemann (2006 Towards
the QFT on curved spacetime limit of QGR: I. A general scheme Class.
Quantum Grav. 23 867) in which we proposed a scheme that tries to derive
the quantum field theory (QFT) on curved spacetimes (CST) limit from
background-independent quantum general relativity (QGR). The constructions
of the companion paper make heavy use of the notion of semiclassical states
for QGR. In the present paper, we employ the complexifier coherent states
for QGR recently proposed by Thiemann and Winkler as semiclassical states,
and thus fill the general formulae obtained in the companion paper with life.
We demonstrate how one can, under some simplifying assumptions, explicitly
compute expectation values of the operators relevant for the gravity–matter
Hamiltonians of the companion paper in the complexifier coherent states. These
expectation values give rise to effective matter Hamiltonians on the background
on which the gravitational coherent state is peaked and thus induce approximate
notions of n-particle states and matter propagation on fluctuating spacetimes.
We display the details for the scalar and the electromagnetic field. The effective
theories exhibit two types of corrections as compared to the ordinary QFT on
CST. The first is due to the quantum fluctuations of the gravitational field
and the second arises from the fact that background independence forces both
geometry and matter to propagate on a spacetime of the form R × γ , where γ

is a (random) graph. Finally, we obtain explicit numerical predictions for non-
standard dispersion relations for the scalar and the electromagnetic field. They
should, however, not be taken too seriously, due to the many ambiguities in
our scheme, the analysis of the physical significance of which has only begun.
We show, however, that one can classify these ambiguities at least in broad
terms.
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1. Introduction

Canonical, non-perturbative quantum general relativity (QGR) has by now reached the status
of a serious candidate for a quantum theory of the gravitational field: first of all, the formulation
of the theory is mathematically rigorous. Although there are no further inputs other than the
fundamental principles of four-dimensional Lorentzian general relativity and quantum theory,
the theory predicts that there is a built-in fundamental discreteness at Planck-scale distances
and therefore an UV cut-off precisely due to its diffeomorphism invariance (background
independence). Next, while most of the results have so far been obtained using the canonical
operator language, also a path integral formulation (‘spin foams’) is currently constructed.
Furthermore, as a first physical application, a rigorous, microscopical derivation of the
Bekenstein–Hawking entropy–area law has been established. The reader interested in all
the technical details of QGR and its present status is referred to the exhaustive review paper
[2] and references therein, and to [3] for a less technical overview. For a comparison with
other approaches to quantum gravity see [4–6].

A topic that has recently attracted much attention is to explore the regime of QGR where
the quantized gravitational field behaves ‘almost classical’, i.e. approximately like a given
classical solution to the field equations. Only if such a regime exists, can one really claim that
QGR is a viable candidate theory for quantum gravity. Consequently, efforts have been made
to identify so-called semiclassical states in the Hilbert space of QGR, states that reproduce
a given classical geometry in terms of their expectation values and in which the quantum
mechanical fluctuations are small [7–11]. Also, it has been investigated how gravitons emerge
as carriers of the gravitational interaction in the semiclassical regime of the theory [12–14].
The recent investigations of Varadarajan and others [15–18] on the relation between the Fock
representations used in conventional quantum field theories and that in QGR further illuminate
the relation between QGR and a perturbative treatment based on gravitons.

In [1], we developed and discussed a general scheme how one can define a theory
of quantum matter coupled to quantum gravity in the setting of QGR and investigate its
semiclassical limit. In the present paper, we concretize the results of [1] by employing a
specific proposal [9–11] for semiclassical states for QGR. As the present paper relies on the
general approach as well as on specific results of [1], it should be read together with the latter.
Especially, the discussion of the conceptual issues arising in the present context is much more
completely covered in [1]. Also, it should be stressed that the cautionary remarks concerning
our results made there apply even more to the present paper: the analysis of the semiclassical
regime of QGR in general, as well as that of the coherent states [9–11] for QGR specifically,
has only begun recently, and so the main purpose of our work is exploratory.

In the present paper, we roughly proceed in three steps: first, we review the coherent state
family introduced in [9–11, 19] and fix the parameters in its definition in such a way that the
best semiclassical behaviour is obtained for the observables relevant to our considerations.
Then, under some simplifying assumptions, we compute the expectation values in the coherent
states for the operators relevant for setting up the effective QFT for the matter fields according
to [1]. Finally, we use the resulting effective theory to approximately compute the quantum
gravity corrections to the dispersion relations for the scalar and the electromagnetic field.

Let us consider these steps in more detail.
In [9–11, 19], a promising family of semiclassical states has been constructed and

analysed. Each member of this family is labelled by a (random) graph γ and a point m ∈ M
in the gravitational phase space. Other states derived by the complexifier method [20] could
be used as well, but for the exploratory purposes of this series of papers it is sufficient to stick
to those simplest ones.
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Three scales enter the definition of the coherent states and are of considerable importance
for their semiclassical properties. These scales are the microscopic Planck scale �P, the
mesoscopic graph scale ε which represents the average length of an edge of γ as measured by
the 3-metric determined by m and a macroscopic curvature scale L which characterizes the
scale at which matter (and thus geometry) varies. While �P, L are determined by the input m,
the scale ε is a priori a free parameter. We fix it by asking that a natural family of observables
be well approximated by our coherent states which leads quite generically to a geometric
mean type of behaviour, concretely ε ∝ �α

PL1−α , where 0 < α < 1
2 . In contrast to the weave

proposal [7], the graph scale is larger than the Planck scale due to the fact that we not only
approximate the 3-geometry but also the extrinsic curvature which forces the coherent state to
depend on all possible spin representations of SU(2) and not only the defining (or any other
single) one.

The analysis of [19] revealed that the coherent states proposed do not approximate well
coordinate-dependent observables such as the holonomy or the electric flux operator. However,
we discovered that operators which classically correspond to integrals of scalar densities of
weight one are extremely well approximated. This class of observables contains Hamiltonian
constraints and all spatially diffeomorphism-invariant quantities which suffice to separate
the points of the diffeomorphism-invariant phase space. The intuitive reason for this is the
following point which has been stressed for years, among others, especially by Rovelli [21, 22]:
matter can be located only where geometry is excited! Classically, this follows from Einstein’s
equations. In the quantum theory, it is reflected by the fact that matter and geometry degrees
of freedom are necessarily located on the same graph [23, 24]. Imagine now constructing a
diffeomorphism-invariant area operator Âr. In contrast to its companion Âr(S), well studied
in the literature, it does not depend on an externally prescribed coordinate surface, rather in
order to model the measurement of the area of the desk table on which you are working right
now one would construct a coherent state of the combined matter and geometry Hilbert space
which is peaked on flat space and, say, on an electromagnetic field which is zero everywhere
except for a region in the vicinity of the table. This way, the dynamics automatically forces
the surface to be adapted to the graph on which the coherent state depends.

In a next step, we compute coherent state expectation values for the gravitational degrees
of freedom that appear in the matter–geometry Hamiltonians. This computation, although
straightforward in principle, turns out to be quite tedious in practice. To keep the computational
effort on a tolerable level and maintain some clarity of presentation, we simplify things by
doing the calculation only for the Abelian (Iönü–Wigner) limit U(1)3 of SU(2) as gauge group.
The computations done in [10, 11] exemplify that this replacement does not change the results
qualitatively, and therefore seems acceptable for the exploratory purposes of the present paper.
A calculation in full generality should only be carried out after other issues have been settled,
and will probably necessitate the use of computers.

Ground-breaking work on the phenomenology of QGR has been done in [25–28]. In
these works, corrections to the standard dispersion relations for matter fields due to QGR have
been obtained. Since we are dealing with a theory for matter coupled to QGR in [1] and
the present work, it is an important question whether these results can be confirmed in the
present setting. Therefore, as a final step, we formulate effective matter Hamiltonians on a
graph based on the expectation values obtained before. The resulting theory is that of fields’
propagation on a random graph. It bears a remarkable similarity to models considered in
lattice gauge theory [29–31], and there is also a close analogy to the propagation of phonons
in amorphous solids. As we have discussed at length in [1], the resulting dynamics for the
matter fields is very complicated, and analytic results in the literature on lattice gauge theory
and on amorphous solids are few. (To say the least. See however [32] for a beautiful numerical
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study of some two-dimensional models from condensed matter physics.) Already, a simplified
one-dimensional system (whose definition along with some results was sketched in [1] and will
be covered more completely in [33]) shows many of the complications (optical and acoustic
branches, fuzziness of dispersion relations at high energies, etc) that are to be expected for
the dynamics of fields propagating in a QGR background. Therefore, to compute dispersion
relations for the models obtained, we have to rely on an approximation scheme denoted ‘graph
averages’, geared to the description of the dynamics in the limit where the energy of the fields
is low (or, equivalently, their wavelength large). This approximation scheme leads to precise
numerical values for all correction coefficients in the dispersion relations, once we have fixed
a random process that generates our sample graph. The results we obtain are similar to those
of [25, 27] in many respects, but differ in the scaling of the corrections.

The validity of the approximation scheme we use has been discussed in [1] but certainly
merits future investigation. In any case, the resulting formulae can probably be effectively
handled in full generality only by a computer.

Let us finish with a brief description of the contents of the sections to follow.
The next section contains a short review of the construction of the complexifier coherent

states [9–11].
In section 3, we analyse the relation between the different scales that enter the definition

of the coherent states, and their semiclassical properties. Relying on this analysis, we fix the
parameters of the coherent states for the rest of the paper.

Section 4 is the longest of the present paper. We show how expectation values in the
coherent states can be computed and do the concrete calculations for the operators occurring
in the Hamiltonians for the scalar, electromagnetic and fermionic fields coupled to gravity.

Section 5 deals with the computation of dispersion relations. We implement the procedure
outlined in [1] and compare our results to those in the literature.

Finally, in section 6 we summarize what we have tried to do and what could be achieved
with present technology. We conclude with a list of the open conceptual and technical questions
that this work has left us with.

2. Complexifier coherent states

The purpose of the present section is to review the construction and basic properties of the
coherent states for QGR [9–11]. For an introduction to the formalism of QGR as a whole, we
refer the reader to [3, 2] or to the brief introduction in [1].

As already pointed out in the introduction, the task of constructing semiclassical states
for QGR has received much attention [7–11]. Semiclassical states are states, so far in the
kinematical Hilbert space of QGR, that approximate a specific classical geometry in the sense
that expectation values of observables in such a state are close to the respective classical
values and the quantum mechanical fluctuations are small. These requirements can certainly
not be met for all possible observables, so the definition of a semiclassical state also involves
specification of the class of observables that are well approximated.

In the present work, we will use the gauge theory coherent states (GCS for short)
constructed in [9] and subsequently analysed in [10, 11, 19]. These states are only one
example of a large class of semiclassical states, called the complexifier coherent states. We
refer to [20] for an investigation of this class of states as well as a discussion of the relationship
to [8, 15–18].

The main mathematical tool used in the construction of the GCS is a generalization due
to Hall [34, 35] of the well-known coherent states for the harmonic oscillator. The basic
observation underlying this generalization is that the harmonic oscillator coherent states can
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be obtained as analytic continuation of the heat kernel on Rn:

ψt
z(x) = e−t�δx ′(x)

∣∣
x ′−→z

, x ∈ Rn, z ∈ Cn,

the Laplacian � in the above formula playing the role of a complexifier.
It has been shown in [34] that coherent states on a connected compact Lie group G can

analogously be defined as analytic continuations of the heat kernel

ψt
g(h) = e−t�Gδ

(G)
h′ (h)

∣∣
h′−→u

(2.1)

to an element u of the complexification GC of G. These states have nice mathematical
properties. Among other things, they are minimal uncertainty states for a certain pair of
operators and they form an over-complete set in the Hilbert space over G derived from the
Haar measure.

The case of this construction relevant for the definition of GCS is G = SU(2). Its
complexification is given by SL(2, C) and can be parametrized as

u = exp[iτjp
j/2]h, pk ∈ R3, h ∈ SU(2), (2.2)

where iτk, k = 1, 2, 3, denote the Pauli matrices.
A crucial question in view of applications to the construction of semiclassical states for

QGR is whether the states (2.1) obey peakedness properties analogous to that of the harmonic
oscillator coherent states. In [10], it was shown that this is indeed the case. For u given by
p, h via the parametrization (2.2), the following holds.

• ψt
u is exponentially (Gaussian) peaked with respect to the multiplication operator ĥ on

the group at the point h. The width of the peak is approximately given by
√

t .
• ψt

u is Gaussian peaked with respect to the invariant vector fields at a point p/t in the
associated momentum representation. The width of the peak is approximately given
by 1/

√
t .

For a more precise formulation of these statements, we refer to [10].
In QGR, the configuration degrees of freedom are represented by the holonomies along

edges e of a graph γ embedded in 	. To use the coherent states on SU(2) for the construction
of semiclassical states for QGR, momentum observables, that are associated with a graph in a
similar way as the holonomies, have to be defined. This was done in [36]. The construction
can be summarized as follows (for the many details we refer the reader to the original work):
to each graph γ fix once and for all a dual 2-complex Pγ , i.e. roughly speaking a set of
surfaces (Se)e∈E(γ ) which intersect each other in common boundaries at most and such that
the edge e of γ intersects only Se and that this intersection is transversal. The surfaces Se shall
be given an orientation according to the orientations of the edges e, i.e. the pairing between
the orientation 2-form on Se with the tangent vector field on e at the intersection point should
be positive. Also, to each point p lying in a surface Se fix an analytic path ρ(p) connecting
the intersection point Se ∩ e with p and denote the part of e from e(0) to Se ∩ e by ein.

With the help of these structures, we can now define the quantity

pe
j (A,E) = − 1

2a2
Tr

[
τjhein

(∫
Se

hρ(p)E
a(p)h−1

ρ(p)εabc dSbc(p)

)
h−1

ein

]
, (2.3)

where a is a length scale introduced to make pe
j dimensionless and whose relation with t is

t = �2
P

/
a2. The key feature of this new variable pe

j is that

{
pe

j , he′
} = κ2

a2
δe,e′

τj

2
he′ ,

{
pe

i , p
e′
j

} = −κ2

a2
δe,e′εijkp

e
k, (2.4)
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where εijk are the structure constants of SU(2). Therefore, if he is represented by the
multiplication operator ĥ on the cylindrical subspace corresponding to e, pe

j can be represented
by the right invariant vector field itXj acting on the cylindrical subspace corresponding to e.

Having the momentum variables pe
j at disposal, the construction of the GCS can now be

finished. It needs three inputs.

• A point (A(0), E(0)) in the classical phase space that should be approximated.
• A graph γ and a corresponding dual polyhedronal decomposition Pγ of 	, and the

associated path system �γ .
• The parameter t or, equivalently, the length scale a.

For each edge e of the graph γ , one can now compute the holonomy h(0)
e in the classical

connection A(0) and the classical quantities p
(0)e
j depending on A(0), E(0) as expressed in

(2.3). The gauge coherent state for QGR is then defined as

ψt
(A(0),E(0))

(
he1 , . . . , heN

) .=
N∏

n=1

ψt
gen (A0,E0)

(
hen

)
,

where e1, . . . , eN represent the edges of the graph γ and ge(A0, E0) = exp
(
p

(0)e
j τj

/
2
)
h(0)

e .
The states thus defined inherit the peakedness properties of the coherent states (2.1) in an

obvious way with respect to the elementary observables ĥe1 , . . . , ĥeN
and p̂

e1
j , . . . , p̂

eN

j . For
more complicated observables, a more detailed consideration has to be given. This is the
topic of the next section. We will see that this analysis fixes the parameter t as well as the
average edge length of the graph G, thus reducing the freedom in the construction of the GCS
considerably.

3. Observables and scales

In the previous section, we saw that the complexifier coherent states ψm,γ that will be used in
this paper (see [20] for generalizations) depend on a point m ∈ M and a triple (γ, Pγ ,�γ ),
where γ is a graph, Pγ is a polyhedronal decomposition of 	 dual to γ and �γ is an associated
path system. The states πm,γ are linear combinations of spin-network states over γ (and all of
its subgraphs) with coefficients which depend on m,Pγ ,�γ . We are interested in the question
which kind of operators Ô are approximated well by these states, that is, for which holds that
expectation values are close to the classical value and for which the fluctuations are small.

By construction, they approximate very well the holonomy operators ĥe and the electric
flux operators Êj (Se), where e runs through the set of edges of γ and Se is a face in the
polyhedronal decomposition dual to e. But how about more general operators such as
ĥp, Âr(S), where p is an arbitrary path and S an arbitrary surface? First, unless p is a
composition of edges of γ , we have 〈ψm,γ , ĥeψm,γ 〉 = 0 due to the orthogonality of spin-
network states. Second, the expectation values of the area operator suffer from the ‘staircase
problem’ [19] which says that unless S is composed of Se, its expectation value will be off the
correct value.

The first reaction as follows: the states are not good, they must be improved. One such
improvement could be by averaging over an ensemble of graphs [8] but as shown in [20]
this still does not improve the holonomy expectation values. Thus, one could think that one
should construct semiclassical states of a completely different type, maybe going to a new
representation of the canonical commutation relations [15–17]. However, this is not easy if
the present formulation of QGR is to be kept as shown in [20]. It therefore seems that we are
in trouble.
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There is a second possibility however: maybe we are just trying to approximate the
wrong observables? Note that it is a physical input which observables should be well
approximated, certainly we do not expect all classical quantities to be approximated well
in the quantum theory. This is even true for simple finite-dimensional systems such as the
harmonic oscillator: the energy itself is well approximated but not its exponential. In our case,
traces of holonomy operators and area operators are certainly natural candidates for operators
to be well approximated because they are gauge invariant, suffice to separate the points of
the gravitational phase space and are simple functions of the basic operators that the whole
quantization is based on, namely holonomy and electric flux operators. Is it possible that there
are observables which are better suited for our semiclassical considerations?

A first hint of how such observables should look like comes from the observation that the
volume operator V̂ol(R) for a coordinate region R does not suffer from the staircase problem.
A detailed analysis shows that this happens because the region R corresponds to a three-
dimensional submanifold of 	 rather than one- or two-dimensional ones. We therefore are led
to the proposal that one should not look at holonomy and area operators but rather at quantities
that classically come from three-dimensional integrals. There are classical observables of that
kind that one can construct and which separate the points of the gauge-invariant gravitational
phase space as well. Let ωa be a 1-form, say of rapid decrease, and consider

Q(ω) :=
∫

	

d3x
Ea

j Eb
j√

det(q)
ωaωb, (3.1)

M(ω) :=
∫

	

d3x
Ba

j Bb
j√

det(q)
ωaωb, (3.2)

where Ea
j Eb

j =: det(q)qab and Ba
j = 1

2εabcF
j

bc and where F is the curvature of the connection
A. Note that both (3.1) and (3.2) are of the type of operators that can be quantized with
the methods of [24] in a background-independent fashion since they are integrals of scalar
densities. Moreover, they suffice to separate the points of the gauge-invariant phase space
as one can see by suitably restricting the support of ωa and by the polarization identity for
quadratic forms.

The crucial fact about these quantities is now as follows: when we quantize them along
the lines of [24] they become diffeomorphism-covariant, densely defined, closed operators on
the kinematical QGR Hilbert space H0 of the following structure:

Ô(ω)Ts =
∑

v∈V (s(γ ))

∑
v∈∂e,∂e′;e,e′∈E(γ (s))

ω(e)ω(e′)Ôv;e,e′Ts =:
∑

v∈V (s(γ ))

Ôγ (ω, v)Ts, (3.3)

where Ts is a spin-network state with underlying graph γ (s) and V (γ ), E(γ ) denote the
sets of vertices and edges of a graph, respectively, and ω(e) = ∫

e
ω. The fact that an

action only at vertices takes place in (3.3) is due to the appearance of the volume operator
which enters the stage due to the factor of 1/

√
det(q) in (3.1) and (3.2) which is required

by background independence and the requirement that only density one valued quantities can
be quantized in a background-independent way [24]. The operator Ôv;e,e′ is a polynomial
formed out of holonomy operators along the edges of γ (s) and powers of the volume operator
restricted to an arbitrarily small neighbourhood of the vertex v. Now the coherent states are
constructed precisely in such a way that the holonomy operators along the edges of γ (s) are
well approximated and, as we will explicitly prove in this work, they also approximate very
well the volume operator of [37, 38] at least if the graph is six-valent, e.g. of cubic topology.
(For other graph topologies the prefactor 1

8×3! , which enters the square roots that defines the
volume operator, would presumably need to be adapted to the vertex valence, it should be
larger (smaller) for valences smaller (larger) than 6.)
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Thus, due to the Ehrenfest properties proved in [11] we conclude that at least for coherent
states based on graphs with cubic topologies the operators (3.1) and (3.2) are approximated
well (with small fluctuations), provided the expectation values of (3.3) define a Riemann sum
approximation of the classical integrals (3.1) and (3.2). This is, however, the case by the very
construction of such operators as outlined in [24]. Thus, the mechanism responsible for the
fact that no such problems as for the area and holonomy operators arise is due to the fact
that for operators coming from volume integrals the elementary electric flux and holonomy
operators involved are automatically those adapted to the graph in question.

That only cubic graphs should give rise to the correct classical limit might be disturbing
at first but it is on the other hand not too surprising: the volume operator at a given vertex
v is a square root of an operator which in turn is a sum of basic operators, one for each
unordered triple of distinct edges incident at v in [37] and in [38] one considers only those
triples which have linearly independent tangents at v. Each of these basic operators is a
third-order homogeneous polynomial in electric flux operators. With respect to our coherent
states, each polynomial gives a contribution of the same order of magnitude. If n is the valence
of the vertex of v, then there will be altogether N(n) terms where N(n) = n[n − 1][n − 2]
for the operator in [37], while for the operator of [38] this number is smaller whenever there
are triples of edges with co-planar tangents at v. The smallest valence for which the volume
operator does not vanish is n = 3 in which case N(3) � 6. Since each term corresponds to
the volume of the cell of the polyhedronal decomposition dual to γ , the factor 1/48 dividing
the sum over triples is too large. Now N(4) � 24 is still too small, while N(5) � 120 is
already definitely too large for the volume operator of [37]. For the cubic topology we have,
however, precisely N(6) = 48 for [38] because the only triples that contribute are formed by
those spanning the eight octants defined by the coordinate system defined by the tangents of
the six edges at v. For graphs of higher valence, unless there are sufficiently many co-planar
triples, the [38] volume operator also over-counts the classical volume. Note that none of these
statements proves that one operator is proved over the other, it just means that our coherent
states do not approximate both equally well. Only if one would know that our states are ‘the
correct choice’, could one distinguish between the two kinds of volume operators on physical
grounds.

Intuitively, it is actually not too bad that only graphs of low valence should give rise to
the correct classical limit. After all, one would not try to approximate a classical integral by
Riemann sums in terms of graphs with vertices of arbitrarily high topology. Such graphs should
describe quantum states without classical correspondence. It is also natural that cubic graphs
are somehow distinguished because the classical integral is locally defined by a Cartesian
coordinate system.

Having convinced ourselves that the coherent states of the previous section actually do
make sense at least for operators of the kinds (3.1) and (3.2), we turn to the question how the
scale ε should be chosen. In order to quantize the classical integral

O(ω) =
∫

	

d3xOabωaωb, (3.4)

the procedure adopted in [24] was to define the operator on the spin-network basis. Thus, let γ

be a graph and v 	→ Rv a partition of 	 where v runs through V (γ ). Let ε3
v be the coordinate

volume of Rv . Then we have

O(ω) =
∑

v∈V (γ )

∫
Rv

d3xOabωaωb ≈
∑

v

ε3
vO

ab(v)ωa(v)ωb(v) =: Oγ (ω), (3.5)
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where in the last step we have replaced the integral by a Riemann sum. The quantization of
the term at v in the sum in (3.5) gives rise to the operator

Ôγ (ω, v) =
∑

v∈∂e,∂e′;e,e′∈E(γ (s))

ω(e)ω(e′)Ôv;e,e′ (3.6)

in (3.3) and by construction its expectation value in a coherent state ψγ,m gives back Oγ (ω, v)|m
to zeroth order in h̄. Thus, apart from quantum corrections for the expectation value, which we
will call a normal ordering error, already the quantity O(ω,m) − Oγ (ωm) is in general non-
zero. This classical error will decrease with ε. With the Euler–MacLaurin error estimation
methods of [19], one can prove an estimate of the form

|O(ω,m) − Oγ (ω,m)| �
[ ε

L

]β
O(ω,m), (3.7)

where β � 2 and L is the average size of the quantity [Oabωaωb]′′/[Oabωaωb], where the
double prime denotes second derivatives. Thus, L captures information about the gravitational
curvature as well as the curvature of ω. The size of β depends strongly on the randomness of
the graph in question and also would change if one would average over graphs.

More precisely, if we are interested in diffeomorphism-invariant quantities (3.1) and (3.2)
such as the matter Hamiltonians that we wish to approximate in the following sections, then
we should set, e.g., ωa = φ,a where φ is a scalar field or we should consider integrands of the
form qabE

aEb/
√

det(q) where Ea is the Maxwell electric field. To see what the matter and
geometry scales involved are, consider the time–time component of the Einstein equations for
electromagnetic waves with vector potential A = A0ei(|k|t−kx). If q2 is the electric charge,
then the matter energy density is of the order A2

0k
2
/
q2. If R denotes the curvature radius

of the curvature tensor then we get from Einstein’s equations R−2 ≈ (�PA0k)2/α, where
α = h̄q2 is the Feinstruktur constant. Thus, if we introduce the wavelength by k = 1/λ,
then R−2 ≈ (10A0�P)

2λ−2 � λ−2 at least for weak electromagnetic waves A0 � 1032 cm−1.
Thus, L should, for the applications of this paper, be thought of being very close to the matter
wavelength λ and R is large, so that the geometry is almost flat.

Let us now consider fluctuations. Since the quantities M(ω),Q(ω) have different physical
units, in order to compare their fluctuations we should compare their relative fluctuations
which are dimension-free quantities. More precisely, we consider the expectation value in the
coherent state ψγ,m of the relative deviation squared [Ô/O(m) − 1]2 between the operator Ô

and its expected classical value O(m) which is a proper measure for the total deviation of the
operator from the classical quantity due to (1) the fluctuation of the gravitational field and (2)
its discrete nature which forces us to work with graphs rather than continuous integrals. If
we denote by 〈·〉m,γ the expectation value in the coherent state ψm,γ and if there is no normal
ordering error, then we arrive at〈[

Ô

O(m)
− 1

]2〉
m,γ

≈
〈[

Ôγ

Oγ (m)
− 1

]2〉
m,γ

+

[
Ôγ (m)

O(m)
− 1

]2

. (3.8)

The second term in (3.8) is of the order (ε/L)2β as derived above. Now we see that for the
quantity M(ω) the first term is divergent for flat data because M(ω) = 0 while for O = Q(ω)

there is no such problem. This is like comparing the relative fluctuations of x̂, p̂ for the
harmonic oscillator at the phase space point (x, p) = (0, 1) which of course makes little
sense. To deal with this problem, we chose the following strategy: we compare the relative
fluctuations at generic points in phase space where we find a relation between the scale a of
the coherent state and the scale L and then extend this relation to all points in M. This strategy
is certainly ad hoc but we do not see any other possibility at this point to fix the size of a by a
more physical requirement.
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Accepting this we will consider non-flat data in which case generically L ≈ R is closer to
the curvature scale. If we assume that the operators Ôγ (ω, v) in (3.3) are much more weakly
correlated for distinct v than for coinciding v (as it turns out to be the case), then we obtain〈

Ô2
γ

〉
m,γ

− (〈Ôγ 〉m,γ )2 ≈
∑

v

[〈
Ô2

v,γ

〉
m,γ

− (〈Ôv,γ 〉m,γ )2
]
. (3.9)

Restricted to γ , the operator Ôv,γ is a homogeneous polynomial of some rational power
of the operators P e

j ≈ Ej(Se)/a
2 which are of order E0ε

2/a2, where E0 is some average
value of Ea

j and a is the coherent state scale introduced in the previous section. It is also
a polynomial of some integral power of the operator hα − h−1

α which is of order B0ε
2,

where B0 is some average value of Ba
j and is approximately given by E0L

−2. As shown
in [19], the fluctuations for the respective vertices v are effectively given by exchanging
Oγ,v(m) by t∂2Oγ,v(m)/[∂P (Se)]2 ≈ tOγ,v/P (Se)

2 for the electric fluctuations and by

t∂2h2
αOγ,v(m)

/
[∂hα]2 ≈ tOγ,v

/[
hα − h−1

α

]2
for the magnetic ones, where α is some loop

incident at v. Inserting P(Se) ≈ E0ε
2/a2 and hα −hα ≈ E0ε

2/R2 ≈ E0ε
2/L2, equating (3.9)

for O = M(ω),O = Q(ω), respectively, immediately leads to a ≈ L.
While the derivation of this result is maybe not entirely convincing, it is actually the only

choice from a classical point of view: since L is the only classical scale available and the
complexifier generator C for our coherent states, from which the scale a derives, is a classical
object, the scale L is the only classical one in the problem that should be used in order to make
C/h̄ dimension-free.

Coming back to flat space m = (
A

j
a, E

a
j

) = (
0, δa

j

)
, we want to fix ε by requiring that

the relative fluctuation (3.8) for O = Q(ω) is minimized. This leads to the condition that
(note E0 = 1)

t
ε3

Vol(supp(ω))

1

[ε2/a2]2
+ [ε2/L2]β (3.10)

be minimized where a := L. The fluctuation contribution depends on the volume of the
support of ω. Since we want to resolve regions with our graph of the linear size bigger than
or equal to L (think of L as the smallest wavelength to be resolved for our applications), we
obtain that (3.10) is certainly dominated by

t
L

ε
+ [ε2/L2]β. (3.11)

This function has a unique minimum at

ε = �α
PL1−α, α = 1

β + 1
2

� 2

5
<

1

2
. (3.12)

In [19], we chose Vol(supp(ω)) � ε3 and different observables, adapted to the graph in
question, in order to have the lattice degrees of freedom well approximated and led to α ≈ 1/6.
However, it is clear that this choice would lead to boundary effects if the support of ω is not
adapted to the graph in question which would be unnatural. Such boundary effects are avoided
by Vol(supp(ω)) � L3 and go at most as the quotient between the volume of a shell of
thickness ε at the boundary of a region of volume L3 and its volume, that is, as ε/L. This
drives the lattice scale ε closer to the Planck scale. Note that in any case �P � ε � L.

This concludes the present section. The relations a := L and (3.12) will be our working
proposal.



Towards the QFT on curved spacetime limit of QGR: II 919

4. Coherent state expectation values

The purpose of this section is to present the calculation of the expectation values of the various
terms occurring in the Hamiltonians of section 4 in [1] in the coherent states for QGR discussed
in the preceding sections. In the first part, we will explain the simplifying assumptions used
for the computation and introduce the necessary notation. Section 4.2 is devoted to the
computation of the expectation values of the volume operator V̂v and the operator

Q̂j
e (v, r) = 1

4r
tr
(
τjhe

[
h−1

e , (V̂v)
r
])

, (4.1)

as they are the basic building blocks of the Hamiltonians obtained in [1]. In section 4.3, the
results are used to give the expectation values of the geometric operators occurring in the
Hamiltonians for the scalar and the electromagnetic field.

4.1. Implementation of the simplifying assumptions

4.1.1. The cubic lattice. For reasons already explained in our companion paper, the first
simplification that we will make concerns the random graphs. In the following, we will
exclusively work with states based on graphs of cubic topology. This simplifies both the
notation and the c-number coefficients occurring in the Hamiltonians. In a graph of cubic
topology, each vertex is six-valent with three edges ingoing and three outgoing. We denote the
outgoing edges by eI , I = 1, 2, 3, and choose an ordering, such that the tangents of e1, e2, e3

form a right-handed triple w.r.t. the given orientation of 	. The vertices can be labelled by
elements v of Z3. We write e+

I (v) := eI (v), e−
I (v) := eI (v − I )−1, where n − I denotes the

point in Z3 translated one unit along the negative I-axis. In keeping with that convention, we
associate with e−

I (v) the dual surface SeI (v−I ) with its orientation reversed.

4.1.2. Replacing SU(2) by U(1)3. We substitute SU(2) by U(1)3 in our computation because
the results of [10, 11] reveal that the qualitative features are untouched, so nothing conceptually
new is learned when doing the much harder non-Abelian computation. For the exploratory
purposes of this paper, it is thus sufficient to stick with the Abelian group. Consequently, we
will replace Q̂ as well as the volume operator itself by appropriate U(1)3 counterparts. For
U(1)3, each edge is not labelled by a single, non-negative, half-integral spin degree of freedom
but rather by three integers nj ∈ Z, j = 1, 2, 3, and we have three kinds of holonomies h

j
e .

The generators τj of U(1)3 are simply i (imaginary unit). The canonical commutation relations
on L2(U(1)3, d3µH) are replaced by

[̂hj , ĥk] = 0, [p̂j , ĥ
k] = itδk

j ĥ
j , [p̂j , p̂k] = 0

(cf (2.4) with adjointness relations (̂hj )† = (̂hj )−1, (p̂j )
† = p̂j . It follows that (4.1) gets

replaced by

Q̂j
e (v, r) = i

4r
ĥj

e

[(̂
hj

e

)−1
, V̂ r

v

]
.

Finally, the expression for the volume operator in our companion paper is replaced by

V̂γ,v = l3
p

√√√√√
∣∣∣∣∣∣εjkl

 Ŷ
e+

1 (v)

j − Ŷ
e−

1 (v)

j

2

[ Ŷ
e+

2 (v)

k − Ŷ
e−

2 (v)

k

2

][
Ŷ

e+
3 (v)

l − Ŷ
e−

3 (v)

l

2

]∣∣∣∣∣∣
with Ŷ e

j = ihj∂/∂hj .
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The U(1)3 coherent states over any graph γ are given by (see [10])

ψt
γ,m = ⊗e∈E(γ ) ⊗3

j=1 ψt

g
j
e (m)

,

where

ψt
g =

∑
n∈Z

e−tn2/2(gh−1)n

and g
j
e (m) = epe

j (m)h
j
e (m) ∈ C − {0} = U(1)C. Here m is a point in the gravitational phase

space and

hj
e (m)

.= P exp

(
i
∫

e

Aj

)
, pe

j (m)
.= 1

a2

∫
Se

(∗E)j ,

that is, due to the Abelian nature of our simplified gauge group the path system in Se is no
longer needed.

As is obvious from the explicit form of the Hamiltonians, our calculation can be done
vertex by vertex since there is no inter-gravitational interaction between the associated
operators. We can therefore concentrate on a single vertex for the remainder of this section
and drop the label v in what follows.

For the sake of the computation to follow, we introduce the shorthand

hJσj
.= h

j

eσ
J
, pJσj

.= p
eσ
J

j , gJσj
.= epJσj hJσj ,

and similarly the operators ŶJσj
.= Ŷ

eσ
J

j . Let us finally define

�̂ .= 1

a3
V̂ , q̂Jσj (r)

.= r

2ita3r
Q̂

j

eσ
J
(r). (4.2)

Note that q̂ is essentially self-adjoint.
The huge advantage of U(1)3 over SU(2) is that the ‘spin-network functions’

T{nJσj }({hJσj }) =
∏
Jσj

h
−nJσj

Jσj

are simultaneous eigenfunctions of all ŶJσj with respective eigenvalue nJσj . Even better, the
operator q̂J0σ0j0(r) is also diagonal with eigenvalue

λr
J0σ0j0

({nJσj }) = 2
λr
({

nJσj

})− λr({nJσj + δ(J0σ0j0),(Jσj)})
t

,

where

λr({nJσj }) = t3r/2

(√∣∣∣∣εjkl

[
n1,+,j − n1,−,j

2

] [
n2,+,k − n2,−,k

2

] [
n3,+,l − n3,−,l

2

]∣∣∣∣
)r

.

4.2. The expectation values of q̂

Now we will explicitly calculate the expectation values of powers of the operators q̂ and �̂.
The gravitational parts of the matter Hamiltonians constructed in [1] are all sums and products
of these operators which act only on the edges of a specific vertex, therefore we can restrict
consideration to a single vertex and consequently to a part

ψt
{gJσj }({hJσj }) .=

∏
Jσj

ψt
gJσj

(hJσj )

of the coherent state which just contains the factors corresponding to the edges of a single
vertex.
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What we are looking for is the expectation value of an arbitrary polynomial of q̂:

〈·〉 .=
〈
ψt

{gJσj }
∏N

k=1 q̂Jkσkjk
(rk)ψ

t
{gJσj }

〉∥∥ψt
{gJσj }

∥∥2

=
∑

{nJσj } exp
(−t

∑
J,σ,j n2

Jσj

)
exp

(
2
∑

Jσj pJσjnJσj

)∏N
k=1 λr

Jkσkjk
({nJσj })∏

J,σ,j

∥∥ψt
gJσj

∥∥2 , (4.3)

where (see [10])∥∥ψt
g

∥∥2 =
√

π

t
ep2/t [1 + Kt(p)], g = epeiϕ, |Kt(p)| � Kt = O(t∞). (4.4)

As in [10], in order to extract useful information out of formula (4.3), it is of utmost importance
to perform a Poisson transformation on it because we are interested in tiny values of t for which
(4.3) converges rather slowly while the transformed series converges rapidly since then t gets
replaced by 1/t . To that end, let us introduce T

.= √
t, xJσj

.= T nJσj , whereupon

〈·〉 =
∑

{xJσj } exp
(−∑J,σ,j x2

Jσj

)
exp

(
2
∑

Jσj xJσjpJσj /T
)∏N

k=1 λr
Jkσkjk

({xJσj })∏
J,σ,j

∥∥ψt
gJσj

∥∥2 , (4.5)

where

λr
J0σ0j0

({xJσj }) = 2
λr({xJσj }) − λr

({
xJσj + T δ(J0σ0j0),(Jσj)

})
t

,

λr({xJσj }) = t3r/4

√∣∣∣∣εjkl

[
x1,+,j − x1,−,j

2

] [
x2,+,k − x2,−,k

2

] [
x3,+,l − x3,−,l

2

]∣∣∣∣
r

.

(4.6)

Then Poisson’s theorem gives

〈·〉 =
1

T 18

∑
{nJσj }

∫
R18 d18x exp (

∑
J,σ,j [−x2

Jσj +2xJσj (pJσj−iπnJσj )/T ])∏N
k=1 λr

Jkσkjk
({xJσj })∏

J,σ,j ‖ψt
gJσj

‖2 .

(4.7)

An observation that reduces the 18-dimensional integral to a nine-dimensional one is that
the integrand in (4.7) only depends on xJj

.= x−
Jj

.= [xJ,+,j − xJ,−,j ]/2 and not on x+
Jj

.=
[xJ,+,j + xJ,−,j ]/2. Consider also the analogous quantities p±

Jj

.= [pJ,+,j ± pJ,−,j ]
/

2, n±
Jj

.=
[nJ,+,j ± nJ,−,j ]/2 and let pJm

.= p−
Jj , nJm

.= p−
Jj . Switching to the coordinates x±

Jj , noting
that

∣∣det(∂{xJσj }
/
∂
{
x+

Jj , x
−
Jj

}∣∣ = 29, we obtain

〈·〉 =
(

2
t

)9∑
{nJσj }

[ ∫
R9 d9x+ exp

(
2
∑

Jj

[−(x+
Jj

)2
+ 2x+

Jj

(
p+

Jj − iπn+
Jj

)/
T
])]

∏
J,σ,j

∥∥ψt
gJσj

∥∥2

×
∫

R9
d9x exp

(
2
∑
Jj

[−x2
Jj + 2xJj (pJj − iπnJj )/T

]) N∏
k=1

λr
Jkσkjk

({xJj })
 , (4.8)

where

λr
J0σ0j0

({xJj }) = 2
λr({xJj }) − λr

({
xJj + T δ(J0j0),(Jj)/2

})
t

=: λr
J0j0

({xJj }),
λr({xJj }) = t3r/4(| det({xJj })r/2 (4.9)
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actually no longer depends on σ0! The integral over x+
Jj in (4.9) can be immediately performed

by using a contour argument with the result

〈·〉 =
(√

2π

t

)9 ∑
{nJσj }

exp

(
2

t

∑
Jj

(
p+

Jj − in+
Jj

)2
)

×
∫

R9
d9x exp

(
2
∑
Jj

[−x2
Jj + 2xJj (pJj − iπnJj )

/
T
])

×
N∏

k=1

λr
Jkσkjk

({xJj })
/ ∏

J,σ,j

∥∥ψt
gJσj

∥∥2
. (4.10)

Finally, using (4.4) we can further simplify to

〈·〉 =
√

2
π

9

[(1 − Kt)18, (1 + Kt)18]

∑
{nJσj }

exp

(
2

t

∑
Jj

[(
p+

Jj − iπn+
Jj

)2 − (p+)2
Jj − p2

Jj

])

×
∫

R9
d9x exp

(
2
∑
Jj

[−x2
Jj + 2xJj (pJj − iπnJj )

/
T
]) N∏

k=1

λr
Jkσkjk

({xJj }),

(4.11)

where the notation for the denominator means that its value ranges at most in the interval
indicated. Its precise value will be irrelevant for what follows since its departure from unity
is O(∞).

4.2.1. Only the nJσ,j = 0 terms matter. The remaining integral in (4.11) cannot be computed
in closed form so that we must confine ourselves to a judicious estimate. We wish to show
that the only term in the infinite sum of (4.11) which contributes corrections to the classical
result of finite order in t is that with nJσj = 0 for all J, σ, j . In order to do that, we must
demonstrate that all the other terms can be estimated in such a way that the series of their
estimates converges to an O(t∞) number. This would be easy if we could complete the
square in the exponent of the integrand but since for r/2 not being an even positive integer
the function λr is not analytic in C9, we cannot immediately use a contour argument in order
to estimate the remaining integral. In order to proceed and to complete the square anyway

we expand the product
∏N

k=1 λr
Jkσkjk

({xJj }) into monomials of the form
∏N

k=1
λr ({xJj +ck

Jj })
t

with
ck
Jj = T δJkjk,Jj /2 or ck

Jj = 0 and estimate the integrals over the latter. We trivially have

λr
({

xJj + ck
Jj

}) = t3r/4
([

det
({

xJj + ck
Jj

})]2)r/4 = t3r/4 exp
( r

4
ln
([

det
({

xJj + ck
Jj

})]2))
,

(4.12)

where we must use the branch of the logarithm with ln(z) = ln(|z|) + iϕ for any complex
number z = |z| eiϕ with ϕ ∈ [0, 2π). With this branch understood, in the form (4.12) the
integrand of (4.11) becomes univalent on the entire complex manifold C9 except at the points
where det

({
xJj +ck

Jj

}) = 0. Now a laborious contour argument can be given to the extent that

we can move the path of integration away from the real hyperplane in C9 without changing
the result. Therefore, we can indeed complete the square in the exponent.
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It remains to estimate (4.11) from above. Isolating the term with nJσ,j = 0 for all J, σ, j ,
we have∣∣∣∣∣∣∣〈·〉 −

√
2
π

9

[(1 − Kt)18, (1 + Kt)18]

∫
R9

d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λr
Jkσkjk

({xJj + pJj/T })

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
√

2
π

9

[(1 − Kt)18, (1 + Kt)18]

∑
{nJσj }�={0}

× exp

(
2

t

∑
Jj

[(
p+

Jj − iπn+
Jj

)2
+ (pJj − iπnJj )

2 − (p+)2
Jj − p2

Jj

])

×
∫

R9
d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λr
Jkσkjk

({xJj + (pJj − iπnJj )/T })

∣∣∣∣∣∣∣
�
(

2

t

)N

∣∣∣∣∣∣∣
√

2
π

9

(1 − Kt)18

∑
{nJσj }�={0}

exp

(
−π2

t

∑
Jσj

n2
Jσj

)∫
R9

d9x exp

(
−2
∑
Jj

x2
Jj

)

×
N∏

k=1

[
exp

(
r

2
ln(|det({T xJj + (pJj − iπnJj )})|)

)

+ exp

(
r

2
ln(|det({T xJj + tδ(Jj),(Jkjk) + (pJj − iπnJj )})|)

)]∣∣∣∣∣∣∣ . (4.13)

Let wJj be a matrix of complex numbers and define the norm ‖w‖2 .= ∑
Jj |wJj |2 so

that in particular ‖w1 + w2‖ � ‖w1‖ + ‖w2‖ and |wJj | � ‖w‖ for all J, j . Now
det({wJj }) is a linear combination of six monomials of the form wJ1j1wJ2j2wJ3j3 so that
|det({wJj })| � 6 ‖w‖3. In particular, |det({T xJj +(pJj −iπnJj )})| � 6(T ‖x‖+‖p‖+π ‖n‖)3

and |det({T xJj + tδ(Jj),(Jkjk)/2 + (pJj − iπnJj )})| � 6(T ‖x‖ + t + ‖p‖ + π ‖n‖)3. Invoking
this result into (4.13), we find

�
(

4

t

)N

∣∣∣∣∣∣∣
√

2
π

9

(1 − Kt)18

∑
{nJσj }�={0}

exp

(
−π2

t

∑
Jσj

n2
Jσj

)∫
R9

d9x e−2‖x‖2

×exp

(
Nr

2
ln(6[T ‖x‖ + t + ‖p‖ + π ‖n‖]3)

)∣∣∣∣∣∣∣
�
(

46r/2

t

)N

∣∣∣∣∣∣∣
√

2
π

9

(1 − Kt)18

∑
{nJσj }�={0}

exp

(
−π2

t

∑
Jσj

n2
Jσj

)

×
∫

R9
d9x e−2‖x‖2

[
1

4
+ t‖x‖2 + t + ‖p‖ + π ‖n‖

][ 3Nr
2 ]+1

∣∣∣∣∣∣∣ , (4.14)
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where [3Nr/2] is the Gauss bracket of a real number (largest integer smaller than or equal to
3Nr/2) and in the last step we have used the elementary estimate x � x2 + 1/4 valid for any
real number x. The integral in the last line of (4.14) can be evaluated exactly by invoking the
binomial theorem. Consider the integrals of the form

Ik
.=
√

2

π

m ∫
Rm

dmx e−2‖x‖2 ‖x‖2k (4.15)

for any positive integer m. Switching to polar coordinates, one easily proves the recursion
formula

Ik = m + 2(k − 1)

4
Ik−1 (4.16)

and since I0 = 1 we find

Ik =
(

m
2 + k − 1

)
!

2k
(

m
2

)
!

, if m even,

Ik = (m − 1 + 2k)!
(

m−1
2

)
!

8k(m − 1)!
(

m−1
2 + k

)
!
, if m odd.

(4.17)

Using the elementary estimate e(n/e)n � n! � e((n + 1)/e)n+1, we find for 0 � k � n and
n � 2 that

Ik � e

(
m + 2n

2e

)m/2 (
m + 2n

4e

)k
.= Cm,n

(
m + 2n

4e

)k

, if m even,

Ik � m − 1

2e

(
m−1

2

)
!

(m − 1)!

(
m + 2n

m − 1

)m (
m + 2n

4(m − 1)

)k

=: Cm,n

(
m + 2n

4(m − 1)

)k

, if m odd.

(4.18)

In our case, m = 9 and n = [
3Nr

2

]
+ 1. Thus, we can finish the estimate of (4.14) with∣∣∣∣∣∣∣〈·〉 −

√
2
π

9

[(1 − Kt)18, (1 + Kt)18]

∫
R9

d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λr
Jkσkjk

({xJj + pJj/T })

∣∣∣∣∣∣∣
�
(

46r/2

t

)N
C9,[ 3Nr

2 ]+1

(1 − Kt)18

∑
{nJσj }�={0}

exp

(
−π2

t

∑
Jσj

n2
Jσj

)

×
[

1

4
+ t

9 + 2
([

3Nr
2

]
+ 1
)

32
+ t + ‖p‖ + π‖n‖

][ 3Nr
2 ]+1

, (4.19)

which is obviously of order O(t∞). We can give a bound independent of p since in our
applications ‖p‖ can be bounded by a constant of the order of tα .

Let us summarize our findings in the form of a theorem.

Theorem 4.1. Let ‖p(v)‖2 .= ∑
Jj pJj (v)2. Suppose that there exists a positive constant K

such that supv∈V (γ ),m∈M ‖p(v)‖ =: ‖p‖ � K is uniformly bounded. Then for small t

〈·〉 =
√

2
π

9

[(1 − Kt)18, (1 + Kt)18]

∫
R9

d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λr
Jkσkjk

({xJj + pJj/T }) + O(t∞)

(4.20)

independently of m ∈ M, v ∈ V (γ ).
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4.2.2. Expansion of the remaining integral. It remains to compute the power expansion (in
T) of the remaining integral in (4.20) and to show that at each order the remainder is smaller
than the given order. We will see that only even powers of T contribute so that this expansion
is actually an expansion in t. The basic reason is that the expansion of the integrand in powers
of T is at the same time an expansion in powers of xJj as is obvious from the explicit form of
the functions λr({xJj }). These powers of xJj are integrated against the Gaussian e−2‖x‖2

which
is an even function under the reflection xJj → −xJj , whence the integral for odd powers (an
odd function under reflection) must vanish. We will not be able to show that the integral
in (4.20), which certainly converges for any pJj , t (just set ‖n‖ = 0 in the above estimate),
can be expanded into an infinite series in powers of t, rather our estimates will be only good
enough in order to show that there is a maximal order n0 (which becomes infinite as t → 0)
in the sense that the remainder at order n is smaller than the given order for all n � n0. We
will use rather coarse estimates which could possibly be much improved in order to raise the
value of n0 derived here, but for all practical purposes the analysis described below will be
sufficient since n0 is anyway a rather large positive integer.

Consider once more the function λr
Jσj (x + p/T ): let us introduce q

.= pt−α which is of
order unity and s = t1/2−α . Then

λr
Jσj (x + p/T ) = 2|det(p)|r/2 |det(1 + q−1xs)|r/2 − |det(1 + q−1xs + q−1δJj sT /2)|r/2

t
.

(4.21)

Now for any matrix A we have det(1 + A) = 1 + Tr(A) + 1
2 [( Tr(A))2 − Tr(A2)] + det(A) =:

1 + z′
A and so det(1 + A)2 = 1 + 2z′

A + (z′
A)2 =: 1 + zA =: yA � 0. Let y

.= 1 + zq−1xs and
y1

.= 1 + zq−1[xs+σδJj sT ]. Then (4.21) becomes

λr
Jσj (x + p/T )| = 2|det(p)|r/2

t

[
yr/4 − y

r/4
1

]
(4.22)

and we should expand yr/4, y
r/4
1 around y = y1 = 1. We now invoke our knowledge that

0 < r � 1 is a rational number, so we find positive integers M > L > 0 without a common
prime factor such that r/4 = L/M . Let us define recursively

f
(0)
L/M(y)

.= yL/M, f
(n+1)
L/M (y)

.= f
(n)
L/M(y) − f

(n)
L/M(1)

y − 1
. (4.23)

It follows from this definition that

f
(0)
L/M(y) =

n∑
k=0

f
(k)
L/M(1)[y − 1]k + f

(n+1)
L/M (y)[y − 1]n+1. (4.24)

Lemma 4.1. We have

f
(k)
L/M(1) = (L/M, k), (4.25)

where

(L/M, k)
.= (L/M)(L/M − 1) · · · (L/M − k + 1)

k!

= (−1)k+1 L

M

M − L

2M

2M − L

3M
· · · (k − 1)M − L

kM
,

and the following recursion holds for all n � 1:

f
(n+1)
L/M (y) =

∑L−1
k=1 f

(n)
k/M(y) −∑n

l=1 f
(l)
L/M(1)

∑M−1
k=1 f

(n−l+1)
k/M (y)∑M−1

k=0 f
(0)
k/M(y)

. (4.26)



926 H Sahlmann and T Thiemann

The proof of the lemma consists in a straightforward Taylor expansion (first part) and an
induction (second part) and will not be reproduced here.

The motivation for the derivation of this recursion is that it allows us to estimate
∣∣f (n+1)

L/M (y)
∣∣

once we have an estimate for all
∣∣f (l)

k/M(y)
∣∣ with 0 � k � M − 1, 0 � l � n.

Lemma 4.2. For all 0 < L � M,n � 0 we have∣∣f (n)
L/M(y)

∣∣ � (1 + y)(βM)n, (4.27)

where β > 1 is any positive number satisfying β � 1 + β

β−1 , e.g. β = 3.

This lemma can be proven by induction, using the results of the previous one.
Using the expansion (4.24) and the fact that y is a polynomial in xJj , it is possible to

evaluate the Gaussian integrals over the first n terms, the last one of which is obviously at
least of order sn. We would like to know at which order n0 the remaining term in (4.24) is no
longer of order at least sn0+1.

To that end, recall that y = 1 + 2z+z2 where z = Tr(A)+ 1
2 [( Tr(A))2 − Tr(A2)] + det(A)

and Ajk = s
∑

J (q−1)Jj xJk . We now have the following basic estimates:

|Tr(A)| = s

∣∣∣∣∑
Jj

q−1
Jj xJj

∣∣∣∣ � s‖q−1‖ ‖x‖ ,

|(q−1x)jk| =
∣∣∣∣∑

J

q−1
Jj xJk

∣∣∣∣ �
√∑

J

[
q−1

Jj

]2√∑
J

[xJk]2,

|Tr(A2)| = s2

∣∣∣∣∑
jk

(q−1x)jk(q
−1x)kj

∣∣∣∣ � s2

∣∣∣∣∑
jk

|(q−1x)jk||(q−1x)kj |
∣∣∣∣

� s2

∑
j

√∑
J

[
q−1

Jj

]2√∑
J

[xJj ]2

∑
k

√∑
J

[
q−1

Jk

]2√∑
J

[xJk]2


� s2

√√√√∑
j

√∑
J

[
q−1

Jj

]22
√√√√∑

j

√∑
J

[xJj ]2
2
2

� s2‖q−1‖2 ‖x‖2 ,

|det(A)| � 6s3‖q−1x‖3 � 6s3‖q−1‖3 ‖x‖3 ,

where in the first line we have made use of the Cauchy–Schwarz inequality for the inner
product 〈x, x ′〉 = ∑

Jj xJj x
′
Jj , in the second line for the inner product 〈x, x ′〉 = ∑

J xJ x ′
J ,

in the fourth line for the inner product 〈x, x ′〉 = ∑
j xj x

′
j and finally in the last line we have

used the estimate derived between equations (4.13) and (4.14). These estimates imply that

|z| � s‖q−1‖‖x‖ + s2‖q−1‖2 ‖x‖2 + 6|det(q−1)| ‖x‖3 =: u(‖x‖),
|y − 1| � 2u + u2 =: P(‖x‖)

and P(‖x‖) is a polynomial of sixth order in ‖x‖.
We are now ready to estimate the Gaussian integral over the remainder:

En
.=
∣∣∣∣∣
√

2

π

9 ∫
R9

d9x e−2‖x‖2
f

(n+1)
L/M (y)[y − 1]n+1

∣∣∣∣∣
�
√

2

π

9

(3M)n+1
∫

R9
d9x e−2‖x‖2

[(P (‖x‖))n+2 + 2(P (‖x‖))n+1]. (4.28)
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Consider an arbitrary polynomial in ‖x‖ of the form

P(x) =
l∑

k=0

ak‖x‖k.

By the multinomial theorem

(P (x))n =
∑

n0+···+nl=n

n!

(n0!) · · · (nl)!

[
l∏

k=0

a
nk

k

]
‖x‖

∑l
k=0 knk .

Let us consider Gaussian integrals of the form√
2

π

m ∫
Rm

dmx e−2‖x‖2‖x‖n = Vm−1

√
2

π

m ∫ ∞

0
dr e−2r2

rn+m−1 =: Vm−1

√
2

π

m

Jn+m−1,

where Vm = 2πm/2/�(m/2) is the volume of Sm. Now

Jn =
√

2π

4
2−3n/2 n!

n
2 !

, for n even,

Jn = 1

4
2−(n−1)/2

(
n − 1

2
!

)
, for n odd,

(4.29)

and one immediately checks that

Jn �
√

2π

4

[
n
2

]
!

2[ n
2 ]

,

where [·] again denotes the Gauss bracket. Using the above used estimate for the factorial
n! � e

(
(n+1)

e

)n+1
, we may further estimate

Jn � e
√

2π

4

(
n+1
2e

) n+1
2

2
n−1

2

= e
√

2π

4
2−n

(
n + 1

e

) n+1
2

,

where we used n−1
2 �

[
n
2

]
� n

2 . Finally, if n � nM then

Jn � e
√

2π

4
2−n

(
nM + 1

e

) n+1
2

. (4.30)

Combining these results, we obtain the final estimate√
2

π

m ∫
Rm

dmx e−2‖x‖2
P(x)n

= Vm−1

√
2

π

m
e
√

2π

4

∑
n0+···+nl=n

n!

(n0!) · · · (nl)!

[
l∏

k=0

a
nk

k

]
J∑l

k=0 knk+m−1

� Vm−1

√
2

π

m
e
√

2π

4

∑
n0+···+nl=n

n!

(n0!) · · · (nl)!

×
[

l∏
k=0

a
nk

k

]
2−(

∑l
k=0 knk+m−1)

(
m + ln

e

)∑l
k=0 knk+m−1+1

2

= Vm−1

√
2

π

m
e
√

2π

2

(
m + ln

4e

)m
2 ∑

n0+···+nl=n

n!

(n0!) · · · (nl)!

 l∏
k=0

(
ak

√
m + ln

4e

k)nk
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= Vm−1

√
2

π

m
e
√

2π

2

(
m + ln

4e

) m
2

[
l∑

k=0

ak

√
1 + ln

4e

k]n

= : Km,l

(
m + ln

4e

) m
2

P

(√
m + ln

4e

)
,

(4.31)

since
∑l

k=0 knk � ln = nM − m for any configuration of nk subject to the constraint
n0 + · · · + nl = n.

In our case we have m = 9, l = 6 and thus we can bound the remainder (4.28) from
above:

En � K9,6(3M)n+1

(9 + 6(n + 2)

4e

) 9
2

P

(√
9 + 6(n + 2)

4e

)n+2

+ 2

(
9 + 6(n + 1)

4e

) 9
2

P

(√
1 + 6(n + 1)

4e

)n+1
 . (4.32)

For small n, the error En is the number sn+1 times a constant of order unity. For large n,
however, the error becomes comparable to the order of accuracy (in powers of s) that we are
interested in. The value n = n0 from where onwards it does not make sense any longer to
compute corrections can be estimated from the condition

En+1/En � 1. (4.33)

Due to the complicated structure of (4.32), the precise value of n0 cannot be computed
analytically but its order of magnitude can be obtained under the self-consistency assumption
that n0 is quite large so that the change of P(

√
(9 + 6(n0 + 2))/(4e)) as we change n0 by 1

is much smaller than its value. A tedious but straightforward estimate shows that under this
assumption

n0 =
4e
(

τ0(M)

s‖q−1‖
)2 − 9

6
− 3, (4.34)

where τ0(M) is of order unity. Thus, n0 is a very large number if ‖q−1‖ is of order unity and
s is tiny. Moreover,

δP = 2(u + 1)(1 + 2τ + 18τ 2)δτ = 6(u + 1)uδτ/τ � 6P
δτ

τ
. (4.35)

But under the change δn = 1,

δτ ≈ dτ

dn
δn = τ

9(9 + 2n)
, (4.36)

whence (
δP

P

)
n=n0

� 2

3(9 + 2n0)
� 1, (4.37)

as desired since n0 is a large number.
Let us now finally go back to our desired expectation value (4.20) which we would

like to compute up to some order n < n0 in s. Let again y
.= 1 + zq−1xs = 1 + z

and yJσj
.= 1 + zq−1[xs+δJj sT /2] = 1 + zJσj with zA = (z′

A)2 + 2z′
A, z′

A = Tr(A) + 1
2 [( Tr(A))2 −

Tr(A2)] + det(A) for any matrix A and recall our convention r/4 = L/M . Thus, (4.22)
becomes up to order n
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λr
Jσj (x + p/T ) = 2|det(p)|2L/M

t

[
yL/M − y

L/M

Jσj

]
= 2|det(q)|2L/Mt6L/Mα

t

{[
(y − yJσj )

n∑
k=1

f
(k)
L/M(1)

k−1∑
l=0

(y − 1)l(yJσj − 1)k−1−l

]
+
[
f

(n+1)
L/M (y)(y − 1)n+1 − f

(n+1)
L/M (yJσj )(yJσj − 1)n+1]}. (4.38)

In order to compute (4.20) up to order n with respect to s, we have to plug the expansions
(4.38) into formula (4.20) and collect all the contributions up to order sn. The integral over the
remainder is then still smaller as long as n < n0, as shown above. In the present work, we are
interested only in the leading order (classical limit) and next to leading order (first quantum
correction) as well as in an estimate of the error at the next to leading order.

A laborious but straightforward power counting reveals that

λr
Jσj = sT

t
(1 + sx + (sx)2 + O(sT )), (4.39)

where the notation just means that λr
Jσj is a polynomial in xJj of order 2 where the monomials

of orders 0, 1, 2 come with a power of s of the order indicated or higher. We thus see that
if we wish to keep only terms up to order (sT /t)N and (sT /t)Ns2 in

∏N
k=1 λr

Jkσkjk
(x + p/T )

it will be sufficient to do the following: for the term of order (sT /t)N keep only the terms
proportional to x0 in each of the factors of the form (4.39) and for terms of order (sT /t)Ns2

keep either (1) only the terms proportional to x2 in one of the factors of the form (4.39) and
only the terms of order x0 in the others or (2) only the terms proportional to x1 in two of the
factors of the form (4.39) and only the terms of order x0 in the others. Clearly, terms of order
(sT /t)Ns do not survive since they are linear in x and integrate to zero against the Gaussian.

In estimating the error that we make note that there are two errors, one coming from
neglecting all higher orders in (4.39) and the other from the remainder in the expansion (4.38).
As for the first error, note that all Gaussian integrals are of order unity so that the indicated
powers of t correctly display the error (compared to (sT /t)Ns2) as of higher order in s. As for
the second error, we can use the expansion (4.38) up to some order n′ > 2 until sn′+1 � sT s2

in view of the estimate (4.32). The minimal value of n′ depends on the value of α. For
instance, if α = 1/6 as indicated by [19], then s = t1/3 so that sn′−2 = t (n

′−2)/3 � T = t1/2

means n′ > 2 + 3/2, so the minimal value would be n′ = 4 in this case. This value is well
below n0 � 1 so that the error is indeed of higher order in s as compared to (sT /t)Ns2.

With these things said, we can now actually compute the first contributing correction to the
classical limit. We will not bother with the higher order corrections since we just showed that
they can be bounded by terms of sub-leading order as compared to (sT /t)Ns2. In particular,
we will replace the O(t∞) corrections by zero in (4.20). We then have

〈·〉 =
√

2

π

9 ∫
R9

d9x e−2‖x‖2


[

N∏
k=1

λr
Jkσkjk

(x + p/T )|x0

]

+

[ N∑
l=1

λr
Jlσljl

(x + p/T )|x2

∏
k �=l

λr
Jkσkjk

(x + p/T )|x0

]

+

 N∑
1�l<m�N

λr
Jlσljl

(x + p/T )|x1λr
Jmσmjm

(x + p/T )|x1

∏
k �=l,m

λr
Jkσkjk

(x + p/T )|x0


+ O(t(N[3r/2−1]αsT ), (4.40)
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where the restrictions mean those to the appropriate powers of x as derived above. It remains
to explicitly compute these restrictions and to do the Gaussian integrals. According to what
we have said above, we write

λr
Jσj (x + p/T ) = O(t [3r/2−1]αsT ) + 2|det(q)|r/2t [3r/2−1]α

{[
f

(1)
r/4 (1)

(
y − yJσj

sT

)
|x0

]

+

[
f

(1)
r/4 (1)

(
y − yJσj

sT

)
|x1

+ f
(2)
r/4 (1)

(
y − yJσj

sT

)
|x0

((y − 1)|x1 + (yJσj − 1)|x1)

]
+

[
f

(1)
r/4 (1)

(
y − yJσj

sT

)
|x2

+ f
(2)
r/4 (1)

(
y − yJσj

sT

)
|x0

((y − 1)|x2 + (yJσj − 1)|x2)

+ f
(3)
r/4 (1)

(
y − yJσj

sT

)
|x0

(((y − 1)|x1)2 + ((yJσj − 1)|x1)2

+ (y − 1)|x1(yJσj − 1)|x1)

]}
(4.41)

And furthermore

y − 1 = 2sq−1
MmxMm + s2

(
2q−1

Mmq−1
Nn − q−1

Mnq
−1
Nm

)
xMmxNn + O(s3)

= : sCMmxMm + s2CMm,NnxMmxNn + O(s3),

yJσj − 1 = 2s Tr(q−1x) + s2[2 Tr(q−1x)2 − Tr(q−1xq−1x)] + O(sT )

= : sCMmxMm + s2CMm,NnxMmxNn + O(sT ), (4.42)

yJσj − y

sT
= q−1

Jj + s
(
2q−1

Jj q−1
Mm − q−1

Jmq−1
Mj

)
xMm +

s2

2

[
det(q−1)εjmnεJMN

+ q−1
Jj

(
q−1

Mmq−1
Nn − q−1

Mnq
−1
Nm

)
+ 2q−1

Mm

(
q−1

Jj q−1
Nn − q−1

Jn q−1
Nj

)]
xMmxNn

= : CJσj + sCMm
Jσj xMm + s2C

Mm,Nn
Jσj xMmxNn.

We can therefore simplify (4.41) to

λr
Jσj (x + p/T ) = O(t [3r/2−1]αsT ) + 2| det(q)|r/2t [3r/2−1]α

{[
f

(1)
r/4 (1)CJσj

]
+ s
[
f

(1)
r/4 (1)CMm

Jσj

+ 2f
(2)
r/4 (1)CJσjC

Mm
]
xMm + s2

[
f

(1)
r/4 (1)C

Mm,Nn
Jσj + 2f

(2)
r/4 (1)CJσjC

Mm,Nn

+ 3f
(3)
r/4 (1)CJσjC

MmCNn
]
xMmxNn

}
= : O(t [3r/2−1]αsT ) + 2| det(q)|r/2t [3r/2−1]α

{
DJσj (r) + sDMm

Jσj (r)xMm

+ s2D
Mm,Nn
Jσj (r)xMmxNn

}
. (4.43)

Putting everything together now yields the following theorem.

Theorem 4.2. For the classical limit and lowest order quantum corrections of expectation
values of monomials of the operators q̂Jσj (r) for topologically cubic graphs, we have〈
ψt

{gJσj },
∏N

k=1 q̂Jkσkjk
(rk)ψ

t
{gJσj }

〉∥∥ψt
{gJσj }

∥∥2 = (2|det(q)|r/2t [3r/2−1]α)N

×

[

N∏
k=1

DJkσkjk
(r)

]
+

s2

4

∑
M,m

 N∑
l=1

D
Mm,Mm
Jlσljl

(r)
∏
k �=l

DJkσkjk
(r)

+
∑

1�i<l�N

DMm
Jiσiji

(r)DMm
Jlσljl

(r)
∏
k �=l,i

DJkσkjk
(r)

 , (4.44)
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where the constants are given by

CMm = 2q−1
Mm,

CMm,Nn = 2q−1
Mmq−1

Nn − q−1
Mnq

−1
Nm,

CJσj = q−1
Jj ,

CMm
Jσj = (

2q−1
Jj q−1

Mm − q−1
Jmq−1

Mj

)
,

C
Mm,Nn
Jσj = 1

2

[
det(q−1)εjmnεJMN + q−1

Jj

(
q−1

Mmq−1
Nn − q−1

Mnq
−1
Nm

)
+ 2q−1

Mm

(
q−1

Jj q−1
Nn − q−1

Jn q−1
Nj

)]
,

DJσj (r) = f
(1)
r/4 (1)CJσj ,

DMm
Jσj (r) = f

(1)
r/4 (1)CMm

Jσj + 2f
(2)
r/4 (1)CJσjC

Mm,

D
Mm,Nn
Jσj (r) = f

(1)
r/4 (1)C

Mm,Nn
Jσj + 2f

(2)
r/4 (1)CJσjC

Mm,Nn + 3f
(3)
r/4 (1)CJσjC

MmCNn,

and f
(k)
r/4 (1) = (r/4, k) are simply the binomial coefficients.

The first correction is small as long as α < 1/2. The error as compared to the first
quantum correction of order O(t(N[3r/2−1]αs2) is a constant of order unity times t (N[3r/2−1]αsT

and thus small as long as 0 < α.

So far we did not look at the classical limit and the first quantum corrections of (powers
of) the volume operator itself but it is clear that it can be analysed by similar methods, in
fact, the analysis is even simpler because we just need to expand λr(x + p/T ) in powers
of s without dividing by t and thus will have to do an expansion in terms of y − 1 of one
order less than for λr

Jσj (x + p/T ). Clearly, the classical order will be that of |det(p)|r/2 =
|det(q)|r/2t3rα/2 = O(t3rα/2) and the first quantum correction will be of order O(t3rα/2s2). We
thus have, in expanding up to second order in y − 1, where y = det(1 + sq−1x)2 as before,

λr(x + p/T ) = |det(q)|r/2t3rα/2
{
1 + sf

(1)
r/4 (1)CMmxMm

+ s2
[
f

(2)
r/4 (1)CMm,Nn + f

(1)
r/4 (1)CMmCNn

]
xMmxNn

}
+ O(t3rα/2s3). (4.45)

Thus, we obtain an analogue of theorem 4.2.2 above.

Theorem 4.3. For the classical limit and lowest order quantum corrections of expectation
values of powers of the volume operators �̂r

v for topologically cubic graphs, we have〈
ψt

{gJσj }, �̂r
vψ

t
{gJσj }

〉∥∥ψt
{gJσj }

∥∥2 = |det(q)|r/2t3rα/2

{
1 +

s2

4

∑
M,m

f
(2)
r/4 (1)CMm,Nn + f

(1)
r/4 (1)CMmCNn

}
.

(4.46)

The first correction is small as long as α < 1/2. The error as compared to the first quantum
correction of order O(t(N[3r/2−1]αs2) is a constant of order unity times t (N[3r/2−1]αs3 and thus
small as long as 0 < α.

4.3. Application to the Hamiltonians

So far, our considerations were completely general and model independent and we see that
our coherent states indeed predict small quantum predictions as long as 0 < α < 1/2 and
�P/L � 1 with controllable error. However, now we will specialize to the case of scalar,
electromagnetic and fermionic fields coupled to gravity and compute the expectation values
of the relevant gravitational operators.
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We recall from our companion paper [1] that on a cubic graph, the effective Hamiltonians
for the scalar and the electromagnetic field are

H eff
KG = 1

2QKG

∑
v

(
〈F̂kin(v)〉π̂2

v −
∑

IσI ′σ ′

〈
F̂ IσI ′σ ′

der (v)
〉(
∂+
eσ
I

ln Uv

)(
∂+
eσ ′
I ′

ln Uv

)−K2〈V̂v〉(ln Uv)
2

)
,

(4.47)

H eff
EM = 1

2QEM

∑
v

∑
IσI ′σ ′

〈F̂ IσI ′σ ′
el (v)

〉
YIσYI ′σ ′

− 〈
F̂ IσI ′σ ′

mag (v)
〉 [∑

σ1,σ2

ln
(
HβI

σ ;σ1,σ2
(v)

)]∑
σ ′

1,σ
′
2

ln
(
HβJ

σ ′ ;σ ′
1σ ′

2
(v)

) , (4.48)

where 〈·〉 denotes the expectation value in a semiclassical state for the gravitational sector, and
the geometric operators are given by

F̂kin(v) = 1

�12
P

[
1

8

∑
σ1,σ2,σ3

σ1σ2σ3

3!
εijkε

IJKQ̂i
I,σ1

(
v,

1

2

)
Q̂

j

J,σ2

(
v,

1

2

)
Q̂k

K,σ3

(
v,

1

2

)]†[
. . .

]
,

F̂ IσI ′σ ′
der = 1

4

1

�8
P

∑
j

[
εIJK

8
εjkl

∑
σ2,σ3

Q̂k
Jσ2

(
v,

3

4

)
Q̂l

Kσ3

(
v,

3

4

)][
. . .j . . .

]
,

F̂ IσI ′σ ′
el (v) = 1

4

1

�4
P

∑
j

Q̂
j

Iσ

(
v,

1

2

)
Q̂

j

I ′σ ′

(
v,

1

2

)
,

F̂ IσI ′σ ′
mag (v) = 1

64

1

�4
P

∑
j

Q̂
j

Iσ

(
v,

1

2

)
Q̂

j

I ′σ ′

(
v,

1

2

)
.

The matter fields are represented as

φ̂v = ln Uv

i
, π̂v = ih̄QKGYv,

ÊIσ (v) = ih̄QEMYIσ , B̂Iσ ;σ1,σ2(v) =
ln
(
HβI

σ ;σ1,σ2
(v)

)
i

,

where Y are invariant derivatives on U(1), Uv is a U(1) point holonomy and Hβ a U(1)

holonomy around a minimal loop.
The Hamiltonian for a fermionic field is given by

ĤD,γ = − mP

2�3
P

∑
v,v′∈V (γ )

[
θ̂B(v′)θ̂ †

A(v) − θ̂ ′
B(v′)θ̂ ′†

A(v)
]

×
{

1

8
εijkε

IJK
∑

σ1,σ2,σ3

Q̂i
Iσ1

(
v,

1

2

)
Q̂

j

Jσ2

(
v,

1

2

)
× [τ k

(
h

σ3
K (v)δv′,f (e

σ3
K (v)) − δv′,v

)]
AB

}
−
{

1

8
εijkε

IJK
∑

σ ′
1,σ

′
2,σ

′
3

[([
h

σ ′
3

K (v′)
]−1

δ
v,f (e

σ ′
3

K (v′))
− δv,v′

)
τ k
]
AB

× Q̂i
Iσ ′

1

(
v′,

1

2

)
Q̂

j

Jσ ′
2

(
v′,

1

2

)}
− ih̄K0

∑
v,v′∈V (γ )

δABδv,v′
[
θ̂ ′
B(v′)θ̂ †

A(v) − θ̂B(v′)θ̂ ′†
A(v)

]
. (4.49)
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We strongly recommend taking a look at [1] where the above Hamiltonians are derived and
all the ingredients are defined and discussed in detail!

We now proceed to compute the expectation values of the geometric operators in a coherent
state. To this end, we will use the formulae given in theorems 4.2 and 4.3 with the appropriate
values of r,N, Jk, σk, jk inserted, and perform the additional computations necessary.

4.3.1. The kinetic term. For Fkin we have to use theorem 4.2 with N = 6. Employing the
relation (4.2) between q̂ and Q̂, we find

〈F̂kin〉 = 1

�12
P

1

(3!)2

(
2ta3r

r

)6

(2|det(q)|1/4t [3/4−1]α)6εJ1J2J3εj1j2j3ε
J4J5J6εj4j5j6

×
{[ 6∏

k=1

DJkσkjk
(1/2)

]
+

s2

4

∑
M,m

[ 6∑
l=1

D
Mm,Mm
Jlσljl

(1/2)
∏
k �=l

DJkσkjk
(1/2)

+
∑

1�i<l�6

DMm
Jiσiji

(1/2)DMm
Jlσljl

(1/2)
∏
k �=l,i

DJkσkjk
(1/2)

]}
. (4.50)

For r = 1/2, we have

a1
.= f

(1)
1/8(1) = 1

8 , a2
.= f

(2)
1/8(1) = − 1

8
7

16 = − 7
128 , a3

.= f
(3)
1/8(1) = 7

128
15
24 = 35

1024 ,

(4.51)

and consequently∑
M,m

D
Mm,Mm
Jσj (1/2) = [a1 + 3a3]q−1

Jj Tr(q−2) − a1

2
q−3

Jj , (4.52)

∑
Mm

DMm
J1σ1j1

(1/2)DMm
J2σ2j2

(1/2) = 4[a1 + a2]2q−1
J1j1

q−1
J2j2

Tr(q−2)

− 2a1[a1 + a2]
(
q−1

J1j1
q−3

J2j2
+ q−1

J2j2
q−3

J1j1

)
+ a2

1q
−2
J1J2

q−2
j1j2

. (4.53)

Now we have to deal with the contractions in (4.50). It is easy to see that

εJ1J2J3εj1j2j3ε
J4J5J6εj4j5j6

6∏
k=1

q−1
Jkjk

= 36

det(q)2
,

εJ1J2J3εj1j2j3ε
J4J5J6εj4j5j6q

−3
Jljl

∏
k �=l

q−1
Jkjk

= 12 Tr(q−2)

det(q)2
,

εJ1J2J3εj1j2j3ε
J4J5J6εj4j5j6q

−2
JiJl

q−2
ji jl

∏
k �=l,i

q−1
Jkjk

= 0, if l, i ∈ {1, 2, 3} or l, i ∈ {4, 5, 6},

εJ1J2J3εj1j2j3ε
J4J5J6εj4j5j6q

−2
JiJl

q−2
ji jl

∏
k �=l,i

q−1
Jkjk

= 4 Tr(q−2)

det(q)2
, otherwise. (4.54)

Using the above together with (4.52) in (4.50) yields

〈F̂kin(v)〉 = a9

�12
P

46

(3!)2
t6 (2|det(q)|1/4t [3/4−1]α)6

det(q)2

×
{

36[a6
1] +

s2

4
Tr(q−2)

[
6a5

1

(
36[a1 + 3a3] − 12

a1

2

)
+ a4

1(15(4[a1 + a2]2(36) − 2a1[a1 + a2](12 + 12)) + 9a2
1

]}
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= a9t6

�12
P

1√
det p

{
1 +

t

4
Tr(p−2)

[
(5 + 24a3) + 15

(
4[1 + 8a2]2 − 4

3
[1 + 8a2]

)
+

1

4

]}
= a9t6

�12
P

1√
det p

{
1 + t

1707

512
Tr(p−2)

}
. (4.55)

Let us finally transform back to the dimensionful quantity P = a2p. We get

〈F̂kin〉(v) = 1√
det P(v)

[
1 +

�4
P

t

1707

512
Tr P −2(v)

]
.

4.3.2. The derivative term. The derivative term Fder requires N = 4. From theorem 4.2. we
find〈
FJσJ ′σ ′

der

〉 = σσ ′

4

1

4

(
8

3

)4
t4a9

�8
P

(
2|det(q)|3/8t [9/8−1]α)4∑

j

εJJ1J1εjj1j2ε
J ′J3J4εjj3j4

1

16

∑
σ1...σ4

×
{[ 4∏

k=1

DJkσkjk
(3/4)

]
+

s2

4

∑
M,m

[ 4∑
l=1

D
Mm,Mm
Jlσljl

(3/4)
∏
k �=l

DJkσkjk
(3/4)

+
∑

1�i<l�4

DMm
Jiσiji

(3/4)DMm
Jlσljl

(3/4)
∏
k �=l,i

DJkσkjk
(3/4)

]}
(4.56)

For r = 3/4, we have

a1
.= f

(1)
3/16(1) = 3

16 , a2
.= f

(2)
3/16(1) = − 3

16
29
32 = − 3×29

29 ,

a3
.= f

(3)
3/16(1) = 3×29

29
45
48 = 32×5×29

213 . (4.57)

Furthermore, the reader may verify that∑
j

εJJ1J2εjj1j2ε
J ′J3J4εjj3j4

4∏
k=1

q−1
Jkjk

= 4q2
JJ ′

det(q)2
,

∑
j

εJJ1J2εjj1j2ε
J ′J3J4εjj3j4q

−3
Jljl

∏
k �=l

q−1
Jkjk

= 2[q2
JJ ′ Tr(q−2) − δJJ ′ ]

det(q)2
,

∑
j

εJJ1J2εjj1j2ε
J ′J3J4εjj3j4q

−2
JiJl

q−2
ji jl

∏
k �=l,i

q−1
Jkjk

= 0, if l, i ∈ {1, 2} or l, i ∈ {3, 4},

∑
j

εJJ1J2εjj1j2ε
J ′J3J4εjj3j4q

−2
JiJl

q−2
ji jl

∏
k �=l,i

q−1
Jkjk

= q2
JJ ′ Tr(q−2) + δJJ ′

det(q)2
, otherwise. (4.58)

Thus, we can finish with a tedious but straightforward computation:〈
F̂ JσJ ′σ ′

der

〉 = σσ ′

4

1

4

(
8

3

)4
t4a9

�8
P

(2|det(q)|3/8t [9/8−1]α)4

{[
a4

1
4q2

JJ ′

det(q)2

]
(4.59)

+
s2

4

[
4a3

1

(
[a1 + 3a3]

4q2
JJ ′

det(q)2
Tr(q−2) − a1

2

2
[
q2

JJ ′ Tr(q−2) − δJJ ′
]

det(q)2

)
+ a2

1

(
4[a1 + a2]26

4q2
JJ ′

det(q)2
Tr(q−2) − 2a1[a1 + a2]12

2
[
q2

JJ ′ Tr(q−2) − δJJ ′
]

det(q)2

+ 4a2
1
q2

JJ ′ Tr(q−2) + δJJ ′

det(q)2

)]}
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= σσ ′

4

t4a9

�8
P

1√|det(p)|
×
{
p2

JJ ′ +
t

4

[
p2

JJ ′ Tr(p−2)

[
4(1 + 16a3)− 1

4
+

8

3
(3 + 16a2)

2 − 4(3 + 16a2) + 1

]
+ δJJ ′

[
1

4
+ 4(3 + 16a2) + 1

]]}
= σσ ′

4

t4a9

�8
P

1√|det(p)|
{
p2

JJ ′ + t

[
1173

128
p2

JJ ′ Tr(p−2) +
19

32
δJJ ′

]}
. (4.60)

Again as a last step, we transform to the dimensionful quantity P = a2p:〈
F̂ JσJ ′σ ′

der

〉 = σσ ′

4

1√|det(P )|
{
P 2

JJ ′ +
�4

P

t

[
1173

128
P 2

JJ ′ Tr(P −2) +
19

32
δJJ ′

]}
.

4.3.3. The mass term. We now consider the mass term. Its basic building block is the volume
operator itself, so we can apply theorem 4.3 with r = 1. In the by now familiar way, we find

〈V̂v〉 = a3|det(q)|1/2t3α/2

{
1 +

s2

4

∑
M,m

f
(2)
1/4(1)CMm,Nn + f

(1)
1/4(1)CMmCNn

}

= a3|det(q)|1/2t3α/2

{
1 +

s2

4
Tr(q−2)

[
1

4
− 4

3

32

]}
= a3|det(p)|1/2

{
1 − t

32
Tr(p−2)

}
=
√

det P(v)

[
1 +

�7
P√
t

1

32
Tr P −2(v)

]
. (4.61)

4.3.4. The Maxwell Hamiltonian. The operators F̂el and F̂mag differ by their c-number
coefficients, but the gravitational operator at the heart of both is the same, corresponding to
N = 2 and r = 1/2. In both cases, we have to compute 〈̂qJ1j (1/2)̂qJ2j (1/2)〉.

Let us use the definitions of a1, a2, a3 given in (4.51) and (4.52) and (4.53). We find

〈̂qJ1j (1/2)̂qJ2j (1/2)〉 = δj1j2(2|det(q)|1/4t [3/4−1]α)2

×
{[ 2∏

k=1

DJkσkjk
(1/2)

]
+

s2

4

∑
M,m

[ 2∑
l=1

D
Mm,Mm
Jlσljl

(1/2)
∏
k �=l

DJkσkjk
(1/2)

+
∑

1�i<l�2

DMm
Jiσiji

(1/2)DMm
Jlσljl

(1/2)
∏
k �=l,i

DJkσkjk
(1/2)

]}

= (2a1|det(q)|1/4t [3/4−1]α)2

{
q−2

J1J2
+

s2

4

[
2

([
1 + 3

a3

a1

]
q−2

J1J2
Tr(q−2) − 1

2
q−4

J1J2

)
+ 4

[
1 +

a2

a1

]2

q−2
J1J2

Tr(q−2) − 4

[
1 +

a2

a1

]
q−4

J1J2
+ q−2

J1J2
Tr(q−2)

]}
= (|det(q)|1/4t [3/4−1]α/4)2

{
q−2

J1J2
+

s2

4

[
q−2

J1J2
Tr(q−2)

×
(

7 + 3
35

27
− 7

2
+

32 × 52

26

)
− q−4

J1J2

(
5 − 7

4

)]}
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=
√|det(p)|

16

{
p−2

J1J2
+ t

[
763

512
q−2

J1J2
Tr(p−2) − 13

16
p−4

J1J2

]}
. (4.62)

We can now employ this result to give the explicit expressions for 〈F̂el〉 and 〈F̂el〉. Upon using
the above expectation value, we find that〈

F̂ IσI ′σ ′
el

〉 = σσ ′

4

[√
det P(v)P −2

II ′ +
�4

P

t

(
763

512
P −2

II ′ Tr P −2 − 13

16
P −4

II ′

)]
,

〈
F̂ IσI ′σ ′

mag

〉 = 1

64

[√
det P(v)P −2

II ′ +
�4

P

t

(
763

512
P −2

II ′ Tr P −2 − 13

16
P −4

II ′

)]
.

4.3.5. The fermionic Hamiltonian. Due to explicit dependence of (4.49) on h′
e, the

expectation values computed so far are not quite sufficient in order to compute the full
expectation value of the fermionic Hamiltonian. Fortunately, the Abelian nature of U(1)3

allows for a simple transcription of theorem 4.1 to this slightly more complicated situation.
Note that at this point coherent states are, for the first time, essential, because weave states,
being spin-network states, would result in zero expectation values.

Theorem 4.4. For the classical limit and lowest order quantum corrections of expectation
values of monomials of the operators q̂Jσj (r) times a holonomy operator for topologically
cubic graphs, we have〈
ψt

{gJσj }, ĥ
µ

J0σ0j0

∏N
k=1 q̂Jkσkjk

(rk)ψ
t
{gJσj }

〉∥∥ψt
{gJσj }

∥∥2 = e−t/4h
µ

J0σ0j0
(2|det(q)|r/2t [3r/2−1]α)N

×
{[ N∏

k=1

DJkσkjk
(r)

]
+

s2

4

∑
M,m

[ N∑
l=1

D
Mm,Mm
Jlσljl

(r)
∏
k �=l

DJkσkjk
(r)

+
∑

1�i<l�N

DMm
Jiσiji

(r)DMm
Jlσljl

(r)
∏
k �=l,i

DJkσkjk
(r)

]}
p→p+µσ0δJ0j0 t/4

,

(4.63)〈
ψt

{gJσj },
∏N

k=1 q̂Jkσkjk
(rk)ĥ

µ

J0σ0j0
ψt

{gJσj }
〉∥∥ψt

{gJσj }
∥∥2 = e−t/4h

µ

J0σ0j0
(2|det(q)|r/2t [3r/2−1]α)N

×
{[ N∏

k=1

DJkσkjk
(r)

]
+

s2

4

∑
M,m

[ N∑
l=1

D
Mm,Mm
Jlσljl

(r)
∏
k �=l

DJkσkjk
(r))

+
∑

1�i<l�N

DMm
Jiσiji

(r)DMm
Jlσljl

(r)
∏
k �=l,i

DJkσkjk
(r)

]}
p→p−µσ0δJ0j0 t/4

,

where the constants DJσj (r),D
Mm
Jσj (r),D

Mm,Nn
Jσj (r) are defined in theorem 4.2 while f

(k)
r/4 (1) =

(r/4, k) are simply the binomial coefficients. The first correction is small as long as α < 1/2.
The error as compared to the first quantum correction of order O(t(N[3r/2−1]αs2) is a constant
of order unity times t (N[3r/2−1]αsT and thus small as long as 0 < α.

Of course, in computing the quantum correction in terms of p or q rather than
p′ = p ± µσ0δJ0j0 t/4 or q ′ = p′t−α up to order t or s2, respectively, one is supposed to
insert this substitution into (4.63) and drop all higher order terms.
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Proof of theorem 4.4. We begin with the operator identity [9]

ĥ
µ

J0σ0j0
= e−t/2 e−µp̂J0σ0j0 ĝ

µ

J0σ0j0
(4.64)

and exploit that our coherent states are eigenstates for ĝ
µ

J0σ0j0
with eigenvalue g

µ

J0σ0j0
. Moreover,

our coherent states are expanded in terms of momentum operator eigenfunctions on which the
operators e−µp̂J0σ0j0 and q̂Jkσkjk

(rk) are simultaneously diagonal. It follows that〈
ĥ

µ

J0σ0j0

N∏
k=1

q̂Jkσkjk
(rk)

〉
= e−t/2h

µ

J0σ0j0
e−µpJ0σ0j0

〈
eµp̂J0σ0j0

N∏
k=1

q̂Jkσkjk
(rk)

〉
,〈

N∏
k=1

q̂Jkσkjk
(rk)ĥ

µ

J0σ0j0

〉
= e−t/2h

µ

J0σ0j0
eµpJ0σ0j0

〈
e−µp̂J0σ0j0

N∏
k=1

q̂Jkσkjk
(rk)

〉
.

(4.65)

It is therefore sufficient to consider the expectation values〈
eνp̂J0σ0j0

N∏
k=1

q̂Jkσkjk
(rk)

〉

=
∑

nJσj
exp

(∑
Jσj

[−tn2
Jσj + 2nJσj (pJσj + νtδJσj ;J0σ0j0/2)

])∏N
k=1 λ

rk

Jkjk
(nJσj )∥∥ψt

{gJσj }
∥∥2

=
(∑

nJσj

∫
d18x exp

(∑
Jσj

[−x2
Jσj + 2xJσj (pJσj − iπnJσj + νtδJσj ;J0σ0j0/2)

/
T
])

×
N∏

k=1

λ
rk

Jkjk
(xJσj /T )

)/
t9
∥∥ψt

{gJσj }
∥∥2

, (4.66)

where in the second step we have again performed a Poisson transformation with periodicity
parameter T = √

t (see the companion paper for more details).
As in [1], we introduce the coordinates x±

Jj = (xJ,+,j ±xJ,−,j )/2 and similarly for p±
Jj , n

±
Jj

with xJj := x−
Jj , pJj := p−

Jj , nJj := n−
Jj . Then one can split the 18-dimensional integral into

two nine-dimensional ones with the result

〈·〉 = 29

t9
∥∥ψt

{gJσj }
∥∥2

∑
nJσj

∫ d9x+ exp

2
∑
Jj

[−(x+
Jj

)2
+ 2x+

Jj (p
+
Jj − iπn+

Jj + νtδJj ;J0j0/4)
/
T
]

×
[ ∫

d9x exp

(
2
∑
Jj

[−x2
Jj + 2xJj (pJj − iπnJj + νσ0tδJj ;J0j0/4)/T ]

)

×
N∏

k=1

λ
rk

Jkjk
(xJj /T )

]
. (4.67)

Then, using the norm of our coherent states and dropping the O(t∞) terms which come from
those with

∑
Jσj n2

Jσj > 0, we find

〈·〉 =
√

2

π

9

exp

(
2

t

∑
Jj

[(
p+ + νδJ0j0 t/4

)2
Jj

+
(
p + νσ0δJ0j0 t/4

)2
Jj

− (p+)2
Jj − p2

Jj

])

×
∫ d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λ
rk

Jkjk

(
x +

p + νσ0tδJ0j0/4

T

)
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=
√

2

π

9

eνpJ0σ0j0 et/4

∫ d9x exp

(
−2
∑
Jj

x2
Jj

) N∏
k=1

λ
rk

Jkjk

(
x +

p + νσ0tδJ0j0/4

T

) .

(4.68)

Combining (4.65) and (4.68), we see that compared to (4.44) and the prefactor of e−t/4hJ0σ0j0

the remaining integral in (4.68) is that for the expectation value of the operator monomial∏N
k=1 q̂Jkσkjk

(rk) just that we have to evaluate it at p + νσ0tδJ0j0/4 instead of at p. �

We are now ready to apply theorems 4.2.1 and 4.3.5 to the case at hand. For r = 1/2, we
have

a1 := f
(1)
1/8(1) = 1

8 , a2 := f
(2)
1/8(1) = − 1

8
7
16 = − 7

128 ,

a3 := f
(3)
1/8(1) = 7

128
15
24 = 35

1024

(4.69)

and

DJσj (1/2) = a1q
−1
Jj ,

DMm
Jσj (1/2) = a1

(
2q−1

Jj q−1
Mm − q−1

Jmq−1
Mj

)
+ 2a2q

−1
Jj q−1

Mm

= 2[a1 + a2]q−1
Jj q−1

Mm − a1q
−1
Jmq−1

Mj ,

D
Mm,Nn
Jσj (1/2) = a1

2

[
det(q−1)εjmnεJMN + q−1

Jj

(
q−1

Mmq−1
Nn − q−1

Mnq
−1
Nm

)
+ 2q−1

Mm

(
q−1

Jj q−1
Nn − q−1

Jn q−1
Nj

)]
+ 2a2q

−1
Jj

(
2q−1

Mmq−1
Nn − q−1

Mnq
−1
Nm

)
+ 3a3q

−1
Jj q−1

Mmq−1
Nn

= a1

2
det(q−1)εjmnεJMN +

[
3a1

2
+ 2a2 + 3a3

]
q−1

Jj q−1
Mmq−1

Nn

−
[a1

2
+ 2a2

]
q−1

Jj q−1
Mnq

−1
Nm − a1

2
q−1

Jn q−1
Mmq−1

Nj . (4.70)

It follows that∑
M,m

D
Mm,Mm
Jσj (1/2) = [a1 + 3a3]q−1

Jj q−1
Mmq−1

Mm − a1

2
q−1

Jmq−1
Mmq−1

Mj

= [a1 + 3a3]q−1
Jj tr(q−2) − a1

2
q−3

Jj ,∑
Mm

DMm
J1σ1j1

(1/2)DMm
J2σ2j2

(1/2) = (
2[a1 + a2]q−1

J1j1
q−1

Mm − a1q
−1
J1m

q−1
Mj1

)
× (

2[a1 + a2]q−1
J2j2

q−1
Mm − a1q

−1
J2m

q−1
Mj2

)
= 4[a1 + a2]2q−1

J1j1
q−1

J2j2
tr(q−2)

− 2a1[a1 + a2]
(
q−1

J1j1
q−3

J2j2
+ q−1

J2j2
q−3

J1j1

)
+ a2

1q
−2
J1J2

q−2
j1j2

. (4.71)

The relevant quantity for the Dirac Hamiltonian is

F̂6 := − ih̄

2

∑
v,v′∈V (γ )

{
εJMNεjmn

44

2
[θ̂B(v′)(θ̂A(v))† − θ̂ ′

B(v′)(θ̂ ′
A(v))†]

×
∑

σ

{〈[
δv′,eσ

J (v,1)

(
σj

[
12 +

ĥJσk(v) − 1

2i
τk

])
AB
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− δv′,eσ
J (v,0)δAB

]
q̂Mm(v, 1/2)q̂Nn(v, 1/2)

〉
−
〈
q̂Mm(v′, 1/2)q̂Nn(v

′, 1/2)

[
δv,eσ

J (v′,1)

([
12 +

ĥJσk(v
′)−1 − 1

2i
τk

]
σj

)
AB

− δv,eσ
J (v′,0)δAB

]〉}
+ 2k0δABδv,v′ [θ̂ ′

B(v′)(θ̂A(v)† − θ̂B(v′)(θ̂ ′
A(v))†]

}
, (4.72)

or more explicitly

F̂6 − ih̄

2

∑
v,v′∈V (γ )

[−2k0δABδv,v′ [θ̂ ′
B(v′)(θ̂A(v)† − θ̂B(v′)(θ̂ ′

A(v))†]

= − ih̄

2

∑
v,v′∈V (γ )

εJMNεjmn

44

2
[θ̂B(v′)(θ̂A(v))† − θ̂ ′

B(v′)(θ̂ ′
A(v))†]

×
∑

σ

{[(
δv′,eσ

J (v,1)

(
σj

[
12 +

(−1)

2i
τk

])
AB

− δv′,eσ
J (v,0)δAB

)
〈q̂Mm(v, 1/2)q̂Nn(v, 1/2)〉

+

(
δv′,eσ

J (v,1)

(
σj

1

2i
τk

))
AB

〈ĥJσk(v)q̂Mm(v, 1/2)q̂Nn(v, 1/2)〉
]

−
[(

δv,eσ
J (v′,1)

([
12 +

(−1)

2i
τk

]
σj

)
AB

− δv,eσ
J (v′,0)δAB

)
〈q̂Mm(v′, 1/2)q̂Nn

× (v′, 1/2)〉 + δv,eσ
J (v′,1)

(
1

2i
τkσj

)
AB

〈q̂Mm(v′, 1/2)q̂Nn(v
′, 1/2)ĥJσk(v

′)−1〉
]}

.

(4.73)

Let us write q = p(v)t−α, q ′ = p(v′)t−α, q1 = p1(v)t−α, q ′
1 = p1(v

′)t−α , where p1(v) =
p(v) + σ tδJk/4, p1(v

′) = p(v′) − σ tδJk/4. Then, using theorem 4.4, we may write (4.73) in
the reduced form

Ĥ eff
γ − ih̄

2

∑
v,v′∈V (γ )

−2k0δABδv,v′ [θ̂ ′
B(v′)(θ̂A(v)† − θ̂B(v′)(θ̂ ′

A(v))†]

= − ih̄

2

∑
v,v′∈V (γ )

εJMNεjmn

44

2
[θ̂B(v′)(θ̂A(v))† − θ̂ ′

B(v′)(θ̂ ′
A(v))†]

×
∑

σ

{[(
δv′,eσ

J (v,1)

(
σj

[
12 +

(−1)

2i
τk

])
AB

− δv′,eσ
J (v,0)δAB

)
〈q̂Mm(1/2)q̂Nn(1/2)〉q

+ e−t/4

(
δv′,eσ

J (v,1)

(
σj

hJσk(v)

2i
τk

))
AB

〈q̂Mm(1/2)q̂Nn(1/2)〉q1

]
−
[(

δv,eσ
J (v′,1)

([
12 +

(−1)

2i
τk

]
σj

)
AB

− δv,eσ
J (v′,0)δAB

)
〈q̂Mm(1/2)q̂Nn(1/2)〉q ′

+ e−t/4δv,eσ
J (v′,1)

(
hJσk(v

′)−1

2i
τkσj

)
AB

〈q̂Mm(1/2)q̂Nn(1/2)〉q ′
1

]}
. (4.74)
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It remains to apply theorem 4.4. We have explicitly for arbitrary invertible q

εJJ1J2εjj1j2〈q̂J1j1(1/2)q̂J2j1(1/2)〉 ≡ εJJ1J2εjj1j2〈q̂J1σ1j1(1/2)q̂J2σ2j2(1/2)〉
= εJJ1J2εjj1j2(2|det(q)|1/4t [3/4−1]α)2

×
{[

2∏
k=1

DJkσkjk
(1/2)

]
+

s2

4

∑
M,m

[
2∑

l=1

D
Mm,Mm
Jlσljl

(1/2)
∏
k �=l

DJkσkjk
(1/2)

+
∑

1�i<l�2

DMm
Jiσiji

(1/2)DMm
Jlσljl

(1/2)
∏
k �=l,i

DJkσkjk
(1/2)

]}
= εJJ1J2εjj1j2(2|det(q)|1/4t [3/4−1]α)2

×
{
a2

1q
−1
J1j1

q−1
J2j2

+
s2

4

[
a1

(
q−1

J1j1

(
[a1 + 3a3]q−1

J2j2
tr(q−2) − a1

2
q−3

J2j2

)
+ q−1

J2j2

(
[a1 + 3a3]q−1

J1j1
tr(q−2) − a1

2
q−3

J1j1

))
+ 4[a1 + a2]2q−1

J1j1
q−1

J2j2
tr(q−2)

− 2a1[a1 + a2]
(
q−1

J1j1
q−3

J2j2
+ q−1

J2j2
q−3

J1j1

)
+ a2

1q
−2
J1J2

q−2
j1j2

]}
. (4.75)

We have
εJJ1J2εjj1j2q−1

J1j1
q−1

J2j2
= 2 det(q−1)qJj ,

εJJ1J2εjj1j2q−1
J1j1

q−3
J2j2

= det(q−1)(qJj tr
(
q−2 − q−1

Jj

)
,

εJJ1J2εjj1j2q−2
j1j2

= 0.

(4.76)

Thus we can finish (4.75) with

εJJ1J2εjj1j2〈q̂J1j1(1/2)q̂J2j1(1/2)〉 = (2|det(q)|1/4t [3/4−1]α)2 det(q−1)

×
{

2a2
1qJj +

s2

4

[
2a1

(
2[a1 + 3a3]qJj tr(q−2) − a1

2

[
qJj tr(q−2) − q−1

Jj

])
+ 8[a1 + a2]2qJj tr(q−2) − 4a1[a1 + a2]

[
qJj tr(q−2) − q−1

Jj

]]}
= 4t−α/2/

√
det(q)

{
2a2

1qJj +
s2

4

[
(4a1[a1 + 3a3] + 8[a1 + a2]2)qJj tr(q−2)

− (a2
1 + 4a1[a1 + a2]

)(
qJj tr(q−2) − q−1

Jj

)]}
= t−α/2

16
√

det(q)

{
2qJj +

s2

4

[
(4[1 + 24a3] + 8[1 + 8a2]2)qJj tr(q−2)

− (1 + 4[1 + 8a2])
(
qJj tr(q−2) − q−1

Jj

)]} = t−α/2

16
√

det(q)

×
{

2qJj +
s2

4

[(
4 +

32 × 5

25
+

34

25

)
qJj tr(q−2) − 13

4

(
qJj tr(q−2) − q−1

Jj

)]}
= 1

8
√

det(p)

{
pJj +

t

27

[
75pJj tr(p−2) + 52p−1

Jj

]}
= t−α/2

8
√

det(q)

{
qJj +

s2

27

[
75qJj tr(q−2) + 52q−1

Jj

]}
. (4.77)

Note that the classical limit is precisely the correct one while the relative first quantum
correction is given by approximately 1.0s2δJj for flat initial data.
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Now we should compute the additional corrections arising when expanding

e−t/4εJJ1J2εjj1j2〈q̂J1j1(1/2)q̂J2j1(1/2)〉q→q+t1−ανσ0δJ0j0 /4 (4.78)

at q up to order s2. However, it is clear that the additional correction in e−t/4 − 1 = s2O(t2α)

and that from δq = s2O(tα) are both of higher order in s so that we can drop the factors of
e−t/4 and the substitutions q → q1, q

′ → q ′
1 in (4.74) which therefore can be written, up to

order s2, as

Ĥ eff
γ − ih̄

2

∑
v,v′∈V (γ )

[−2k0δABδv,v′ [θ̂ ′
B(v′)(θ̂A(v)† − θ̂B(v′)(θ̂ ′

A(v))†]

= − ih̄

2

∑
v,v′∈V (γ )

εJMNεjmn[θ̂B(v′)(θ̂A(v))† − θ̂ ′
B(v′)(θ̂ ′

A(v))†]

×
∑

σ

{[(
δv′,eσ

J (v,1)

(
σj

[
12 +

hJσk(v) − 1

2i
τk

])
AB

− δv′,eσ
J (v,0)δAB

)
×〈q̂Mm(1/2)q̂Nn(1/2)〉q=q(v)

]
−
[(

δv,eσ
J (v′,1)

([
12 +

hJσk(v
′)−1 − 1

2i
τk

]
σj

)
AB

− δv,eσ
J (v′,0)δAB

)
〈q̂Mm(1/2)q̂Nn(1/2)〉q=q(v′)

]}
= − ih̄

2

∑
v,v′∈V (γ )

[θ̂B(v′)(θ̂A(v))† − θ̂ ′
B(v′)(θ̂ ′

A(v))†]

×
∑

σ

{[(
δv′,eσ

J (v,1)

(
σj

[
12 +

hJσk(v) − 1

2i
τk

])
AB

− δv′,eσ
J (v,0)δAB

)
× 1

8
√

det(p)

(
pJj +

t

27

[
75pJj tr(p−2) + 52p−1

Jj

])
(v)

]
−
[(

δv,eσ
J (v′,1)

([
12 +

hJσk(v
′)−1 − 1

2i
τk

]
σj

)
AB

− δv,eσ
J (v′,0)δAB

)
× 1

8
√

det(p)

(
pJj +

t

27

[
75pJj tr(p−2) + 52p−1

Jj

])
(v′)

]}
. (4.79)

5. Towards dispersion relations

In the present section, we will bring together some of the results of the companion paper
and the previous section: we will compute corrections to the standard dispersion relations for
the scalar and the electromagnetic field resulting from its coupling to QGR. The necessary
calculations are performed in section 5.1 for the scalar and in 5.2 for the electromagnetic field.
Similar computations can be performed for the fermions but they give no new insights so that
we leave this to the interested reader. We have set up the problem in such a way that the
calculations are for an arbitrary background metric but for a start we confine ourselves to the
flat one. In section 5.3, we will discuss the results and compare them to those obtained in
[25, 26]. In our companion paper, we have given some conceptual discussion of the issues
involved in obtaining dispersion relations from QGR, so we will mainly focus on the concrete
calculations.

In [1], we have obtained Hamiltonian operators for the matter fields of the form

Ĥ eff
γ = 1

2

∑
v,v′,l,l′

p̂l(v)P ll′(v, v′)p̂l′(v
′) + q̂l(v)Qll′(v, v′)̂ql′(v

′),
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where the coefficients P,Q are the expectation values of specific operators on the gravitational
Hilbert space. We have computed these expectation values in the preceding section.

Note that these Hamiltonians are normal ordered with respect to the annihilation and
creation operators defined in [1]. Thus, the expectation value of these Hamiltonians in a
coherent state peaked at a specific classical field configuration will yield precisely its classical
value. Therefore, in discussing the dispersion relations, we will assume the matter quantum
fields to be in a coherent state and can effectively work with the classical fields p, q. A
similar argument can be given for the fully quantized Hamiltonians of [1], only that one has
to consider a coherent state for the combined system of quantum matter and quantum gravity
displayed in section 4 of [1] as well.

Summing up, in the following we will investigate Hamiltonians of the form〈
Ĥ eff

γ

〉 = 1

2

∑
v,v′,l,l′

pl(v)P ll′(v, v′)pl′(v
′) + ql(v)Qll′(v, v′)ql′(v

′). (5.1)

The coefficients P,Q can in principle be taken to be expectation values in a coherent state for
the gravitational field peaked at an arbitrary point of the classical phase space. However, since
we are interested in dispersion relations, a notion that by definition describes the propagation
of fields in flat space, we will restrict considerations to the case of GCS approximating flat
Euclidean space (denoted by �flat in the following). Also, when considering application to
situations such as the γ -ray burst effect, the curvature radius is always huge compared to the
Planck length and therefore does not lead to any new quantum effects but just to classical
redshifts which can easily be accounted for.

Let us choose the canonical Euclidean coordinate system as global coordinates on 	. In
the U(1)3 setting, we can model the flat space situation by choosing the classical values

AI
a(x) = 0, Ea

I (x) = δa
I for all x ∈ 	

with respect to our global coordinates. Therefore, all holonomies are trivial and for the fluxes
we find

pe
i (v) = 1

a2

∫
Se

dni.

We will also use the dimensionful quantity P e
i (v) = a2pe

i (v).
Let us come back to the discussion of (5.1): since the coefficients in these Hamiltonians

vary from vertex to vertex, the equations of motion induced by (5.1) are still highly complicated
and an exact analytical treatment is beyond the scope of the present paper. Moreover, the
solutions to the equations of motion will not have the character of plane waves, so the notion
of a dispersion relation is ill defined anyway.

In [1], we argued that in the limit of low energies or, equivalently, large wavelength, the
field propagation induced by (5.1) can be described by a dispersion relation: the graph γ , that
the GCS is based on, breaks Euclidean invariance. However, on large scales this invariance is
approximately restored.

As we cannot easily compute the solutions to the equations of motion of (5.1) and show
that they reduce to approximate plane waves with a specific dispersion relation in the low
energy limit, the question is how one can nevertheless obtain the dispersion relation governing
the propagation for low energies.

In [1], we have sketched a tentative answer, which we will work out in the present section
for the examples of the scalar and the electromagnetic field. Let us review the basic idea
of the procedure before we spell out the details. We are going to replace (5.1) by a simpler



Towards the QFT on curved spacetime limit of QGR: II 943

Hamiltonian which

• is a good approximation of (5.1) for slowly varying q and p and
• is simple enough such that the EOM can be solved exactly.

The resulting theory will be an approximation for low energies, the detailed information
contained in the full Hamiltonian (5.1) which is only relevant for processes of very high
energy gets integrated out. This idea also underlies the works [25, 26] and, at a rather simple
level, is the basis for the recovery of continuum elasticity theory from the atomic description
in solid-state physics (see for example [39]).

We will now turn to the scalar field Hamiltonian and explain the steps we will take to
implement the above idea in detail. The Maxwell Hamiltonian will be treated along the same
lines in section 5.2.

5.1. Dispersion relation for the scalar field

The basic field variables underlying the quantization of the scalar field in [1],

φv = φ(�x(v)) and πv =
∫

Rv

π, (5.2)

were represented by the operators −i ln U(v), Yv . Rv is the cell containing v in a polyhedral
decomposition of 	 dual to γ . According to what we have said in the introduction to this
section, in the considerations to follow we will replace these operators by their classical
counterparts (5.2) upon assuming the quantum fields to be in a coherent state.

Using the results of section 4, the Hamiltonian for the scalar field we are considering can
be written as

H eff
KG = 1

2QKG
(Fkin(π) + Fder(φ) + K2Fm), (5.3)

where

Fm =
∑

v

√
det P(v)

[
1 +

�7
P√
t

1

32
Tr P −2(v)

]
φ2

v ,

Fder = 1

4

∑
v

∑
IσI ′σ ′

[
σσ ′P 2

II ′(v)√
det P(v)

+
�4

P

t

σσ ′
√

det P(v)

(
1173

128
Tr(P −2)P 2

II ′(v) +
19

32
δII ′

)]
∂+
eσI

φv∂
+
eσ ′I ′ φv,

Fkin =
∑

v

1√
det P(v)

[
1 +

�4
P

t

1707

512
TrP −2(v)

]
π2

v .

Now we will express the field quantities φv, πv by the basic fields φ(�x), π(�x), using an
approximation which is good in the case φ(�x), π(�x) vary only very little on the scale ε of the
graph. The idea is to isolate the rough structural properties of (5.3) that lead to corrections as
compared to the standard dispersion relations and to discard the microscopic details that will
only yield higher order corrections which are not visible in the long wavelength regime.

To this end, we Taylor expand the field variables φv, πv around the location �x(v) of the
vertex v, i.e. we make the replacements

φv −→ φ(�x(v)),

πv −→ π(�x(v))Vol(Rv) + a(a)(v)∂aπ(�x(v)) + · · · ,
∂+
eI

φv −→ b
(a)
I ∂aφ(�x(v)) + b

(a)
I b

(a′)
I ∂a∂a′φ(�x(v)) + · · ·
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and truncate the right-hand sides at the desired order. Note that in the above formulae we have
introduced the geometric quantities

b
(a)
I (v)

.= xa(f (eI (v))) − xa(v), a(a)(v)
.=
∫

Rv

xad3x,

and let us furthermore define

b̃
(a)
I (v)

.= 1
2

(
xa[f (eI (v))] − xa[f (e−

I (v))]
)

which we will have opportunity to use below. Also, it is perhaps worthwhile to remind the
reader at this point that all edges are taken to be outgoing from v.

Then we replace the coefficients of the continuum fields by graph averages and the sums
by integrals. As argued in [1], this is a good approximation, as long as φ and π are slowly
varying on the graph scale ε. Let us detail this step for the example of the mass term. We
write

Fm =
∑

v

Vol(Rv)

√
det P(v)

Vol(Rv)

[
1 +

�7
P√
t

1

32
Tr P −2(v)

]
φ2

v

≈
∑

v

φ2
vVol(Rv)

(〈〈√
det P( · )
Vol(R·)

〉〉
+

�7
P√
t

1

32

〈〈√
det P( · ) Tr P −2( · )

Vol(R·)

〉〉)
≈
∫

	

φ(x) d3x

(〈〈√
det P( · )
Vol(R·)

〉〉
+

�7
P√
t

1

32

〈〈√
det P( · ) Tr P −2( · )

Vol(R·)

〉〉)
,

where 〈〈·〉〉 denotes the graph average

〈〈C( · )〉〉 .= 1

N

∑
v

C(v)

for vertex-dependent quantities C(v). N denotes the number of vertices of the graph. In the
case that the graph has a countably infinite number of vertices, the above definition has to be
replaced by an appropriate limit of finite sums.

Analogously, we make the replacements

Fkin −→
∫

	

(A0 + A1) π2(�x) + A
(a)(a′)
0 ∂aπ(�x)∂a′π(�x) + · · · d3x,

Fder −→
∫

	

(
B

(a)(a′)
0 + B

(a)(a′)
1

)
∂aφ(�x)∂a′φ(�x)

+
1

4
B

(ab)(a′b′)
0 ∂a∂bφ(�x)∂a′∂b′φ(�x) +

1

3
B

(abc)(a′)
0 ∂a∂b∂cφ(�x)∂a′φ(�x) + · · · d3x,

Fm −→
∫

	

(C0 + C1) φ2(�x) + · · · d3x,

where the coefficients in the kinetic term are defined to be

A0 =
〈〈

V 2
v√

det P(v)

〉〉
,

A1 = 1707

512

�4
P

t

〈〈
V 2 TrP(v)√

det P(v)

〉〉
,

A
(a)(a′)
1 =

〈〈
a(a)(v)a(a′)(v)√

det P(v)

〉〉
,
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those in the derivative term as

B
(a)(a′)
0 =

∑
I,I ′

〈〈√
det P(v)P 2

II ′ b̃
a
I b̃

a′
I ′ (v)

〉〉
,

B
(a)(a′)
1 = �4

P

t

∑
I,I ′

〈〈√
det P(v)

(
1173

128
Tr(P −2)P 2

II ′(v) +
19

32
δII ′

)
b̃a

I b̃
a′
I ′

〉〉
,

B
(abc)(a′)
0 =

∑
I,I ′

〈〈√
det P(v)P 2

II ′ b̃
a
I b̃

b
I b̃

c
I b̃

a′
I ′ (v)

〉〉
,

B
(ab)(a′b′)
0 =

∑
I,I ′

〈〈√
det P(v)P 2

II ′ b̃
a
I b̃

b
I b̃

a′
I ′ b̃

b′
I ′(v)

〉〉
,

and finally the coefficients in the mass term by

C0
.= 〈〈√

det P(v)
〉〉
,

C1
.= 1

32

�7
P√
t

〈〈√
det P(v) Tr P −2(v)

〉〉
.

Note that we have just written down the leading-order terms and the first-order corrections,
where a ‘first-order correction’ is either

(i) a term that is next to leading order in the Taylor expansion and leading order with respect
to the fluctuation calculation, or

(ii) a term that is leading order in the Taylor expansion and next to leading order in the
fluctuation calculation.

Terms that are leading order in the fluctuation calculation carry a superscript 0 while those
that are first-order corrections in the fluctuation calculation are marked by a superscript 1.
Finally, note that we have dropped terms that end up being a total derivative and therefore do
not contribute to the Hamiltonian.

Before we write down the resulting dispersion relation, we invoke our restriction to
random processes which imply Euclidean invariance on large scales of the resulting random
graphs. That is, we assume

A
(a)(a′)
0 ∼ δaa′

, B
(a)(a′)
0 ∼ δaa′

, B
(a)(a′)
1 ∼ δaa′

.

For the tensors of fourth rank, the situation is slightly more complicated: δabδcd , δacδdb and
δadδbc span the space of rotationally invariant tensors of fourth rank. But contraction of any
of them with kakbkckd is equal to |k|4.

We can now write down the dispersion relation for the Hamiltonian resulting from the
above replacements

ω2(�k) = K2[A0C0 + A0C1 + A1C0] + |k|2[A0B0 + A0B
(1)(1)
1 + A1B

(1)(1)
0 + K2A

(1)(1)
0 C0

]
+ |k|4[ 1

4A0B
(11)(11)
0 − 1

3A0B
(111)(1)
0 + A

(1)(1)
0 B

(1)(1)
0

]
+ · · · . (5.4)

We will discuss the physical content of (5.4) in section 5.3. Before that, we give a similar
calculation for the electromagnetic field.

5.2. The electromagnetic field

This section is devoted to the calculation of an (approximate) dispersion relation for the
electromagnetic field. The treatment is completely analogous to that given for the scalar field
in the last section, so we can be rather brief here. Again, we introduce the continuum fields
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eI

e
J

e
K

v

α

ε
IJK

=1

∼
I

Figure 1. The loop α̃I (v).

Aa(�x), Ea(�x) underlying the regularization and quantization of the Hamiltonian performed in
[1] and also the classical quantities

Ee =
∫

Se

E which was represented by Ye,

Ae =
∫

e

A which was represented by −i ln He

(5.5)

(subject to the subtleties associated with the logarithm spelled out in detail in [1]) in the
quantum Hamiltonian (4.48). When we replace the gravitational operators in the Hamiltonian
by their expectation values obtained in the last section and the operators for the matter fields
by their classical counterparts (5.5), we get

〈ĤM,γ 〉�flat = 1

2QM
(Fel(E) + Fmag(B)),

where

Fel(E) =
∑

v

∑
IσI ′σ ′

[√
det P(v)P −2

II ′ +
�4

P

t

(
763

512
P −2

II ′ TrP −2 − 13

16
P −4

II ′

)]
σσ ′

4
EeσI

(v)Eeσ ′I ′ (v),

Fmag(A) = 1

16

∑
v

∑
II ′

[√
det P(v)P −2

II ′ +
�4

P

t

(
763

512
P −2

II ′ TrP −2 − 13

16
P −4

II ′

)]
Aα̃I

Aα̃I ′ ,

where α̃(v) is the loop around the vertex v ‘in the I-plane’ as depicted in figure 1. Now we
Taylor expand Aα,Ee. To this end, we introduce some geometric quantities:

se
a(v)

.=
∫

Se
v

na(�y)dy, se
ab(v)

.=
∫

Se
v

na(�y)(�y − �x(v))b dy,

se
abc(v)

.=
∫

Se
v

na(�y)(�y − �x(v))b(�y − �x(v))c dy,

where n denotes the normal to the surface of integration. Moreover,

s̃I
a (v)

.= 1
2

(
s
eI

b (v) − s
e−
I

c (v)
)
, s̃I

ab(v)
.= 1

2

(
s
eI

ab(v) − s
e−
I

ab (v)
)

, . . . .

Now we can make the replacement for the electric field:

Ee −→ se
a(v)Ea(�x(v)) + se

ab(v)∂bEa(�x(v)) + · · · .
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We proceed in a similar fashion for the connection:

bab
α (v)

.=
∫ 1

0
α̇a(s)(�α(s) − �x(v))b, babc

α (v)
.=
∫ 1

0
α̇a(s)(�α(s) − �x(v))b(�α(s) − �x(v))c,

(5.6)

whence we replace

Aα −→ bab
α (v)∂bAa(�x(v)) + 1

2babc
α (v)∂b∂cAa(�x(v)) + · · · .

Inserting this into the expressions for Fel and Fmag and subsequently replacing the resulting
coefficients by graph averages results in the total replacement

Fel −→
∫

	

(
S

(0)

(a)(a′) + S
(1)

(a)(a′)

)
Ea(�x)Ea′

(�x) + 2S
(0)

(a)(a′b′)E
a(�x)∂b′

Ea′
(�x) + · · · ,

Fmag −→ (
B

(ab)(a′b′)
0 + B

(ab)(a′b′)
1

)
∂bAa(�x)∂b′Aa′(�x) + B

(ab)(a′b′c′)
0 ∂bAa(�x)∂b′∂c′Aa′(�x) + · · · ,

(5.7)

where

S
(0)

(a)(a′) =
∑
II ′

〈〈√
det PP −2

II ′ ( · )̃sI
a ( · )̃sI ′

a′ ( · )〉〉,
S

(1)

(a)(a′) = �4
P

t

∑
II ′

〈〈(
763

512
P −2

II ′ TrP −2( · ) − 13

16
P −4

II ′ ( · )
)̃

sI
a ( · )̃sI ′

a′ ( · )
〉〉

,

S
(0)

(a)(a′b′) =
∑
II ′

〈〈√
det PP −2

II ′ ( · )̃sI
a ( · )̃sI ′

a′b′( · )〉〉,
and analogously

B
(ab)(a′a′)
0 =

∑
II ′

〈〈√
det P −2

P II ′
( · )bab

α̃I
( · )ba′b′

α̃I ′ ( · )
〉〉

,

B
(ab)(a′b′)
1 = �4

P

t

∑
II ′

〈〈
1

Vv

(
763

512
P −2

II ′ TrP −2( · ) − 13

16
P −4

II ′ ( · )
)

bab
α̃I

( · )ba′b′
α̃I ′ ( · )

〉〉
,

B
(ab)(a′b′c′)
0 =

∑
II ′

〈〈√
det P

Vv

P −2
II ′ ( · )bab

α̃I
( · )ba′b′c′

α̃I ′ ( · )
〉〉

.

Now we can make the replacements (5.7) and obtain a Hamiltonian for the continuum fields
Aa(�x), Ea(�x). A straightforward calculation yields the resulting equations of motion:

Äd = ∂b∂b′Aa′
S(d)(a)(B

(db)(a′b′) − B(a′b)(db′)) + ∂b∂b′∂c′
Aa′

[B(db)(a′b′c′) − B(a′b)(db′c′)

+ (S(d)(ac′) − S(a)(dc′))(B
(ab)(a′b′) − B(a′b)(ab′))] + · · · , (5.8)

where we have used shorthand S(a)(a′)
.= S

(0)

(a)(a′) + S
(1)

(a)(a′), and similarly for the other tensors
S(·)(·), B(·)(·).

Before we spell out the resulting dispersion relation, we use the rotation invariance of the
graph on large scales: it is clear that

S(a)(a′) ∼ δaa′ , S(a)(a′b′) ∼ εaa′b′ .

For the tensors of higher rank, the situation is slightly more complicated: for rank 4, the space
of invariant tensors is three dimensional, the space of rank 5 tensors is ten dimensional. But
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if we take into consideration the symmetries of the terms, these tensors get contracted, there
is only one invariant tensor left in each case. We define

c
(0/1)

1
.= 1

3

∑
i

S
(0/1)

(a)(a), c
(0/1)

3
.= 1

6

(∑
ab

B
(ab)(ab)
0/1 −

∑
a

B
(aa)(aa)
0/1

)
,

c2
.= 1

6

∑
abc

εabcS
(0)

(a)(bc), c5
.= 1

6

∑
abc

εbacB
(bc)(acc)
0 .

A straightforward calculation shows that the equations of motion (5.8) simplify to

�̈A(t, �x) = (
c
(0)
1 c

(0)
3 + c

(0)
1 c

(1)
3 + c

(1)
1 c

(0)
3

)
� �A(t, �x) +

(
c2c

(0)
3 − c

(0)
1 c5

)
�rot �A(t, �x). (5.9)

Note that in the last equation we have just kept terms of leading order and first-order corrections,
in the sense that we have explained in the previous section. Also, we have eliminated a term
containing divA by choosing the appropriate gauge.

Equation (5.9) leads to a chiral modification of the dispersion relation for electromagnetic
waves. Let a unit vector �e3 be given and choose �e1, �e2 such that �ei form a right-handed
orthonormal triple. Then a circularly polarized wave of helicity ±, propagating in the direction
given by e3, can be written as

�Ak(t, �x) = A0[�e1 cos (ω±(k)t − k�e3 · �x) ± �e2 sin (ω±(k)t − k�e3 · �x)].

This is a solution to the wave equation (5.9) provided that

ω±(k) = |k|
√(

c
(0)
1 c

(0)
3 + c

(0)
1 c

(1)
3 + c

(1)
1 c

(0)
3

)± (
c2c

(0)
3 − c

(0)
1 c5

)
k. (5.10)

Thus, we have found a chiral modification to the dispersion relation. Note that this chiral
modification is similar but not completely analogous to the birefringence occurring for light
propagation in some crystals. The latter effect is not isotropic, it also depends on the direction
of propagation relative to the symmetry axes of the crystal, whereas the chiral effect found
here is isotropic. This can be seen from the fact that nothing in the above formulae depends
on the direction of the vector �e3. We can now proceed to a discussion of results.

5.3. Discussion

Let us start the discussion of the results of the last section by considering the physical units
and orders of magnitude of the various terms appearing. We will use Fder, the derivative
term in the scalar field Hamiltonian, as an example—similar considerations apply to the other
terms.

The classical term corresponding to B
(a)(a′)
0 + B

(a)(a′)
1 is

√
det qqaa′

. The latter is

dimensionless, since q is. B
(a)(a′)
0 has the structure

B
( · )( · )
0 ∼ 1

Vol

P 2

√
det P

bb, (5.11)

where Vol is the volume. Since [P ] = m2, [P 2/
√

det P ] = m. b is also a length, unit-wise,
so B

(a)(a′)
0 is indeed dimensionless. B

(a)(a′)
1 has the structure

B
( · )( · )
1 ∼ �4

P

tVol

P 2 TrP −2 − 1√
det P

bb, (5.12)
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so it is again dimensionless as it should be. The structure of B
(ab)(a′b′)
0 is

B
(· ·)(· ·)
0 ∼ 1

Vol

P 2

√
det P

bbbb, (5.13)

so its unit is m2 which is the correct one for a term proportional to |k|4 in the dispersion
relation.

As for orders of magnitude, we remark the following. Assume qab = O(1) in the chosen
coordinate system. Then

P = O(ε2), Vol = O(ε3) and b = O(ε). (5.14)

Using (5.11) it follows that B
(a)(a′)
0 = O(1), so the leading-order term has the right order of

magnitude.
As for the order of magnitude of B

(a)(a′)
1 , we use (5.12) and (5.14) to conclude that

B
( · )( · )
1 = O

(
1

t

�4
P

ε4

)
= O

((
�P

L

)2−4α
)

= O(t1−2α),

which is very small since α < 1/2.
Consider finally B

(ab)(a′b′)
0 : from (5.13) and (5.14) we see that B

(ab)(a′b′)
0 = O(ε2).

As for the other terms in the dispersion relation, similar results can be seen to hold: the
leading-order term has same unit and order of magnitude as the corresponding classical term
and the ratio of leading order to first-order correction is of order t1−2α .

We will now discuss the structure of the dispersion relations (5.4) and (5.10). The
coefficients appearing are given as graph averages of certain local geometric quantities of the
random graph. Let us call these graph averages moments of the random graph prescription
(RGP for short). So, in order to get numerical statements from the results of the last section,
one has to fix the scale L, an RGP, and compute the relevant moments. Such a computation
might be hard to perform analytically, but a computer can easily determine the moments
occurring in (5.4) and (5.10) for a given RGP, so this calculation does not present a principal
difficulty.

The more serious issue here is that there are certainly many RGPs, all leading to different
graph averages and hence different predictions, and it is a priori not clear how one can
single out the ‘right’ one. We note however that for not too pathological RGPs, the graph
averages should be approximately equal so that at least the size of the different terms in the
dispersion relations is not too sensitive to the choice of the RGP. Moreover, again for a not too
pathological RGP, the moments showing up in the dispersion relations should be related. To
give an example, a plausible assumption is that〈〈√

det P
〉〉 ≈ (〈〈

1√
det P

〉〉)−1

and that their difference would not depend very strongly on the chosen prescription. Thus,
there will be approximate relations between the different coefficients in the dispersion relations
which are not affected by the choice of a specific RGP.

Moreover, we note that the leading-order terms in the coefficients depend on the RGP.
This might at first seem to be a problem as well, since it means that we will have to tune the
RGP in such a way that the leading-order terms assume their classical values. On the other
hand, this can be seen as a blessing: fixing the leading-order term means to fix one moment of
the RGP. Via the relations conjectured above, this will also approximately fix other moments,
independently of the specific RGP assumed, and thereby to a certain extent the higher order
corrections.
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Investigations in this direction are worthwhile but beyond the scope of the present work.
Let us for the rest of this section assume that a prescription is fixed and the relevant graph
averages have been computed.

Next we observe that two different sorts of corrections appear in the dispersion relations:
the first sort of correction is simply a correction to the leading-order term coming out of the
fluctuation calculation of section 4. Its relative magnitude was found to be t1−2α . We will call
this sort of correction a fluctuation correction.

The other sort of correction is a term containing a higher power of |k| as compared to the
standard dispersion relation. We will call this kind of correction a lattice correction. We have
demonstrated for the example of B

(ab)(a′b′)
0 that the terms proportional to |k|4 are of the order

ε2, therefore the relative magnitude of the lattice corrections is of the order

O

(
ε2

λ2

)
= L2

λ2
O (tα) � O(tα).

Similarly, the terms proportional to |k|3 in the dispersion relation for the electromagnetic field
are of the order tαL/λ.

When comparing our results for the electromagnetic field with those of [25, 26] we find the
following: the result of Pullin and Gambini [25] does not contain any fluctuation corrections.
This is however not result of the calculation but rather assumed from the beginning. As for
the lattice corrections, they find a chiral modification to the dispersion relation as we do here.
The relative magnitude of the correction is however �P/λ.

Alfaro et al [26] also do not have fluctuation corrections by assumption. They find the
helicity-dependent correction of [25] and the present work, again of the order �P/λ. They also
get higher order corrections, the precise structure of which depends on a parameter which is
not fixed.

Thus, our results agree with that of [25, 26] as far as the structure of the dispersion
relation is concerned. We additionally have fluctuation corrections and, most importantly, the
corrections found do not scale with an integer power of �P, contrary to their finding. This
signals a warning to assumptions made in [40] to take into account only corrections which
are of the order (�P/L)n, where n is an integer. Note that the fluctuation correction and the
lattice correction are equal at α = 1

3 . Thus, the leading correction is always of the order of at
least t1/3.

Finally, we should make a few remarks concerning the possible detection of the corrections
in experiments. The fluctuation corrections will not show up in an experiment testing for a
frequency dependence of the velocity c of light, since they merely correspond to a frequency-
independent shift of c. Also, these corrections are certainly not measurable by measuring
the flight time of photons since their velocity would already be the ‘bare’ leading-order
term plus the fluctuation correction. Fluctuation corrections may however be measurable by
comparing flight times of photons in different geometries, since the corrections will change
when the calculations presented in this section are repeated with LQC approximating a non-flat
spacetime. To discuss how this could be done in practice is however beyond the scope of the
present work.

Whether the lattice corrections are big enough to be detectable in the data from current
or planned γ -ray burst observations crucially depends on the values of α and L. For the value
α = 1/3 which renders fluctuation and lattice corrections equal in magnitude (and which is
close to the lower bound value 2/5 derived in [1]), and L of the order of a γ -ray wavelength, a
rough estimate shows that the lattice corrections would indeed be detectable in the foreseeable
future.
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So, to conclude this section, we should repeat that not too deep a significance should be
attached to the precise values of the coefficients in the dispersion relations obtained. There are
still some ambiguities present in the GCS which we will discuss below: the quantization of the
Hamiltonians, in the procedure to obtain the dispersion relations from the expectation values
and, as a consequence, in the coefficients themselves. Also, the replacement SU(2) → U(1)

will certainly affect the precise numerical outcome. Most significantly, so far we have little
control on what will happen to the size of quantum corrections when our kinematical coherent
states are replaced by physical ones. Within our kinematical scheme, the structure of the
corrections, as well as the orders of magnitude tα, t1−2α of the two sorts of corrections
are robust, however. Thus, we are possibly in trouble because such corrections seem to lie in
the detectable regime. If such corrections are not found, then presumably it is not justified to
use kinematical coherent states.

Finally, the approximate relations between the different graph averages will make the
predictions of a more complete calculation much less dependent on the random graph
prescription chosen than one might at first fear. Similar remarks apply if, as advocated
for example in [8], instead of working with a fixed random graph, one averages over many of
them. (Note that also in that case averaging procedures are not unique.) In order to remove
those ambiguities, one should probably set up a variational principle in order to optimize a
family of semiclassical states according to a given set of observables.

6. Summary and outlook

In this work, we have presented a calculation of dispersion relations for the scalar and the
electromagnetic field coupled to quantum general relativity. These dispersion relations bear
corrections to the standard ones, due to the discreteness of the states of the geometry and to
the bound on the uncertainty product of configuration and momentum variables in QGR. The
calculations rest on the quantization of the matter parts of the Hamilton constraint given in [1]
and the coherent states for QGR constructed and analysed in [9–11, 19].

Corrections to dispersion relations due to QGR were also computed in [25, 26] and the
present work partly rests on the ideas implicit and explicit in these pioneering works. The
form of the correction term in the dispersion relation for the electromagnetic field found in
the present work agrees with that of [25, 26]. This is not too big a surprise since there is no
other rotation-invariant term in �k of the same order. However, we find important differences
in the order of magnitude of the effects, as compared to [25, 26]. Moreover, the results of
the present work are more specific, since a definite class of semiclassical states, the coherent
states for QGR are employed in the calculation.

Rather than making precise numerical predictions, the aim of the present work is to
demonstrate the steps necessary in such a calculation to highlight the issues that remain to be
clarified and to give a robust estimate of the size of the effects.

In this spirit, we have simplified the calculation of the expectation values in 4 by replacing
the full gauge group by its Iönü–Wigner limit U(1)3. This replacement will certainly affect
the precise numerical outcome but not the order of magnitude of the correction. Also, we have
not specified a prescription for obtaining random graphs, but only assumed general properties
that such a procedure will have. Most importantly, the effect of using kinematical rather than
physical coherent states is presently not well understood.

The main achievements of the present work can be summarized as follows.
The calculation given in section 4 shows how expectation values of complicated operators

in coherent states for quantum general relativity can be computed and there is no principal
difficulty in repeating such a calculation for the full gauge group SU(2).
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Perhaps even more important are the order of magnitude estimates of the resulting effects
obtained in this work: they depend on very few parameters and will continue to hold true
when more general complexifier coherent states [20] are used. The main choices that enter
are the following.

• A complexifier C has to be chosen for the construction of the coherent states. (Of course,
there are more general semiclassical states than coherent ones.)

• A class of observables has to be chosen that should be approximated well by the coherent
states.

• A (random, averaged) graph has to be chosen.

The other parameters are fixed by the above choices: the requirement that C/h̄ is
dimensionless forces the parameter t in the definition of the resulting coherent states to
be (�P/a)n, where n is some positive number and a a length scale which is not yet fixed.

The nature of these observables (do they involve one-, two- or three-dimensional
integrations? etc) determines (a) a length scale L and (b) the exponent β in the expression for
the classical error (ε/L)2β .

The length scale a gets fixed to be L by requiring fluctuations of configuration and
momentum degrees of freedom to be equal. Finally, the typical edge length ε of the
random graph is found to be a weighted geometric mean by requiring the fluctuations to
be minimal. Thus, at least within the vast class of complexifier coherent states, the structure
of the ambiguities and their principal effects on the orders of the magnitudes of the quantum
corrections can be neatly classified!

Many things remain to be done before one can really obtain reliable predictions of
observable effects from quantum general relativity.

The procedure used to obtain dispersion relations from the discrete classical Hamiltonians
has to be further analysed, and rigorously justified at least in models which can be solved
analytically. The influence of the choice of a random graph should be investigated, and
concrete procedures have to be implemented. A more distant goal is to also analyse possible
back-reaction effects of the matter on the gravitational field. These were neglected in [1]
and in this work since it would require to solve the combined matter–geometry Hamiltonian
constraint and force us to work with physical coherent states.

Thus, although we certainly did not carry out a first-principle calculation, we hope to have
made a modest contribution to an understanding what the principal problems are and how such
a computation could possibly be carried out in principle. Also, we hope to have demonstrated
that QGR is still far from making reliable semiclassical predictions until one is convinced
of the physical relevance of a definite scheme. However, it should have become clear that
once such a scheme has been identified, QGR is able to provide precise numerical predictions.
In any case, at least for the limited purpose of showing that some version of the quantum
Hamiltonian constraint is correct (for which kinematical coherent states are unavoidable), the
results of the present two papers should be relevant.
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